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Classification of classical spin liquids: Typology and resulting landscape
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Classical spin liquids (CSL) lack long-range magnetic order and are characterized by an extensive ground-state
degeneracy. We propose a classification scheme of CSLs based on the structure of the flat bands of their
Hamiltonians. Depending on absence or presence of the gap from the flat band, the CSL are classified as
algebraic or fragile topological, respectively. Each category is further classified: the algebraic case by the nature
of the emergent Gauss’s law at the gap-closing point(s), and the fragile topological case by the homotopy of the
eigenvector winding around the Brillouin zone. Previously identified models of CSLs fit snugly into our scheme,
on a landscape where algebraic CSLs are located at transitions between fragile topological ones. It also allows us
to present new families of models illustrating this landscape, which hosts both fragile topological and algebraic
CSLs, as well as transitions between them.
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Introduction. Research into magnets without long-range
order has a long history, from the study of the effects of disor-
der in spin glasses [1,2] to the proposal of resonating valence
bond states [3,4], which underpins much of modern research
in strongly frustrated magnets. A classical spin liquid (CSL)
is a classical spin system with extensively degenerate ground
states, subject to local constraints. They represent the extreme
limit of the consequences of frustration, when fluctuations
between ground states preclude any form of order [5–19].
Even though CSLs tend to be unstable to perturbations at T =
0, their large entropy at low energies can allow them to dom-
inate the surrounding phase diagram at finite T . This makes
them extremely relevant to the finite-temperature physics of
real frustrated systems. In addition, they can often be usefully
thought of as parent states, or intermediate temperature limits,
of quantum spin liquids which arise when quantum fluctua-
tions introduce dynamics between the classical ground states
[20–29].

It is therefore important to understand and classify the
CSLs. While classification schemes for QSLs have been suc-
cessful, notably using the projective symmetry group and
the modern perspective of gapped QSLs corresponding to
a topological quantum field theory [30–32], no similarly
comprehensive classification exists for the CSLs. Previous
works have classified frustrated classical spin systems using
constraint counting [7], linearization around given spin con-
figurations [33], supersymmetric connections between models
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[34] or topological invariants built for specific cases [17].
Nevertheless, a scheme which generalizes across different
models and types of CSL, and depends on the physics of
the CSL as a whole rather than individual spin configura-
tions within it remains unestablished. Concretely, the question
whether CSLs have hidden topological properties like QSLs
is an open one. Furthermore, it is not clear how to place
spin liquids with algebraically decaying and exponentially
decaying correlations in a single scheme.

We present a classification scheme to address these issues
and provide a concrete and relatively simple framework to
distinguish different CSL states. Our work also offers practical
tools to diagnose properties of known CSLs as well as to
construct new ones with desired properties. We demonstrate
in particular that a category of CSLs can be characterized by
a topological invariant that persists as long as the lowest flat
bands of the spectrum of the Hamiltonian are separated by a
gap from the higher dispersive band(s). We term these “frag-
ile topological” classical spin liquids (FT-CSLs), as adding
additional spins to the unit cell can render them topologically
trivial without closing the spectral gap.

Algebraic spin liquids can be viewed as inhabiting the
boundaries between the FT-CSLs where the spectral gap
closes, illustrated schematically in Fig. 1(a). This work
presents a largely concept-based, nontechnical account of the
central narrative underpinning the classification scheme. We
present an extended discussion, including a detailed descrip-
tion alongside the more technical aspects, together with a
broader set of new CSLs obtained within this scheme, in a
long companion paper [35].

Classification. Among classical spin models with contin-
uous spins there exist a number of well-established CSLs
[5–19]. Historically the first was the Heisenberg antiferro-
magnet on the pyrochlore lattice [6,7], which exhibits a
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FIG. 1. (a) The landscape of CSLs consists of fragile topological
CSLs (FT-CSLs) whose boundaries are algebraic CSLs. (b) Alge-
braic CSLs feature gap closings between the bottom flat bands and
higher dispersive bands of the spectrum of the exchange Hamilto-
nian. The band-touching point determines the emergent Gauss’s law.
(c) FT-CSLs have no such gap-closing points, being classified by
their eigenvector homopoty.

low-energy description of its so-called Coulomb phase in
terms of an emergent U(1) gauge field theory [8–10,36].

