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The out-of-time-order correlator (OTOC) measures the propagation and scrambling of local quantum infor-
mation. For the transverse field Ising model with open boundaries, the local operator σ x shows an interesting
picture of the ground state OTOC where the local information alternately gets scrambled and then “unscrambled”
upon reflection at the ends. Earlier discussions of OTOCs did not explain the physical processes responsible for
such scrambling and unscrambling. We explicitly show that in the paramagnetic phase, the scrambling and
unscrambling is due to the scattering of a pair of low-energy spin-flip excitations, and extend it to incorporate
integrability-breaking interactions. In the ferromagnetic phase these are explained by the motion of a domain-
wall excitation, and we find that unscrambling survives up to moderate values of interactions. Thus, in different
limits of the system parameters, we provide a simple understanding of the OTOCs, including the unscrambling,
in terms of the low-energy excitations like spin flips or domain walls. We mention a system where our results
can be experimentally tested.
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Introduction. The spreading of local quantum informa-
tion in a quantum many-body system, known as scrambling
[1–12], is generally described by the growth of a local oper-
ator under time evolution. The front of the operator (or the
light cone) is known to spread ballistically [13–17] in lattice
systems with a bound on the speed of propagation called
the Lieb-Robinson velocity [18]. Quantitatively, scrambling is
measured by the real part of the out-of-time-order correlator
(OTOC) [19–31], F (l, t ) = 〈Wl (t )V0Wl (t )V0〉, where the local
operators V and W are at the positions 0 and l , and the expec-
tation is taken in a suitable equilibrium ensemble. Recently, it
was found that in noninteracting spin-1/2 chains, the OTOCs
for certain operators show scrambling of quantum information
inside the light cone [namely, F (l, t ) deviates considerably
from 1], while for other operators they do not [32,33]. This
phenomenon was attributed to the locality or nonlocality of
those operators in the Jordan-Wigner (JW) fermionic pic-
ture, but without a quantitative explanation. So far, attempts
to understand scrambling through OTOCs have been based
mainly been on studies of the Heisenberg time-evolution of
the local operator using the Baker-Campbell-Hausdorff com-
mutator expansion. In this context, several works [15–17,34–
38] in recent times have described the operator spreading in
one dimension in terms of a coarse-grained hydrodynamic
picture of quasiparticle diffusion. While these explain the
ballistic spreading and diffusive broadening of the operator
front, an exact mechanism for scrambling in terms of the
excitations of the system has been elusive so far. We note
here that scrambling is not necessarily a signature of quantum
chaos, and OTOC quantifies the degree of scrambling [39,40].

It has been reported in a recent study [33] that the ini-
tial local operator starting from one end of the system gets
scrambled under time evolution, and again becomes localized
after reflection from the other end of the system. We call this

effect “unscrambling,” which is marked by the value of the
OTOC becoming close to 1 again. Interestingly, this feature
disappears gradually with increasing interaction strength. It
is not well understood yet if the presence or absence of un-
scrambling is due of the nonintegrability of the system or only
because of interactions between the excitations.

