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The ground states of interacting one-dimensional metals are generically Luttinger liquids. Luttinger-liquid
theory is usually considered for translation invariant systems. The Luttinger-liquid description remains valid
for weak quasiperiodic modulations; however, as the quasiperiodic modulation gets increasingly strong, it is
increasingly renormalized and eventually fails, as the system becomes localized. We explore how quasiperiodic
modulation renormalizes the Luttinger parameter characterizing this emergent Luttinger liquid, using the renor-
malization of transmission coefficients across a barrier as a proxy that remains valid for general quasiperiodic
modulation. We find, unexpectedly, that quasiperiodic modulation weakens the effects of short-range inter-
actions, but enhances those of long-range interactions. We support the former finding with matrix-product

numerics. We also discuss how interactions affect the localization phase boundary.

DOI: 10.1103/PhysRevB.110.L.020201

Introduction. The nature of ground-state correlations in
interacting disordered systems has been a question of long-
standing interest [1—4]. In one dimension, this question has
been addressed from two complementary perspectives: per-
turbatively adding disorder to clean interacting systems [5],
and perturbing the disordered system with weak interactions
using the strong disorder renormalization group (SDRG) [6].
These approaches agree in finding two phases—a localized
insulating phase and a Luttinger-liquid phase—but give con-
trasting predictions for the critical behavior between them
(see also Refs. [7-9]). In many present-day experiments, the
spatial modulations are quasiperiodic rather than random:
both in cold-atom experiments using incommensurate poten-
tials [10-15] and more recently in moiré materials [16,17].
Quasiperiodic systems exhibit many of the same phenom-
ena as random ones, e.g., Anderson localization, but their
properties are fundamentally different because of the de-
terministic, hyperuniform structure of quasiperiodic patterns
[18-21]. Quasiperiodic systems present distinctive theoretical
challenges, as many of the methods used in the random case
(such as the replica trick) are no longer useful.

In the absence of controlled analytical methods, progress
on understanding the ground-state properties of interact-
ing quasiperiodic systems has come from a combination of
numerical [22-32] and perturbative approaches. As in the
random case, the two complementary perturbative approaches
are to treat interactions nonperturbatively in the Luttinger-
liquid framework, but perturb in disorder [22], or to begin
with the scaling theory of the noninteracting critical point,
and perturb in interactions, as in very recent work [31]. These
approaches yield distinct universality classes for the localiza-
tion transition: In the former case, the transition is Lorentz
invariant; in the latter, the Luttinger liquid never emerges
and the localization transition remains in the noninteracting
universality class. To reconcile these pictures it is imper-
ative to understand how Luttinger-liquid behavior emerges
(or fails to emerge) for strong quasiperiodic modulation, and
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how Luttinger-liquid properties evolve with quasiperiodicity.
We address these questions, focusing on interacting spinless
fermions with finite-range interactions. (The spinful case was
recently explored [33].)

Increasing the quasiperiodic potential strength causes the
single-particle bands to get increasingly flat [34]. As flat
bands are associated with enhanced interactions, so one might
expect a quasiperiodic potential to strengthen interaction ef-
fects. Surprisingly, this is not the case in general; instead, the
range of the interactions plays a crucial part. For short-range
interactions, the quasiperiodic potential suppresses interac-
tions and make the system more free-fermion-like [31]. On
the other hand, long-range interactions are enhanced by the
quasiperiodic potential. We establish these results by two dis-
tinct means. First, we perform density matrix renormalization
group (DMRG) simulations of one-dimensional quasiperiodic
spin chains [35,36] and extract the Luttinger parameter, which
quantifies interaction strength. Second, we study the renor-
malization of transmission through a barrier, adapting the
treatment of Yue et al. [37] to the quasiperiodic case. The
renormalization of the transmission coefficient gives us a way
of extracting an effective Luttinger parameter from Hartree-
Fock studies.

Model. We will focus on a single-band model of spinless
fermions, interacting with finite-range interactions, governed
by the Hamiltonian

H = {cleir + He. + Acoslo(i + 0)In} + > Vijnin;,
i ij

ey

where ¢ is the golden ratio, ¢; annihilates a fermion on site
iand n; = c;}'ci, and the overall energy scale has been set to
unity. We briefly review the properties of this model in the
noninteracting case V;; = 0. This is the familiar Aubry-André
(AA) model. When A <2 the single-particle eigenstates
of this model are delocalized and ballistic; for A > 2 all
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single-particle states are localized. Unusually, the localization
transition occurs at the same value of A for all states in the
spectrum. At the critical value A = 2, not only are all the
eigenstates localized, but the spectrum is highly unusual: All
the single-particle eigenvalues are in a fractal, measure-zero
set, so the bands are anomalously flat [38,39]. For A < 2 as
one approaches the critical point, the spectrum consists of
many increasingly flat minibands. The conventional wisdom
is that these flat minibands will tend to make the system highly
susceptible to interactions.

