
PHYSICAL REVIEW B 110, 245135 (2024)

Quantum anomalous, spin, and valley Hall effects in pentalayer
rhombohedral graphene moiré superlattices

Koji Kudo,1 Ryota Nakai,1,2 and Kentaro Nomura1

1Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
2RIKEN Center for Quantum Computing (RQC), Wako, Saitama 351-0198, Japan

(Received 9 July 2024; revised 30 October 2024; accepted 25 November 2024; published 23 December 2024)

Recent experiments on pentalayer rhombohedral graphene moiré superlattices have observed the quantum
anomalous Hall effect at a moiré filling factor of ν = 1 and various fractional values. These phenomena are
attributed to a flat Chern band induced by electron-electron interactions. In this study, we demonstrate that at
ν = 2, many-body effects can lead to the emergence of quantum spin Hall and quantum valley Hall states, in
addition to the quantum anomalous Hall state, even in the absence of spin-orbit coupling or valley-dependent
potentials. These three topological states can be selectively induced by the application and manipulation of a
magnetic field. Furthermore, we show that at ν = 3 and 4, the ground state can be a combination of topologically
trivial and nontrivial states, unlike the cases of ν = 1 and 2. This contrasts with the conventional quantum Hall
effect in graphene where the ground state at filling factor ν is given as the particle-hole counterpart at 4 − ν.
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I. INTRODUCTION

The recent discovery of both integer and fractional quan-
tum anomalous Hall (QAH) effects in moiré materials
represents a major milestone in condensed matter physics
[1–5]. Moiré materials provide a fertile ground for exploring
strong interaction effects [6,7], leading to the emergence of
various symmetry-broken phases such as superconductivity
and Wigner crystals [8–12], as well as topological phases
[13–18]. The QAH effect is particularly intriguing because
it arises from the interplay between symmetry breaking and
topology, resulting in a quantized Hall conductance even in
the absence of external magnetic fields [19–22]. Both integer
and fractional QAH effects were first observed in twisted
bilayer MoTe2 [1–4], marking a significant achievement in
the study of moiré materials. More recently, these phenomena
have been reported in pentalayer rhombohedral graphene on
hexagonal boron nitride (hBN) at a moiré filling factor of
ν = 1 and at various fractional values [5]. This breakthrough
has spurred extensive theoretical investigations [23–45].

The emergence of Chern bands in pentalayer rhombohedral
graphene on hBN can be attributed to the combined effects
of layer stacking, moiré structure, and many-body interac-
tions [31–35]. The band touching at the charge-neutral point
of multilayer rhombohedral graphene [46–58] becomes in-
creasingly flat (approximately ∼kNL with wave number k) as
the number of stacked layers NL increases [59]. The moiré
superlattice structure, resulting from the lattice mismatch be-
tween pentalayer graphene and hBN [60,61], reduces the
graphene’s Brillouin zone (BZ) into moiré BZ, narrowing the
band width. Ultimately, electron-electron interactions play a
crucial role in isolating a Chern band from the rest of the
moiré bands. Specifically, Hartree-Fock (HF) analysis has re-
vealed the emergence of an isolated and nearly flat Chern band
at ν = 1 [31–35], which does not appear in the absence of

electron interactions. This mechanism is believed to underlie
the observed ν = 1 and fractional QAH states [5,31–35].

Traditionally, quantum Hall physics [18,62–79] relies on
noninteracting topological bands, such as Landau levels, as a
foundation. However, pentalayer rhombohedral graphene on
hBN deviates from this noninteracting framework, indicating
the potential for interaction-driven exotic phases beyond the
conventional quantum Hall paradigm, even at integer fillings.
This observation prompts an investigation into pentalayer
rhombohedral graphene on hBN at integer fillings other than
ν = 1, which have not yet been explored experimentally under
a sufficiently strong displacement field [5].

