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Breaking parity (P) symmetry in C6 crystals is a common routine to implement a valley topological phase. At
an interface between two crystals of opposite valley Chern numbers, the so-called valley topological edge states
(VTESs) emerge, and they have been proven useful for wave transport with robustness against 120◦ bending
and a certain level of disorder. Here, we first revisit the bending-immune mechanism of VTESs by developing a
lattice coupled mode theory to analyze coupling dynamics between VTESs, and further performing a perturbative
analysis to estimate the Bragg scattering at the bending corner. Our analysis quantitatively evidences that the
bending reflection is suppressed by the unique modal profiles of the VTESs—momentum hot spots localized
at high-symmetric K (K ′) points—which only concerns the existence of the valleys in the bulk band diagrams,
and imposes no requirement on topology. Second, we reveal the emergence of non-Hermitian supercoupling
(SC) effects in (Hermitian) valley systems: Counterflow, momentum-matched incident and transmission ESs
could reach ∼100% coupling efficiency free of corner reflection and construct an unusual superexponential field
distribution. Based on two findings, a coherent understanding of bending immunity for ESs in valley systems
is established, and different designs based on rhombic lattices are proposed. Additionally, we demonstrate that
the emerged superexponential field profile due to the SC effects provides another way to engineer the photonic
Purcell factor.
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Introduction. Recently, topology, a mathematical concept
of classification, has spawned a new perspective in physics
[1,2]. When two insulators of different topological invariants
are interfaced, gapless edge states (ESs) emerge, enabling
transport robustness [3,4]. Various approaches have been pro-
posed to realize topological phases, including breaking time
reversal symmetry, utilizing spin or valley degrees of freedom,
and so on [5–11].

Recently, valley topology (VT) has been widely imple-
mented in photonics due to its combination of topological
superiority and fabrication feasibility [11], even though the
valley Chern number is not an exact topological invariant
[12–14]. Taking a C6-symmetric hexagonal lattice for exam-
ple, by slightly modifying A and B sublattices, one breaks
inversion symmetry and generates opposite Berry curvatures
at the K and K ′ valleys [Fig. 1(a)]. This leads to valley Chern
numbers Cv ∼ ±1/2 [15]. When two photonic crystals (PhCs)
with opposite Cv’s are interfaced along zigzag terminations,
VTESs emerge, the hallmark of which is the ability to trans-
port through 120◦ bending [11] and against random disorders
[16,17]. These merits facilitate a variety of applications, in-
cluding topological lasers [18], slow light waveguides [19,20],
and high-fidelity transmission lines [17,21].
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Though the achievements in VT photonics are evident, the
common perspective which attributes their merits to topologi-
cal protection is rather ambiguous. Figure 1 demonstrates that
when VT PhCs are continuously deformed into a trivial case
where VT protection no longer exists, the ESs remain bending
immune. The exemplified deformation includes two parts,
quantified by the detuning ratio of the radii of silicon rods,
D ≡ (rA − rB)/rB. First, D increases from 0 to 1 [Fig. 1(b)], an
evolution from the VT to VT-trivial phase (that is, PhCs regain
inversion symmetry and the Cv’s become zero). Second, the
sublattice B is rebuilt [Fig. 1(c)], so that both PhCs possess the
same Cv’s (suggesting that the ESs can no longer be classified
as VTESs). In the whole procedure, a 100% transmittance
passband through a Z-shaped bending exists and coincides
with the ES bandwidth [Fig. 1(d)]. Moreover, no qualitative
difference is observed in the resilience to random disorders in
these cases (see Supplemental Material Fig. S6 [22]). It is thus
necessary to look into the real origin of these properties which
were commonly attributed to VT protection. This topic is also
relevant to and intensified by a few recent experiments that
observe a similar resilience to sharp bending and fabrication
errors in PhCs with and without VT protection [23,24].

Strategy. We revisit the propagation of VTESs through
a 120◦ bend. As sketched in Fig. 2(a), it is a two-step
process. First, as an incident ES propagates towards the
bending corner, it couples to the reflection, transmission,
and “inverse”-transmission ESs due to modal overlapping.
Second, after propagating through the coupling region, a
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FIG. 1. Evolution of photonic ESs and their bending-immune ability during a deformation procedure where VT protection is gradually
broken. The deformation starts with a standard VT case (a). Then, the radius of rod B is reduced until elimination where both side PhCs
become VT trivial (b). Finally, rod B is rebuilt so that both side PhCs possess the same VT phase (c). (d) During the whole procedure, a
100% transmittance passband through a Z-shaped bend is always present. Transverse electric (TE) polarized light with the electric field in the
out-of-plane direction [25] is considered.