In the spin liquid phase, these systems can be adequately
described by self-consistent Gaussian (also known as soft-
spin, or large-N ) approximation [8,11], which is inspired by
the Luttinger–Tisza method [37–39]. This amounts to aban-
doning the hard spin-length constraint |Si| = 1, and replacing
it with an average constraint 〈S2〉 = 1. This results in a solv-
able Hamiltonian bilinear in spin variables, which can be
diagonalized in momentum space, yielding a spectrum with
a band structure on which our classification is based.1 This
method can be applied to both Heisenberg spin models and
more general ones with bilinear couplings between different
spin components.

The extensive ground-state degeneracy of the CSL is re-
flected in the existence of (at least one) flat band at the
bottom of the spectrum in momentum space—because all the
plane-wave states with a given momentum q in this band
are degenerate. We note that the ground-state degeneracy of
the soft-spin model is an upper bound on the degeneracy of
the classical system, and the existence of the flat band(s) is
therefore necessary to ensure the CSL nature. However, it is
not a sufficient condition since the order-by-disorder mech-
anism may select an ordered state out of the flat-band-state
manifold, as is the case in a classical kagome antiferromagnet
[40]. The central concept behind our classification scheme is
that the unique physics of different CSLs is encoded in their
corresponding band structures. The leading-order distinction

1Note that the spectrum is the property of the classical Hamiltonian,
and not of a (specific) ground state. This is distinct from, for instance,
the large-S approach to quantum spin models where one expands the
fluctuations around an ordered classical state to obtain the spin-wave
spectrum.

is whether the bottom flat bands are separated by a gap from
the higher energy ones, illustrated in Fig. 1. Spectra with
a band gap have short-range spin correlations. The absence
of the gap, on the other hand, results in an algebraic CSL,
of which the aforementioned U(1) Coulomb phase is one
example. We formulate the classification of both these types
of CSLs, starting with the latter.

Algebraic CSLs. We begin by examining algebraic CSLs.
Due to the presence of gap-closing points, these systems
exhibit spin correlations that decay algebraically. The well-
known examples of Heisenberg antiferromagnet on the
pyrochlore lattice [6–10,23,36,41–44], and also various other
models [11,12,14–19], belong to this category. While the
locus of gap-closing points could generally form lines or
surfaces, here we limit our discussion to isolated gap-closing
points only. By examining the eigenvector configuration
around these points, we demonstrate how to extract a general-
ized Gauss’s law, which plays a crucial role in describing the
low-energy effective-field theory of the CSL. The key steps of
this procedure are outlined next.

We consider a system with N spins per unit cell. The
Hamiltonian for CSL systems subjected to local constraints
can be expressed as a constrainer Hamiltonian:

H =
∑

R∈u.c.

[C(R)]2. (1)

C(R), which we call a constrainer, involves the sum of spins
with different coefficients in a local region around the unit cell
located at R [see Eq. (11) for an example]. The Hamiltonian is
the translationally invariant sum of such squared constrainers.
The ground states of the system are spin configurations such
that all constrainers are zero. While it is possible to write down
constrainers of nonlinear types and corresponding Hamiltoni-
ans beyond bilinear spin coupling, such cases are usually not
pertinent to experiments or most of the CSL models discussed
in the literature. Hence we do not consider these here.

For simplicity, we assume there to be one constrainer per
unit cell, and a system with two spatial dimensions. Gen-
eralization to multiple constrainers per unit cell or higher
dimension is straightforward. The spectrum of the Hamil-
tonian then contains N − 1 bottom flat bands and one top
dispersive band with a gap-closing point which we set to be
at q = q0. The eigenvector T(q) of the top band, computed as
the Fourier transform of the constrainer (see example later),
enables us to write down the N × N bilinear interaction matrix
in momentum space,

Jab(q) = TaT ∗
b (q), a, b = 1, . . . , N, (2)

explicitly featuring N − 1 bottom flat bands at ω = 0 and a
top band with a dispersion relation ωT (q) = |T(q)|2.

