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Peltier effect of phonons driven by electromagnetic waves
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Steady current in metals induces a thermal gradient, a phenomenon known as the Peltier effect. The Peltier
effect is one of the fundamental phenomena in the thermoelectric properties of materials and is also used in
applications such as refrigerators. In this work, we show that an analogous phenomenon occurs by phonons in
a noncentrosymmetric insulator, e.g., ferroelectrics, subject to linearly polarized light. Under light illumination,
an energy current of phonons occurs through a nonlinear optical effect similar to the bulk photovoltaic effect.
We formulate the nonlinear Peltier coefficient of the energy current carried by phonon photocurrent using
nonlinear response theory. From the general formula, we show that the phonon photocurrent occurs only in
a noncentrosymmetric system with two or more optical phonon bands. We demonstrate the generation of the
energy current using a one-dimensional ion chain with three ions in a unit cell, which predicts the generation of
an experimentally observable energy current using available THz-infrared light sources.
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Introduction. In semiconductors, a steady electric current
causes a temperature gradient in a material, which is known as
the Peltier effect [Fig. 1(a)] [1,2]. The thermoelectric proper-
ties of materials are not only important from the viewpoint of
transport phenomena but also for applications such as refrig-
erators. As the thermoelectric effects are related to the energy
current carried by the electric carriers, analogous phenomena
can occur by a flow of other quasiparticles, such as magnons
and phonons. In fact, a spin current analog of the Seebeck
effect called the spin Seebeck effect is observed in magnetic
insulators [3,4], in which case magnons and spinons carry the
spin angular momentum. On the other hand, as accelerating
magnons and phonons by the electromagnetic field is diffi-
cult, generating magnon and phonon current is often done by
introducing a thermal gradient, such as in the thermal Hall
effect experiment [5–17]. Therefore, an analog of the Peltier
effect, that is, externally controlling the temperature gradient
by inducing the flux of quasiparticles, remains challenging.

A possible solution to controlling the flux of magnons and
phonons is to utilize nonlinear optical phenomena in non-
centrosymmetric materials. The nonlinear response of bulk
materials, especially the bulk photovoltaic effect, has received
renewed attention from the viewpoint of application and the
nontrivial contribution of electronic structures, such as the
Berry phase [18–23]. In addition, recent studies on the optical
response in magnetic materials found that the spin current of
magnons [24–26] and spinons [27] can be induced by a non-
linear response. As these carriers also carry energy, the Peltier
effect of charge-neutral particles may also occur by light illu-
mination [Fig. 1(b)]. Among the charge-neutral quasiparticles
in materials, phonons are promising in this prospect as the
heat transport in materials is often dominated by phonons
[2,28,29]. Hence, a nonlinear response of phonons might be
a route to realizing novel thermal functionalities.

In this work, we explore the possibility of the Peltier effect
of phonons and attempt to understand its basic properties.

Using the nonlinear response theory for bosons [26] as a
reference, we formulate a general theory for the light-induced
energy current. Based on this theory, we argue that a dc
phonon current occurs by illuminating a linearly polarized
light to noncentrosymmetric insulators. Unlike the bulk pho-
tovoltaic and magnon photovoltaic effects, we show that at
least two optical modes (more than three phonon modes,
including acoustic modes) are necessary for realizing the
Peltier effect of phonons. In the last, using a minimal one-
dimensional model, we argue that the magnitude of energy
current induced by this mechanism is comparable to those
observed in the heat conductivity measurement.

Nonlinear Peltier coefficient. The temperature gradient oc-
curs if a flow of energy or heat occurs in a material. The flow
is described by energy current density, which is defined by
the continuum equation ∂tρE (x, t ) + ∇ · JQ(x, t ) = 0. Here,
ρE (x, t ) and JQ(x, t ) are the energy and energy current den-
sities at position x and time t , respectively. Hence, evaluating
the Peltier effect reduces to evaluating the average energy cur-
rent flowing in the material. Phenomenologically, the energy
current induced by a nonlinear optical effect reads

Jλ
Q(�) =

∑
μ,ν

∫
dω

2π
	

(2)
λ;μν (�; ω,� − ω)Eμ(ω)Eν (� − ω).