We consider two choices for the interactions V;;. First,
for our exact numerical studies, we take the interactions to
be nearest neighbor, i.e., V;; = Ag; j+1. The nearest-neighbor
model is appealing for numerical studies because it can be
mapped via a Jordan-Wigner transformation to a canoni-
cal nearest-neighbor spin model, the anisotropic Heisenberg
model. This allows for efficient DMRG simulations, and also
allows us to compare our numerical results in the clean limit
with exact results in the literature. However, as we will see, the
range of the interaction plays an important part in the physics
of the model. To allow us to tune this range d, we will also
consider interactions that decay with a Gaussian envelope:

Vint
N

Long-range interactions can be naturally incorporated in our
Hartree-Fock analysis. They are possible [40] but potentially
challenging to treat in DMRG. We note that the Hartree-Fock
method has other advantages, as it allows us to address aspects
of the dynamics (and disentangle distinct physical effects) in
a way that would not be possible with DMRG.

When A < 2, at a typical filling the Fermi level lies inside
a miniband. One can treat sufficiently weak interactions by
linearizing the single-particle spectrum about the Fermi level
and treating the interactions projected onto a single mini-
band. This yields a Luttinger liquid, in which the strength
of correlations is set by the Luttinger parameter K (defined
below). Linearizing becomes an increasingly inaccurate ap-
proximation as one approaches A = 2: Any finite interaction
strength mixes many minibands. Nevertheless, we find that
the effect of the other minibands manifests itself as a finite
renormalization of the Luttinger parameter, without changing
the asymptotic nature of correlations.

One can understand our main results intuitively by thinking
about the behavior of interactions projected onto a single
miniband. The well-defined minibands at some A < 2 are
essentially the Bloch bands of a periodic approximant with de-
nominator ¢ to the true incommensurate potential. As g grows,
the minibands split, so the Bloch states of each miniband
are made up of increasingly well-separated (~¢g) Wannier
states. For any finite interaction range d, eventually ¢ > d,
so the interactions projected onto the miniband are contact-
like. A contact interaction has no effect on identical spinless
fermions, so the projected problem becomes noninteracting.
This accounts for the surprising robustness of the flat mini-
bands of the Aubry-André model to interactions.

DMRG results. We begin by extracting the Luttinger pa-
rameter directly from DMRG calculations on the ground state
of the quasiperiodically modulated problem at half filling.
Our primary diagnostic for the Luttinger parameter is the
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FIG. 1. Upper panel: Luttinger parameter K extracted from sub-
system charge fluctuations, as a function of the interaction strength
A, for various values of the quasiperiodic potential strength A. At
A = 0 there is a known analytic value, plotted as a solid line [41].
Note that as A is increased the curves get increasingly flat, at the
noninteracting value K = 1. Lower panel: Dependence of charge
fluctuations on subsystem size for interactions A = —0.5 and various
values of L. At higher values of A stronger oscillations appear, so we
thus feed the data through a low pass filter (using 0.1 for the cutoff
frequency) in order to smooth out oscillations and then perform a lin-
ear fit. DMRG simulations were done with L = 200 and a maximum
bond dimension of 200. Data are averaged over 20 phase realizations.

variance of the charge in a half system, i.e., the behavior of
the following connected correlation function for a subsystem
of length ¢,

2

(B o

where expectation values are taken in the ground state. In a
Luttinger liquid with open boundary conditions in a system of
size L, one expects F({) = % log[% sin(”TZ)]d, where K is
the Luttinger parameter [41].

The results for the charge fluctuations are shown in Fig. 1.
The charge fluctuations are logarithmic in £, as expected for a
Luttinger liquid. Extracting K from the coefficient of the loga-
rithm, we find that K — 1—the noninteracting value—as A is
increased at fixed interaction strength A. As one might expect,
the onset of the clear logarithmic scaling regime is pushed out
to larger £ as we increase A. In the Supplemental Material [42]
we also consider a separate diagnostic, namely the two-point
correlator of the “spins” related to the fermions of Eq. (1) by
a Jordan-Wigner transformation. This diagnostic is a priori
unrelated to the charge fluctuations, but in a Luttinger liquid,
these two observables are tightly related. Consistent estimates
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FIG. 2. Data on transmission coefficients in the clean system, computed for system size N = 2501 and filling fraction f = 0.1. Left:
Transmission coefficient as a function of energy measured from the Fermi level, for vy, = +0.6 and without interactions. Middle: Same data
but on a log-log plot, showing the nonanalytic behavior of the transmission coefficient near Er. Right: Exponent & (dots) compared with the
continuum analytic prediction « [Eq. (5)], as a function of interaction strength, for various choices of the interaction range. Discrepancies at
larger interaction strengths are expected as lattice dispersion effects become significant.

of K from these two approaches are a consistency check that
the system is a Luttinger liquid.