Let us analyze the behavior of this eigenvector for small
wave-vectors k = q − q0. The gap-closing condition implies
that T(q0) = 0. Hence we can express its components, de-
noted as Ta(q0 + k), as Taylor expansions in kx and ky without
the zeroth-order constants. The leading terms in this polyno-
mial expansion are

Ta(q0 + k) =
ma∑
j=0

ca j (−ikx ) j (−iky)ma− j, (3)
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where ma is the degree of the leading-order terms in Ta(q) and
the constants ca j are given by the Taylor expansion. Ground
states are associated with the (N − 1)-dimensional space of
(complex-valued) eigenvectors S orthogonal to T(q0 + k),
which satisfy

T∗(q0 + k) · S =
N∑

a=1

ma∑
j=0

c∗
a j (ikx ) j (iky)ma− jSa = 0. (4)

Performing the inverse Fourier transformation into real space
yields the generalized Gauss’s law:

ρ =
N∑

a=1

⎛
⎝ ma∑

j=0

c∗
a j (∂x ) j (∂y)ma− jSa

⎞
⎠ ≡

N∑
a=1

D(ma )
a Sa, (5)

and the ground-state condition is ρ = 0.
Crucially, this analysis also yields the equal-time spin

structure factor, the intensity distribution of which, 1 −
| ∑a Ta|2/T2, exhibits singular patterns at q0, known as pinch
points [Fig. 1(b)] [8,9,45–47].

Such Gauss’s laws play a central role in describing the
properties of the ground state manifold of algebraic CSLs.
Specifically, the long-wavelength expansion results in an ef-
fective Hamiltonian given by Heff = (

∑N
a=1 D(ma )

a Sa)2, which
properly captures the algebraic spin correlation of the system.
The generalized Gauss’s laws can also give rise to nontrivial
physics, such as multipole conservations and fracton charges,
which have garnered attention in various fields of physics
[48–52]. Equipping this Hamiltonian with quantum dynamics
provides the starting point for building the emergent (general-
ized) electrodynamics describing the corresponding QSL. In
addition, the presence of multiple gap-closing points allows
for the coexistence of different generalized Gauss’s laws that
describe the same ground state manifold, depending on the
background wave vectors q in the long-wavelength limit.

We can now distinguish different algebraic CSLs by com-
paring their gap-closing points. Concretely, two algebraic
CSLs are in the same class if one can adiabatically deform the
constrainer Hamiltonian and turn the Gauss’s law of one CSL
into that of the other, without going through singular processes
of merging or splitting or lifting some of these points. On
the other hand, two algebraic CSLs are categorically differ-
ent, if they have a different number of gap-closing points,
the associated Gauss’s laws involve a different number of
effective electric field degrees of freedom, or a different order
of ∂x, ∂y. These gap-closing points cannot be made identical
without going through singular transitions. Later, we provide
an example to demonstrate how the Gauss’s law is extracted
from a concrete model, and how the merging or splitting of
the gap-closing point happens.

Fragile topological CSLs. We now turn to the second cat-
egory of CSLs, FT-CSLs. They are characterized by bottom
flat bands that are completely separated from other bands
above them by a gap, resulting in exponentially decaying
spin correlations [13], and the absence of any pinch-point
singularities in the equal-time structure factor. These exper-
imentally measurable features qualitatively differentiate them
from algebraic CSLs.

The FT-CSLs can be further classified based on the ho-
motopy class of the bottom band eigenvector configuration,

which can only change when the system undergoes a zero-
temperature gap-closing topological phase transition. Hence
the phase boundaries of such FT-CSLs are inhabited by the
algebraic CSLs. This is similar to the concept of topological
band transitions, where the Chern number of a band cannot
change without closing a gap. At finite temperature, the tran-
sitions are broadened into crossovers.