(1)

Here Jλ
Q(�) = ∫

Jλ
Q(t )e−i�t dt and Eμ(ω) = ∫

Eμ(t )e−iωt dt
are, respectively, the Fourier transforms of the spatially aver-
aged energy-current density Jλ

Q(t ) with frequency � and the
μ component of electric field Eμ(t ) of the applied electro-
magnetic wave with frequency ω. Note that we approximate
the electric-field component of light by the spatially uni-
form oscillating electric field with a frequency ω lower than
the electron gap. The averaged current density is defined as
Jλ

Q(t ) = 1
V

∫
Jλ

Q(x, t )dxd with V being the system volume and
d being the dimension of the system. Equation (1) defines the
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FIG. 1. Schematic of (a) Peltier effect in n-type semiconductor
and (b) that by phonon current in insulators. A temperature gradient
is induced by electric current in the Peltier effect, whereas phonon
current induces the temperature gradient in the Peltier effect of
phonons. (c) An example of the noncentrosymmetric insulator in
which the Peltier effect of phonon occurs. The blue, orange, and
green balls represent A, B, and C sublattice ions, respectively. The
ma and qa (a = A, B,C) are, respectively, the mass and charge of ath
ion, and Cab (a, b = A, B,C) are the strength of quadratic coupling
between a and b ions.

nonlinear Peltier coefficient 	
(2)
λ;μν , which we study in the rest

of this paper.
We note that the nonlinear Peltier effect occurs only in

noncentrosymmetric phonon systems. This is shown by the
symmetry argument. By acting the inversion operation, the
energy current and electric field transforms as JQ → −JQ and
Eν → −Eν . Hence, Eq. (1) transforms Jλ

Q = 	
(2)
λ;μνEμEν →

Jλ
Q = −	

(2)
λ;μνEμEν . Therefore, similar to the photovoltaic

effect in semiconductors, 	
(2)
λ;μν = 0 in centrosymmetric sys-

tems.
To study the basic properties of energy current carried by

phonons, we consider a general low-energy Hamiltonian for
phonons of a crystal in d dimension with nuc atoms in a
unit cell:

Ĥ =
∑
iaμ

p̂2
iaμ

2ma
+

∑
iaμ, jbν

ûiaμAiaμ, jbν û jbν . (2)

Here, Aiaμ, jbν is the coupling constant, ûiaμ is the displace-
ment along the μ axis of a (= 1, · · · , nuc) sublattice atom
in ith unit cell, and piaμ is the conjugate momentum of ûiaμ

satisfying [ûiaμ, p̂ jbν] = ih̄δi jδabδμν ; h̄ is the Dirac constant.
The excitation of Ĥ is described by free bosons called phonon
[30]. Using the phonon representation, Ĥ reads

Ĥ =
∑
n,k

h̄ωnk

(
b̂†

nkb̂nk + 1

2

)
, (3)

where b̂nk (b̂†
nk) is the annihilation (creation) operator of a

phonon with band index n and momentum k, and ωnk is the
phonon frequency. Here, we define n such that ωnk � ωmk

when n < m.

We investigate the Peltier effect in this phonon system by
calculating the energy current induced by an ac field Eμ(t ).
For the sake of generality, we consider an ac perturbation term

Ĥ ′ =
∑

μ

B̂μEμ(t ), (4)

where the operator B̂μ coupled to the field Eμ(t ) is defined as

B̂μ =
∑
n,k

β
μ

nkb̂nk + (
β

μ

nk

)∗
b̂†

nk, (5)

with β
μ

nk being the coupling constants. Equation (5) includes
most of the basic coupling between the ion charge and
the electromagnetic field [31]. For instance, the coupling
of ion charge to the spatially uniform electric field Ĥ ′ =
−∑

i,a,η qaEη(t )ûiaη reads

β
μ

n0 =
∑

a

qa|n0〉aμ

√
h̄N

2maωn0
, (6)

and βmu
nk �=0 = 0. Here, qa is the charge of ath sublattice

ion, ma is the mass of ath sublattice ion, N is the size of
the system, |nk〉 is the nth eigenmode of dynamical matrix
Ãaμ,bν (k), which is an nucd × nucd matrix whose elements are
Ãaμ,bν (k) = ∑

i
Aiaμ,0bν√

mamb
e−ik·(ria−r0b); it corresponds to the eigen-

vector of nth phonon mode, i.e., ω2
nk|nk〉 = Ãaμ,bν (k)|nk〉.