These numerical observations lead to the conclusions that
(1) the system is a Luttinger liquid throughout the delocal-
ized phase of the Aubry-André model, and (2) the Luttinger
parameter is renormalized toward its noninteracting value as
the quasiperiodic potential is increased. These observations
are consistent with the qualitative picture presented in the
preceding section.

Kane-Fisher effect: Self-consistent approach. The previous
section presented numerically exact calculations for the case
of nearest-neighbor interactions. We now turn to an approxi-
mate but versatile approach that sheds light on the mechanism
for Luttinger-parameter suppression, and also lets us extend
our analysis to models with tunable-range interactions. In
this section we introduce the basic idea behind the method
for clean systems; the next section applies the method to
quasiperiodic systems.

The basic tool we will use to diagnose correlations is the
Kane-Fisher effect [43], i.e., the renormalization of tunnel-
ing across a localized impurity due to interactions. At zero
temperature and at incident energies E close to the Fermi
energy Ep, the renormalized transmission coefficient across
the impurity scales as T(E) ~ |E — Er|*X”'=1_ Thus, tun-
neling is parametrically suppressed (enhanced) for repulsive
(attractive) interactions. Although the Kane-Fisher effect is
normally studied using bosonization techniques that do not
generalize to our setting, there is an alternative weak-coupling
formulation due to Yue et al. [37] that is more versatile. In
this treatment, one begins with the observation that a static
impurity in a Fermi gas creates Friedel oscillations in the
density profile of the surrounding gas. These Friedel oscil-
lations renormalize the effective scattering shift experienced
by electrons farther away from the impurity, thus further
renormalizing the Friedel oscillations, and so forth. Solving
self-consistently for the tunneling across the impurity one
recovers the Kane-Fisher effect.

To explore the effect of quasiperiodic modulations on
the Kane-Fisher effect, we first self-consistently solve for
the ground state in the presence of the impurity, in the
Hartree-Fock approximation, and then numerically solve for
tunneling across the impurity. It might seem surprising that a
mean-field approximation such as Hartree-Fock can capture a

correlation-dominated quantity such as the Luttinger parame-
ter. Intuitively, the reason why this is possible is that the way
the electrons avoid the impurity in the mean-field treatment
is essentially analogous to the way they avoid each other
due to correlations. In any case, we note that the predicted
power-law divergences are clearly seen in the self-consistent
Hartree-Fock numerical solution (Fig. 2).

Before turning to our numerical results, we briefly sum-
marize the main results of Ref. [37]. This work linearizes the
dispersion around the Fermi surface, projecting to states with
energies within Dy = vp/d of Ep. Solving self-consistently
for the potential [42] gives the result for the transmission
coefficient [37]

Tyle/Do|*
T(e) = L()lza’
Ro + Tole /Dy

where ¢ = E — Ep and Ty = |fp]? and Ry = 1 — Tjy are the
bare transmission and reflection coefficients. The dimension-
less parameter « is defined by [37]

“

& = (exchange — (Hartree
V(0)
2T VF

V (2kr)
2mvp

Qexchange = > (Hartree = Q)
Here, « = K~! — 1. In the continuum limit, the exchange
and Hartree terms have opposite effects on the transmission
coefficient. In the case of a repulsive (attractive) interaction,
the exchange term decreases (increases) the transmission co-
efficient compared to its bare value, while the Hartree term
increases (decreases) it. For zero-range interactions, the ex-
change and Hartree terms cancel exactly, as they must because
contact interactions have no effect on spinless fermions.

We now describe our numerical method for calcu-
lating transmission coefficients on the lattice, focusing
first on the case without a quasiperiodic potential. We
will work with Eq. (1) with a finite-range Gaussian
interaction Eq. (2). We perform a mean-field Hartree-
Fock decoupling of the interaction term, Vin(i, jinn; ~
Via(i)efei + 32 Vex iy j)c] cj, where Vi (i) = 3 Vi (Ji —
iD(ele;) and Ve (i, j) = —Vim(li = jl)(c]es).