The specific classification scheme for two-dimensional FT-
CSLs with N sublattice sites and one (or, analogously, N − 1,
see below) bottom flat bands works as follows. Consider a
normalized single bottom flat-band eigenvector, denoted by
B̂(q) [or the top band eigenvector T̂(q) if there is only one
top band]. The components of B̂(q) are generally complex,
but for certain symmetry protected models they can be also
real. The flatness of the band ensures that it has a zero Chern
number [53], which means the eigenvector B̂(q) is smoothly
defined over the entire Brillouin zone (BZ). Since the BZ is a
2-torus, B̂(q) defines a map from the torus to the target space
of CPN−1 or RPN−1:

B̂(q) : T 2 → CPN−1(or RPN−1), q �→ B̂(q). (6)

This eigenvector can still “wind” nontrivially over the
BZ—captured by the homotopy class of the corresponding
map [T 2,CPN−1] or [T 2,RPN−1]. The homotopy class can
only change when the Hamiltonian is tuned to have gap-
closing points, where B̂(q) becomes ill defined.

In the case where B̂(q) is complex, we can use the
fact that the complex projective space is simply connected
[π1(CPN−1) = 0] for any N − 1 � 1 to obtain

[T 2,CPN−1] ∼= π2(CPN−1) = Z. (7)

For real-valued B̂(q), the homotopy class of [T 2,RPN−1]
does not have a simple formula. However, in a special case
when one can consistently assign directions to the RPN−1

eigenvectors over the boundary condition of the BZ, the ho-
motopy group simplifies:

[T 2, SN−1] ∼= π2(SN−1) =
{
Z if N − 1 = 2

0 if N − 1 � 3.
(8)

The only nontrivial case is when N = 3, which is the skyrmion
number on the torus, Qsk, given by

Qsk = 1

4π

∫
BZ

d2q B̂(q) ·
(

∂B̂(q)

∂qx
× ∂B̂(q)

∂qy

)
. (9)

In the case of three-dimension models, we need to com-
pute [T 3,CPN−1] or [T 3,RPN−1] instead. And in the case of
models having n bottom flat bands, one needs to generalize
the CPN−1 (or RPN−1) vector to n-dimensional subspaces
(see Ref. [35] for more discussion). Note that the homotopy
class is a fragile topological quantity in the following sense:
if new spins are added to each unit cell and interact with
the original spins, the nontrivial homotopy class may become
trivial in the new model. By padding each unit cell with auxil-
iary spins, adiabatically tuning the CSL Hamiltonian and then
decoupling them, one can change the homotopy class without
closing the spectral gap.

Example. We illustrate the classification scheme with the
concrete example of a kagome lattice [Fig. 2(a)] model. The
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FIG. 2. The kagome model of HKGM in Eq. (10). (a) The kagome
lattice with different sublattice sites colored differently. (b) The sites
for the constrainer CKGM defined in Eq. (10). (c) The phase diagram
of the model Eq. (11). Different colored regions are phases of fragile
topological CSL with different skyrmion numbers Q. The three pink
stars are the parameter sets shown and Fig. 3.

constrainer Hamiltonian reads

HKGM =
∑

R∈u.c.

[CKGM(R)]2, (10)

CKGM(R) =
6∑

i=1

Si + ξ1

∑
j=2′3′5′6′

S j + ξ2

∑
j=1′4′

S j . (11)

Here, the sites 1, . . . , 6 and 1′, . . . , 6′ in CKGM(R) are labeled
in Fig. 2(b) for the hexagonal star located at R. The case of
ξ1 = ξ2 = 0 was studied in Ref. [13].

