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Thermalization time marks the scale at which the subsystem entanglement reaches its thermal value. It was
recently shown to exhibit two distinct stages in a generic class of quantum circuits with decay rates r1 and
r2 before and after thermalization. The two rates are observed in the Floquet dynamics of the state purity,
entanglement spectra, and (local) correlation functions, both in clean and disordered systems. Entanglement
membrane theory interprets r1 as domain-wall energy and r2 as either a geometric effect (phantom eigenvalue)
or a competition with an emergent magnon mode. In the case when the domain wall dominates, this offers a
practical measure for entanglement growth via local correlations.
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Thermalization in closed quantum systems has been the
subject of extensive study due to its critical role in quantum
statistical mechanics. In general, local subsystems are known
to thermalize as they become maximally entangled with their
surroundings. However, while the state at large may have
equilibrated, dynamics at the microscopic scale continue past
this thermalization time. A series of recent works have uncov-
ered an intriguing phenomenon of two-stage thermalization in
random quantum circuits [1–3]: the relaxation to equilibrium
has two stages, characterized by different rates before and
after the thermalization time. This opens up inquiries into the
microscopic processes driving thermalization.

For a concrete setup of two-stage thermalization, let us
consider a pure state evolved unitarily by a local quantum
circuit [see, e.g., insets of Fig. 1(a)]. To hint at its statistical
mechanical nature we denote the half-system purity as a par-
tition function Z (t ). When thermalizing, Z (t ) approaches the
equilibrium value Z (∞). Figure 1(a) shows the convergence
ln |Z (t ) − Z (∞)|: The exponential decay towards saturation
value is e−r1t ln(2) before and e−r2t ln(2) after the saturation time.
Open boundary conditions (OBCs) and periodic boundary
conditions (PBCs) in certain gate parameter regimes can yield
different values of r2 [see Fig. 1(b)].

Crucially, the two-stage thermalization is a general feature
of chaotic (meaning far from integrable) local systems. First,
the phenomenon is not restricted to random quantum circuits
but has been observed in clean translation invariant Floquet
circuits [4]. Our theory suggests that analog Floquet simula-
tions also work. Moreover, the observable is not confined to
the subsystem purity. The entropy itself—here the entangle-
ment entropy of the subsystem (including the von Neumman
entropy)—has this signature. The first stage corresponds to the
linear growth of the entanglement before equilibrium, and the
second stage corresponds to a size 2−r2t fluctuation of entropy
around its equilibrium values. The natural hypothesis is that
this two-stage decay should be observable directly in the en-
tanglement spectrum, which we confirm in the Supplemental

Material [5] (see also Ref. [6] therein). We further observe
two stages in the relaxation of out-of-time-ordered correlators,
which characterize the scrambling of quantum information
[7–9] and local correlation functions, which we propose has
important implications for the experimental measure of en-
tanglement.

Until now, the origin of two stages was attributed to the
spectral properties of the (effective) non-Hermitian transfer
matrix of the problem. When r1 > r2, r1 lives in the gap
of the transfer matrix and is regarded as a “phantom eigen-
value.” Because of the exponentially large amplitude of the
localized edge modes, it dominates the first-stage decay. This
phenomenon is known as the “non-Hermitian skin effect” and
occurs in the effective dynamics of unitary evolution.

In this work, we lay out an intuitive physical theory for
two-stage thermalization in its full generality. The two decay
rates correspond to distinct “particle” excitations—domain
walls and magnons, which compete to dominate the purity
decay. The interplay between these excitations is also influ-
enced by the system’s geometric configuration, which dictates
whether the decay rate accelerates or decelerates. This picture
of emergent particlelike excitations is crucial in understanding
how entanglement not only facilitates thermal equilibrium but
also drives dynamics postsaturation.

Finally, our theory also generates two concrete experimen-
tal protocols that are of great interest for NISQ devices: (i)
measuring entanglement growth through a local correlation
function, and (ii) mitigating errors through the first-order
transition between the domain wall and the magnon [see
Fig. 1(b)]. Protocol (i) uses the fact that the two-stage decay
also occurs in local correlation functions and greatly sim-
plifies the entanglement measurement protocol. Protocol (ii)
takes advantage of the discontinuity to enlarge the signal.