In order to understand the mechanism of scrambling and
unscrambling in terms of the excitations of the system, we
study the ground state OTOC of the longitudinal magnetiza-
tion (which is nonlocal in terms of Jordan-Wigner fermions)
in the transverse field Ising model (TFIM) with and with-
out interactions. The OTOC for JW local operators in the
TFIM, which shows only propagation of the front without
scrambling, can be evaluated exactly using Wick’s theorem.
The calculation of the OTOC for JW nonlocal operators (see
Fig. 1) in the fermionic language is more tricky and prevents a
simple physical understanding of the effects mentioned above.
Therefore, we resort to a perturbative approach directly in the
spin language. In the paramagnetic (PM) phase of the TFIM,
we show that the operator creates spin-flip excitations above
the ground state. The scrambling and unscrambling of quan-
tum information happens due to the scattering phase shifts
of two spin-flip excitations. In the ferromagnetic (FM) phase,
the operator excites domain walls [31] above the ground state
which are responsible for the scrambling and unscrambling.
Additionally, if interactions are added, the unscrambling in
the ground state OTOC fades away. We find that this is due
to different reasons in the PM and the FM phases. In the
PM phase, even small interactions alter the scattering phase
shift significantly from the noninteracting case and obstruct
unscrambling. In the FM phase, a comparatively larger in-
teraction is needed to disrupt the unscrambling by creating
higher order domain wall excitations. In this Letter, we will
provide a detailed quantitative analysis of these mechanisms
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FIG. 1. Spatiotemporal plots of the ground state OTOC for
(a) the JW local operator σ z and (b) the JW nonlocal operator σ x ,
at the critical point of the TFIM given in Eq. (1) with Jx = h = 2.
The σ z-OTOC F zz shows only light-cone lines of information prop-
agation, while the σ x-OTOC F xx shows alternating scrambling of
quantum information and unscrambling after reflections from the
ends. Mixed OTOCs, F zx and F xz, give plots similar to F zz in (a) (see
Ref. [41]).

with a comparison of the OTOCs calculated using numerical
exact diagonalization and our effective theory of low-energy
excitations, and we find an excellent match between the two.

Ground state OTOC. The Hamiltonian of the TFIM is

H = − Jx

L−2∑

n=0

σ x
n σ x

n+1 − h
L−1∑

n=0

σ z
n (1)

on a lattice with L sites and open boundaries. As the transverse
field h is decreased from a large value, the model exhibits a
continuous phase transition from paramagnetic to ferromag-
netic at h = Jx. We consider the OTOC of the local operator
σ x starting from one end, F xx(l, t ) = 〈σ x

l (t )σ x
0 σ x

l (t )σ x
0 〉 and

analyze it in the PM and FM phases using perturbative treat-
ments for large and small transverse fields, respectively.

Paramagnetic phase: spin-flip excitations. In the paramag-
netic phase, at large values of the transverse field, |h/Jx| � 1,
the ground state has all the spins aligned in the direction of
the field, |↑↑↑ · · · ↑〉z in the σ z basis. The lowest energy
excitations are given by single spin-flips like |↑↓↑ · · · ↑〉z. In
the OTOC, σ x

0 acting on the ground state creates a spin-flip
excitation at the left-most (zeroth) site which can then hop
through the chain due to the Jxσ

x
n σ x

n+1 term in the Hamilto-
nian. Subsequently, σ x

l can either produce a second spin-flip
excitation or de-excite the system back to the ground state.
Thus, the ground state OTOC is approximately governed by
a combination of two processes, one which involves only
single spin-flip excitations and the other involving two spin-
flips [see Fig. 2(a)]. This becomes clear if we write the
OTOC using the intermediate excited states by resolving
the identity approximately as I ≈ |ψGS〉 〈ψGS| + ∑

q |q〉 〈q| +∑
q1,q2

|q1, q2〉 〈q1, q2| + higher order excitations:

F xx(l, t ) �
∑

q,q′

[ 〈ψGS| eiHtσ x
l |q′〉 〈q′| e−iHtσ x

0 |ψGS〉

× 〈ψGS|eiHtσ x
l |q〉 〈q| e−iHtσ x

0 |ψGS〉
]

+
∑

q1,q4,q2<q3

[〈ψGS|eiHtσ x
l |q4〉 〈q4| e−iHtσ x

0 |q2, q3〉

× 〈q2, q3|eiHtσ x
l |q1〉 〈q1| e−iHtσ x

0 |ψGS〉
]
, (2)

where |q〉 and |q1, q2〉 denote the eigenstates of the Hamil-
tonian with single and two spin-flip excitations, respectively.