A general formula for JQ carried by phonons is given in
Ref. [32], in which JQ is quadratic in the phonon creation and
annihilation operators. For the phonon Hamiltonian of Eq. (2),
the λ component of the energy current operator reads [32]

Ĵλ
Q =

∑
n,m,k

b̂†
nkv

λ
nm(k)b̂mk +

∑
n,m,k

b̂†
nkv

λ
nm̄(k)b̂†

m−k

+
∑
n,m,k

b̂n−kv
λ
n̄m(k)b̂mk +

∑
n,m,k

b̂n−kv
λ
n̄m̄(k)b̂†

m−k, (7)

where

vλ
nm(k) = h̄(ωnk + ωmk)〈nk|∂kλ

Ã(k)|mk〉
8V

√
ωnkωmk

, (8)

vλ
nm̄(k) = h̄(ωnk − ωmk)〈nk|∂kλ

Ã(k)|mk〉
8V

√
ωnkωmk

, (9)

vλ
n̄m(k) = − h̄(ωnk − ωmk)〈nk|∂kλ

Ã(k)|mk〉
8V

√
ωnkωmk

, (10)

vλ
n̄m̄(k) = − h̄(ωnk + ωmk)〈nk|∂kλ

Ã(k)|mk〉
8V

√
ωnkωmk

. (11)

We note that, in the above equation, we can always
take vλ

nm(k) = vλ
m̄n̄(−k), vλ

nm̄(k) = vλ
mn̄(−k), and vλ

n̄m(k) =
vλ

m̄n(−k) without reducing the generality. For the sake of
convenience, we call vλ

nn(k) and vλ
n̄n̄(k) the intraband ele-

ments of velocity matrix, and the other terms the interband
elements.

The formula for the nonlinear Peltier coefficient is obtained
by extending the nonlinear-response theory [26,33] (see also
Refs. [34,35] therein). The formula for the dc (� = 0) Peltier
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coefficient at temperature T reads

	
(2)
λ;μν (0; ω,−ω)

= − 1

2π h̄2

∑
k,n,m

β
μ

nk[vnm̄(k) + vmn̄(−k)]βν
m,−k(

ω − ωnk − i
2τ

)(
ωnk + ωmk + i

2τ

)

+ 1

2π h̄2

∑
k,n,m

(
β

μ

nk

)∗
[vn̄m(−k) + vm̄n(k)]

(
βν

m,−k

)∗(
ω + ωnk − i

2τ

)(
ωnk + ωmk − i

2τ

)
+ 1

2π h̄2

∑
k,n,m

β
μ

nk[vnm(k) + vm̄n̄(−k)]
(
βν

mk

)∗(
ω − ωnk − i

2τ

)(
ωnk − ωmk + i

2τ

)
− 1

2π h̄2

∑
k,n,m

(βμ

nk)∗[vmn(k) + vn̄m̄(−k)]βν
mk(

ω + ωnk − i
2τ

)(
ωnk − ωmk − i

2τ

) . (12)

Here, τ = τ (T ) is the phenomenological phonon lifetime at
T . The absence of boson distribution function is reasonable
considering that an arbitrary number of bosons can occupy the
same state, which is in contrast to the fermion case. If βν

mk =
0 for k �= 0, which is the case for the uniform electric field,
only k = 0 terms in Eq. (12) contributes to the Peltier effect.
Note that, for the coupling in Eq. (6), βμ

n0 is proportional to the
charge of ions. Therefore, Jλ

Q = 0 if all ions are charge neutral.
The general formula with nonzero � �= 0 is also given in the
Supplemental Material [33]. For the materials with inversion
symmetry, one can show that there exists an eigenstate basis
such that the numerator of Eq. (12) is zero [33], which shows
the necessity of inversion symmetry breaking.

Three-ion chain. As a demonstration, we consider a one-
dimensional lattice model with three ions in a unit cell whose
ions move only along the chain direction (Fig. 1), i.e., we as-
sume that there are only longitudinal modes. The Hamiltonian
reads

Ĥ =
∑
i,a

p̂2
ia

2Ma
+ 1

2

∑
〈ia, jb〉

Cab(ûia − û jb)2, (13)

where ûia is the displacement of an atom at a = A, B,C sub-
lattice of ith unit cell from its equilibrium position, p̂ia is
the momentum conjugate to ûia, Ma is the mass of atom at
a sublattice, and Cab is the coupling constant between the
nearest-neighbor a and b sublattice atoms [Fig. 1(c)]. This
model has one acoustic and two optical modes, as shown in
Figs. 2(a) and 2(b).

Using this model, we computed the phonon Peltier effect.
While there are many different mechanisms that couples the
ions to electromagnetic waves, for concreteness [31], we focus
on the direct coupling of ion charges to the electric field given
in Eq. (5). Figures 2(c) and 2(d) show the ω dependence of
	

(2)
1;11(0, ω,−ω). Here, we used the constant relaxation time,

which is an approximation widely used in related studies
[18,20,21]. The Peltier effect of phonons occurs when the
frequency of incident light matches the energy of an optical
mode (ω = ω20, ω30 for the cases in Fig. 2), similar to the
resonance effect. However, no peak exists at ω = 0, which
corresponds to the energy of the acoustic mode.