Phenomenologies. We focus on the two-stage decay of the
state purity and first review the quantitative phenomenologies
observed in quantum circuits studied in Ref. [1]. The unitary
gates in the circuits are nearest neighbor and stacked in either
a brickwall geometry or a staircase geometry [Fig. 1(a)] on
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FIG. 1. Two-stage thermalization. (a) Schematics of two-stage
decay for staircase geometry and brickwall geometry. Both insets
show circuits of four time steps. Generally, r1 < r2 for staircase
geometry and r1 � r2 for brickwork geometry. (b) For the dual uni-
tary (1, 1, az ) circuits, r2 depends on az and the boundary condition
(periodic or open).

a one-dimensional lattice of L qudits with the local Hilbert
space dimension q. The brickwall structure naturally arises in
the Trotter limit and for modeling local interactions, which
ensures a finite speed of information propagation. The stair-
case geometry has the advantage that dynamics can be traced
backward along a single space-time path, which also reduces
the spatial cost in the quantum simulation if reset is possible
[10]. We identify three specific scenarios: r1 = r2, r1 < r2,
and r1 > r2.

Scenario 0: r1 = r2. We first consider the paradigmatic
example of random unitary circuits (RUCs) in which the gates
are independent random U (q2) matrices. This choice allows
us to access the typical behavior via disorder averaging (see,
e.g., Refs. [11–20] and a recent review [21]). We thus examine
ln |Z (t ) − Z (∞)|, where the overline denotes averaging over
the Haar ensemble on U (q2). In brickwall geometry, there is
a single decay rate given by

r1 = r2 =
ln q2+1

2q

ln q
[brickwall, RUCs]. (1)

Scenario 1: r1 < r2. For RUCs in staircase geometry, we
obtain two decay rates after random averaging [2]:

r1 = 1

2

ln q2−q+1
q

ln q
, r2 =

ln q2+1
2q

ln q
[S, RUCs]. (2)

This phenomenon is observed in more general (nonrandom)
circuits with staircase geometry.

Scenario 2: r1 > r2. Brickwall geometry can host behav-
iors different than those of scenario 0 if we allow more
general gates than Haar random. Let us specialize to q = 2.
An arbitrary two-qubit gate can be parametrized through four
single-qubit rotations ui, i = 1, 2, 3, and 4, and a symmetric
two-body interaction usym as

u = (u1 ⊗ u2)usym(u3 ⊗ u4). (3)

The symmetric part is generated by commutative operators
usym = exp[−i π

4 (
∑

α=x,y,z aασ ασα )]. Here σα is the αth Pauli
matrix and 0 � aα � 1. In this scenario, we average the four
single-qubit unitaries ui over U(2), hence the whole gate is in-
dexed by (ax, ay, az ). The choice ax = ay = 1 corresponds to

a special class known as dual unitary gates, which means the
gate is unitary viewed in both spatial and temporal directions
(see, e.g., Refs. [22,23] and more details in a review [24]).
We primarily focus on a one-parameter class of circuits ab-
breviated as (1, 1, az ). In the one-parameter family (1, 1, az ),
az = 0 corresponds to an iSWAP gate and az = 1 corresponds
to a SWAP gate; the gate is not integrable elsewhere. It has been
proven that the purity decays as poly(t )2−t [25] on average
for dual unitary circuits with high enough entangling power,
while numerics suggest it holds more generally. Consequently,
the first-stage decay rate is r1 = 1 for OBCs and r1 = 2 for
PBCs (the subregion A has two boundary points). The second-
stage decay rate r2 is a function of az,

r1 = 2, r2(az ) =
ln 3

2−cos(πaz )

ln 2
[(1, 1, az ), PBCs]. (4)

We prove the r2(az ) expression in the Supplemental Mate-
rial [5], which was numerically computed and conjectured
in Ref. [26]. For OBCs, the expression remains the same
for az � 1

3 but caps to 1 for 0 � az � 1
3 . See schematics

in Fig. 1(b). The r1 > r2 phenomenon extends beyond the
(ax, ay, az ) circuits and applies even to Floquet circuits with
space and time translation symmetries.

Effective magnet. The physical theory originates from ana-
lyzing random unitary circuits, where averaged entanglement
dynamics map to the statistical mechanics of an effective
magnet, which we review now [12,17,21,27–35]. The relevant
partition function for the problem at hand is given by the
purity of a time-evolved state restricted to subregion A,

ZA(t ) = Tr[ρA(t )2], (5)

where ρA(t ) = TrA(|ψ (t )〉 〈ψ (t )|). This quantity contains two
copies of the unitary circuit U and its conjugate U ∗, com-
bined as U ⊗ U ∗ ⊗ U ⊗ U ∗ acting on four copies of the L
qudits. Since our sampling of random gates is independent in
space and time, the overall random averaging of U reduces
to the separate averaging over each individual gate. The local
Haar average over the single-site unitary u1 ⊗ u∗