To compute the transmission coefficient we proceed as
follows. First, we solve the Hartree-Fock problem fully self-
consistently for the ground state. Next, we treat the dynamics
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of wave-packet transmission under this self-consistent
quadratic Hamiltonian. In the clean case, the transmission
coefficient can be computed using scattering theory. Once
the quasiperiodic potential is turned on, we do not have a
simple expression for the asymptotic states. Therefore, to
calculate the transmission coefficient, we construct a wave
packet localized in real space to one side of the barrier, and
sharply localized in energy space at some energy E displaced
by € from Er. We allow the wave packet to evolve in time and
scatter off the barrier, defining the transmission coefficient
T (€) as the modulus squared of the portion of the wave packet
that passes through the barrier to the other side.

Our results for the clean case are summarized in Fig. 2.
To minimize lattice effects we work at a filling f = 0.1. The
left panel shows the transmission coefficient as a function of
energy (measured with reference to Er), showing a dip (peak)
for repulsive (attractive) interactions. Note that in the nonin-
teracting case the transmission coefficient is smooth across
Er. The middle panel of Fig. 2 shows that the transmission
diverges/vanishes as a power law, consistent with Eq. (4).
From this power-law dependence one can extract a numerical
exponent &. This is shown in the right panel of Fig. 2. In
the thermodynamic limit, for weak enough interactions and
low enough filling, we expect that the numerical value &
should approach the continuum analytic value of « (5). Our
data are consistent with this. For stronger interactions, it is
no longer quantitatively accurate to linearize the lattice dis-
persion around the Fermi surface, so & deviates from «. The
main cause for this discrepancy is that the Bloch wave func-
tions at kr are strongly affected by the lattice, so it becomes
increasingly inaccurate to model them as plane waves. (Of
course, at very strong interactions the Hartree-Fock frame-
work also ceases to be quantitatively accurate. However,
Ref. [37] also performs a self-consistent Hartree-Fock calcu-
lation, so the discrepancy in Fig. 2 is not due to a breakdown of
Hartree-Fock.)

Kane-Fisher effect in quasiperiodic systems. Having
checked that our self-consistent method reproduces the Kane-
Fisher effect in clean systems, we turn to quasiperiodic
systems. Quasiperiodic systems have nontrivial spatial depen-
dence of the self-consistent Hartree and exchange potentials
even in the absence of an impurity. These effects renormalize
the band structure and also shift the localization transition.
These renormalization effects were previously studied in
Refs. [15,24,44,45], and generally give rise to a mobility edge
[45,46]. Intuitively, attractive interactions enhance the local-
ization of low-energy states via self-trapping, while repulsive
interactions suppress localization by screening the quasiperi-
odic potential. These observations are broadly consistent with
our numerical results on the inverse participation ratio (IPR)
as a function of disorder and energy [42].

We now explore the Kane-Fisher effect in the regime where
states near the Fermi energy are clearly delocalized. Following
previous studies of impurity models in quasiperiodic poten-
tials [47,48], we work at a filling factor f = 0.31 at which
the Fermi level lies well inside a miniband throughout the
delocalized phase. We proceed exactly as above to compute
the transmission coefficient, and extract a power law from
its singular behavior near Er. One subtlety that arises in the
quasiperiodic case is that the tunneling depends strongly on
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FIG. 3. Exponents & characterizing the Kane-Fisher effect in
systems with increasing quasiperiodic potential strength A. Data are
computed for system size N = 2501, filling fraction f = 0.31, vy =
40.6, and averaged over 100 phase realizations. Solid lines: & from
repulsive interactions; dashed lines: & from attractive interactions.
Inset: Power-law relationship between € and 1/7 (¢) — 1 for system
with A = 1.5 and interaction range d = 1.

the phase of the quasiperiodic potential. In order to isolate
the effect of interactions on the transmission coefficient at any
given combination of A and 6 and to facilitate the observation
of the ways in which attractive and repulsive interactions
renormalize the bare transmission coefficient, we tune the
barrier strength to fix the bare transmission coefficient for
the wave packet at the Fermi surface to the arbitrary value
of 0.5 £0.01.

Our results are shown in Fig. 3. We find that for a short-
ranged interaction with d = 1, increasing A pushes & toward
zero. Long-ranged interactions have the opposite effect, with
o flowing away from zero as we increase A. Past A & 1.7, the
transmission coefficient no longer behaves as a power law in
|E — Ep| in the energy range we are able to resolve for the
available system sizes of size <3000 sites. This behavior is
illustrated in the Supplemental Material [42].

