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Optical response of alternating twisted trilayer graphene
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We study the optical response of the alternating twisted trilayer graphene by making use of a unitary trans-
formation for the trilayer Hamiltonian and the Kubo formulation of linear response theory. The layer-resolved
optical conductivities are expressed in terms of contributions from effective twisted bilayer and single-layer
systems along with their coupling. We show that the in-plane magnetic response is proportional to this coupling
between the twisted bilayer and single-layer systems; and, due to the different energy scales, the in-plane
magnetic response is negligibly small. We also formulate a local electromagnetic response that involves the
vertical gradients of the magnetic field and moment.
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I. INTRODUCTION

In 2018, it was shown that the twist angle between two
graphene layers can be tuned so that correlated insulator
phases [1] and superconductivity [2] emerge for small carrier
densities around charge neutrality. Other interesting phases
such as anomalous Hall ferromagnetism [3,4] or fractional
Chern numbers have also been observed [5–7]. These phe-
nomena are related to the flat bands around charge neutrality
that have been predicted theoretically [8,9].

Since then, the study of twisted geometries of van der
Waals heterostructures, often referred to as moiré materials
[10], has become an active area of research. The subjects
of these investigations include twisted bilayers composed of
various transition metal dichalcogenides [11–18], aside from
the twisted bilayer graphene. Moreover, the number of sheets
in moiré graphene systems has been increased to up to five
alternately twisted layers [19,20]. Recently, also quasi-three-
dimensional twisted structures were fabricated, which exhibit
an intrinsic enhanced chirality [21,22].

Lately, special emphasis has been placed on the study of
the twisted trilayer graphene [23–41]. This is the minimal
system that can form not only quasicommensurate but also in-
commensurate structures. Quasicommensurate structures can
be described by two moiré vectors, whereas incommensurate
structures are usually described by four moiré vectors: two for
each of the moiré lattices that are formed by the two pairs of
consecutive layers (say, layers 1 and 2, and layers 2 and 3,
respectively) [27,42–45]. Interestingly, superconductivity has
been found in both types of structures, that is, commensurate
[23–25,40] and incommensurate trilayer structures [46,47].
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Notably, optical experiments on moiré systems have also
attracted considerable attention [48–51]. A goal is to control
the phase, amplitude, or polarization state of light from the
response of multilayered structures.

In this paper, we analytically study the electromagnetic re-
sponse of the twisted trilayer graphene. Our approach is based
on symmetry considerations and microscopic principles of
linear response theory. We focus on the alternating-twist con-
figuration, in which θ12 = −θ23 where θi j denotes the angle
between layers i and j. In this case, in the presence of mirror
symmetry with respect to the central layer, also preserved
after including in-plane and out-of-plane relaxation [52], we
show that the in-plane magnetic response is negligibly small.
By mirror symmetry, there is no optical activity; however,
we formulate a local magnetoelectric (chiral) coupling that
involves vertical gradients of the magnetic field and moment.

In our analysis, we make use of a unitary transformation,
introduced in Ref. [53], that converts the trilayer system into
a combination of effective twisted bilayer and single-layer
systems. Linear response theory for the trilayer eventually
couples these two systems. We derive a formula for this cou-
pling, and estimate its magnitude. We also describe, in terms
of contributions from these two systems, the layer-resolved
conductivities that enter the optical response. In particular, we
analytically show how the in-plane magnetic response arises
from the coupling of the two effective systems.

The alternating-twist trilayer system under mirror sym-
metry investigated here is one of the most stable layered
structures, minimizing the configuration stacking fault en-
ergy. This remarkable mechanical stability renders this system
prototypical, and is another motivation for our work. Further-
more, in the Appendices we extend the analysis for the optical
conductivity to alternating-twist trilayers in which the mirror
symmetry with respect to the middle layer is broken because
of the different interlayer tunneling.

A highlight of our results is the connection of the optical
response of the trilayer system to microscopic parameters of
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effective Hamiltonians for simpler systems. Thus, we are able
to illustrate the important role of the large moiré length. For
example, the effect of this scale renders negligible the relative
contribution of the in-plane magnetic response. In this paper,
we focus on analytical predictions that explicitly reveal the
interplay of two scales in the optical response. Hence, we
choose not to use or rely on numerical simulations in this
work.

The remainder of the paper is organized as follows.
Section II focuses on the conductivity tensor via the Kubo
formulation. In particular, we discuss the roles of the effective
twisted bilayer and single-layer systems and the coupling term
between them. In Sec. III, we formulate the optical response
in terms of an in-plane electric moment and the vertical gra-
dient of the in-plane magnetic moment, which are coupled.
In Sec. IV, we discuss the in-plane magnetic response by
giving an analytical expression and estimates. In Sec. V, we
conclude the paper with a summary of our main results. The
Appendices mainly provide technical derivations relevant to
the main text.

Throughout the paper, boldface symbols denote vectors
or matrices that pertain to the (x and y) directions of the
reference plane. The e−iωt time dependence is assumed (ω is
the frequency).

II. MICROSCOPIC THEORY FOR LAYER-RESOLVED
CONDUCTIVITIES

In this section, we provide key ingredients and results of
the Kubo formulation for the trilayer system. The general
layer-resolved response theory in the frequency domain for
a system with n layers is given by [54,55]

J� =
n∑

�′=1

σ��′
E�′ (� = 1, . . . , n), (1)

where J� and E� denote the macroscopic surface cur-
rent density and electric field in layer �, respectively. The
2×2 matrices σ��′

(ω) have elements defined by σ ��′
νν ′ (ω) =

i e2

ω+iδ χ
��′
νν ′ (ω + iδ), as δ ↓ 0, with the current-current response

function

χ��′
νν ′ (ω) = − i

h̄

∫ ∞

0
dt eiωt

〈[
j�ν (t ), j�

′
ν ′ (0)

]〉
, (2)

where j�ν (t ) is the ν-directed current operator (ν = x, y) in
layer � in the interaction picture, and 〈·〉 is the equilibrium
average.

Here, we consider a moiré multilayer with n = 3. The
geometry of the alternating-twist trilayer system is shown in
Fig. 1. The twist angle of layer � is θ� = (−1)�θ/2 where
0 < θ < π/2 and � = 1, 2, 3; the interlayer distance is a/2.
Furthermore, we mainly consider a mirror-symmetric config-
uration. Hence, the matrices σ��′

satisfy σ11 = σ33, σ12 = σ32,
and σ21 = σ23.

Let us recall that the symmetry group of the twisted bilayer
system is D3 [56]. However, by the mirror symmetry of the
alternating-twist trilayer, the symmetry group now is D3h. This
additional symmetry doubles the number of representations,
i.e., we have four one-dimensional and two two-dimensional
representations in total.

FIG. 1. Schematic of the alternating-twist trilayer configuration.
Three infinite flat graphene sheets labeled by � = 1, 2, 3 are paral-
lel to the xy plane, and have twist angles (−1)�θ/2 and interlayer
distance equal to a/2 (0 < θ < π/2). The layers are immersed in a
homogeneous medium.

Due to the rotational (threefold) symmetry of the system,
we can write each 2×2 conductivity matrix as follows [54]:

σ��′ = σ ��′
0 1 + iσ ��′

xy τy, (3)

where τy denotes the y-Pauli matrix. Because of the mirror
symmetry of the trilayer configuration, we only have four in-
dependent response functions, namely, σ 11

0 , σ 12
0 , σ 13

0 , and σ 22
0 .

These are related to the four one-dimensional representations
of the group D3h.

Moreover, time-reversal symmetry implies σ ��′
νν ′ = σ �′�

ν ′ν (see
Appendix A). Because of time-reversal and mirror symme-
tries, we may further include the parameters σ 12

xy and σ 13
xy ,

which are related to the two two-dimensional representations
of D3h. These parameters can give rise to chiral phenomena
such as circular dichroism [48,51,57,58] and layer-resolved
Hall physics in the dc limit [59,60]. Here, σ 13

xy = 0 since we
consider the q = 0 response and the first and third layers have
the same orientation (see Fig. 1). The parameter σ 12

xy will be
kept finite; however, no chiral response can emerge due to
the inherent mirror symmetry. Still, we can formulate consti-
tutive equations that involve σ 12

xy and lead to local chirality
(see Sec. III).