1 ⊗ u1 ⊗ u∗
1

projects the four copies of the qudit Hilbert space into a
two-dimensional subspace spanned by the states {|+〉, |−〉}
[36], which represent our effective spins. Physically these
two states denote two different ways to pair a unitary and its
conjugate:

, (6)

(7)

The boundary spins are specified by how different copies of
U and U ∗ are connected together in the partition function
Eq. (5): For half-system purity, the top boundary is a domain-
wall state | + · · · + − · · · −〉, where region A (A) hosts |+〉
(|−〉) states; for an initial product state, the bottom boundary
is free.

The local average u ⊗ u∗ ⊗ u ⊗ u∗ is the local transfer
matrix M that determines the update rules of adjacent spins.
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FIG. 2. Domain-wall configurations in brickwall [panels (a) and
(b)] and staircase [panels (c) and (d)] geometries. (a) t < tsat , spin
states at the lattice level (top) and domain-wall random walk at the
coarsed grained level (bottom). (b) t > tsat for brickwall. (c) t < tsat ,
the domain wall has shorter paths in the staircase. (d) Same as panel
(b) for staircase.

For RUCs, the update rules are

|++〉 → |++〉 , (8)

|+−〉 → K |++〉 + K |−−〉 , (9)

and symmetric counterparts are obtained by exchanging |+〉
and |−〉, with K = q

q2+1 . Equation (8) arises from the unitarity
of the gates, while Eq. (9) is the microscopic theory of a
propagating domain wall. At each time step, the domain wall
can move to the left or right with equal probability, but the
single-domain-wall sector is preserved [Fig. 2(a)]—a special
feature of Haar random circuits [37] (discussed in detail in
the Supplemental Material [5], see also Ref. [11] therein).
The free energy of this random walk is the Rényi entropy.
The average partition function is exact Z (t ) = (2K )t [28], and
the decay rate coincides with r2 in Eq. (2). For dual unitary
circuits, the unitarity rules are the same as those in Eq. (8).
However, the domain wall (9) is not preserved and can be
transferred into more states:

|+−〉 → h |++〉 + h |−−〉 + b+ |+−〉 + b− |−+〉 , (10)

where h = (3 − v)/9 and b± = (3 ± 6u + 5v)/36, with u =
cos(πax ) + cos(πay) + cos(πaz ) and v = cos(πax ) cos(π
ay) + cos(πay) cos(πaz ) + cos(πaz ) cos(πax ) [1]. For later
reference, we denote the overall propagator M̂(t ), which is an
alternate product of the global transfer matrices at even and
odd steps (see the Supplemental Material [5]). The partition
function is

Z (t ) = 1

(q2 + q)L

∑
si=±

〈s1, · · · sL|M̂(t )| · · · + − · · · 〉. (11)

At scales much larger than the domain-wall width, the mem-
brane theory asserts that the free energy of the domain wall
can be described by a macroscopic line tension function
E (v), which only depends on the space-time (anti)slope v.
The partition function Eq. (11) asymptotically decays as
exp[− minv E (v)t ln q]. For RUCs, the average partition func-
tion has an exact line tension for a random walk:

E(v) =
ln q2+1

q + 1+v
2 ln 1+v

2 + 1−v
2 ln 1−v

2

ln q
. (12)

The minimum at v = 0 is a vertical random walk [Fig. 2(a)]
and consistently gives r2 in Eq. (2) of scenario 0.

Scenario 1: r1 < r2, staircase geometry. The staircase
geometry creates a tilted diamond region which constrains
the domain wall’s movement. As shown in Fig. 2, the bot-
tom staircase boundary is tilted upward at 45◦, allowing the
domain wall to travel a shorter distance if it tilts towards
this lower boundary. However, this comes at the price of a
larger line tension E (v). Quantitatively, if the domain wall
has an (anti)slope v, the distance traveled (or time duration) is
t/(1 + v). The free energy F (v) is a trade-off between shorter
path length and increased line tension:

F (v) = min
v

E (v)

1 + v
ln q. (13)

For RUCs, the line tension is given in Eq. (12), and the

minimum at v∗ = (q−1)2

q2+1 reproduces r1 = E (v∗ )
1+v∗ = 1

2

ln q2−q+1
q

ln q ,
which is consistent with Eq. (2). However, for t ∼ tsat, the
same trajectory exits at the spatial boundary (rather than the
bottom boundary). For t > tsat, the partition function has al-
most saturated to a static value. Schematically [Fig. 2(d)],
the saturation value comes from the contribution in which
the domain wall hits the left and right boundaries. And the
second-stage decay comes from a subleading correction in
which the domain wall continues to reach the bottom (yellow).
The effect of the tilted bottom boundary is increasingly neg-
ligible compared to the bulk contribution. Consequently, the
yellow part is dominated by an (almost) vertical domain wall
e−E (0)t ln q, which gives the decay rate r2 = E (0). Taking the
tilt angle to 0 reduces the staircase to the brickwall geometry,
which explains why the brickwall RUCs exhibit no geometric
crossover (scenario 0).