FIG. 2. (a) Schematic of the mechanism of scrambling and un-
scrambling of F xx (l, t ) involving two spin-flip excitations in the
paramagnetic phase of the TFIM. (b) F xx (l, t ) as obtained from a
numerical time evolution for Jx = 2 and h = 4. (c) F xx (l, t ) for the
same parameter values obtained using the effective theory of two
spin-flip excitations. We see an excellent agreement between plots
(b) and (c).

The quantum number q takes the values 0, 1, . . . , L − 1. We
note that it is enough to consider processes up to the second
order if Jx/h is small. The matrix elements in Eq. (2) can be
evaluated using the energies and wave functions of the excited
states |q〉 and |q1, q2〉. The single spin-flip excitations are de-
scribed by an effective nearest-neighbor tight-binding model
on the L-site lattice with open boundaries. Hence, they have
energies εq = −2Jx cos( πq

L+1 ) + 2h above the ground state,
and wave functions ψq(n) = 〈n|q〉 = √

2/(L + 1) sin[π (q +
1)(n + 1)/(L + 1)], where |n〉 = σ x

n |ψGS〉 denotes the state
with a single flipped spin at site n.

While the single-particle eigenstates are solved by con-
sidering the problem of a particle in a box on a lattice, the
case of two spin flips is more subtle. The two spin flips
should be on separate sites and follow commutation relations,
making it a system with two hard-core bosons. Due to the
indistinguishability, we can write the wave function for this
state as ψq1,q2 (n1, n2) = 〈n1, n2|q1, q2〉 = ψq1 (n1)ψq2 (n2) −
ψq2 (n1)ψq1 (n2), where |n1, n2〉 denotes the state with two spin
flips at sites n1 and n2, and we choose n1 < n2. The energy of
this state is the sum of two single-particle energies, εq1,q2 =
εq1 + εq2 . Finally, we arrive at [41]

F xx(l, t ) �
∑

q,q′
e−i(Eq+Eq′ )tψq(l )ψq(0)ψq′ (l )ψq′ (0)

+
∑

q1,q4,q2<q3

e−i(Eq1 +Eq4 −Eq2 −Eq3 )tψq1 (0)ψq4 (l )

×
∑

n1

ψq1 (n1)[θ (n1 − l )ψq2,q3 (l, n1)

+ θ (l − n1)ψq2,q3 (n1, l )]

×
∑

n2

ψq4 (n2)ψq2,q3 (0, n2). (3)
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FIG. 3. Plots of F xx (l, t ) for the interacting TFIM with Jx =
2, h = 8, Jz = 1.8 obtained from (i) exact numerics and (ii) the
analysis using two spin-flip excitations. Two points (a) and (b) are
shown in plot (i). The value of Jz is such that a region which showed
scrambling in the noninteracting case now shows OTOC close to
1. (iii) The point (a) (left panel) corresponds to a region where
there is no scattering between the states |ψ1〉 and |ψ2〉, while at
point (b) (right panel) there is a scattering event between the two
excitations in |ψ1〉.

We evaluate this expression exactly and contrast this with
the F xx(l, t ) calculated using exact numerical time evolution
in Figs. 2(b) and 2(c). The striking agreement confirms that
spin-flip excitations indeed provide the mechanism respon-
sible for the scrambling of quantum information and the
unscrambling after a reflection when h is large. Interestingly,
this analysis agrees quite well with the exact result even if h is
not much larger than Jx. In fact, the plot for OTOC looks quali-
tatively the same for h = Jx [Fig. 1(b)] and h > Jx [Fig. 2(b)],
although an analysis in terms of spin-flip excitations is not
expected to hold near the critical point.