FIG. 2. Bending-immune mechanism. (a) Sketch of an ES propagating through a 120◦ bend. (b) Projected band diagram for a ribbon
composed of two interfaced hexagonal PhCs (left panel), and momentum profiles of ESs (right panel). The PhC uses the same material and
geometrical compositions as Fig. 1 with D = 1 (radii detuning ratio), and light is TE polarized. (c) Confinement parameter and coupling
coefficients as functions of D, corresponding to a continuous evolution from the VT to VT-trivial phase. (d) Coupling reflectance and
transmittance (markers) by solving Eq. (1). (e) Magnetic field magnitude (color map) and power flow (arrows) for an ES propagating through a
120◦ bend with D = 1. The lower panel plots the field profile along the bending edges. (f) Corner reflectance, contrasting the results including
(bright markers) and excluding (dark markers) the non-Hermitian coupling effect.
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fraction of the incident ES reaches the corner, and hits upon
a semi-infinite PhC. In both processes, reflections could be
induced through evanescent coupling and Bragg scattering,
respectively, these are analyzed below.

Lattice CMT. In the first process, coupling between ESs
exhibits two features: (1) nonuniformity in space due to PhC
periodicity, and (2) strength increasing as ESs approach the
corner. To capture these features, we employ the Lorentz
reciprocity theorem and derive a lattice coupled mode the-
ory (CMT) (see derivations in Supplemental Material Note 1
[22]) [26],

−iP(|ψn+1〉 − |ψn〉) = Hn
la (|ψn+1〉 + |ψn〉)/2, (1)

where |ψn〉 ≡ [an
in; an

t ; an
r ; an

it ] (n = 0, 1, . . .) are the ES am-
plitudes at the nth cutting line of the PhCs in the coupling
region [Fig. 2(a)], |an

in,t,r,it |2 represent the ES power; P =
diag[1; −1; −1; 1] with Pii = 1,−1 meaning that the ESs
propagate towards and outwards from the corner, respectively;
andHn

la is the coupling-coefficient matrix.

Hn
la relates to the modal profiles. Consider the incident ESs

in Fig. 1 with the wave number equal to the projected valley
K ′ point. The incident and transmission ESs are identified to
have momentum hot spots at the K ′ point, while the reflection
and inverse-transmission ESs have momentum hot spots at
the K point, as shown in Fig. 2(b) for a VT-trivial phase
(with detuning ratio D = 1) and in Supplemental Material
Fig. S4 for more results [27]. This momentum characteristic
is present throughout the numerical examples independent of
topology. It is simply because that the bulk Bloch modes,
spectrally closest to these ESs, are those at the K and K ′
valley points [see the left panel in Fig. 2(b)]. Accordingly, the
decomposition of the ESs into the bulk Bloch modes should
mainly consist of the bulk valley modes, thus leading to K/K ′
momentum localizations (see more discussions in Supple-
mental Material Note 5 [22]). In the real space, the ESs are
localized around the edges with the lateral 1/e confinement
length denoted by 1/α (α, decay wave number). These modal
features renderHn

la as a specific form,

Hn
la =

⎡
⎢⎢⎢⎣

0 k1e−nγ k2e−2nγ+inφ k3e−nγ−inφ/2

k∗
1 e−nγ 0 k∗

3 e−nγ+inφ/2 k∗
2 e−2nγ−inφ

k∗
2 e−2nγ−inφ k∗

3 e−nγ+inφ/2 0 k∗
1 e−nγ

k3e−nγ−inφ/2 k2e−2nγ+inφ k1e−nγ 0

⎤
⎥⎥⎥⎦, (2)

with phase parameter φ = 4π/3,−4π/3 for the wave number
of the incident ESs equal to the projected K and K ′ points,
respectively, and the confinement parameter γ = αa

√
3/2 (a,

lattice constant). The coupling coefficients ki (i = 1, 2, 3) are
given as overlap integrals of normalized ESs (see Supplemen-
tal Note 1 for derivations and Supplemental Material Fig. S8
for numerical demonstrations [22]). Note that the momen-
tum matching between incident (reflection) and transmission
(inverse-transmission) ESs results in a constant phase of the
associated coupling coefficients independent of propagation
index n.