Scenario 2: r1 > r2. The Haar gates in the brickwall
structure do not exhibit two-stage thermalization, but the dual-
unitary (1, 1, az ) gates can. The new ingredient is a magnon
mode. While the local update rules for Haar random circuits in
Eq. (9) can only move domain walls, the ones for dual-unitary
circuits in Eq. (10) permit swap processes |+−〉 → b− |−+〉.
This can create new pairs of domain walls; such a pair forms
a magnon when bound. Before tsat, pair creation means that
a magnon, once formed, can only coexist with a (dressed)
domain wall. Since the free energy of a magnon on top of
a domain wall is always higher than that of a single domain
wall, the single-domain-wall mode dominates, and r1 = 1 (2)
for OBCs (PBCs) [25]. However, once the domain wall exits
through the boundary after tsat, a stand-alone magnon can
exist and compete with the domain wall. We believe that the
transition from a domain wall to a magnon mode creates the
second stage with a smaller rate r2 < r1.

To confirm that magnon gives the rate r2, we isolate the
magnon contribution and compute a magnon (sub)partition
function (for a detailed derivation, see the Supplemental Ma-
terial [5] and Ref. [29] therein),

Zmag(x, t ) = 〈· · · +∗ −∗ +∗ · · · +∗ |M̂(t )| − + · · · +〉.
(14)

The initial state |− + + · · · +〉 (top boundary) is a domain
wall on the left boundary, which creates a magnon. The final
states are constructed from the dual basis {|+∗〉 , |−∗〉} (note
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(a) (b)

FIG. 3. Magnon partition function and magnon decay rate. (a) Heatmap of Zmag(x, t )/maxx|Zmag(x, t )|. The magnon mostly travels on the
light cone. (b) Magnon decay rate for clean dual-unitary circuits (1,1,0.7), (1,1,0.6) and clean non-dual-unitary Floquet circuit (0.9,0.8,0.5).

|+〉 and |−〉 are not orthonormal), which satisfies 〈i∗| j〉 = δi j ,
i, j ∈ ±. These dual states pin the magnon at spatial positions
x = 1, 2, . . . , L. The partition function (14) contains all tra-
jectories that start with a magnon at the left spatial boundary
and end with a magnon at x, with possible branching and
broadening corrections of the magnon mode in between. We
recursively solve for these corrections from the numerical
data of Zmag(x, t ) and resum them to obtain the asymptotic
decay rate rmag defined by

∑
x Zmag(x, t ) ∼ exp(−rmagt ln q).

Figure 1(b) displays the numerical results for rmag in random
(1, 1, az ) circuits, confirming the predictions of Eq. (4). For
PBCs, r1 = 2 always exceeds rmag, meaning that the magnon
dominates in the second stage. For OBCs, however, r1 sur-
passes rmag only when az � 1/3. These findings explain the
physical mechanism of r2 and clarify how r2 behaves under
different boundary conditions.

Exact rmag from correlation function. We can derive the
analytic curve in Fig. 1(b) exactly via dual unitarity, which
confines local correlations to propagate strictly on the light
cone [38]. From the heatmap of Zmag(x, t ) [Fig. 3(a)], the
value at x = t dominates for each t and a magnon thus also
mainly propagates on the x = t ray. Instead of relying on Zt,t ,
we introduce a modified partition function,

Z̃mag(x, t ) = 〈+ · · · + − + · · · + |M̂(t )| − + · · · +〉, (15)

and seek for Z̃mag(t, t ). Contrary to Zmag(x, t ) in Eq. (14),
where the magnon was strictly pinned to position x, the par-
tition function in Eq. (15) does not entirely eliminate but
rather penalizes other configurations with exponential cost.
Thus, it allows small O(1) fluctuations of the magnon’s final
position around x and crucially does not affect the asymptotic
decay rate rmag. Moreover, dual unitarity reduces Z̃mag(t, t )
to repeated applications of a quantum channel acting on the
|−〉 state, as discussed in the Supplemental Material [5] and
Ref. [38]. After averaging over single sites, the quantum chan-
nel is simplified and has only two eigenvalues: λ+ = 1, which
gives the dissipationless propagation of the |+〉 state, and
λ− = 2−rmag , where rmag is the analytic expression in Eq. (4).