Interactions in the presence of large field. We now look at
the OTOC in the PM phase in the presence of an integrability-
breaking interaction term given by Jz

∑
n σ z

nσ z
n+1. The

full Hamiltonian is H = −Jx
∑L−2

n=0 σ x
n σ x

n+1 − h
∑L−1

n=0 σ z
n +

Jz
∑L−2

n=0 σ z
nσ z

n+1. When |h/Jx| > 1, a small value of Jz can sig-
nificantly change the plot of F xx(l, t ), as we see in Fig. 3(a).
As usual, the local quantum information starts scrambling
after σ x

0 acts at one end. However, we do not see any unscram-
bling after reflection, unlike in the model without interactions.
As time progresses further, the local information always stays
scrambled and never becomes localized to a few sites. This
can also be explained using a simple picture of two-spin flips.
We need to modify Eq. (3) to account for two-spin flip states
in the presence of interactions and evaluate it numerically.
The wave functions for the two-spin flip state ψq1,q2 (n1, n2)
are replaced by two-body eigenstates calculated numerically
by considering an effective tight-binding model with two
hard-core bosons with a nearest-neighbor density-density in-
teraction Jz. The OTOC calculated in this way shows fairly
good agreement with the plots obtained using exact numerics
even with interactions. We contrast the two plots in Figs. 3(i)

and 3(ii) for the parameter values Jx = 2, h = 8, and Jz =
1.8.

There is a simple space-time picture in terms of the spin-
flip excitations which allows us to intuitively understand the
plots of F xx(l, t ) when h is large. This is shown in Fig. 3(iii),
and it will be discussed below in the Appendix.

Similar effects are observed if we consider the inte-
grable but interacting XXZ spin-1/2 model in a transverse
field. Namely, for the Hamiltonian, H ′ = −J

∑L−2
n=0 σ x

n σ x
n+1 −

J
∑L−2

n=0 σ
y
n σ

y
n+1 − h

∑L−1
n=0 σ z

n + Jz
∑L−2

n=0 σ z
nσ z

n+1, the OTOC
shows a similar behavior including the absence of unscram-
bling as compared to the noninteracting XX model without the
Jz term (see Ref. [41]). Therefore, a similar analysis in terms
of the low-energy excitations holds true for the XXZ spin-1/2
model as well, implying that the absence of unscrambling is
not related to the the integrability or nonintegrability of the
model.

Ferromagnetic phase: domain walls. We now discuss the
scrambling in the FM phase of the TFIM. For very small h,
the ground states are the degenerate states |I〉 = |↑↑ · · · ↑〉x
and |II〉 = |↓↓ · · · ↓〉x in the σ x basis. The model has a Z2

spin-flip symmetry, but the ground states spontaneously break
this and the true ground states are the superpositions |+〉 =
(|I〉 + |II〉)/

√
2 and |−〉 = (|I〉 − |II〉)/

√
2 corresponding to

even and odd fermion parity, respectively. Setting Jx = 1 and
taking h small, a perturbative expansion up to first order
in h [41] yields the modified ground states expressed in a
product form |I ′〉 = |(↑ + h

2 ↓)0(↑ + h
4 ↓)1 · · · (↑ + h

2 ↓)L−1〉x

and |II ′〉 = |(↓ + h
2 ↑)0(↓ + h

4 ↑)1 · · · (↓ + h
2 ↑)L−1〉x

(up to a
normalization constant), where the subscripts denote the site
indices. The lowest energy excitations are the two types of
domain walls, namely |m + 1/2, I〉 and |m + 1/2, II〉, where
the label m + 1

2 implies that the domain wall is situated
between the mth and (m + 1)th sites, and I (II) denotes
that all the spins on the left of the domain wall are down
(up). Here m can take values from 0 to L − 2. For example,
|0 + 1/2, I〉 = |↓↑↑ · · · ↑〉x denotes the state with a domain
wall between the first and second spins. Now, σ x

0 acting on
the state |I ′〉 creates the domain-wall state |0 + 1/2, I〉 with
an amplitude h to leading order. Under time evolution, this
domain wall can move through the lattice with one less site
due to the h