In this study, we demonstrate that pentalayer rhombohe-
dral graphene at ν = 2 can give rise to quantum spin Hall
(QSH) and quantum valley Hall (QVH) states, in addition to
the QAH state, even in the absence of spin-orbit coupling
or valley-dependent potentials. These states emerge purely
from many-body effects, which is a kind of a topological
Mott insulator proposed in Ref. [80]. Our self-consistent HF
calculations show that the QAH, QSH, and QVH states at
ν = 2 are degenerate but distinguishable by their magneti-
zation magnitudes. This distinction allows for the selective
induction of one of these states by applying and tilting mag-
netic fields, as illustrated in Fig. 1(a). The emergence of these
three states can be understood by analogy to the ν = 1 case:
the emergent Chern band at ν = 1 spontaneously selects the
valley K or K ′ and spin ↑,↓, where the band Chern number
is +1 for K and -1 for K ′ [31–35]. At ν = 2, the ground state
comprises two Chern bands selected from (K↑, K↓, K ′↑, K ′↓)
[see Fig. 1(b)]. Different combinations of the four degrees
of freedom result in distinct topological states, leading to
QAH, QSH, and QVH effects. The possible combinations are
detailed in Table I.

Notably, the empirical rule of forming the lowest energy
state by occupying the Chern bands does not hold at ν = 3
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FIG. 1. (a) Lowest energy state as a function of the in-plane
and out-of-plane components (B‖, B⊥) of the magnetic field B. The
boundaries are defined as follows: (I) QAH versus QSH transition
occurs at B⊥ = BC , where BC is the critical magnetic field such that
BC × Mz(QAH)

orb , with Mz
orb defined in Eq. (1), equals the magnetostatic

energy of the QAH state. (II) QVH versus QSH boundary at |B| =
αBC with α = 4.9 [refer to Eq. (2)]. (III) QVH versus QAH transition
described by αB⊥ = |B|. (b) Schematic of the band structure with
and without the Hartree-Fock (HF) interaction at ν = 2. The HF
interaction results in two isolated bands, as demonstrated in Fig. 2
below. The choice among the valley and spin–(K↑, K↓, K ′↑, K ′↓)–
does not influence the total energy. All possible occupancies are
summarized in Table I.

and ν = 4. At these filling factors, the ground state can be a
combination of topologically trivial and nontrivial states. This
occurs because the spatial charge density distributions of these
states interlock; the localized density of the trivial state fits
into the low-density regions of the topological states. This
phenomenon, driven by many-body interactions, contrasts
with the conventional quantum Hall effect in graphene where
the ground state at filling factor ν is given as the particle-hole
counterpart at 4 − ν.

TABLE I. Possible occupancy of the four degrees of freedom at
ν = 2, yielding 4C2 = 6 states. The charge Chern number Cc sums
the band Chern numbers, whereas the spin (valley) Chern number
Cs (Cv ) represents the difference concerning the spin (valley). [Here,
the band Chern number for the valley K (K ′) is +1 (−1)]. The
three types of states–quantum anomalous Hall (QAH), quantum spin
Hall (QSH), and quantum valley Hall (QVH)–are distinguished. The
magnetization results in Fig. 3 are also summarized, with ◦ indicating
finite magnetization. Note that our QSH state also supports the QVH
effect [81].

Occupancy Magnetization

# K↑ K↓ K ′↑ K ′↓ (Cc,Cs,Cv ) Type Orbital Spin

1 � � × × (2,0,2)
QAH ◦2 × × � � (−2,0,2)

3 � × × � (0,2,2)
QSH4 × � � × (0,−2,2)

5 � × � × (0,0,2)
QVH ◦6 × � × � (0,0,2)

II. MODEL

For numerical analysis, an effective continuum model is
used [31,33]. The starting point is the tight-binding Hamil-
tonian of pentalayer rhombohedral graphene, including both
intralayer and interlayer hoppings as well as the interlayer
potential difference [see Appendix A]. Using a standard
approach to reach the continuum limit, the effective Hamil-
tonian near the charge-neutral point is derived: HR5G =∑

k c†(k)hR5G(k)c(k) for a given valley and spin, where c† =
(c†

A1
, c†

B1
, c†

A2
, . . . , c†

B5
) and c†

Xl
is a creation operator for the

sublattice X = A, B on the layer l = 1, 2, . . . , 5. The ma-
trix hR5G(k) is ten-dimensional. System parameters are set
to match experimental conditions for the ν = 1 QAH effect
[5,31,33,82]; see Appendix A.