Generic systems. Importantly, this theory can be applied
beyond random averaging to generic chaotic systems with
either or both space and time translation invariance. As shown
in Ref. [29], going away from random averaging leads to
bubble corrections that widen the domain walls in Fig. 2(a) to

have O(1) width. The line tension function still exists after the
renormalization by the bubbles [29]. Similar corrections can
occur for the magnon (see the Supplemental Material [5]), so
long as the bound state has lower energy than two separate
domain walls. Otherwise, the magnon can dissolve through a
binding transition, as discussed in Ref. [37].

In Fig. 3, we numerically resummed the corrections to the
magnon in a Floquet dual-unitary circuit. It has parameters
(ax, ay, az ) = (1, 1, 0.5) and a fixed single site unitary u1 =
u2 = u3 = u4 = ei(sin(φ)σ x+cos(φ)σ z ) with φ = 0.6. As in the av-
erage case, dual unitarity allows us to analytically solve rmag

from the eigenvalues of the quantum channel. The resummed
value of rmag even in systems of L = 12 sites converges to
the analytic prediction from the channel calculation above, as
shown in the inset of Fig. 3.

Discussion. Our physical theory of the emergent domain
wall and magnon has quantitatively explained all the observed
finite system phenomenologies of r1 and r2: r1 < r2 is a
geometric effect, while r2 < r1 is a magnon mode winning
over the domain wall. Numerical evidence suggests that our
theory works beyond random averaging and applies to generic
(time-periodic) chaotic systems.

Interestingly, there is a similar two-stage thermalization for
a stand-alone magnon. Instead of starting from a domain wall,
as in the case of the purity, we consider the square of a local
correlation function, which after averaging over the operator
creates a magnon as the initial state. If the magnon is at the
center, r1 will be the magnon decay rate as the domain wall
cannot exist alone before tsat. For t > tsat, r2 is once more
determined by the competition between the domain wall and
the magnon. This is a reverse transition from the magnon rates
to whichever wins.

If the domain-wall decay rate is smaller, such a reverse
transition can be used to measure the domain-wall rate E (0)
from r2. This is the case for (1, 1, az ) circuits with az < 1/3
after random averaging. An improvement of the protocol is
to place the operator at the spatial boundary, so the magnon is
instantaneously in a position to compete with the domain wall.
In the Supplemental Material [5], we compute the boundary
correlation function for dual-unitary circuits (1, 1, az ). The
decay rate is 1 when az � 1

3 , which is the domain-wall rate.
When az � 1

3 the decay rate is close to the ones obtained
from the gap of the quantum channel, indicating it as the
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magnon rate. Our theory thus also works for the local cor-
relation function. It provides a practical scheme to measure
entanglement, a highly nonlocal quantity, from the decay of
local observables.

We note that our statistical mechanical model can be ap-
plied to Rényi entropies with the index n � 2, for which the
spin lives in the permutation group Sn. This amounts to vastly
more modes, with more types of domain walls, magnons, and
other bound states. The first stage is still set by a domain
wall whose rate can be determined through the line tension
method; however, in the second stage, the rate will be given
by the competition between all modes. We do not have a good
understanding of which mode “wins” in this scenario. Further,
we do not fully understand how to relate the decay of these
modes to the decay of individual eigenvalues in the entangle-
ment spectra. The first step would be to understand S∞, where
only the largest entanglement eigenvalue is concerned.

Finally we note that the point az = a∗ marks a first-order
phase transition. The first-order derivative of r(az ) has a dis-
continuous jump from 0 at az = a∗, which can be a sensitive
signal in experiments. Mathematically, the derivative is given
by the ratio ∂az 〈ψ (t )|Z0|ψ (t )〉

〈ψ (t )|Z0|ψ (t )〉 . Through the parameter-shift rule
[39], the derivative term on the numerator can be measured as

the difference of two correlators using almost identical circuits
with one parameter shifted. The discontinuity in ∂az r(az ) can
thus be detected by measuring correlators on order O(tL)
parameter-shifted circuits. We anticipate applications in er-
ror detection and mitigation on modern quantum simulation
platforms and leave the practical implementation and study of
noise to future works.
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