Absence of coupling to the acoustic modes. To under-
stand the absence of a resonance peak at ω = 0, we look
into the acoustic mode terms, n = 1, · · · . In the case of a

FIG. 2. Phonon bands of the three-ion model with (a) CAB =
CBC = CCA = 1, MA = 2/3, MB = 1, MC = 4/3, and the lattice con-
stant a0 = 1, and (b) CAB = CCA = 50 kg/s2, CBC = 40 kg/s2, MA =
48 Da, MB = 50 Da, MC = 52 Da, and a0 = 4 Å. (c), (d) The ω

dependence of nonlinear Peltier coefficient 	(2)
x;xx (0; ω,−ω). (c) The

real and imaginary parts of 	(2)
x;xx (0; ω,−ω) for the model in (a) with

the relaxation time τ = 10, and (d) the relaxation-time dependence
of 	(2)

x;xx (0; ω, −ω) for the model in (d).

translationally symmetric system, β
μ

n0 for acoustic modes
become β

μ

n0 ∝ ∑
b qb for the Ĥ ′ in Eq. (5) [33]. Hence,

in Eq. (12), we can effectively neglect the contribution
from acoustic modes in a charge-neutral system, i.e., when∑

a qa = 0. In this case, the summations in Eq. (12) can be
replaced by the summation over optical modes only;

∑
m,n

→
opt∑
m,n

.

Thereby, the nonlinear Peltier effect occurs only in materials
with optical modes.

Interband terms in velocity. We also note that the phonon
dispersion in Fig. 2(a) is symmetric about the k = 0 line,
which indicates that the group velocity of excited phonons,
∂kωnk , is zero at k = 0; hence, the diagonal terms in Eq. (7)
are zero. The observation implies that the nonlinear Peltier
effect occurs not by the selective excitation of phonons with
a finite velocity but by some other mechanism. To provide a
physical intuition, we point out that Eq. (12) becomes

	̄(2)
νμμ(0; ω,−ω)

= 1

2πV

∑
n

[
2τ

1 + 4τ 2(ω − ωn0)2
+ 2τ

1 + 4τ 2(ω + ωn0)2

]

×ωn0
[
∂kνφ

μ

nk + aν
nn(k)

]
k=0

∣∣βμ

n0

∣∣2
, (14)
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for the coupling in Eq. (6), where β
μ

nk = |βμ

nk|eiφν
nk and

aλ
nn(k) = i〈nk|∂kλ

|nk〉 is the Berry connection of phonons
[36,37]. The formula for a more general case is given in the
Supplemental Material [33].

This formula resembles that of shift current, in which the
photocurrent is related to the intracell position of electron
[18,19]. Similarly, aλ

nn(k) is understandable as the center of
lattice vibration [33]. Unlike the electron shift current, which
is related to the difference of Berry connections of valence
and conduction bands, the phonon Peltier effect is related to
the Berry connection aμ

nn(k) of one photo-excited phonon.
The difference between the formulas for the shift current
and phonon Peltier effect reflects the difference in physical
processes. In view of the many-body wave function, creating
a phonon corresponds to enhancing lattice vibration. In non-
centrosymmetric materials, the enhanced lattice vibration may
occur asymmetrically, which is related to aμ

nn(k). Hence, the
energy current is related to the intracell position of the excited
phonon. The phonon Peltier effect discussed here is another
phenomenon related to the nontrivial optical transition, not
described by the selective excitation of a phonon with a finite
velocity.

We note that a contribution similar to the nonlinear Peltier
effect is known in the spin photocurrent [25,27]. However, as
the phonon energy current is related to the interband elements,
multiple optical modes are necessary for realizing the Peltier
effect of phonons (the acoustic modes do not contribute to
the Peltier effect as discussed above). In fact, for the Hamil-
tonian in Eq. (2), one can show that the group velocity at
k = 0, vλ

nn(0) is zero if the phonon bands are nondegenerate at
k = 0; therefore, the intraband contribution vanishes. From a
physical viewpoint, the vanishing intraband terms in velocity
manifest time-reversal symmetry. Hence, two or more optical
bands [at least three bands, including the acoustic mode(s)]
are necessary for realizing the Peltier effect of phonons.