Non-Hermitian coupling. The lattice CMT is employed to
examine the coupling dynamics between ESs. To this end, we
define the coupling transmittance (Tcouple), reflectance (Rcouple)
as ratios of the coupled-out power of the transmission, and
reflection ESs to the incident power, respectively. Figure 2(d)
plots Tcouple and Rcouple for the evolution from the VT to VT-
trivial phase (cf. Fig. 1). It shows that Tcouple is two to three
orders of magnitude larger than Rcouple. Notably, Tcouple almost
approaches 1 as D → 1, with the increasing of the coupling
strength [cf. Fig. 2(c)]. The efficient incident-transmission
coupling has an intuitive interpretation. The coupling coef-
ficients between the incident and transmission ESs keep the
same phase independent of propagation index n due to their
matched momenta, which facilitates the accumulation of the
transmission power. Conversely, the phase variation in the
coupling coefficients between the incident and reflection ESs
inhibits the accumulation of the reflection power.

To gain deeper insights beyond the intuitive momentum-
matching picture, we perform an analytic analysis by
retaining the dominant incident and transmission com-
ponents in Eq. (1), and taking the continuum limit.

The lattice CMT equation is then cast in the form
of Schrödinger’s equation −id|ψ(�)〉/d� = Hc(�)|ψ(�)〉,
characterizing the incident-transmission coupling. Here,
� is the distance to the corner, |ψ(�)〉 ≡ [ain(�); at (�)],
and Hc(�) = [0, k1e−γ �/a+γ /2/a; −k∗

1 e−γ �/a+γ /2/a, 0]. Inter-
estingly, despite its origin in the Hermitian system, Hc is
non-Hermitian. The non-Hermiticity leads to that |ain(�)|2 +
|at (�)|2 is not a conserved quantity. This does not contradict
with the energy conservation, since the total power of the
incident and transmission edge states is |ain(�)|2 − |at (�)|2
(the minus sign is due to that the power flow of incident
and transmission ESs are opposite, i.e., toward and out-
ward corner, respectively), which is conserved. Therefore, it
is apparent that the coupling non-Hermiticity is not due to
material/radiation loss or gain, but rather emerges from the
transmission and reflection ESs that carry the counterpropa-
gating power flow.

Moreover, it is worth noting that the eigenvalues ofHc are
pure imaginary numbers, which is due to the non-Hermiticity,
and also the momentum matching of incident and transmis-
sion ESs that makes the diagonal components of the Hc

vanish. As a result, the conventional Hermitian coupling phe-
nomena, such as mode beating and energy hopping back and
forth between coupled channels [26], which rely on the real
eigenvalues of the coupling Hamiltonian, disappear. It unex-
pectedly brings efficient incident-transmission coupling in the
present valley system. Specifically, Tcouple is derived by ex-
panding |ψ(�)〉 with the eigenstates of Hc (see Supplemental
Material Note 2 [22]):

Tcouple = tanh2 (ksc) with ksc = |k1|eγ /2/γ . (3)
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The non-Hermitian trait is evident: Tcouple increases monoton-
ically with the coupling parameter ksc, which is absent in the
Hermitian scenario, where the mode beating inevitably gives
rise to periodic variations of Tcouple as the coupling parameter
varies. Consequently, as long as ksc 
 1, Tcoupling is destined
to approach 1 [Fig. 2(d)]. As shown in the lower panel of
Fig. 2(d), the prediction of Eq. (3) (dashed line) agrees well
with the numerical solution.

Furthermore, the non-Hermitian coupling, with the expo-
nential growth of its strength as � decreases [Eq. (2)], result in
an unusual superexponential field distribution of the ESs (see
Supplemental Material Note 2 for derivations [22]),

|ain,t (�)| = exp [−ksc exp(−γ �/a)]. (4)

The superexponential distribution is verified in Fig. 2(e),
which plots the field distribution for an ES propagating
through a 120◦ bend with D = 1. The upper panel shows that
the field rapidly decays when approaching the corner, and
the power flow makes a smooth U-turn to the transmission
channel. The lower panel plots the field profile along the
bending edges, showing agreement between the numerical
(shadow area) and analytic [solid line, Eq. (4)] results. More
numerical results that verify the predictive accuracy of Eq. (4)
are provided in Supplemental Material Fig. S9 [22].