Stacking graphene on hBN induces a moiré superlattice
structure due to lattice mismatch. In this study, the twist angle
is set to 0.77◦ to align with the experimental conditions de-
scribed in Ref. [5]. Within the effective continuum model, the
impact of hBN is represented by a local potential v(r) within
the bottom graphene layer [60,61] (see Appendix B for more
details). The second quantized form of this potential is VhBN =∑

k

∑
m1m2

c̃†(k + m1G1 + m2G2)v(m1, m2)c̃(k), where c̃† =
(c†

A1
, c†

B1
), G1 and G2 are the moiré reciprocal lattice vectors,

and v(m1, m2) is the Fourier coefficient of v(r). In the numer-
ical calculations, the summation

∑
k

∑
m1m2

is confined to the
first and second moiré BZs.

The effective noninteracting Hamiltonian is obtained as
HR5G + VhBN. To incorporate many-body effects, the HF
interaction is added. The original interaction term is Hint =
(1/2S)

∑
kk′q

∑
ZZ ′ VC (q)c†

Z (k + q)c†
Z ′ (k′ − q)cZ ′ (k′)cZ (k),

where S is the area of the system, and Z and Z ′
represent the spin, valley, sublattice, and layer indices.
The dual gate-screened Coulomb interaction used is
VC (q) = e2/(2ε0εrq) tanh(qds) for q 	= 0 and VC (q = 0) = 0,
with ds = 25 nm as the gate distance and εr = 5 as the
dielectric constant [33]. More details on the HF interaction
can be found in Appendix C. To reduce computational cost,
the calculations are performed within the subspace of the first
three noninteracting conduction bands for each valley and
spin. The system with 24 × 24 moiré unit cell is used unless
otherwise specified.

III. BAND STRUCTURE

The self-consistent HF calculation assumes conservation
of both spin and valley. The spin conservation assumption is
valid due to the SU(2) spin-rotational symmetry of the HF
Hamiltonian. Although valley conservation is nontrivial at this
moment, we assume it based on the HF results at ν = 1 [35].

Figures 2(a) and 2(b) display the HF band structures of
lowest energy solutions, calculated by fixing the particle num-
ber at ν = 2. (To be precise, the state in Fig. 2(b) has a lower
energy than that in (a) by 10−8 eV per particle. Given the
small difference, we consider the two states to be degenerate
[84]). In Fig. 2(a), the occupied two lowest bands, distinctly
separated from other conduction bands, exhibit (K↑, K ′↓)
with the band Chern numbers C = (1,−1), corresponding
to state #3 (QSH) in Table I. In Fig. 2(b), the two lowest
bands exhibit (K↑, K↓) with band Chern numbers C = (1, 1),
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FIG. 2. Band structures at ν = 2 for the lowest energy Hartree-
Fock solutions (refer to Ref. [84]). Greek letters denote the
high-symmetric points in the moiré BZ. Colors and line styles denote
valley and spin properties. (a) and (b) correspond to the states #3
(QSH) and #1 (QAH) listed in Table I, respectively. In the calculation
for (b), a small “valley Zeeman term” is introduced to favor valley K
(refer to Ref. [83]). The HF analysis is performed with the particle
number fixed at ν = 2.

corresponding to state #1 (QAH) in Table I. Because the HF
Hamiltonian maintains symmetry for spin flipping in each
valley, these two results indicate that the QAH, QSH, and
QVH states in Table I are all degenerate ground states. [For
example, state #5 (QVH) can be obtained by flipping the
spin for K ′ in state #3]. These states do not emerge in the
absence of the HF interaction. Their emergence results from
many-body effects.