∑
σ z

n term in the Hamiltonian, allowing us to
construct domain-wall eigenstates with a quantum number
label κ . Accordingly, domain-wall states have an energy dis-
persion εκ,α = −2hcos[π (κ + 1)/L] + 2Jx above the ground
state, and a wave function φκ,α (m) = 〈m + 1/2, α | κ, α〉 =√

2/Lsin[π (κ + 1)(m + 1)/L], where κ = 0, 1, · · · , L − 2,
and α can be I or II . Subsequently, σ x

l for l �= 0 does not cre-
ate or destroy the domain-wall excitation but only measures if
the spin is up or down in the x basis. However, it changes the
parity of the domain-wall excitation. The remaining σ x

0 and σ x
l

operators first de-excite the domain wall to a ground state with
the opposite parity, and then returns it to the ground state we
started with. In short, as the domain moves from one end to the
other end, it leaves flipped spins behind along its trajectory.
This is then measured by the operator σ x

l at different times.
The entire mechanism is described schematically in Fig. 4(a).
We have a different situation when l = 0, as the four σ x

0 op-
erators sequentially excite and de-excite between the ground
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FIG. 4. (a) Schematic of the mechanism of domain-wall assisted
scrambling and unscrambling in the ordered phase of the TFIM.
Plots of F xx (l, t ) for Jx = 2 and h = 1 obtained by using (b) exact
numerics in the ordered phase, and (c) the analysis of domain-wall
excitations described in the text. These agree remarkably well.

state and a domain-wall state, resulting in a different value of
the OTOC at the edge.

We now present a semianalytical treatment of domain-
wall dynamics to quantitatively understand scrambling and
unscrambling. To this end, we construct the σ x

n operators
at all sites which is perturbatively correct up to order h in
the subspace consisting only of the ground state and single
domain-wall states. The operator σ x

0 has nontrivial matrix
elements only in the subspace of states {|I ′〉 , |0 + 1/2, I〉}
and {|II ′〉 , |0 + 1/2, II〉}. On the other hand, σ x

L−1 has non-
trivial elements in the subspaces spanned by the states
{|I ′〉 , |L − 2 + 1/2, II〉} and {|II ′〉 , |L − 2 + 1/2, I〉}. The σ x

l
for all other sites are diagonal and have trivial matrix elements
(±1) up to order h as they only determine whether the spin
is up or down. The Hamiltonian then has a simple structure
with only the ground state energy along the diagonal in the
ground state basis and a tight-binding structure in the subspace
of domain walls. Since the Hamiltonian only appears in the
exponential in time evolution, we do not need to consider the
matrix elements between the ground states and the domain
walls to the lowest order.

The effective forms of σ x
n and the Hamilto-

nian H in the subspace spanned by the states |I ′〉,
|II ′〉, and |m + 1/2, I〉, |m + 1/2, II〉, where m =
0, · · · , L − 2, are defined as Xn and H (see Ref. [41]).
The OTOC can then be written as F xx(l, t ) �
1
2 〈I ′ + II ′| eiHt Xle−iHt X0eiHt Xl e−iHt X0 |I ′ + II ′〉, which
is correct up to order h2. The plots of F xx(l, t ) using exact
numerics and our analysis agree very well as shown in
Figs. 4(b) and 4(c). Moreover, in both the plots we observe
the reflection of scrambled quantum information happening
slightly before it reaches the other end, which validates that
it is indeed governed by domain-wall excitations (which are
defined midway between sites).

Interactions in the presence of small field. In the FM phase,
the introduction of a small interaction Jz (relative to Jx) does

FIG. 5. F xx (l, t ) showing a pronounced unscrambling effect for
(a) Jx = 2, h = 1, Jz = 0.5, while for (b) Jx = 2, h = 1, Jz = 1, it
shows much less unscrambling.

not alter the qualitative features of the F xx(l, t ) much. We
can see scrambling and unscrambling much as in the case
without interactions. A small Jz also contributes to the dy-
namics of a domain wall by making it hop by two sites, in
contrast to the transverse field h which leads to hopping by one
site. Therefore, the presence of a small interaction effectively
only changes the dispersion of the domain walls to Ek =
−2h cos k + 2Jz cos(2k). The group velocity is then given by
vk = dEk/dk = 2h sin k − 4Jz sin(2k). Since the light-cone
velocity is the maximum group velocity of the quasiparticles,
the interacting model [Fig. 5(a)] shows a different light-cone
velocity than its noninteracting counterpart.