A. Kubo formalism

By Eq. (2), the surface conductivity matrix elements in the
frequency domain are given by

σ ��′
νν ′ (ω) = e2

h̄(ω + iδ)

∑
{|ψ〉}

f (Eψ )

×
∫ ∞

0
dt ei(ω+iδ)t 〈ψ |[ j�ν (t ), j�

′
ν ′ (0)

]|ψ〉, (4)

as δ ↓ 0, for real frequencies ω (�, �′ = 1, 2, 3 and ν, ν ′ =
x, y). Here, |ψ〉 is any normalized eigenvector of the trilayer
Hamiltonian with eigenvalue Eψ and f (E ) is the Fermi-Dirac
distribution. Regarding the K valley, we use the Hamiltonian
Htri

K of Appendix B; and symmetrize the ensuing conductivity
because of time-reversal symmetry (Appendix A). In Eq. (4),
j�ν (t ) has dimensions of inverse time, or frequency.
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To describe the K-valley term σ ��′
νν ′,K , we rewrite Eq. (4)

by unitarily transforming each eigenvector |ψ〉, while Htri
K is

transformed into the direct sum of the single-layer and effec-
tive twisted bilayer Hamiltonians H1 and H2, respectively;
see Eqs. (B14) and (B15) in Appendix B. The transformed
eigenvectors of Htri

K are |ψ〉 = S†|ψ〉, where S is defined in
Eq. (B12) or (B13) (Appendix B); and are related to either the
effective twisted bilayer or single-layer Hamiltonian

|ψ〉b =
⎛
⎝|b〉1

|b〉2

0

⎞
⎠, |ψ〉s =

⎛
⎝ 0

0
|s〉

⎞
⎠, (5)

where (|b〉1, |b〉2)T and |s〉 denote any normalized-to-unity
eigenvector of the effective bilayer Hamiltonian H2 and
monolayer Hamiltonian H1, respectively. Each of the indices
b and s amounts to the combined band index and quasimo-
mentum of the moiré Brillouin zone, and 〈x|ψ〉 consists of
Bloch functions. We thus have

H2

(|b〉1

|b〉2

)
= Eb

(|b〉1

|b〉2

)
, H1|s〉 = Es|s〉.

By this notation, Eq. (4) becomes

σ ��′
νν ′,K (ω) = e2

h̄(ω + iδ)

∫ ∞

0
dt ei(ω+iδ)t

×
{∑

b

f (Eb)b〈ψ |[ j�
ν,K

(t ), j�
′

ν ′,K
(0)
]|ψ〉b

+
∑

s

f (Es)s〈ψ |[ j�
ν,K

(t ), j�
′

ν ′,K
(0)
]|ψ〉s

}
, (6)

where j�
ν,K

= S† j�ν,KS. For details, see Appendix C.

B. Transforming conductivity tensor via mirror symmetry

Next, we focus on the mirror-symmetric setting, where the
electron tunneling for layers 1, 2 is the same as that for layers
2, 3. In Appendix C, we discuss the more general setting
without mirror symmetry by keeping the alternating twists,
using θ12 = −θ23.

Let σ
ςς ′
BL (ς, ς ′ = 1, 2) and σSL denote the 2×2 conduc-

tivity block matrices of the effective twisted bilayer and
single-layer systems. These quantities have been discussed
in previous work [54], and can be considered as known. In
Appendix C, they are expressed in terms of matrix elements
of pseudo-spin-wave functions.

The connection between the trilayer response and σ
ςς ′
BL and

σSL can be obtained by applying to the currents the following
transformation:⎛

⎜⎜⎝
J̃1

J̃2

J̃3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

⎞
⎟⎟⎠
⎛
⎜⎝

J1

J2

J3

⎞
⎟⎠. (7)

The electric fields are transformed by the same matrix into
(Ẽ1, Ẽ2, Ẽ3). The transformation for the current densities here
follows directly from the conversion of the trilayer Hamilto-
nian into a direct sum of effective Hamiltonians (Appendix B).
By the microscopic analysis of Appendix C, results of which

we show below, the layer-resolved response implies a relation
of the form⎛

⎜⎜⎝
J̃1

J̃2

J̃3

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎝
(
σ11

BL + σSL
) √

2σ12
BL 0

√
2σ21

BL 2σ22
BL 0

0 0 σc

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

Ẽ1

Ẽ2

Ẽ3

⎞
⎟⎟⎠, (8)

where

σSL = σ (1)
e 1, σ11

BL = σ22
BL = σ (2)

e 1, σc = σc1,

σ12
BL = (

σ21
BL

)T = σ 12
e 1 + iσ 12

e,xyτy.

Here, we introduced the scalar functions σ (ς )
e (ω), σ 12

e (ω),
σ 12

e,xy(ω), and σc(ω), to be described in Sec. II C. The above
matrix forms account for time-reversal symmetry and isotropy
(see Appendix C).

By transforming Eq. (8) back to the layer-resolved re-
sponse of Eq. (1), we identify the σ��′

matrices as follows
(�, �′ = 1, 2, 3):

σ11 = 1
4

(
σ11

BL + σSL + σc
)
, (9)

σ13 = 1
4

(
σ11

BL + σSL − σc
)
, (10)

σ12 = 1
2σ12

BL, σ22 = σ22
BL. (11)

The other components are obtained by mirror and time-
reversal symmetries [cf. Eq. (3)].

From the above equations, the optical responses of Eq. (1)
can thus be expressed in terms of σ (1,2)

e , σ 12
e(,xy), and σc. Ex-

cept for σc, these conductivities are known, in principle, from
the electromagnetic responses of the isolated single-layer and
twisted bilayer graphene [54]. In contrast, σc stands out be-
cause, even though the trilayer Hamiltonian decouples into
effective single-layer and bilayer systems, the currents in-
volved in σc mix both of these subsystems.

C. Explicit expressions for conductivities

We now describe the parameters of σ
ςς ′
BL , σSL, and σc via

inner products of pseudo-spin-wave functions. For notational
convenience, let τ± = 1

2 (τx ± iτy) where τx,y are the x, y com-
ponents of the Pauli matrices.

First, the matrix σc(ω) emerges from the overlap of Bloch
eigenvectors of the two effective systems in the Kubo trace
formula. By σc = diag(σc, σc), we derive

σc = −i2gvgs
v2

F

Am

e2

h̄(ω + iδ)

∑
bs

( fb − fs)ωbs

(ω + iδ)2 − ω2
bs

× (|1〈b|τ+|s〉|2 + |1〈b|τ−|s〉|2), (12)

where ωbs = (Eb − Es)/h̄, fb(s) = f (Eb(s) ), gv (gs) is the val-
ley (spin) degeneracy factor, vF is the Fermi velocity of
monolayer graphene, and Am is the area of the reference
moiré cell (see Appendix C). This expression is simplified in
view of |1〈b|τ+|s〉|2 = |1〈b|τ−|s〉|2 because of a symmetry of
the effective Hamiltonians H1,2 under the interchange of the
sublattice indices. The relative magnitude of σc is estimated in
Sec. IV.

We will now discuss the response functions, also present
in the bilayer system [54]. The first element is the chirality
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parameter σ 12
xy from the effective bilayer system. This equals

σ 12
xy (ω) = 1

2σ 12
e,xy = igvgs

v2
F

Am

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )

× ωbb′ Im{e−iθ (2〈b′|τ−|b〉2)(1〈b|τ+|b′〉1)}
(ω + iδ)2 − ω2

bb′
, (13)

where ωbb′ = (Eb − Eb′ )/h̄. For θ = 0, σ 12
xy must vanish.

This property is derived by noting that for θ = 0 we
have 1〈b|τ±|b′〉1 = 2〈b|τ±|b′〉2, switching layers in H2, where
1(2)〈b|τ±|b′〉1(2) = (1(2)〈b′|τ∓|b〉1(2))

∗
. More generally, we have

σ 12
xy (ω; θ ) = −σ 12

xy (ω; −θ ) (see also Ref. [54]).
The remaining response parameters are given by

σ (1)
e = −i2gvgs

v2
F

Am

e2

h̄(ω + iδ)

∑
ss′

( fs − fs′ )ωss′

(ω + iδ)2 − ω2
ss′

× |〈s|τ+|s′〉|2, (14)

σ (2)
e = −igvgs

v2
F

Am

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )ωbb′

(ω + iδ)2 − ω2
bb′

× (|1〈b|τ+|b′〉1|2 + |2〈b′|τ−|b〉2|2), (15)

σ 12
e = −i2gvgs

v2
F

Am

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )ωbb′

(ω + iδ)2 − ω2
bb′

× Re{e−iθ (1〈b|τ+|b′〉1)(2〈b′|τ−|b〉2)}. (16)

By Eqs. (15) and (16), regarding the effective bilayer system,
we can show that ση

e (ω; θ ) = ση
e (ω; −θ ) (see also Ref. [54]).

III. COUPLING BETWEEN ELECTRIC AND LOCAL
MAGNETIC FIELDS

In the preceding analysis, we have formulated the linear
response in terms of conductivities. However, the emergence
of chiral effects is often described in terms of a coupled
response to electric and magnetic fields.

For even modes, the trilayer responses can be read off
from the responses of the single-layer graphene and twisted
bilayer graphene, which are already known [see Eq. (8)].
Given the chiral nature of twisted bilayer graphene, and to
make contact with Ref. [54], we will also employ a magnetic
language. Notice, though, that the mirror-symmetric trilayer
does not exhibit optical activity. Therefore, even though some
equations for the trilayer will look formally very similar to
those of the twisted bilayer graphene [54], magnetic mo-
ments and magnetic fields will enter through layer differences,
considered as “gradients” in the z direction, to comply with
space-inversion symmetry [58].