IV. LOWEST ENERGY STATE

We now analyze the selectivity among the QAH, QSH, and
QVH states listed in Table I under three specific conditions: (i)
In-plane magnetic field, (ii) Out-of-plane magnetic field, and
(iii) Absence of magnetic field.

(i) In-plane magnetic field: Under an in-plane magnetic
field, the field favors a state with the largest in-plane
magnetization, which is the QVH state due to its spin po-
larization. The strength of the spin magnetization for each
state is quantified as follows: M(QVH)

spin = gμBne and M(QAH)
spin =

M(QSH)
spin = 0. Here, the g factor is assumed to be 2, μB de-

notes the Bohr magneton, and ne represents the electron
density. Note that the orbital magnetization has no in-plane
component.

(ii) Out-of-plane magnetic field: For an out-of-plane mag-
netic field, both spin and orbital magnetizations are relevant.
The orbital magnetization in the z direction is calculated using
the expression [85–88]:

Mz
orb = e

2h̄i

∫ μ dk2

(2π )2

〈
∂u

∂k

∣∣∣∣ × (H (k) + E (k) − 2μ)

∣∣∣∣∂u

∂k

〉
,

(1)

where u(k) and E (k) are an eigenstate and eigenenergy of
the Bloch Hamiltonian H (k), respectively. The integral en-
compasses states with energies below the chemical potential
μ. (In numerical calculations, μ is positioned at the top
of the valence bands). In Fig. 3, we illustrate the orbital
magnetization Mz

orb for states #1 and #3 from Table I, rep-
resenting the QAH and QSH states, respectively. Due to

FIG. 3. Orbital magnetization Mz
orb, expressed in units of 2μBne

where μB is the Bohr magneton and ne is the electron density, for
N × N moiré unit cells. The states #1 and #3 from Table I serve
as representatives for the QAH and QSH states, respectively. The
dashed lines represent a linear approximation. Due to symmetry, the
QSH and QVH states exhibit identical values of Mz

orb.

symmetry, the QVH state displays the same Mz
orb as the QSH

state. The finite-size scaling analysis presented in the fig-
ure reveals that the QSH state exhibits zero magnetization,
Mz(QSH)

orb + M(QSH)
spin = 0, while the QAH state manifests a mag-

netization approximately five times greater than that of the
QVH state:

Mz(QAH)
orb + M(QAH)

spin

Mz(QVH)
orb + M(QVH)

spin

≈ 4.9 ≡ α. (2)

Consequently, a QAH state is favored for the out-of-plane
magnetic field.

(iii) No magnetic field: In the absence of a magnetic field,
the state with the smallest magnetization is favored to min-
imize the magnetostatic energy. Therefore, the QSH state
becomes the preferred state. (At this point, it is not possible to
energetically differentiate between states #3 and #4 in Table I.
However, considering weak spin-orbit interactions in real sys-
tems, either of these states should be favored).

This argument implies that the QSH state, realized in the
absence of a magnetic field, transitions to the QVH or QAH
states when a magnetic field is applied. Furthermore, the QVH
and QAH states can be interchanged by tilting the magnetic
field.

In Fig. 1, the state with the lowest energy is summarized
as a function of both in-plane and out-of-plane components
(B‖, B⊥). The sole undetermined parameter in the figure is the
critical field BC , which is defined such that the product BC ×
Mz(QAH)

orb equals the magnetostatic energy of the QAH state.
Additionally, some boundaries are characterized by valley
flips, representing first-order transitions. Resulting hysteresis
scans of the Hall conductance is discussed in Appendix D.

V. INTERLOCKING STRUCTURE IN CHARGE DENSITY

While the focus has been on the QAH, QSH, and QVH
states, it is important to consider other competitive states.