To understand the origin of these effects, it is instructive to
separate out the effects due to the Hartree and exchange inter-
action terms. To do this, we first solve for the self-consistent
potential including both terms. Then to compute the Hartree
(exchange) contribution to the transmission coefficient, we
evaluate wave-packet dynamics in a quadratic Hamiltonian
where the exchange (Hartree) term is artificially set to zero.
From this we again extract an exponent, which we call the
Hartree (exchange) exponent (Fig. 4). The exchange exponent
behaves as one would expect, growing stronger with increas-
ing A as the bands grow flatter. The behavior of the Hartree
term is more subtle. At filling fraction 0.31, the Bloch states
are rather far from continuum plane waves, so the Hartree term
is not well described by simply taking the Fourier transform
of the interaction potential. In the clean limit, at this filling,
we find that the Hartree and exchange terms in fact have
the same sign. Upon increasing A, the sign of the Hartree
effect flips. The strength of this term is also nonmonotonic
with interaction range: For long-range interactions the term
is increasingly suppressed, as one would expect (a smoothly
varying potential has no effect on scattering). However, for
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FIG. 4. Hartree (exchange) exponents & characterizing the
Hartree (exchange) contribution to the Kane-Fisher effect in sys-
tems with increasing quasiperiodic potential strength A. Data are
computed for system size N = 2501, filling fraction f = 0.31,
repulsive interaction vi, = 0.6, and averaged over 100 phase realiza-
tions. Solid lines: Hartree exponent. Dashed-dotted lines: Exchange
exponent.

short-range potentials, the Hartree term becomes increasingly
strong and negative as A is increased. This is the origin of
the suppression of interaction effects: As remarked in the
introduction, the interactions projected onto the miniband at
the Fermi level are increasingly contactlike as the minibands
become sparser, so the Hartree and Fock terms cancel as they
would for contact interactions.

Discussion. This Letter explored how Luttinger-liquid
behavior emerges in the low-energy limit of interacting
quasiperiodic systems. We found clear evidence by two dif-
ferent methods that Luttinger-liquid behavior does emerge,
albeit with a strongly renormalized Luttinger parameter. The
Luttinger parameter exhibits a counterintuitive dependence on
the strength of the quasiperiodic potential A: For short-range
interactions, as A is tuned toward the localization transition,
the Luttinger parameter approaches that of the free system,
although the bands get very flat. We identified the origin
of this phenomenon as a cancellation between Hartree and
Fock terms that becomes more pronounced at larger A. This
cancellation occurs because the characteristic spatial scale of
the miniband at the Fermi level grows (with correlation length
& ~ 1/|r, — A]) with increasing A.

Our conclusions are consistent with (and complementary
to) those found by Ref. [31] exploring interaction effects at the
Aubry-André critical point: While that work focuses on the
critical point itself, we show how this regime emerges coming
from the Luttinger liquid. Reference [31] concluded, based on
a scaling argument, that finite-range interactions are always
irrelevant at the Aubry-André critical point. This would imply
that the curves in Fig. 3 are in fact nonmonotonic: Very close
to the transition, we expect the effective Luttinger parameter
to dip again toward K = 1. We do not see this numerically,
and there are at least two plausible explanations for why. The
first is that the Luttinger parameter eventually dips back down,
but in a parameter regime where we are unable to see a clean
Kane-Fisher effect. A second possibility is that at finite (as
opposed to infinitesimal) interaction strengths, interactions
renormalize the localization problem sufficiently to alter the
nature of the Aubry-André transition (e.g., the fractal structure
of energy levels). This second possibility is less exotic than
it sounds. If one considers a two-dimensional phase diagram
with interaction strength and quasiperiodicity as the axes,
the critical behavior found in Ref. [31] must change to the
behavior found using Luttinger-liquid theory [23] somewhere
along the phase boundary, and it is natural for this location
to depend on the interaction range. Exploring this question
in more detail, and developing a complete theory of this
unusual critical phenomenon, is an interesting challenge for
future work.

The framework we have used also naturally extends to
two-dimensional systems. Quasiperiodic systems in higher
dimensions (which are relevant to moiré materials [17,49])
exhibit a richer phase diagram at the noninteracting level, with
ballistic, diffusive, and localized phases [50,51]. The analog
of the Kane-Fisher effect in two dimensions is the Altshuler-
Aronov suppression of the density of states [52], which can
again be understood in terms of renormalized Friedel oscilla-
tions. It would be interesting to explore these effects in the
quasiperiodic case. In particular, our results would suggest
that the cancellation between Hartree and Fock terms would
also suppress the effects of short-range interactions in these
two-dimensional systems.
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