A. Modes under mirror symmetry

We define the following transformation of the original
electric fields that will relate the current response to effective
electric and magnetic dipoles:⎛

⎜⎝
E+

+
E−

+
E−

⎞
⎟⎠ = M

⎛
⎜⎝

E1

E2

E3

⎞
⎟⎠, (17)

with

M =

⎛
⎜⎜⎝

√
1/3

√
1/3

√
1/3

√
1/6 −√

2/3
√

1/6
√

1/2 0 −√
1/2

⎞
⎟⎟⎠. (18)

In the above matrix, each entry expresses a 2×2 block matrix.
Up to normalizing constants, this matrix can be understood as
follows: The first row is the layer-averaged field, the second
row is the (layer-discrete) second derivative of the field, and
the third row is the (layer-discrete) first derivative of the field.

The original current densities are transformed in the same
fashion as the original electric fields [Eq. (17)], according to
the equation ⎛

⎜⎝
J +

+
J −

+
J −

⎞
⎟⎠ = M

⎛
⎜⎝

J1

J2

J3

⎞
⎟⎠. (19)

Since the total system is mirror symmetric, the odd mode
J − is again decoupled from the two even modes. Thus, we
obtain the following relations:

J +
+ = σ+

+E+
+ +

√
2σ+−

+ E−
+ +

√
2σ 12

xy (ez × E−
+),

J −
+ = σ−

+E−
+ +

√
2σ+−

+ E+
+ −

√
2σ 12

xy (ez × E+
+),

J − = (
σ 0

11 − σ 0
13

)
E−.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

Here, ez is the z-directed Cartesian unit vector, and

3σ+
+ = 2

(
σ 11

0 + σ 13
0

)+ σ 22
0 + 4σ 12

0 ,

3σ−
+ = (

σ 11
0 + σ 13

0

)+ 2σ 22
0 − 4σ 12

0 ,

3σ+−
+ = (

σ 11
0 + σ 13

0

)− σ 22
0 − σ 12

0 .

⎫⎪⎪⎬
⎪⎪⎭ (21)

Recall that by Eqs. (9)–(11) the conductivities σ ��′
0 are ex-

pressed in terms of the effective single-layer and twisted
bilayer responses. Furthermore, we have σc = 2(σ 0

11 − σ 0
13)

from Eqs. (9) and (10).

B. Effective local description for modes

Let us now focus on the modes that define the response of
the trilayer. We can formulate the constitutive equations with
respect to electric and local magnetic fields [54]. From the
discrete (layer-resolved) version of Maxwell’s equations, we
write

E‖ = (E1 + E2 + E3)/3, (22)

iω(a/2)B12
‖ = ez × (E2 − E1), (23)

iω(a/2)B23
‖ = ez × (E3 − E2). (24)

Equation (22) is the average electric field. Equations (23)
and (24) are discrete versions of the Maxwell-Faraday law
(or, the third Maxwell equation). Therefore, B��′

‖ is the
(average) magnetic field between layers � and �′. For mirror-
symmetric modes, when E1 = E3, there is no net magnetic
field, i.e., B12

‖ + B23
‖ = 0. Nevertheless, a finite value of B12

‖
(B23

‖ ) can be viewed as a vertical gradient of the magnetic
field, as previously noted.
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FIG. 2. Schematic view of the currents when only the even mode
J −

+ is present; see Eqs. (18) and (19). The solid arrows define
the in-plane current densities J1, J2, and J3 with J1 = J3 = −J2/2.
These currents give rise to the magnetic moments m1 and m2 with
m1 = −m2.

The in-plane original current densities can always be
described in terms of electric and magnetic moments, as ex-
plained in Appendix D. For the trilayer, the relations are

−iωp = J1 + J2 + J3, (25)

m2 − m1

a/6
= ez × (J3 + J1 − 2J2), (26)

m1 + m2

a/2
= ez × (J3 − J1). (27)

The linear combinations of currents in Eqs. (25)–(27) cor-
respond to the modes J +

+, J −
+, and J −, respectively. In

the absence of a net current, if p = 0, the in-plane current
densities of modes {J −

+,J −} can thus be thought of as
magnetization currents associated with a uniform magneti-
zation m1, filling the space between layers 1 and 2, and
magnetization m2, filling the space between layers 2 and 3.
Equations (26) and (27) then follow, as shown in Appendix D.

For mirror-symmetric modes, when J1 = J3, no net mag-
netic moment exists, i.e., m1 + m2 = 0. Nevertheless, the
finite value of m1 (m2) can be viewed as a gradient of the mag-
netic moment, as previously mentioned. The local magnetic
moments of the mode J −

+ are shown in Fig. 2. This mode is
even in the current density, but odd in the magnetic moment.

Therefore, by introducing the vertical gradients of the mag-
netic field and moment as

�B‖ = (B23
‖ − B12

‖ )/2, (28)

�m = m2 − m1, (29)

and noticing that

B‖ = (B23
‖ + B12

‖ )/2, (30)

m‖ = m1 + m2, (31)

we can formulate the following constitutive law:

⎛
⎝ p

�m
m‖

⎞
⎠ =

⎛
⎝ −3σ+

+ /(iω) a
{
σ+−

+ (ez × ·) − σ 12
xy

}
0

a
{
σ+−

+ (ez × ·) + σ 12
xy

}
iω(a2/6)σ−

+ 0
0 0 iω(a2/4)σc

⎞
⎠
⎛
⎝ E‖

�B
B‖

⎞
⎠. (32)

Finally, we should point out that although the system is mirror
symmetric and does not exhibit optical activity, the xy compo-
nent σ 12

xy of the response introduces a local “chiral coupling”
between the electric field and the gradient of the magnetic
field.

IV. IN-PLANE MAGNETIC RESPONSE

In this section, we derive a simplified formula for the in-
plane magnetic response, and estimate it as negligibly small.
As shown in Sec. III B, the in-plane magnetic response is
given by

m‖ = iω
a2

4
σcB‖. (33)

We repeat that the magnetic-response parameter σc cannot
be read from the responses of the isolated single-layer and
twisted bilayer systems. However, mainly because of the
kinematic constraints arising from the largely different Fermi
velocities in these two systems, we expect σc to be practically
zero. In this section, we verify this property analytically.

The small, almost vanishing in-plane magnetic response
of twisted trilayer graphene is in stark contrast to the large
in-plane magnetic response of the twisted bilayer graphene
[54]. The latter can even diverge and give rise to a Condon
instability [56,61].

A. Microscopic derivation and localization ansatz

We will derive an explicit, simplified formula for the in-
plane magnetic response, Eq. (33), near charge neutrality for
alternating twists close to the magic angle. For this purpose,
we introduce the following parameter of the in-plane magnetic
response:

χ c
m(ω) = iω

a2

4
σc(ω). (34)

We need to estimate the coupling term σc, or response χ c
m. For

this task, we employ a localization ansatz for the electronic
Bloch wave functions of the effective twisted bilayer system
at nearly flat bands, in the spirit of Ref. [62].

Consider the eigenstates of Eq. (5). For the effective bilayer
system, our localization hypothesis reads as [62]

(〈x|b〉1

〈x|b〉2

)
� ei(K+q)·x�n(

√
ξx/Lm)

(
P1,n

P2,n

)
(35)

near the K point. Here, P�,n is a 2×1 vector for the sublattice
polarization in each layer (� = 1, 2), n is the band index (e.g.,
n = ±1 for flat bands), Lm is the moiré length (|K|Lm � 1),
q is the quasimomentum vector (q 
 |K|), and ξ � 3 [62].
The function �n is localized in the moiré cell. By normalizing
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formula (35) with |P1,n| ∼ |P2,n| we obtain

P�,n ∼ eiϑ�,n

√
ξ

4L2
m

(
1
1

)
, (36)

where ϑ�,n is a phase that does not affect our results, and �n

is normalized to unity. The symbol ∼ means that numerical
factors roughly equal to unity or smaller are ignored for the
sake of order-of-magnitude estimates. The eigenvectors of the
single-layer system are

〈x|s〉 = 1√
2Am

ei(K+q)·x
(

1
±eiθ/2 qx+iqy

q

)
(37)

for its two bands, where Am ∼ L2
m.

Let us invoke Eqs. (35) and (37) in Eq. (12). We assume
that ω < vF qm with qm = 2π

Lm
. By only considering the nearly

flat bands for the effective bilayer system, and relatively large
energies of the effective monolayer system so that ωb − ωs �
−ωs, we have

χ c
m ∼ gvgs

2(4π )2
v2

F a2 e2

h̄

∑
n,ns=±1

|C̄n(ξ )|2
∫

mBZ
dq

× [
f
(
Eb

n

)− f
(
Ens

)] nsvF q

(vF q)2 − (ω + iδ)2
. (38)

In the above, the integration region mBZ is the moiré Brillouin
zone, Eb

n (q) [Ens (q)] is the energy of the effective bilayer
(single-layer) system at band n (ns), and

C̄n(ξ ) = 1√
ξ

∫
dx′ �n(x′) (n = ±1)

over the transformed moiré cell by x �→ x′ =
√

ξ

Lm
x. The scal-

ing of this integral with
√

ξ ensures that |C̄n| � 1 regardless
of the value of ξ > 0.