Figure 4(a) depicts the HF band structure of a metastable
solution at ν = 2. The difference in many-body energy from
the lowest energy state, as shown in Fig. 2(a), is about
0.00015 eV per particle. Although both band structures appear
quite similar, one band in Fig. 4(a) has a zero band Chern
number.
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FIG. 4. (a) Hartree-Fock (HF) band structure for a metastable
solution at ν = 2, where one of the two lowest bands is characterized
by C = 0. (b), (c) Charge density ρ(r), where the position r = (x, y)
is scaled by the lattice constant of graphene aG. (b) and (c) corre-
spond to the charge densities for the two lowest bands depicted in
Figs. 2(a) and 4(a), respectively. Bands with |C| = 1 exhibit an ex-
tended structure, while that with C = 0 displays localized densities.
Light and dark colors indicate areas of high and low density, respec-
tively. (d) HF calculations were performed with 10-20 randomized
initial states. This panel plots the difference in many-body energy
per particle relative to the lowest value at each ν. (There seem to be a
few plots because of the degeneracy). The color of the plots denotes
the number of trivial bands.

The two lowest bands in Fig. 4(a) exhibit density struc-
tures with an interlocking pattern. While the densities of the
topologically trivial and nontrivial bands are qualitatively sim-
ilar, the trivial band exhibits slightly more localized structure.
Each localized density in the trivial band fits into a low-
density area of the Chern band. For comparison, Fig. 4(c)
plots ρ(r) of the QSH state from Fig. 2(a), where the two
Chern bands also show interlocking patterns but slightly more
extended structures. Despite the seemingly more stable in-
terlocking shape in Fig. 4(b), the trivial-included state is not
the lowest energy state. This indicates that forming the trivial
band requires more energy than the advantage gained from the
interlocking structure.

TABLE II. Spin and orbital magnetizations, Mspin and Mz
orb, for

the low-energy states depicted in Fig. 4(d). Both magnetizations are
quantified in units of 2μBne.

ν Type �Etot/Np [eV] Mspin

∣∣Mz
orb

∣∣
PHν=1 0 1/3 1.5

3 trivial ⊗ QAH 1/3 2.8
trivial ⊗ QSH �10−6 1/3 0.3
trivial ⊗ QVH 1/3 0.3

trivial ⊗ PHν=1 0 0 0.9
4

PHν=0 5. × 10−6 0 0.0

VI. LOWEST ENERGY STATES AT ν = 3 AND 4

Using the analogy at ν = 2, one might anticipate that the
ground states at ν = 3 and 4 would exclusively involve the
Chern bands. (Associating them with the particle-hole-like
counterparts of the ν = 1 and 0 ground states within the Chern
band subspace, we call them PHν=1 and PHν=0 states, respec-
tively). However, our findings indicate that this expectation
does not always hold; the trivial-included states may achieve
the lowest energy.

In Fig. 4(d), we present HF calculations for ν = 2, 3, 4
using 10-20 randomized initial states and plot the many-body
energy differences relative to the lowest observed value per
particle, denoted by �Etot/Np. The color coding in the plots
indicates the number of occupied trivial bands. The ground
state at ν = 3 does not feature a trivial band and corresponds
to the PHν=1 state, yet the energy difference between this state
and the trivial-included state is significantly smaller compared
to that at ν = 2. Crucially, at ν = 4, the ground state includes
the trivial band.

These results suggest that with increasing ν, the intricate
structures in the electron densities become increasingly favor-
able, rendering the trivial-included state at ν = 4 energetically
more advantageous than the PHν=0 state. The band structures
and electron densities at ν = 3 and 4 are presented in Ap-
pendix E.

