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Ising fracton spin liquid on the honeycomb lattice
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We study a classical Ising model on the honeycomb lattice with local two-body interactions and present strong
evidence that at low temperature it realizes a higher-rank Coulomb liquid with fracton excitations. We show that
the excitations are (type-I) fractons, appearing at the corners of membranes of spin flips. Because of the threefold
rotational symmetry of the honeycomb lattice, these membranes can be locally combined such that no excitations
are created, giving rise to a set of ground states described as a liquid of membranes. We devise a cluster Monte
Carlo algorithm purposefully designed for this problem that moves pairs of defects, and use it to study the
finite-temperature behavior of the model. We show evidence for a first order transition from a high-temperature
paramagnet to a low-temperature phase whose correlations precisely match those predicted for a higher-rank

Coulomb phase.
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One of the central concepts in condensed matter physics
is the notion of quasiparticles: the idea that the low energy
excitations of a system are weakly interacting particlelike
objects. In general, these quasipaticles are capable of inde-
pendent motion, and it is via this motion that energy inserted
locally into the system can spread out, thus allowing equi-
libration. Fractons are quasiparticles outside this paradigm,
being completely immobile when isolated [1-11]. Fractons
are intimately connected with the conservation laws of exotic
gauge theories involving not only charge but higher moments
(e.g., dipole moment) of the charge density [12—16]. It is these
conservation laws which render isolated fractons immobile.

Recent years have seen a concerted effort to establish the-
oretical models in which higher moment conservation laws
and fracton physics appear [17-25]. Various lattice models
have been proposed to give rise to fractonic behavior, although
these often require complicated multibody interactions. From
the point of view of identifying routes to experimental real-
ization, it is preferable to find models built from short-ranged,
two body interactions.

One setting in which the construction of such models has
been successful is classical spin systems [26—28]. Classical
models have some advantages: a Hamiltonian can be readily
constructed to enforce a local constraint of choice in the low
energy sector, and this constraint can be chosen in such a way

“Contact author: placke @pks.mpg.de
fContact author: j.0.benton@qmul.ac.uk
Contact author: moessner@pks.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by Max Planck Society.

2469-9950/2024/110(2)/L020401(5)

1L.020401-1

as to reproduce the Gauss’s law(s) of a given gauge theory.
Once the model is constructed, it is in principle accessible to
Monte Carlo simulation.

Successful constructions of such models have so far been
restricted to continuous degrees of freedom. Considering in-
stead models of discrete Ising spins presents considerable
advantages and, unfortunately, challenges. First, for discrete
systems the precise identification of local fractonic excitations
is straightforward (in rough analogy to the ease of identifying
domain walls in Ising chains), greatly facilitating study of
their properties. Second, adding quantum dynamics in a con-
trolled way is then relatively straightforward, by identifying
the simplest “resonance” processes between the discrete states
in question, again in analogy to the introduction of transverse
fields to frustrated Ising models [29].

The challenge is posed by the greatly increased difficulty
in numerical studies of Ising models—the limited mobility
of the discrete localized fractons effectively prevents local
algorithms from reaching equilibrium.

In this letter, we present an Ising model exhibiting a frac-
tonic spin liquid regime. The low temperature behavior of our
model is quite distinct from previously discussed fracton mod-
els. The ground state ensemble appears to be truly liquidlike,
being strongly correlated but without long range ordering,
and with an extensive residual entropy. This extensive, as
opposed to subextensive (i.e., o the number of spins/volume
of the system, rather than its linear size), ground state entropy
distinguishes it both from previous discrete classical models
[21,30] and from fracton topological order [8]. We identify
its discrete and local fracton excitations. These appear at the
corners of membranes of flipped spins, and can be understood
as charges of a higher-rank U(1) gauge theory, distinct from
the fractal order discussed in [23].

In order to simulate the model’s properties we devise a
cluster algorithm for Monte Carlo simulations of fractons,
which is purpose built for the study of fractonic Ising models.
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FIG. 1. Ground states of the honeycomb model fulfill the con-
straint M), = 0, illustrated in (a). A single spin flip, as indicated by
a red circle in (b), preserves total charge p as well as all dipole
moments. The minimal-energy excitation, shown in (c) hence creates
four distinct defects. These can be moved in pairs by flipping another
four spins as indicated by orange dashed lines.