B. Estimate for the magnetic response

We will now evaluate the integral for the parameter χ c
m by

neglecting terms proportional to or smaller than ω
vF qm

ln( vF qm

ω
);

thus, h̄ω may not exceed a few hundred meV which poses no
practical restriction.

To demonstrate that χ c
m is negligibly small, we compare

it to χ0 = h̄−2e2tGa2
C , which is used in discussions about

lattice effects on the out-of-plane magnetic susceptibility in
the single-layer graphene [63]. Here, aC is the carbon-carbon
distance and tG is the hopping energy for monolayer graphene.
Hence, we compute

χ c
m

χ0
∼ 3

8
gvgs〈 f 〉c

m

a2/aC

Lm
� 1.2 〈 f 〉c

m (39)

with a = 1 nm � 7aC, Lm = aC

√
3
√

3i2 + 3i + 1 � 61.43aC

for i = 20, regarding the trilayer configuration (Fig. 1). Here,
we assume that the alternating-twist trilayer is in the magic-
angle regime.

Notice the linear scaling of χ c
m

χ0
with the inverse moiré

length. The positive factor 〈 f 〉c
m depends on the |C̄n|’s of

nearly flat bands and the Fermi-Dirac distribution f , and ex-
presses a weighted radial-momentum average of f (E−(q)) −

f (E+(q)) for the single-layer graphene energies E±(q) =
±h̄vF q. This average is defined by

〈 f 〉c
m = 1

2
(|C̄1|2 + |C̄−1|2)

×
{

1

qm

∫ qm

0
dq [ f (E−(q)) − f (E+(q))]

}
.

Note that 〈 f 〉c
m < 1.

Equation (39) suggests that the in-plane magnetic response
of the alternating twisted trilayer is very weak since it is
comparable to or smaller than the corresponding atomistic
(lattice) effect in monolayer graphene. Evidently, the response
function χ c

m(ω) has a plateau in frequency for ω � vF qm. The
extension of our analysis to higher bands of the effective
bilayer system might be pursued with a similar localization
ansatz [64].

V. CONCLUSION

In this paper, we analytically described the overall op-
tical response of the alternating-twist trilayer system. By
performing a unitary transformation that decouples the tri-
layer Hamiltonian into an effective bilayer and a monolayer
Hamiltonian, we showed that the optical response is basically
given by the (known) responses of the bilayer and monolayer
systems. However, the coupled response of the bilayer and
single-layer current densities also appears, and this is pro-
portional to the in-plane magnetic response. This response is
usually very weak and we verified this property by an estimate
in the magic-angle regime. Our analysis can explain the prac-
tical absence of an in-plane orbital magnetic susceptibility in
the alternating-twist trilayer graphene [23,24].

We further applied an alternative unitary transformation
that involves electric and local magnetic moments. In this
way, we formulated coupled constitutive equations based on
the total electric field and the local magnetic fields. Nev-
ertheless, this magnetoelectric coupling does not lead to
optical activity, as no real chirality can persist in this mirror-
symmetric setting.

The results in this paper motivate further studies on the
electromagnetic response of twisted multilayer systems. In
particular, the response of tetralayer systems will be the sub-
ject of future studies.
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APPENDIX A: ON TIME-REVERSAL SYMMETRY

In this Appendix, we discuss implications of time-reversal
symmetry for the surface conductivity. The total electronic
Hamiltonian H of the multilayered system in real space thus
satisfies H = H∗.

We show that a time-reversal (T -) symmetric H implies a
symmetric conductivity matrix, in the sense that interchang-
ing the layer and polarization index pairs leaves the matrix
invariant. In particular, we show that (for ν, ν ′ = x, y and
�, �′ = 1, 2, 3)

σ ��′
νν ′ (ω) = σ �′�

ν ′ν (ω), every ω ∈ C. (A1)

To prove Eq. (A1), we start with the fact that there exists an
antiunitary transformation U such that for each eigenvector
|ψ〉 of H we have the invariance property |ψ〉 = U|ψ〉. We
apply U−1 j�0νU = − j�0ν , where j�0ν denotes the ν-directed ini-
tial current of the lth layer.

The trace of the Kubo formulation yields the following
formula for the layer-resolved surface conductivity:

σ ��′
νν ′ (ω) = − e2

h̄(ω + i0+)

∑
{|ψ〉,|ψ ′〉}

f (Eψ ) − f (Eψ ′ )

i(ω + i0+ + ωψψ ′ )

× 〈ψ |U−1 j�0,νU|ψ ′〉∗ 〈ψ ′|U−1 j�
′

0,ν ′U|ψ〉∗

= − e2

h̄(ω + i0+)

∑
{|ψ〉,|ψ ′〉}

f (Eψ ) − f (Eψ ′ )

i(ω + i0+ + ωψψ ′ )

× 〈ψ |( j�
′

0,ν ′
)†|ψ ′〉 〈ψ ′|( j�0,ν

)†|ψ〉 (real ω).

Here, Eψ is the energy (eigenvalue of H) corresponding to
the normalized eigenvector |ψ〉 of H, f (E ) is the Fermi-
Dirac distribution, and ωψψ ′ = (Eψ − Eψ ′ )/h̄. Relation (A1)
follows by the Hermiticity of the current. This result can be
analytically continued to complex ω.

In our model, the Hamiltonian is given approximately near
the K or K ′ valley. Each of these Hamiltonians is not T
symmetric. Since the total Hamiltonian is T symmetric, we
apply the symmetrization

σ ��′
νν ′ (ω) = [

σ ��′
νν ′,K (ω) + σ �′�

ν ′ν,K (ω)
]/

2, (A2)

where σ ��′
νν ′,K is due to the K valley. The resulting conductivity

formulas will include the valley degeneracy factor gv = 2 and
a spin degeneracy factor gs = 2.

APPENDIX B: HAMILTONIAN OF TRILAYER SYSTEM
AND UNITARY TRANSFORMATION TO DIRECT SUM

In this Appendix, we describe the Dirac Hamiltonian of the
alternating-twist trilayer system in real space; and transform
it unitarily into a direct sum of effective twisted bilayer and
single-layer Hamiltonians, following Ref. [53]. Our setting
lacks mirror symmetry.

1. Model Hamiltonian and moiré potentials

The electron Schrödinger state vector is of the form

ψ = ({
ψ s

�

})T = (
ψA

1 ψB
1 ψA

2 ψB
2 ψA

3 ψB
3

)T
.

The twist angle of layer � is θ� = (−1)�θ/2 (� = 1, 2, 3). In
the sublattice-layer representation, the unperturbed Hamilto-
nian of the K valley reads as

Htri
K =

⎛
⎜⎜⎝

D(θ ) T12(x) 0

T12(x)† D(−θ ) T23(x)

0 T23(x)† D(θ )

⎞
⎟⎟⎠; (B1)

x = (x, y)T is the position vector in the reference plane (x ∈
R2). The matrix-valued Dirac operator is

D(θ ) = vF h̄

(
0 −2ie−i θ

2 ∂

−2iei θ
2 ∂̄ 0

)
, (B2)

where vF � 106 m/s is the Fermi velocity of graphene, ∂ =
(∂x − i∂y)/2, and ∂̄ = (∂x + i∂y)/2 in the xy plane.

The related moiré potentials are described by

T��′
(x) =

(
w��′

AAU ��′
0 (x) w��′

ABU ��′
1 (x)

w��′
ABU ��′∗

1 (−x) w��′
AAU ��′

0 (x)

)
(B3)

for �′ = � + 1 (if � = 1, 2), where w��′
AA = κw��′

AB, κ > 0, the
coefficients w��′

AB have units of energy and express interlayer
tunneling, and

U ��′
ξ (x) =

3∑
n=1

e−iξ (n−1)φ e−iq��′
n ·(x−D��′ ) (B4)

with φ = 2π/3 and ξ = 0, 1. Here, we define [53]

q��′
1 = 2kD sin

(
θ�′�

2

)
Rφ��′ · (0,−1)T , (B5)

q��′
2,3 = R±φq��′

1 , (B6)

D��′ = d� + d�′

2
+ i cot

(
θ�′�

2

)
τy · d� − d�′

2
, (B7)

θ�′� = θ�′ − θ�, φ��′ = θ� + θ�′

2
,

Rφ =
(

cos φ − sin φ

sin φ cos φ

)
, (B8)

where kD = |K| = 4π/(3
√

3aC ) is the Dirac momentum, τy

is the y-Pauli matrix, and aC � 1.42 Å is the carbon-carbon
distance. The vector d� is the lateral shift of the �th layer,
and D��′ amounts to shifts in the potentials. We set d� = d =
(d1, d2)T for all � by which D��′ = d.