Before concluding, let us examine the phases observed
at filling factors ν = 3 and 4 under different conditions of
magnetic fields. Table II presents the spin and orbital mag-
netizations of the low-energy states depicted in Fig. 4(d). At
both ν = 3 and 4, the ground state of the HF Hamiltonian
(�Etot = 0) exhibits finite magnetization. Conversely, states
with the smallest magnetization (i.e., the lowest magneto-
static energy) possess a finite �Etot. Therefore, either state
can be the lowest energy states in the absence of a magnetic
field, depending on the ratio of �Etot to the magneto-
static energy. Upon application of an out-of-plane magnetic
field of sufficient amplitude, the system transitions to the
state with the largest |Mz

orb|, specifically the trivial ⊗ QAH
(trivial ⊗ PHν=1) state at ν = 3 (4).

VII. CONCLUDING REMARKS

This study demonstrated the interplay arising as a result of
many-body effects among three topologically distinct states–
the QAH, QSH, and QVH states–in pentalayer rhombohedral
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graphene on hBN at ν = 2. In the absence of a magnetic
field, the QSH phase, characterized by zero magnetization, is
predominant due to minimal magnetostatic energy. Appli-
cation of in-plane or out-of-plane magnetic fields, however,
shifts the preference towards the QVH and QAH states, re-
spectively. Therefore, manipulation of these states can be con-
trolled by applying and orienting a magnetic field accordingly.
In this work, we ignore the effects of sublattice asymmetric
short-range electron-electron and electron-phonon interac-
tions [89–91]. It is tempting to ask how these interactions
lift the degeneracies of the QAH, QSH, and QVH states.
Additionally, we have demonstrated that the inclusion of the
trivial state facilitates the formation of the lowest energy state
at ν = 3 and 4. This allows for the emergence of multiple
topological phases.

Recent propositions suggest that composite fermions (CFs)
[92,93] form in twisted bilayer MoTe2 even in the absence of
an external magnetic field [25,26]. Generally, the CF theory
establishes a mapping between the multicomponent fractional
and integer quantum Hall effects [93–95]. If the CF picture
holds valid in pentalayer rhombohedral graphene on hBN,
our findings might significantly advance the understanding of
fractional QAH physics.
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APPENDIX A: PENTALAYER RHOMBOHEDRAL
GRAPHENE

The tight-binding Hamiltonian of pentalayer rhombohedral
graphene is given by [31,33,82,96]

h̃R5G(k) =

⎛
⎜⎜⎜⎜⎝

D1 V W 0 0
V † D2 V W 0
W † V † D3 V W
0 W † V † D4 V
0 0 W † V † D5

⎞
⎟⎟⎟⎟⎠ (A1)

where

Dl =
(

0 t0g(k)
t0g∗(k) 0

)
+ uD(l − 3), (A2)

V =
(

t4g∗(k) t1
t3g(k) t4g∗(k)

)
, (A3)

W =
(

0 0
t2 0

)
, (A4)

g(k) =
3∑

i=1

e−ik·τi . (A5)

Here, t0 and (t1, t2, t3, t4) are the intralayer and interlayer
hopping terms (see Fig. 5), uD is the interlayer potential
difference induced by a perpendicular displacement
field, and τi’s are the vectors connecting the nearest
neighbor sublattices. The effective continuum Hamiltonian

FIG. 5. Pentalayer rhombohedral graphene on hBN layer. Al and
Bl are the sublattices of the lth layer. The solid and dotted lines
represent intralayer t0 and interlayer (t1, t2, t3, t4) hopping terms. The
twist angle between graphene and hBN is 0.77◦. A perpendicular
displacement field induces the interlayer potential difference uD.

hR5G(k) in the main text is given by replacing g(k) with
aG

√
3/2(ξkx − iky), where aG is the lattice constant of

graphene and ξ = +1 (−1) for the valley K (K ′). Each
parameter in Fig. 5 is assigned as (t0, t1, t2, t3, t4, uD) =
(−3100, 380,−10.5, 290, 141, 50) meV, expected to
match experimental conditions for the ν = 1 QAH effect
[5,31,33,82].