This allows numerical access to relatively large systems and
low temperatures.

Simulating the model, we find that it exhibits a first order
phase transition at low temperatures, but that the low tem-
perature state nevertheless lacks signs of conventional order.
Instead, the ground state correlations exhibit fourfold pinch
points in momentum space, which are characteristic of sys-
tems described by a gauge theory of tensor fields [31].

Fractons in the honeycomb model. We consider an Ising
model on the honeycomb lattice with Hamiltonian

H=20 Mi=Y o+ e ()
h Jjeh)

jeh

which is a sum over constraints M}, defined on hexagons &
and their exteriors (h) as illustrated in Fig. 1(a).

A Hamiltonian of this form was first considered in Ref.
[27] for O(3) Heisenberg spins. There, it was shown that
the system upon coarse graining can be described in terms
of a suitably defined rank-2 tensor field m subjected to a
generalized Gauss law

9,0,m"" = p )

with Tr[m] = 0. It was also shown numerically that this emer-
gent gauge theory is realized in its deconfined phase, that is,
the system at low temperatures realizes a so-called higher-
rank Coulomb phase.

While the mapping between the microscopic model and the
coarse-grained field m*", discussed in detail later, generalizes
to the Ising model [36], it is an entirely open question whether
the system still realizes a higher-rank Coulomb phase, or
whether restricting the degrees of freedom to be discrete
yields a set of ground states, the average over which no longer
corresponds to the deconfined phase of the gauge theory.

For the case of the “conventional” Coulomb liquid, cases are
known where the hard-spin Ising and Heisenberg behaviors
are (e.g., pyrochlore [29]), and are not (e.g., kagome [32-35]),
qualitatively similar to one another.

The components of the field m are formed by the local
order parameter for antiferromagnetic order, with wave vector
at the Brillouin Zone corners [27,36]. The Gauss law in Eq. (2)
is then obtained by assuming a slow variation of m in real
space and using a gradient expansion to turn the microscopic
constraints on the spin configuration, M}, into constraints on
the spatial variation of m,,,. As a result, the relationship be-
tween the charge p and the microscopic constraint Mj, breaks
lattice symmetry by hand. We choose a subset of hexagons
such that each site is a member of exactly one of them. One
possible choice is illustrated in Fig. 1 by a darker shade of
some hexagons. Denoting this subset as + hexagons and the
rest as —, the charge is then defined as

_ M,

h is 4 hexagon 3)
h is — hexagon’

Charges and moments of the higher-rank gauge theory can be
determined explicitly from the microscopic model. The single
spin flip, shown in Fig. 1(b), preserves both total charge p
and the dipole moments d” = r"p. The lowest order moment
of the charge distribution which changes is the quadrupole
moment g"*” = r*r¥p.

An excitation with the lowest (nonzero) energy of Eq. (1)
involves four defects (hexagons with M), = £1); it can be
constructed from four spin flips, Fig. 1(c). These defects are
fractons: no single defect can be moved by any local combi-
nation of spin flips since that would change the total dipole
moment. Pairs of (oppositely charged) fractons are lineons
since they can be moved in the direction perpendicular to their
dipole moment by flipping another four spins on the next-next
hexagon, as indicated in Fig. 1(c) in dashed orange. Generally,
fractons in our model appear at the corners of a “membrane”
of flipped bonds. Fracton models are typically classified as
‘type I’ or “type II” based on how the fractons are created
from the ground state and the mobility of fracton bound states
[8]. In type I models the fractons appear at the corners of
membranes and can form mobile bound states such as lineons,
in type II models they appear on fractal structures and there
are no mobile bound states. The model discussed here is type
I, as can be seen from Fig. 1.