Next, we nondimensionalize the model via the map-
ping x �→ x̆ = 2kD sin(θ/2)x [53]. Let the scaled position
and shift vectors be x̆ and d̆. The Hamiltonian Htri

K ex-
hibits the energy scale 2vF h̄kD sin(θ/2); Htri

K �→ H̆tri
K =

[2vF h̄kD sin(θ/2)]
−1Htri

K . We define

α��′ = w��′
AB

2vF h̄kD sin(θ/2)
> 0, �′ = � + 1 (� = 1, 2).

For ease of notation, we remove the breve symbol from x̆, d̆,
and H̆tri

K , thus using x, d = (d1, d2)T and Htri
K as the moiré-

scaled variables; ditto for the potentials T��′
.
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Hence, we now have the dimensionless potentials

T12(x) =
(

κα12U0(x) α12U ∗
1 (−x)

α12U1(x) κα12U0(x)

)
,

T23(x) �
(

κα23U ∗
0 (x) α23U ∗

1 (x)

α23U1(−x) κα23U ∗
0 (x)

)
.

If α12 �= α23 the ensuing Hamiltonian may lack mirror sym-
metry. This symmetry is recovered if α12 = α23.

In view of |d| 
 1, we have set

U0(x) = U 12
0 (x), U 12∗

0 (x) = U ∗
0 (x),

U 23
0 (x) = U ∗

0 (x), U 23∗
0 (x) = U0(x),

U1(x) = U 12∗
1 (−x), U 12

1 (x) = U ∗
1 (−x),

U 23
1 (x) � U ∗

1 (x), U 23∗
1 (−x) � U1(−x).

In the above, the first and fifth equations introduce U0 and
U1, while the last two equations are implied by the condition
|d| 
 1.

For the sake of clarity, we give the explicit formulas for U0

and U1 at the moiré scale. These are

U0(x) = ei(y−d2 ) + e−i(
√

3
2 (x−d1 )+ 1

2 (y−d2 ))

+ e−i(−
√

3
2 (x−d1 )+ 1

2 (y−d2 ))

� eiy + e−i(
√

3
2 x+ 1

2 y) + e−i(−
√

3
2 x+ 1

2 y), (B9)

U1(x) � eiy + ei 2π
3 e−i(

√
3

2 x+ 1
2 y) + e−i 2π

3 e−i(−
√

3
2 x+ 1

2 y).

(B10)

The Hamiltonian Htri
K ′ of the K ′ valley comes from the

complex conjugation of Htri
K above. Thus, we write

Htri
K ′ = (

Htri
K

)∗
in real space. Thus, the eigenvector (basis) sets of the two
Hamiltonians are related by an antiunitary transformation.
The total contribution to the conductivity from both val-
leys under time-reversal symmetry in linear response can be
extracted from the K-valley Hamiltonian by a simple trans-
position. One must then symmetrize the optical conductivity
(Appendix A).

2. Unitary transformations and direct sum

Next, we outline the steps of a unitary transformation on
Htri

K , which eventually yields the mapping

Htri
K �→ Heff

K = S† Htri
K S = H(2)

λ,K ⊕ H(1)
K , (B11)

where H(2)
λ,K is the effective, K-valley twisted bilayer Hamil-

tonian with parameter λ =
√

α2
12 + α2

23 , and H(1)
K is the

respective single-layer Hamiltonian, as explained below.
Hence, we can write any eigenvector of Heff

K in the form
(|b〉1, |b〉2, 0)T or (0, 0, |s〉)T where (|b〉1, |b〉2)T and |s〉 are
eigenvectors of H(2)

λ,K and H(1)
K , respectively. We have

H(2)
λ,K

(|b〉1

|b〉2

)
= E (2)

b

(|b〉1

|b〉2

)
, H(1)

K |s〉 = E (1)
s |s〉 ;

E (2,1)
b,s is the eigenvalue of the Dirac Hamiltonian for the

twisted bilayer (b) and single-layer (s) system. Each of the
symbols s and b stands for the combined band index and
continuum quasimomentum variable of the scaled Brillouin
zone. We set Es = E (1)

s and Eb = E (2)
b .

We will show that in the sublattice-layer form [53]

S =

⎛
⎜⎝

α12/λ 0 α23/λ

0 1 0

α23/λ 0 −α12/λ

⎞
⎟⎠. (B12)

Note that S is represented by a 6×6 matrix. In the case with
mirror symmetry, if α12 = α23, we have

S = 1√
2

⎛
⎜⎜⎝

1 0 1

0
√

2 0

1 0 −1

⎞
⎟⎟⎠. (B13)

This unitary transformation is described as a result of four
basic, successive unitary operations, as detailed below [53].
To simplify notation, we will omit the valley index (K), unless
we state otherwise.

a. Layer ordering

We apply Htri �→
◦
H := �†Htri� with state vector

ψ = (
ψA

1 ψB
1 ψA

2 ψB
2 ψA

3 ψB
3

)T

�→
◦
ψ = �†ψ = (

ψA
1 ψA

2 ψA
3 ψB

1 ψB
2 ψB

3

)T
.

The transformation operator � in matrix form is

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

b. Layer alignment

We now apply
◦
H �→ Ȟ = Y †

◦
HY so that

◦
ψ = (

ψA
1 ψA

2 ψA
3 ψB

1 ψB
2 ψB

3

)T

�→ ψ̌ = Y †
◦

ψ = (
ψA

1 ψA
3 ψA

2 ψB
1 ψB

3 ψB
2

)T
;

Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Thus, we have [53]

Ȟ =
(
M D†

D M

)
,

M = κ

⎛
⎜⎜⎝

0 0 α12U0(x)

0 0 α23U0(x)

α12U ∗
0 (x) α23U ∗

0 (x) 0

⎞
⎟⎟⎠

= κ

(
0 WU0(x)

W T U ∗
0 (x) 0

)
, W =

(
α12

α23

)
.

Here, D is represented by the following 3×3 matrix:

D =
(

−2ieiθ/2∂̄ WU1(x)

W T U1(−x) −2ie−iθ/2∂̄

)
.

c. Singular-value decomposition

Next, we apply Ȟ �→ ÙH = V †ȞV where

V =
(
V 0

0 V

)
, V = diag(A,B),

and the 2×2 matrix A and scalar B stem from W = A�B∗
with � = (λ, 0)T and λ =

√
W T W =

√
α2

12 + α2
23 . By a di-

rect computation, we have

A =
(

α12/λ α23/λ

α23/λ −α12/λ

)
, B = 1.

The transformed Hamiltonian is thus written as

ÙH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 κλU0(x) −2ie−iθ/2∂ 0 λU ∗
1 (−x)

0 0 0 0 −2ie−iθ/2∂ 0

κλU ∗
0 (x) 0 0 λU ∗

1 (x) 0 −2ieiθ/2∂

−2ieiθ/2∂̄ 0 λU1(x) 0 0 κλU0(x)

0 −2ieiθ/2∂̄ 0 0 0 0

λU1(−x) 0 −2ie−iθ/2∂̄ κλU ∗
0 (x) 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

d. Conversion to direct sum

We apply ÙH �→ Heff = Z†
ÙHZ = H(2)

λ ⊕ H(1) with

Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the above, H(1) and H(2)
λ denote the moiré-scaled effective

single-layer and twisted bilayer Hamiltonians, respectively.
To simplify notation, set H(1) = H1 and H(2)

λ = H2. These
operators read as

H1 = D(θ ) =
(

0 −2ie−iθ/2∂

−2ieiθ/2∂̄ 0

)
(B14)

and

H2 =
(

D(θ ) λU (x)

λU (x)† D(−θ )

)
, (B15)

where

U (x) =
(

κU0(x) U ∗
1 (−x)

U1(x) κU0(x)

)
.

In summary, the operator S of Eq. (B12), which converts
the K-valley Hamiltonian Htri

K to Heff
K , is computed directly

by S = �YV Z . The corresponding matrix is real. Hence, the
same matrix is used to convert the K ′-valley Hamiltonian,
Htri

K ′ = (Htri
K )∗ in real space, into a direct sum of effective

twisted bilayer and single-layer Hamiltonians.

APPENDIX C: OPTICAL CONDUCTIVITY OF
ALTERNATING-TWIST TRILAYER SYSTEM:

CALCULATIONS

In this Appendix, we determine the optical conductivity for
the alternating-twist trilayer system by the Kubo formulation
without mirror symmetry. The main assumptions are time-
reversal symmetry and spatial isotropy. We invoke the unitary
transformation of the K-valley trilayer Hamiltonian into a
direct sum of the effective Hamiltonians H1 and H2 (Ap-
pendix B). We use moiré-scaled quantities, so that the units of
length and energy are {2kD sin(θ/2)}−1 and 2vF h̄kD sin(θ/2).
Thus, the (dimensionless) current operator in layer � is j� =
−i[x�,Htri], where Htri and x� are the moiré-scaled trilayer
Hamiltonian and vector position. We often suppress the sub-
script K for the valley.