APPENDIX B: MOIRÉ POTENTIAL

We describe an effective continuum model for a moiré po-
tential, following an approach in Ref. [60]. Now, we consider
the bottom layer of pentalayer rhombohedral graphene and
hBN. The lattice constants of graphene and hBN are fixed as
aG = 0.246 nm and ahBN = 0.2504 nm [97], inducing the lat-
tice mismatch as ε = ahBN/aG − 1 ≈ 1.8%. The twist angle is
set to θ = 0.77◦ to align with the experiment in Ref. [5].

Let us first derive the primitive vectors of the moiré su-
perlattice and the corresponding reciprocal lattice vectors. We
denote the primitive lattice vectors of graphene by ai with
i = 1, 2. For hBN, we have

ãi = MRai, (B1)

where M = (1 + ε)1, and R is a rotation matrix by θ . This
relation implies that a lattice of hBN at r has its counterpart of
graphene at R−1M−1r. Their displacement is

δ(r) = (1 − R−1M−1)r. (B2)

The primitive vectors of the moiré superlattice LM
i is defined

so that δ(LM
i ) = ai:

LM
i = (1 − R−1M−1)−1ai. (B3)

In our settings, we have |LM
i | ≈ 45.4aG ≈ 11.2nm. The moiré

reciprocal lattice vectors, satisfying LM
i · GM

i = 2πδi j , are
given by

GM
i = (1 − M−1R)a∗

i = a∗
i − ã∗

i , (B4)
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FIG. 6. (a) The same as Fig. 1. The three paths under consid-
eration are illustrated, labeled by subsequent panels. The charge and
spin Chern numbers (Cc,Cs ) for each region are highlighted in red for
QAH, green for QSH, and blue for QVH states. The magenta stars
indicate the initial points of each path. (b)–(d) Charge and spin Hall
conductances σ c

xy and |σ s
xy|. The coercive field in (b),(c) is represented

by �B.

where a∗
i and ã∗

i are the reciprocal lattice vectors of
graphene and hBN, satisfying ai · a∗

j = ãi · ã∗
j = 2πδi j . Here,

the relation ã∗
i = M−1Ra∗

i is obtained by ai · a∗
j = aT

i a∗
j =

(R−1M−1ãi )T a∗
j = ãT

i M−1Ra∗
j .

The bilayer system composed of graphene and hBN is
effectively described by a tight-binding lattice Hamiltonian.
Eliminating the hBN bases based on the second order pertur-
bation within an effective continuum framework, the effect of
the hBN (for a given valley and spin) is represented by a local
potential v(r) within the graphene subspace [60]:

v(r) =V0

(
1 0
0 1

)

+
{

V1eiξψ

[(
1 ω−ξ

1 ω−ξ

)
eiξGM

1 ·r +
(

1 ωξ

ωξ ω−ξ

)
eiξGM

2 ·r

+
(

1 1
ω−ξ ω−ξ

)
e−iξ

(
GM

1 +GM
2

)
·r
]

+ H.c.

}
, (B5)

where ω = exp{2π i/3} and ξ = +1 (−1) for the valley K
(K ′). Here, we use V0 = 28.9 meV, V1 = 21.0 meV and ψ =
−0.29 rad following Ref. [60]. As mentioned in the main text,
its second quantized form is

VhBN =
∑

k

∑
m1m2

c̃†(k + m1G1 + m2G2)v(m1, m2)c̃(k), (B6)

where c̃† = (c†
A1

, c†
B1

) and v(m1, m2) is the Fourier coeffi-
cient of v(r). In the numerical calculations, the summation∑

k

∑
m1m2

is confined to the first and second moiré BZs.