Extensive ground-state degeneracy. For periodic boundary
conditions, the fact that pairs of fractons are lineons already
implies a ground state entropy scaling at least subextensively
(o< L, where L is the linear system size): we can create a pair
of lineons, move one of them around the system in a nontrivial
way, and annihilate the pair again, reaching a different ground
state [37]. In addition to moving a lineon in a particular direc-
tion, we can also split it into two, as shown in Fig. 2(a). Note
that such a move is only possible because of sixfold rotation
symmetry and would not be possible with cubic symmetry
and more generally in the absence of at least three distinct
orientations for the membranes. Crucially, in our case it can
be done in two ways which we call forward and backward
split, shown on the left and right of Fig. 2(a), respectively.
The backward split is particularly important since it allows
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FIG. 2. Splitting of lineons and local resonance moves. (a) Pairs
of fractons form lineons, mobile along a one-dimensional subman-
ifold. These lineons can split in two, either the forward (left) or
backward (right) directions. (b) A local combination of six mem-
branes, can create, split, and recombine lineons, in such a way as
to reach a new ground state configuration. This amounts to flipping
24 spins. Application of this move to the ground state in (c) does
not create any excitation and could be centered around any of the
green shaded hexagons. The move can be understood as a local
combination of six membranes as shown in (b), where each corner
overlaps with exactly one other corner of opposite charge.

us to close the worldline of lineons locally, resulting in a
local move between different ground states. The minimal such
move is shown in Figs. 2(b) and 2(c) and is a combination of
six membranes [panel (b)] such that each corner defect is anni-
hilated with exactly one other corner of opposite charge. This
corresponds to flipping 24 spins simultaneously, as indicated
in dashed orange in panel (c). There, we also explicitly show a
ground state [36] with a finite density of such flippable motifs.
The 24-spin move as shown in Fig. 2(c) could be centered
on any of the hexagons colored in green, and nonoverlapping
motifs can be flipped independently. Noticing that there is
one idependently flippale motif per 72-site cell [indicated in
Fig. 2(c) by a gray dashed line], establishes a number of
ground state exponentials in the number of sites N = 2L? and
in particular implies a lower bound on the residual entropy
that scales extensively:

N
So 2 —5 log(2). 4)

Cluster Monte Carlo algorithm. Tt is well established that
in the presence of fracton excitations, any local algorithm will
have a rapidly diverging relaxation time at low temperature
[1,2,5]. Since single defects are immobile, local algorithms
generally fail to anneal them out at low temperature and to
gain access to the thermodynamics of Eq. (1), clearly a cluster
algorithm is desirable. We have designed such an algorithm,
which moves pairs of defects by effectively attempting to span
one row of a membrane as shown in Fig. 1(c). In the crucial
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FIG. 3. Thermodynamics of the fractonic Ising model. Energy E
and specific heat C, from Monte Carlo simulation. Data is consistent
with a first-order transition from a high-temperature paramagnetic
phase to a low-temperature phase where the constraint M), = 0 is
satisfied. Inset: finite-size extrapolation of the ground state entropy
per site.

step, the algorithm starts by flipping two bonds on a single
hexagon and accepting this move with metropolis probability.
In the case that the move is rejected, the algorithm attempts
to flip another four spins [as indicated in dashed orange in
Fig. 1(c)], again trying to accept the move with metropolis
probability, multiplied by a factor to account for the prob-
ability of rejecting the first move. This additional factor is
needed to ensure detailed balance [38]. This is repeated until
either the cluster is accepted or is ultimately rejected while
spanning the full (linear) system size. If the move is accepted
with zero energy cost, it either moves a distant pair of de-
fects by one step in the direction perpendicular to the long
side of the (single-row) membrane or it changes the ground
state sector. While the relaxation time of this algorithm still
scales significantly with system size at low temperature (we
estimate T ~ L7*), it constitutes a major improvement over
local dynamics [36]. When augmented with the local 24-spin
move shown in Figs. 2(b) and 2(c), accepted with metropolis
probability, and using feedback-optimized parallel tempering
[39], we are able to equilibrate systems with up to N = 1152
(L = 24) spins in the ground state regime. To ensure equilibra-
tion, we compute the specific heat both directly from energy
fluctuations and also as the derivative of internal energy with
respect to temperature, and verify that these two estimators
agree (cf. Fig. 3). This is considered a “stringent criterion”
and is used, for example, in computational studies of model
glass formers [40].