1. Methodology and general results

We transform the unperturbed trilayer Hamiltonian Htri
K , by

S into the direct sum H2 ⊕ H1. Hence, we compute the trace
of the current-current commutators on the basis formed by the
eigenvectors of H2 ⊕ H1. Consider the set of all state vectors
of the form

|ψ〉 = G†|ψ〉 =
⎛
⎝|b〉1

|b〉2

0

⎞
⎠ or

⎛
⎝ 0

0
|s〉

⎞
⎠,

which are eigenvectors of H2 ⊕ H1; |b〉 = (|b〉1, |b〉2)T and
|s〉 denote the effective twisted bilayer and single-layer Hamil-
tonian eigenvectors, with energies Eb = E (2)

b and Es = E (1)
s .

The symbols b and s express the combined band index and
quasimomentum in the scaled moiré Brillouin zone.
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For real ω, the K-valley Kubo formula yields

σ ��′
νν ′,K (ω) = C0

e2

h̄(ω + iδ)

∑
{|ψ〉}

f (Eψ )
∫ ∞

0
dt ei(ω+iδ)t 〈ψ |[ j�

ν,K
(t ), j�

′

ν ′,K
(0)
]|ψ〉

= C0
e2

h̄(ω + iδ)

{∑
b

fb

∫ ∞

0
dt ei(ω+iδ)t (1〈b|, 2〈b|)

(
V ��′

bb,νν ′ (t ) − V ��′
bb,νν ′ (t )†)(|b〉1

|b〉2

)

+
∑

s

fs

∫ ∞

0
dt ei(ω+iδ)t × 〈s|V ��′

ss,νν ′ (t ) − V ��′
ss,νν ′ (t )†|s〉

}
, δ ↓ 0, (C1)

for �, �′ = 1, 2, 3 and ν, ν ′ = x, y. The ν-directed current
j�
ν,K

(t ) = S† j�ν,K (t )S, frequency ω and time t are moiré

scaled and dimensionless; and C0 = {4k2
D sin2(θ/2)Am}−1 =

3
√

3
8π2 where Am = 3

√
3

8 ( aC
sin(θ/2) )2 is the area of the moiré cell

and aC is the carbon-carbon distance. We set fη = f (Eη ) as
the Fermi-Dirac distribution, and V ��′

ηη′,νν ′ (t ) = eν · V ��′
ηη′ (t ) · eν ′

(eν : Cartesian unit vector) for η, η′ = b, s. The matrix-valued
operator V ��′

ηη′ (t ) is defined by

j�
K

(t ) j�
′

0,K
=
(

V ��′
bb (t ) V ��′

bs (t )

V ��′
sb (t ) V ��′

ss (t )

)
, (C2)

and thus vanishes for t < 0; j�0 = j�(0). By Eq. (C1), we only
need the diagonal terms V ��′

ηη (t ). The symbol
∑

η (η = b, s)
means summation over band indices and integration in the
quasimomentum over the scaled Brillouin zone. The elements
〈η| · |η〉 (η = b, s) of Eq. (C1) account for x-inner products of
scalar Bloch wave functions, which compose 〈x|η〉.

In Eq. (C1), each sum
∑

η is replaced by
∑

η,η′ or
∑

η,η̄′

by use of the resolution of the identity 1 = ∑
η |η〉〈η| in the

respective Hilbert space (for η = b, s). Here, we set (η, η′) =
(b, b′) or (s, s′), while η̄′ in (η, η̄′) takes values complemen-
tary to those of η in the sense that η̄′ = s′ if η = b and η̄′ = b′
if η = s.

For every η in these sums, the Fourier transform of
〈η|V ��′

ηη,νν ′ (t )|η〉 contributes the factors

− 1

i(ω + ωηη′ + iδ)
or − 1

i(ω + ωηη̄′ + iδ)
,

as δ ↓ 0. The Fourier transform of 〈η|V ��′
ηη,νν ′ (t )†|η〉 contributes

the respective factors

− 1

i(ω − ωηη′ + iδ)
or − 1

i(ω − ωηη̄′ + iδ)
.

The ensuing optical conductivity tensor σ(ω) comes
from the symmetrization of the K-valley contribution
(Appendix A). This tensor σ reads as

σ(ω) =

⎛
⎜⎜⎝

σ11(ω) σ12(ω) σ13(ω)

σ21(ω) σ22(ω) σ23(ω)

σ31(ω) σ32(ω) σ33(ω)

⎞
⎟⎟⎠,

where σ��′
are 2×2 matrices for the layer-resolved conductiv-

ities. We will express σ��′
in terms of principal conductivities

associated with two effective, simpler systems, for arbitrary

positive parameters α12(23) of the trilayer Hamiltonian Htri
K

(Appendix B).
After some algebra, we obtain (see Appendix C 3)

σ11 = λ−4
(
α4

12σ
11
BL + α4

23σSL + α2
12α

2
23σc

)
(C3)

=
(

σ 11
0 0

0 σ 11
0

)
, (C4)

σ12 = α2
12

λ2
σ12

BL

=
(

σ 12
0 σ 12

xy

−σ 12
xy σ 12

0

)
= (σ21)T , (C5)

σ13 = α2
12α

2
23

λ4

(
σ11

BL + σSL − σc
)

(C6)

=
(

σ 13
0 0

0 σ 13
0

)
= σ31, (C7)

σ22 = σ22
BL =

(
σ 22

0 0

0 σ 22
0

)
, (C8)

σ23 = α2
23

λ2
σ21

BL

= α2
23

α2
12

σ21 = (σ32)T , (C9)

σ33 = λ−4
(
α4

23σ
11
BL + α4

12σSL + α2
12α

2
23σc

)
= σ11|α12↔α23 =

(
σ 33

0 0

0 σ 33
0

)
. (C10)

The first equation for σ33 comes from interchanging the con-
stants α12 and α23 in σ11. In Eqs. (C3)–(C10), we express the
layer-resolved conductivities in terms of the principal 2×2
matrices σ

ςς ′
BL , σSL, and σc (ς, ς ′ = 1, 2). Here, σ

ςς ′
BL and

σSL are conductivities that separately arise from the effective
twisted bilayer and single-layer Hamiltonians, respectively
[cf. Eqs. (B15) and (B14) in Appendix B]. On the other hand,
σc couples the two effective systems.

The principal matrices have the forms

σSL =
(

σ (1)
e 0

0 σ (1)
e

)
,

σ
ςς
BL =

(
σ (2)

e 0

0 σ (2)
e

)
(ς = 1, 2),
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σ12
BL =

(
σ 12

e σ 12
e,xy

−σ 12
e,xy σ 12

e

)
= (

σ21
BL

)T
,

σc =
(

σc 0

0 σc

)
.

The scalars σ (1,2)
e , σ 12

e , σ 12
e,xy, and σc, respectively, denote

the in-plane conductivities of the effective single-layer and
twisted bilayer systems, the covalent drag and chiral (or Hall)
conductivities of the effective bilayer system, and the coupling
of the two systems. Note that σ 22

0 = σ (2)
e in Eq. (C8). In Ap-

pendix C 3, we express all these scalar functions of ω in terms
of inner products of suitable pseudo-spin-wave functions.

Hence, the elements σ ��′
0 of Eqs. (C3)–(C10) are

σ 11
0 = λ−4(α4

12σ
(2)
e + α4

23σ
(1)
e + α2

12α
2
23σc

)
, (C11)

σ 12
0 = α2

12

λ2
σ 12

e , σ 12
xy = α2

12

λ2
σ 12

e,xy, (C12)

σ 13
0 = α2

12α
2
23

λ4

(
σ (2)

e + σ (1)
e − σc

)
, (C13)

σ 22
0 = σ (2)

e , (C14)

σ 33
0 = λ−4

(
α4

23σ
(2)
e + α4

12σ
(1)
e + α2

23α
2
12σc

)
= σ 11

0 |α12↔α23 . (C15)

In particular, let us consider α12 = α23, by which mirror
symmetry is recovered. We find

σ11 = 1
4

(
σ11

BL + σSL + σc
)
, (C16)

σ12 = 1
2σ12

BL = (σ21)T , (C17)

σ13 = 1
4

(
σ11

BL + σSL − σc
) = σ31, (C18)

σ23 = 1
2σ21

BL = σ21 = (σ32)T , (C19)

σ33 = σ11. (C20)

2. Trace algebra

Next, we provide details on the layer-resolved conduc-
tivities. We compute the unitarily transformed currents and
V ��′

ηη′ (t ) in view of Eq. (B11) of Appendix B and time evolution
under Hamiltonian Heff

K . The trace of the Kubo formula is
computed on the basis formed by the eigenvectors of Heff =
H2 ⊕ H1. The unitarily transformed currents are

j�
0ν

= S† j�0νS, j�
ν
(t ) = eiHefft j�

0ν
e−iHefft .