FIG. 7. (a) HF band structure at ν = 3. The three lowest bands
carry C = +1 or −1. (b) Charge densities ρ(r) of the three low-
est bands in (a). (c) HF band structure at ν = 4. One of the four
lowest bands carries C = 0. (d) Charge densities ρ(r) of the four
lowest bands in (c).
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APPENDIX C: HARTREE-FOCK CALCULATION

Let us describe the self-consistent HF calculation. As men-
tioned in the main text, the interaction before the mean-field
approximation has the form of

Hint = 1

2S

∑
kk′q

∑
ZZ ′

VC (q)c†
Z (k + q)c†

Z ′ (k′ − q)cZ ′ (k′)cZ (k),

(C1)

where S is the area of the system, and Z and Z ′ represent
the spin, valley, sublattice and layer indices. Here, we set the
positions of both K and K ′ to be the center in the folded moiré
BZ for simplicity. The form of VC (q) is written in the main
text. We then construct the Hartree and Fock Hamiltonians as

HH = 1

S

∑
kk′q

∑
ZZ ′

VC (q)〈c†
Z ′ (k′ − q)cZ ′ (k′)〉c†

Z (k + q)cZ (k),

(C2)

HF = −1

S

∑
kk′q

∑
ZZ ′

VC (q)〈c†
Z ′ (k′ − q)cZ (k)〉c†

Z (k + q)cZ ′ (k′),

(C3)

where 〈·〉 represents the expectation value for the ground state.
Now, we pick up terms that couple momenta modulo the
moiré reciprocal lattice vectors. In other words, using a set
of reciprocal lattice vectors of the moiré superlattice, denoted
G, we add constraints k + q = k + G and k + q = k′ + G in
Eqs. (C2) and (C3), respectively:

HH → 1

S

∑
kk′G

∑
ZZ ′

VC (G)〈c†
Z ′ (k′ − G)cZ ′ (k′)〉c†

Z (k + G)cZ (k),

(C4)

HF → −1

S

∑
kk′G

∑
ZZ ′

VC (k′ − k + G)〈c†
Z ′ (k − G)cZ (k)〉

× c†
Z (k′ + G)cZ ′ (k′). (C5)

In the numerical calculation, the summation
∑

kk′G is confined
to the first and second moiré BZs. When seeking the ground
state of the HF Hamiltonian for given system parameters,
we perform the self-consistent calculations with 10−20 ran-
domized initial states. Specifically, we plug random numbers

into 〈c†
Z ′ (k′)cZ (k)〉 in the HF Hamiltonian and solve them

self-consistently.

APPENDIX D: HYSTERESIS

We discuss hysteresis scans of the charge and spin Hall
conductances σ c

xy and σ s
xy. We consider three paths in the

(B⊥, B‖) space as illustrated in Fig. 6(a). (In the QSH region
of the figure, the spin Chern number Cs is denoted as ±2 to
reflects the degeneracy of the states #3 and #4 in Table I.
Although either state should be favored due to weak spin-
orbit interactions in real systems, we simplify our argument
by considering only |σ s

xy| below. Note that the QSH state
we consider carries nonzero valley Chern number as well
[81]).

Figures 6(b)–6(d) depicts anticipated behaviors of the Hall
conductance. Figures 6(b) and 6(c) exhibit hysteresis since
transitions from the QAH to QSH/QVH states involve valley
flips, leading to a first-order transition. The coercive field �B
in both figures is expected to be comparable to the experi-
mentally observed one for the ν = 1 QAH effect [5] because
the valley of only one band needs to be flipped. Conversely,
Fig. 6(d) shows no hysteresis behavior since transition from
the QSH to QVH states involves only spin flips. The SU(2)
spin-rotational symmetry prevents hysteresis behavior in such
cases.

APPENDIX E: NUMERICAL RESULTS AT ν = 3 AND 4

Let us discuss the HF band structures and charge densi-
ties at ν = 3 and 4. Figure 7(a) presents the band structure
of the lowest energy state at ν = 3. The occupied three
lowest bands are separated from other conduction bands.
Each band carries the Chern number C = +1 or −1 de-
pending on the valley. Their charge densities ρ(r) are shown
in Fig. 7(b). They provide similar (but shifted) extended
structure.

Figure 7(c) presents the band structure of the lowest energy
state at ν = 4. The occupied four lowest bands are separated
from other conduction bands. Three bands carry C = +1 or
−1 while the other does C = 0. Their charge densities are
shown in Fig. 7(d).
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