Relaxation-time dependence. To gain further insight into
the nature of the nonlinear Peltier effect, we next look into
the relaxation-time dependence which is relevant to the tem-
perature dependence and magnitude of the Peltier effect. In
Eq. (12), the temperature dependence appears in the relaxation
time τ . Hence, understanding the temperature dependence
of 	(2) reduces to analyzing the τ dependence of 	(2).
Figures 2(b) and 2(d) show the 	(2) with different relaxation
time τ . The figures show a monotonic increase of 	(2) with
increasing τ when ω = ωn0. Indeed, at ω = ±ωn0 and ωnkτ �
1, the real part of 	(2) in Eq. (12), after assuming only k = 0
terms contribute, reads

Re
[
	

(2)
λ;μν (0; ±ωn0,∓ωn0)

]
∼ 2τ

π h̄2

∑
m( �=n)

Im
[
β

μ

n0v
λ
nm̄(0)βν

m0

]
ωn0 + ωm0

− Im
[
β

μ

n0v
λ
nm(0)

(
βν

m0

)∗]
ωn0 − ωm0

. (15)

The τ -linear dependence is distinct from that of the shift
current, whose leading order term in τ is independent of τ

[18,20]. Rather, it resembles the spin photocurrent using mag-
netoresonance effect [26], whose spin-current conductivity is
proportional to τ . Experimentally investigating the τ depen-

dence via the temperature dependence of τ may provide a
route to experimentally delineating the nonlinear Peltier effect
from other phenomena.

In the τ → ∞ limit, the Peltier coefficient reads

	
(2)
λ;μν (0; ω,−ω) =

opt∑
m �=n

√
ωm0ωn0

2V h̄
β

μ

m0aλ
mn(0)βν

n0

×
[
−δ(ω + ωm0) − δ(ω − ωm0)

+ iP 1

ω + ωm0
+ iP 1

ω − ωm0

]
, (16)

where aλ
nm(k) = i〈nk|∂kλ

|mk〉 is the non-Abelian Berry con-
nection of phonons, defined in a similar manner to the Abelian
Berry connection [36,37]. Here, we used the fact that aλ

nm(0)
and βν

n0 are real, which holds for Eqs. (2) and (6). The real
part of 	

(2)
λ;μν (0; ω,−ω) shows a sharp peak at ω = ωm0, as

expected from the relaxation-time dependence.
Magnitude of nonlinear Peltier effect. In the last, we discuss

the magnitude of the energy current and the possibility of
experimental observation. The results in Fig. 2(d) indicate
that the Peltier coefficient is around 	(2) ∼ 1 µW/V2 at the
resonance frequency, which is typically in THz to infrared
range. Therefore, assuming the relative electrical permittivity
ε = 10, the energy-current density induced by an ac electric
field of |E | = 105 V/m is Jλ

Q ∼ 10−2 W/cm2. This result
should be compared to the energy current measured in thermal
conductivity experiments. The energy-current density induced
by the temperature gradient can be estimated from the thermal
conductivity κ . In the case of an insulator with κ ∼ 0.1 − 10
W/mK, the thermal gradient of �T = 103 K/m induces Jλ

Q ∼
10−2 − 100 W/cm2. As the energy current in our estimate is
similar to those measured in thermal transport experiments,
the Peltier effect of phonons should induce an observable
temperature gradient in candidate materials.

Summary. In this work, we theoretically studied the pos-
sibility of the Peltier effect of phonons induced by the
illumination of THz to infrared electromagnetic waves. In
this phenomenon, the flow of phonons induces energy cur-
rent, which results in a thermal gradient. However, unlike the
Peltier effect by electric current, the phonon current is driven
by a nonlinear response similar to the bulk photovoltaic effect.
To formulate the Peltier effect, we focused on the energy
current of phonons induced by the illumination of electro-
magnetic waves. The general formula for energy current is
derived using the nonlinear response theory. This formula
is directly applicable to arbitrary phonon models. Using the
formula, we generally showed that at least two optical phonon
modes are necessary for inducing the energy current, and the
coupling to acoustic mode does not contribute to the phonon
Peltier effect. In the last, we demonstrated the Peltier effect
using a three-ion model whose phonon bands consist of one
acoustic and two optical modes. The result shows that the
Peltier effect of phonons occurs when the frequency of the in-
cident electromagnetic wave matches the frequency of optical
modes.

The noncentrosymmetric crystal structure, multiple optical
modes, and the existence of charged ions are often met in
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ferroelectrics. Hence, they might be a good candidate for
realizing the Peltier effect.

Recently, thermal imaging techniques have enabled spatial
resolution of temperature in small devices [38]. As the nonlin-
ear Peltier effect induces a temperature gradient in an isolated
device, it should be observable using the thermal imaging
method.
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