The initial original (nontransformed) ν-directed current in
layer � is j�0ν = j�0 · eν with j�0 = −i[x�,Htri], where eν is a
Cartesian unit vector in the xy plane.

Therefore, we start with the matrix representations

j1
0 =

⎛
⎝τ−θ 0 0

0 0 0
0 0 0

⎞
⎠, j2

0 =
⎛
⎝0 0 0

0 τθ 0
0 0 0

⎞
⎠,

j 3
0 =

⎛
⎝0 0 0

0 0 0
0 0 τ−θ

⎞
⎠.

We have defined

τθ = e(i/4)θτzτe−(i/4)θτz , τ = τxex + τyey,

where τν is the ν-Pauli matrix.
We need to compute

j�(t ) =
(

eiH2t 0
0 eiH1t

)
j�
0

(
e−iH2t 0

0 e−iH1t

)

in the matrix representation |L〉〈L′|, where each of |L〉 and |L′〉
is (|b〉1, |b〉2, 0)T or (0, 0, |s〉)T (� = 1, 2, 3). For the initial
S-transformed currents, we find

j1
0

=
⎛
⎝ α2

12
λ2 τ1

α12α23
λ2 τc

α12α23
λ2 τ †

c

(
α23
λ

)2
τ −θ

⎞
⎠

= 1

2

(
τ1 τc

τ †
c τ −θ

)
if α12 = α23, (C21)

j2
0

=
(

τ2 0

0 0

)
, (C22)

j3
0

=
⎛
⎝ α2

23
λ2 τ1 −α12α23

λ2 τc

−α12α23
λ2 τ †

c
α2

12
λ2 τ −θ

⎞
⎠

= 1

2

(
τ1 −τc

−τ †
c τ −θ

)
if α12 = α23, (C23)

where

τ1 =
(

τ −θ 0
0 0

)
, τ2 =

(
0 0
0 τ θ

)
,

τc =
(

τ −θ

0

)
.

In fact, the 4×2 matrix τc is responsible for σc.
Thus, in the interaction picture we have

j1(t ) = 1

λ2

(
α2

12eiH2tτ1e−iH2t α12α23eiH2tτce−iH1t

α12α23eiH1tτ †
c e−iH2t α2

23eiH1tτ −θe−iH1t

)
,

j2(t ) =
(

eiH2tτ2e−iH2t 0

0 0

)
,

j3(t ) = 1

λ2

(
α2

23eiH2tτ1e−iH2t −α12α23eiH2tτce−iH1t

−α12α23eiH1tτ †
c e−iH2t α2

12eiH1tτ −θe−iH1t

)
.

By abusing notation, we define the frequencies

ωηη′ = (Eη − Eη′ )/h̄,

where Eη(η′ ) is the energy of either the effective single-layer
or twisted bilayer system. The frequency ωbs mixes these
energies, and will appear in σc (Appendix C 3).

Let us now outline the steps for the remaining computation
of [ j�(t ), j�

′

0
]. For every pair (�, �′) we use the matrices V ��′

ηη′

from Eq. (C2), needed for η = η′. Note that the Hermitian
adjoint of this expression reads

j�
′

0
j�(t ) =

(
V ��′

bb (t )† V ��′
sb (t )†

V ��′
bs (t )† V ��′

ss (t )†

)
.
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Thus, it suffices to determine j�(t ) j�
′

0
. The matrix elements of

[ j�(t ), j�
′

0
] are found from V ��′

ηη (t ) − (V ��′
ηη (t ))†.

a. Tensor V 11
ηη′

For (�, �′) = (1, 1), the diagonal block matrix of the first
layer, [ j1(t ), j1

0
] directly comes from the following formulas.

Regarding j1(t ) j1
0
, we compute

V 11
bb = α2

12

λ4

(
α2

12eiH2tτ1e−iH2tτ1 + α2
23eiH2tτce−iH1tτ †

c

)
,

V 11
bs = α12α23

λ4

(
α2

12eiH2tτ1e−iH2tτc + α2
23eiH2tτce−iH1tτ−θ

)
,

V 11
sb = α12α23

λ4

(
α2

12eiH1tτ †
c e−iH2tτ1 + α2

23eiH1tτ−θe−iH1tτ †
c

)
,

V 11
ss = α2

23

λ4

(
α2

12eiH1tτ †
c e−iH2tτc + α2

23eiHtτ−θ e−iH1tτ−θ
)
.

The product j1
0

j1(t ) is thus determined by

(
V 11

bb

)† = α2
12

λ4

(
α2

12τ1eiH2tτ1e−iH2t + α2
23τceiH1tτ †

c e−iH2t
)
,

(
V 11

sb

)† = α12α23

λ4

(
α2

12τ1eiH2tτce−iH1t+ α2
23τceiH1tτ−θe−iH1t

)
,

(
V 11

bs

)† = α12α23

λ4

(
α2

12τ
†
c eiH2tτ1e−iH2t+α2

23τ
−θeiH1tτ †

c e−iH2t
)
,

(
V 11

ss

)† = α2
23

λ4

(
α2

12τ
†
c eiH2tτce−iH1t + α2

23τ
−θeiH1tτ−θe−iH1t

)
.

The commutator [ j1(t ), j1
0
] is then readily computed.

b. Tensors V 12
ηη′ and V 21

ηη′

Let us now discuss the structure of both [ j1(t ), j2
0
] and

[ j2(t ), j1
0
]. For the product j1(t ) j2

0
, we compute

V 12
bb = α2

12

λ2
eiH2tτ1e−iH2tτ2,

V 12
sb = α12α23

λ2
eiH1tτ †

c e−iH2tτ2,

V 12
bs = 0 = V 12

ss .

Similarly, for j2
0

j1(t ) we invoke the Hermitian conjugate (ad-
joint) of each of the above quantities.

For [ j2(t ), j1
0
], a similar calculation yields

V 21
bb = α2

12

λ2
eiH2tτ2e−iH2tτ1,

V 21
bs = α12α23

λ2
eiH2tτ2e−iH2tτc,

V 21
sb = 0 = V 21

ss .

The Hermitian conjugate of each term follows directly.

c. Tensors V 13
ηη′ and V 31

ηη′

Next, we focus on [ j1(t ), j3
0
] and [ j3(t ), j1

0
]. For the for-

mer, the product j1(t ) j3
0

is composed of

V 13
bb = α2

12α
2
23

λ4

(
eiH2tτ1e−iH2tτ1 − eiH2tτce−iH1tτ †

c

)
,

V 13
bs = α3

12α23

λ4

(
eiH2tτce−iH1tτ−θ − eiH2tτ1e−iH2tτc

)
,

V 13
sb = α12α

3
23

λ4

(
eiH1tτ †

c e−iH2tτ1 − eiH1tτ−θ e−iH1tτ †
c

)
,

V 13
ss = α2

12α
2
23

λ4

(
eiH1tτ−θ e−iH1tτ−θ − eiH1tτ †

c e−iH2tτc
)
.

For j3
0

j1(t ), we compute the Hermitian adjoints.

On the other hand, in regard to [ j3(t ), j1
0
] we obtain

V 31
bb = α2

12α
2
23

λ4

(
eiH2tτ1e−iH2tτ1 − eiH2tτce−iH1tτ †

c

)
,

V 31
bs = α12α

3
23

λ4

(
eiH2tτ1e−iH2tτc − eiH2tτce−iH1tτ−θ

)
,

V 31
sb = α3

12α23

λ4

(
eiH1tτ−θ e−iH1tτ †

c − eiH1tτ †
c e−iH2tτ1

)
,

V 31
ss = α2

12α
2
23

λ4

(
eiH1tτ−θ e−iH1tτ−θ − eiH1tτ †

c e−iH2tτc
)
,

along with their Hermitian conjugates. This step concludes the
calculation for (�, �′) = (1, 3), (3, 1).

d. Tensor V 22
ηη′

Consider the diagonal block matrix of the middle layer,
related to [ j2(t ), j2

0
]. For j2(t ) j2

0
, we need

V 22
bb = eiH2tτ2e−iH2tτ2,

V 22
bs = 0 = V 22

sb = V 22
ss .

The Hermitian adjoint, for j2
0

j2(t ), follows directly.

e. Tensors V 23
ηη′ and V 32

ηη′

For layers 2 and 3, we first compute

V 23
bb = α2

23

λ2
eiH2tτ2e−iH2tτ1,

V 23
bs = −α12α23

λ2
eiH2tτ2e−iH2tτc,

V 23
sb = 0 = V 23

ss .