The superexponential profile also benefits the bending im-
munity of ESs. Specifically, the coupling coefficients related
to reflection ES grow exponentially when approaching the
corner [see Eq. (2)]. Nevertheless, the faster superexponential
decay of the field overshadows this exponentially growing
coupling term, thus reducing the coupling to the reflection
channel.

Corner reflectance. After the non-Hermitian coupling pro-
cess, a fraction of the incident ES arrives at the corner, and
then induces the transmission and reflection ESs through
Bragg scattering by a semi-infinite PhC [Fig. 2(a)]. In a Bragg
scattering event, efficient excitation of a wave requires its
momentum matching with the diffracted momentum of the
incident one. The transmission ES fulfills this condition, since
its momentum distributions coincide with those of the incident
ES, while the reflection ES does not. As a result, the corner
reflectance is expected to be negligible. To put it in concrete
terms, we evaluate the power ratio of the corner-scattered re-
flection ES to the transmission ESs by comparing the overlap
integrals between the incident and the transmission/reflection
ESs in the scattering region. Meanwhile, recall that the inci-
dent ES at the corner is reduced by a factor e−ksc [Eq. (4)] due
to the efficient non-Hermitian coupling. Taking these factors
into account, the corner reflectance Rcn is estimated to be
about (see Supplemental Material Note 3 for derivations [22])

Rcn ∼ e−2ksc
(1 − e−γ )2(1 − e−2γ )2

3|1 − eiφ−2γ |2 . (5)

Figure 2(f) plots the corner reflectance (bright markers) sim-
ulated with COMSOL MULTIPHYSICS. The corner reflectance
is observed to be negligible, and its magnitude agrees with
Eq. (5) (dashed line). Additionally, to better visualize the
role of the non-Hermitian coupling in reducing the corner
reflection, the intrinsic corner reflectance is also plotted (dark
markers) by dividing simulated Rcn with the coupling factor

e−2ksc . It demonstrates that the coupling effect noticeably sup-
presses the corner reflection.

We thus evidence, the momentum matching between the
incident and transmission ESs due to their coinciding mo-
menta around the K/K ′ points, brings about the bending
immunity of the edge states by enabling efficient non-
Hermitian incident-transmission coupling and suppressing the
corner reflection. Our theoretical observation also well ex-
plains the recently reported experimental results of Dai et al.
[28], which evidence that the bending immunity of the edge
states in the valley system is not protected by topology (see
Supplemental Material Note 6 for detailed discussions [22]).

Supercoupling effects. As discussed above, the non-
Hermitian coupling between the incident and transmission
ESs can be efficient, leading to ∼100% coupling transmit-
tance and superexponential field distribution. These interest-
ing physical consequences are termed supercoupling (SC)
effects for the convenience of discussion. The realization of
efficient SC effects requires three elements concerning the
incident and transmission ESs: (1) counterflow power, (2)
momentum matching, and (3) strong coupling (ksc 
 1). The
first two elements bring the non-Hermitian coupling that sup-
presses the mode beating, while the last one is essential for
high efficiency. None of them demands topology, thus imply-
ing the possibility of the realization in more general platforms.
Below, such a demonstration is given using rhombic PhCs.

The left panel of Fig. 3(a) sketches a bend constructed
by two interfaced rhombic PhCs made of periodic silicon
rods in air. The acute interior angle of the rhombic lattice is
denoted by θrh (note that when θrh = 60◦, the lattice becomes
a hexagon). The right panel of Fig. 3(a) plots the projected
band diagram (TE polarization) for a ribbon composed of
interfaced rhombic PhCs with θrh = 45◦ and rA = 0.12a (rod
radius). Similar to the hexagonal case, an ES band emerges
above a bulk band. The bulk band exhibits valleys (marked
with shadow ellipses), which, however, are slightly located
away from the vertices of the reciprocal Wigner-Seitz (WS)
cell (e.g., O and N points), due to symmetry reduction. Conse-
quently, for an ES with a wave number equal to the projected
O/N point, their momentum hot spots are slightly away from
the vertices of the WS cell [see the insets in Fig. 3(a)].
Nevertheless, the momentum profiles of the incident and
transmission ESs still maintain a large overlap.