Our model has one constrainer per unit cell and three
sublattice sites, leading to a spectrum that consists of two
degenerate bottom flat bands and a top dispersive band. The
eigenvector of the top band can be expressed as the Fourier
transform of CKGM(R):

T(q) =

⎛
⎜⎜⎝

cos(
√

3qx ) + ξ2 cos(3qy)

cos
( −

√
3

2 qx + 3
2 qy

) + ξ1 cos
( − 3

√
3

2 qx − 3
2 qy

)
cos

( −
√

3
2 qx − 3

2 qy
) + ξ1 cos

(
3

√
3

2 qx − 3
2 qy

)
⎞
⎟⎟⎠,

(12)

and its dispersion is ω(q) = |T(q)|2.
We compute Qsk, Eq. (9), to determine the homotopy

class of the eigenvector T(q) of the top dispersive band [in-

FIG. 3. Spin structure factor and spectrum of three parameter
sets (pink stars in Fig. 2) of the model Eq. (10), highlighting the
merging and lifting of the gap-closing point (blue circle), which
indicates transition between algebraic CSLs and fragile topological
CSLs. (a) Spin structure for parameter ξ1 = −1, ξ2 = −1.3. (b) The
two gap-closing points in its spectrum each hosts a twofold pinch
point (2FPP). (c) Spin structure for parameter ξ1 = −1, ξ2 = −1.
(d) The previous two gap-closing points merge and form a single gap-
closing point with 4FPP. (e) Spin structure for parameter ξ1 = −1,
ξ2 = −0.7. (f) The gap-closing point lifts up and opens up the gap.

stead of the bottom band eigenvector B(q), which amounts to
replacing B → T in the above formalism]. Tuning the two pa-
rameters ξ1 and ξ2 yields the diverse phases shown in Fig. 2(c),
labeled by their skyrmion numbers.

The boundaries of these topological phases, corresponding
to the gap closing between the bands, host various algebraic
CSLs. Their emergent Gauss’s laws are obtained by substi-
tuting the top band eigenvector in Eq. (12) into Eqs. (3) and
(5). For ξ1 = ξ2 = −1, the gapless point k = (0, π/

√
3) +

(kx, ky) exhibits the Gauss’s law

ρ = 2
√

3∂x∂y(S1 − S3) + ∂2
x (2S1 + S2 + 2S3) − 3∂2

y S2.

(13)
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This can be recast as a symmetric rank-two U(1) Gauss’s law
of a scalar charge [48–50]

∂α∂βEαβ = 0, (14)

where the electric field is a rank-two symmetric tensor

Eαβ =
(

2S1 + S2 + 2S3

√
3(S1 − S3)√

3(S1 − S3) −3S2

)
. (15)

In the spin structure factor, this is characterized by the 4-fold
pinch point (4FPP) [45] [Figs. 3(c) and 3(d)].

Decreasing the value of ξ2 moves along the phase bound-
ary, but the spectrum of the Hamiltonian and the emergent
Gauss’s law changes, with the fourfold pinch point (4FPP)
splitting into two twofold pinch points [Figs. 3(a) and 3(b)]:
this transition between algebraic CSLs involves the merging
and splitting of gap-closing points.

By contrast, upon increasing ξ2 > −1, the gap-closing
point is lifted, and a gap opens up between the flat and dis-
persive bands. This yields a FT-CSL, as shown in Figs. 3(e)
and 3(f). Other phase boundaries of algebraic CSLs are also
interesting, but we not delve into them extensively. We do
note that with our classification methodology, analyzing these

phase boundaries is now a straightforward, basic algebraic
calculation.

Summary. In this work, we have presented a classifica-
tion scheme for classical spin liquids, which we divide into
two broad categories: algebraic and fragile topological CSLs.
In our extended companion paper [35], we present a com-
prehensive analysis of the classification scheme, including
aspects omitted here such as rigorous proofs, technical details
of the calculations, higher-dimensional CSLs, more complex
band-closing structures, and connection to flat-band theories.
Additionally, we construct a variety of new models using the
constrainer Hamiltonian formalism to illustrate the different
aspects of the classification scheme, and the new physics aris-
ing from it. Our work also provides a starting point to search
for quantum models that may realize exotic phases of gener-
alized quantum electrodynamics in quantum spin liquids.

Note added. Recently, a paper by Davier et al. [18]
appeared that independently presents results regarding the
classification of CSLs.
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