If Jz is increased further, we find that the unscrambling
starts to go away. Roughly, this happens around Jz/Jx � 0.4,
as observed numerically. Figure 5(b) shows the absence of un-
scrambling for the parameter values Jx = 2, h = 1, Jz = 1.
It can be reasonably expected that for such values of Jz, the
perturbative expansion starting from the states |I〉 and |II〉
will no longer be accurate. Furthermore, the assumption that
only the lowest-order excitations are responsible for informa-
tion scrambling also becomes a gross oversimplification. To
explain the absence of unscrambling when Jz is comparable
with Jx, one needs to account for higher-order excitations like
dynamics of three or more domain walls.

Conclusion. To summarize, we have studied the propaga-
tion of local quantum information in a spin-1/2 chain with
open boundary conditions using ground state OTOCs of σ z

and σ x operators which are local and nonlocal in terms of
JW fermions, respectively. While both σ z and σ x OTOCs
show light-cone-like propagation, only the σ x OTOC shows
scrambling within the light cone, in agreement with earlier
results. In addition, we discover remarkable unscramblings
and scramblings of the σ x OTOC after repeated reflections
from the ends. We have provided an analytical understand-
ing of both scrambling and unscrambling deep in the PM
phase (when the transverse field h is large) and in the FM
phase (when the XX coupling Jx is large) in terms of the
low-energy excitations, namely, spin flips when h is large and
domain walls when Jx is large. When an interaction between
the JW fermions (ZZ coupling) is added, the unscrambling
effect becomes weaker. In the PM phase, even relatively weak
interactions significantly change the scattering phase shift
for two spin flips and thereby reduces the unscrambling. In
the FM phase, stronger interactions are required to destroy
unscrambling and it occurs due the the creation of multiple
domain-wall excitations. Interestingly, we find that in the
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absence of interactions, the scrambling and unscrambling are
visible in the OTOCs even for the infinite-temperature ensem-
ble [41]. This indicates that in a noninteracting system, the
mechanisms of operator spreading can be understood by the
dynamics of one or two excitations even if we begin with
excited eigenstates.

We conclude by pointing out a recent experimental mea-
surement of the OTOC [42] at finite temperature which, as the
authors suggest, can also be performed for the ground state.
In this paper, finite temperature OTOCs of the transverse field
Ising model are studied for a trapped linear chain of 171Yb+

ions by creating a thermofield double state and then looking
at its time evolution. We believe that a similar route can be
followed to experimentally study the dynamics of low-energy
excitations through the ground state OTOCs of the spin chains
discussed in our work.

Acknowledgments. S.S. thanks MHRD, India for financial
support through the PMRF. D.S. acknowledges funding from
SERB, India (JBR/2020/000043).

Appendix on a space-time picture for the OTOC plots.
We will present here a space-time picture to understand the
plots of F xx(l, t ) when the transverse field h is large. The
expression for the OTOC can be rewritten as F xx(l, t ) =
〈ψGS| eiHtσ x

l e−iHtσ x
0 eiHtσ x

l e−iHtσ x
0 |ψGS〉 = 〈ψ2|ψ1〉, where

|ψ1〉 and |ψ2〉 are both states with one particle (spin-flip)
and are defined as |ψ1〉 = σ x

0 eiHtσ x
l e−iHtσ x

0 |ψGS〉 and
|ψ2〉 = eiHtσ x

l e−iHt |ψGS〉. The state |ψ1〉 can be interpreted as
follows. Starting from the right, the first σ x