The upper panel of Fig. 3(b) plots the coupling parameter
ksc vs θrh. Here, θrh varies from 45◦ to 70◦, within which the
ESs of interest propagate in a single-mode fashion. It shows
that ksc increases as θrh decreases. This increment is attributed
to the slow-light effect, with which the coupling coefficient
increases proportionally to the group refractive index ng of
the ES (an explicit relation between ksc and ng is given in
Supplemental Material Note 4 [22]); ng is also plotted, whose
evolution is well consistent with ksc. This thus suggests the
enhancement of the SC effects by the slow-light effect. For
instance, when θrh = 45◦, ng is one order of magnitude larger
than at θrh = 60◦, resulting in the growth of ksc (that measures
the SC effects) by the same order.

The enhanced SC effects are visualized in Fig. 3(c) that
plots the field distribution for an ES propagating through
the bend with θrh = 45◦. The wave number of the incident
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FIG. 3. Enhanced supercoupling effects by leveraging the slow-light effect in rhombic PhCs. (a) Sketch of a bend composed of two
interfaced rhombic PhCs (left panel), and projected band diagram for a ribbon structure with rhombic angle θrh = 45◦. Insets: Momentum
profiles of ESs with wave number of incident ES equal to the projected N point. Light is TE polarized. (b) Coupling parameter ksc, group
refractive index ng of ESs (upper panel), and bend reflectance (lower panel) vs rhombic angle. (c) Magnetic field magnitude (color map) and
power flow (arrows) for an ES propagating through a bend with θrh = 45◦. The lower panel plots the field profile along the bending edges.
(d) Purcell factor for a line current along a horizontal cutting line nearby the incident edge [red dashed line in (a)] with θrh = 45◦. (e) and (f)
Magnetic field distributions for a line current placed far away from and close to the corner, respectively (marked with arrows). The rhombic
PhC is composed of Si rods (radius, rA = 0.12a) in air.

ES is equal to the projected N point [Fig. 3(a)]. The up-
per panel shows that the incident ES is fully coupled to
the transmission ES at a few lattice distances to the corner,
thus making the field completely vanish around the corner
region. The lower panel confirms that the superexponential
profile, Eq. (4), accurately characterizes the field distribution
along the bending edges. The efficient coupling between the
incident and transmission ESs overshadows the induction of
the reflection ES, and results in a bending immunity of the
edge states with negligible reflectance [see the lower panel in
Fig. 3(b)].

The superexponential distribution characterizes the rapid
decay of the ES towards the corner. Based on the reciprocal
principle, it also suggests that, if a quantum emitter is placed
near the corner, its radiation should be heavily suppressed
despite the presence of available ES channels. The principle is
different from the conventional strategy based on the band-gap
effect of PhCs. It is alternatively due to the emitted outgoing
ESs being efficiently coupled to the ingoing ESs through the
non-Hermitian coupling, making power circulate within the
corner and hard to escape. To quantify this radiation suppres-
sion, we compute the Purcell factor Fp for a line current (in a
direction perpendicular to the page) along a horizontal cutting
line close to the incident edge [red dashed line in Fig. 3(a)]. As
is shown in Fig. 3(d), Fp superexponentially decays by more

than four orders of magnitude within a few lattice distances
when the position of the line current approaches the corner.
After crossing the corner, the rapid superexponential decay
turns to a mild exponential decay due to the band-gap effect.
Figures 3(e) and 3(f) plot the field distributions for the line
current placed far away from and close to the corner, re-
spectively, verifying that the supercoupling effects efficiently
inhibit the radiation.

Summary. First, based on the lattice coupled mode theory
and perturbative analysis, we clearly identify the critical role
of momentum matching between incident and transmission
ESs (due to their coinciding momentum hot spots around
the high-symmetric K/K ′ points) in supporting the bending
immunity of the VTESs. Second, we reveal the non-Hermitian
coupling between the incident and transmission ESs in val-
ley systems, which leads to the supercoupling (SC) effects,
featuring efficient incident-transmission coupling and a su-
perexponential field distribution. With these insights, one
can realize bending-immune transport free of the topology
constraint such as using C3 or rhombic PhCs with a topology-
trivial phase, and potentially propose other designs that follow
the same principle (see Supplemental Material Fig. S10 for
additional numerical results on bending-immune edge states
[22]), and utilize the SC effects to manipulate light-matter
interactions.
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