Thermodynamic properties and low-temperature correla-
tions. We use the setup described in the previous paragraph
to study the thermodynamic properties of Eq. (1) as a func-
tion of temperature for a range of system sizes as shown
in Fig. 3. Both internal energy and specific heat are com-
patible with a first-order transition from a high-temperature
paramagnetic phase to a low-temperature phase correspond-
ing to the ground state regime (E) ~ 0. Extrapolating the
transition temperature to the thermodynamic limit yields an
estimate of 7, = 0.203 = 0.020 [36]. Integrating the specific
heat from high temperature yields an estimate of the residual

L020401-3



PLACKE, BENTON, AND MOESSNER

PHYSICAL REVIEW B 110, L020401 (2024)

Gz q

FIG. 4. The structure factor in the low-temperature phase at the
system sizes studied shows no sharp features except clearly visible
fourfold pinch points. These pinch points are the signature of an
emergent higher-rank Gauss law [31] and are of the same form
as found for a higher-rank spin liquid in a related continuous spin
model [27].

entropy per site So/N for each system size. Fitting the system
size dependence using both a linear fit to the last four sizes
and a quadratic fit to all system sizes yields an estimate of
So/N = 0.037 £ 0.010. This is quite a bit above the lower
bound derived above [Eq. (4)], but also comes with a large
error bar due to significant finite size effects. The presence
of these even at relatively large system sizes is not surprising
given the size of the smallest local move as shown in Figs. 2(b)
and 2(c).

Finally, we show the structure factor S(q)=)_, ;
e~ "i7T)4(0;0;) within the low-temperature phase in Fig. 4.
It is fully consistent with a low-temperature higher-rank
Coulomb phase since it shows no sharp features except four-
fold “pinch-point” singularities at the zone boundaries, which
are known to be a direct momentum-space signature of the
generalized Gauss’s law in Eq. (2) [31].

The presence of a sharp transition as a function of tem-
perature is not inconsistent with a low-temperature liquid
phase since a first-order transition is always possible also
between continuously connected phases, as demonstrated by
the famous transition between gaseous and liquid water. An
alternative possibility is that the low-temperature phase is a
so called “fragmented liquid” [41]; that is, the set of ground
states, although extensive, breaks some symmetry on aver-
age. A possible hint in this direction is that the maximum
of the structure factor along the line cut shown in Fig. 4
scales roughly with linear system size. However, as discussed
already above there are still significant finite size effects.
Ultimately, it is impossible to exclude the possibility of frag-
mentation in the absence of a more efficient algorithm and we
leave this question open for future studies.

Conclusion. In summary, we have demonstrated the ap-
pearance of a fractonic spin liquid in the low temperature state
of an Ising model on the honeycomb lattice. This low temper-
ature state is separated from the high temperature paramagnet
by a first order phase transition, and exhibits correlations
matching those predicted for a Coulomb phase of rank-2
electric fields with scalar charges [31]. Elementary excitations
are type I fractons, appearing at the corners of membranes of
flipped spins.

The discovery of a relatively simple Ising model, with
finite-range, two-body interactions establishes a useful plat-
form for the further exploration of fractonic physics. This
could include the perturbative introduction of quantum ef-
fects via transverse fields or transverse exchange. This may
be a better setting in which to study quantum effects on
fractons than in the Heisenberg models suggested in Ref.
[27], for which numerical calculations suggest that quantum
fluctuations wash out the multifold pinch points [42]. Here,
the emergent Gauss’s law is protected by a finite gap, so
it may be more robust. Even if instanton effects drive the
emergent gauge theory into a confined phase [as they do for
the ordinary U(1) gauge theory in 1 + 1 D], the low temper-
ature physics can still show interesting features related to the
liquid phase.

Our purpose-built Monte Carlo algorithm provides a tem-
plate for future numerical studies of type I fractonic models.
Our algorithm, or its descendants, may also prove useful in
the study of dynamical properties of such systems, address-
ing in more detail the topics of relaxation and disorder-free
glassiness. The successful demonstration of an Ising fracton
spin liquid, based on a Hamiltonian originally constructed
for continuous spins [27], also raises the question of whether
other classical spin liquids with higher-moment conservation
laws [43,44] have Ising realizations, and what their properties
may be.

Physical simulation platforms based on Rydberg atoms and
superconducting qubits may be the most promising route to
realization of our model. The model has the advantage of
requiring only two-body interactions and, while it does require
a fine tuning of interactions at different distances, the basic
requirement for strong interactions which extend up to a finite
cut-off distance is similar to models for Rydberg atom arrays
[45,46]. Similar constraint structures have also been discov-
ered recently in models for strongly interacting electrons in
twisted-bilayer graphene [47]. We are therefore hopeful that
the fractonic spin liquid uncovered here can be explored in
the laboratory in the near future.
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