0 operator creates a
spin flip at the left-most site which then propagates with some
velocity for a time t (due to e−iHt ). Next, a second spin flip is
created at site l . The two flipped spins then propagate back in
time (due to eiHt ) to t = 0 which involves zero, one, or more
scatterings between them depending on the position l and time
t . Finally, at t = 0 one of the spin flips is annihilated at site
l = 0 to produce a state with only one spin flip. In contrast,
|ψ2〉 has a simpler interpretation. It involves a single spin flip
which is created at position l and time t on the time-evolved
ground state, and which then propagates back in time to t = 0.
The inner product 〈ψ2|ψ1〉 then depends on the scattering
phase shift in the state |ψ1〉 with respect to state |ψ2〉.

Some assumptions are now required to compute the OTOC
using scattering phase shifts. First, even though we are con-
sidering a system with open boundaries, we will assume that
the system is large enough such that away from the edge,
the momentum q is a good quantum number. Second, we
approximate a spin-flip excitation to be a quasiparticle with
a single momenta q0 with the largest possible group velocity
given by the Lieb-Robinson bound, although actually it is
a superposition of many momentum states around q0. The

entire region in the plot of the OTOC can now be divided
into regions according to the number of scatterings between
a pair of quasiparticles with momenta q0 and −q0 in the
state |ψ1〉. The real part value of the OTOC in each region
is approximately constant and is given by the real part of the
scattering phase shift obtained from the two-particle Bethe
ansatz [41].

The scrambling and unscrambling for the TFIM without
interactions [Fig. 2(b)], given by the successive dark (OTOC
close to 1) and bright (OTOC close to −1) regions can be
now understood as regions having an even and odd number of
scatterings respectively starting from the lowest dark region
(where there is no scattering). In the absence of interactions,
every scattering event changes the phase by eiθ = −1. For the
interacting model, the absence of unscrambling occurs due to
the deviation of scattering phase shifts from −1 due to Jz.
However, we note that at much later times the contributions
from excitations not corresponding to the largest group veloc-
ity become significant and they alter the value of the OTOC
obtained from the estimate given by scattering phase shifts of
two excitations at momenta ±q0.

To illustrate this, we have chosen two points (a) and (b) in
the OTOC plots in Fig. 3(i) where point (a) is in a region of
no scrambling and (b) is in a region of scrambling before any
reflection. We now consider the schematic shown in Fig. 3(iii).
The red lines are guides to the eye for the light-cone front.
Then |ψ1〉 at (a) is given by a superposition of one-particle
states shown in (a1) and (a2) involving the dynamics of
two excitations created respectively at space-time coordinates
(0,0) and (l, t ) and one of them is finally annihilated again
at (0,0). By contrast, |ψ2〉 at (a) is a superposition of one-
particle states shown in (a3) and (a4) involving only a single
excitation. Since there is no scattering event for point (a),
F xx = 〈ψ2|ψ1〉 = 1. For point (b), |ψ1〉 is a superposition of
states shown in (b1) and (b2), and |ψ2〉 is a superposition of
states shown in (b3) and (b4). In contrast to point (a), we have
one scattering phase shift between two excitations in the state
|ψ1〉 with respect to the state |ψ2〉. The inner product of the
two states brings out the scattering phase shift, which, for a
pair of noninteracting hard-core bosons, is equal to −1. This
explains the value of F xx(l, t ) in the first scrambled region
in the TFIM. For the interacting case also it has a value
close to −1. Subsequently, for larger times the scrambled and
unscrambled regions have values of F xx(l, t ) given by the total
number of scattering events multiplied by the phase shift of
one scattering event. In Figs. 3(i) and 3(ii) we have considered
a Jz so that the region corresponding to three scattering events
has F xx(l, t ) close to 1, which, for the noninteracting case,
would have been close to −1.
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