Likewise, we have

V 32
bb = α2

23

λ2
eiH2tτ1e−iH2tτ2,

V 32
sb = −α12α23

λ2
eiH1tτ †

c e−iH2tτ2,

V 32
bs = 0 = V 32

ss .
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f. Tensor V 33
ηη′

For the diagonal block matrix of the third (top) layer, a
direct computation yields

V 33
bb = α2

23

λ4

(
α2

23eiH2tτ1e−iH2tτ1 + α2
12eiH2tτce−iH1tτ †

c

)
,

V 33
bs = −α23α23

λ4

(
α2

23eiH2tτ1e−iH2tτc+α2
12eiH2tτce−iH1tτ−θ

)
,

V 33
sb = −α23α23

λ4

(
α2

23eiH1tτ †
c e−iH1tτ1+α2

12eiH1tτ−θe−iH1tτ †
c

)
,

V 33
ss = α2

12

λ4

(
α2

23eiH1tτ †
c e−iH2tτc + α2

12eiH1tτ−θe−iH1tτ−θ
)
.

3. Layer-resolved conductivity matrices

Next, we outline the remaining steps of deriving the con-
ductivity formulas of Appendix C 1. Let

|s〉 = (|ζs1〉, |ζs2〉)T ,

|b〉1 = (|ϕb1〉, |ϕb2〉)T , |b〉2 = (|χb1〉, |χb2〉)T ,

where ζsi(x) = 〈x|ζsi〉, ϕbi(x) = 〈x|ϕbi〉, and χbi(x) = 〈x|χbi〉
(i = 1, 2) are scalar Bloch wave functions. These are labeled
by s or b which stand for the combined band index and
quasimomentum variable of the scaled Brillouin zone. The
spin degeneracy factor gs is omitted here but can be included
in the end.

a. σ11 tensor

By Eq. (C1), the structure of σ11 is dictated by the tensors
V 11

ηη. For example, for η = b we have the term

α2
12

λ4

(
α2

12eiH2tτ1e−iH2tτ1 + α2
23eiH2tτce−iH1tτ †

c

)
.

For η = s, the quantities α12 and α23, H1 and H2, τ1 and τ −θ ,
and τc and τ †

c must be, respectively, interchanged. By reso-
lution of the identity, formula (C3) emerges once we identify
the K-valley contributions

(σ 11
BL,νν ′ )K = −C0

e2

ih̄

1

ω + iδ

∑
bb′

( fb − fb′ )
〈b|τ1ν |b′〉〈b′|τ1ν ′ |b〉

ω + ωbb′ + iδ
,

(C24)

(σSL,νν ′ )K = −C0
e2

ih̄

1

ω + iδ

∑
ss′

( fs − fs′ )
〈s|τ−θ

ν |s′〉〈s′|τ−θ
ν ′ |s〉

ω + ωss′ + iδ
,

(C25)

as δ ↓ 0 for real ω. Here, we set τ−θ
(1)ν = eν · τ−θ

(1) . These for-
mulas lead to the forms σSL = diag(σ (1)

e , σ (1)
e ) and σ11

BL =
diag(σ (2)

e , σ (2)
e ), with the suitable definitions of the scalars

σ (1,2)
e . The coupling term σc comes from the τ (†)

c -matrix terms
in V 11

ηη, viz. (with τcν = eν · τc),

(σc,νν ′ )K = −C0
e2

ih̄

1

ω + iδ

∑
bs

( fb − fs)

×
{

〈b|τcν |s〉〈s|τ †
cν ′ |b〉

ω + ωbs + iδ
− 〈b|τcν ′ |s〉〈s|τ †

cν |b〉
ω − ωbs + iδ

}
.

We proceed to symmetrize the above quantities. For the ef-
fective single-layer system, by isotropy we have the diagonal
element σSL,xx = σSL,yy = σ (1)

e with

σ (1)
e (ω) = −i2C0gv

e2

h̄(ω + iδ)

∑
ss′

( fs − fs′ )
ωss′

(ω + iδ)2 − ω2
ss′

× |〈ζs1|ζs′2〉|2.
Here, gv is the valley degeneracy factor (gv = 2) and 〈ζs1|ζs′2〉
stands for the inner product of the scalar Bloch wave functions
ζ s,s′

1,2 (x) over the scaled cell. For the off-diagonal elements
σSL,xy and σSL,yx, symmetrization and the effect of isotropy
yield

σSL,xy(ω) = −σSL,yx(ω) = 0.

Similarly, for the effective twisted bilayer system, by
isotropy we have σ 11

BL,xx = σ 11
BL,yy = σ (2)

e where

σ (2)
e (ω) = −i2C0gv

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )

× ωbb′

(ω + iδ)2 − ω2
bb′

|〈ϕb1|ϕb′2〉|2.

The calculation for σ 11
BL,xy and σ 11

BL,yx makes explicit use of
time-reversal symmetry and isotropy, yielding

σ 11
BL,xy(ω) = −σ 11

BL,yx(ω) = 0.

Let us consider σc. For its diagonal elements, we get

(
σc, xx

yy

)
K = −2iC0

e2

h̄(ω + iδ)

∑
bs

( fb − fs)

× ωbs

(ω + iδ)2 − ω2
bs

|〈ϕ̌b1|ζs2〉 ± 〈ϕb2|ζ̌s1〉|2,

where �̌ = eiθ/2� for � = ϕb1, ζs1. By isotropy, we have
σc,xx(ω) − σc,yy(ω) = 0 which implies∑

bs

( fb − fs)
ωbs

(ω + iδ)2 − ω2
bs

Re(〈ϕ̌b1|ζs2〉〈ζ̌s1|ϕb2〉) = 0;

(C26)

thus, σc,xx = σc,yy = σc where

σc(ω) = −i2C0gv

e2

h̄(ω + iδ)

∑
bs

( fb − fs)
ωbs

(ω + iδ)2 − ω2
bs

× (|〈ϕb1|ζs2〉|2 + |〈ϕb2|ζs1〉|2). (C27)

This expression can be simplified by use of |〈ϕb1|ζs2〉| =
|〈ζs1|ϕb2〉| due to the invariance of H1,2 under the combined
operations of sublattice index switch, complex conjugation,
and parity inversion.

For the off-diagonal elements of σc, we assert that

(
σc, xy

yx

)
K = 2C0

e2

h̄(ω + iδ)

∑
bs

( fb − fs)

× ∓(ω + iδ)Re
(
mϕζ

bs

)+ iωbsIm
(
mϕζ

bs

)
(ω + iδ)2 − ω2

bs

, δ ↓ 0;

mϕζ

bs = (〈ϕ̌b1|ζs2〉 + 〈ϕb2|ζ̌s1〉) (〈ζs2|ϕ̌b1〉 − 〈ζ̌s1|ϕb2〉).
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By symmetrizing this K-valley contribution, we obtain

σc,xy(ω) = σc,yx(ω) = i2C0gv

e2

h̄(ω + iδ)

×
∑

bs

( fb − fs)
ωbs

(ω + iδ)2 − ω2
bs

Im
(
mϕζ

bs

)
.

Notice that Im(mϕζ

bs ) = −2 Im(〈ϕ̌b1|ζs2〉〈ζ̌s1|ϕb2〉). In view of
identity (C26), along with the interchange of the Re(·) and
Im(·) factors in it, we infer that σc,xy(ω) = 0 = σc,yx(ω).
Alternatively, this vanishing of the off-diagonal elements
of σc results from isotropy, by which σc,xy(ω) = −σc,yx(ω).
Equations (C4) and (C11) follow.

b. σ12 and σ21 tensors

Next, we address the cases of layer pairs (�, �′) = (1, 2),
(2, 1). Because each of V 12,21

bb contains only one product with
τ1,2 and is multiplied by α2

12λ
−2, while V 12,21

ss = 0, we see that
each of σ12,21 is proportional to σ12,21

BL . For the K-valley term,
Eq. (C1) implies

σ
12(21)
K = α2

12

λ2

(
σ

12(21)
BL

)
K ,

where (
σ

12(21)
BL,νν ′

)
K

= −C0
e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )

× 〈b|τ1(2)ν |b′〉〈b′|τ2(1)ν ′ |b〉
i(ω + iδ + ωbb′ )

.

For the diagonal elements, symmetrization entails

σ 12
BL,

xx
yy

= σ 21
BL,

xx
yy

= −i2C0gv

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )

× ωbb′Re{(〈ϕ̌b1|ϕb′2〉 ± 〈ϕb2|ϕ̌b′1〉)〈χ̌b′2|χb1〉}
(ω + iδ)2 − ω2

bb′
.

By isotropy, which means σ
12(21)
BL,xx − σ

12(21)
BL,yy = 0, we have

∑
bb′

( fb − fb′ )
ωbb′Re(〈ϕ̌b1|ϕb′2〉〈χb′2|χ̌b2〉)

(ω + iδ)2 − ω2
bb′

= 0; (C28)

therefore, we can set σ
12(21)
BL,xx = σ

12(21)
BL,yy = σ 12

e where

σ 12
e (ω) = −i2C0gv

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )

× ωbb′ Re(e−iθ 〈ϕb1|ϕb′2〉〈χb′2|χb1〉)

(ω + iδ)2 − ω2
bb′

. (C29)

Regarding the off-diagonal elements of σ12, we find

σ 12
BL,

xy
yx

= σ 21
BL,

yx
xy

= ±i2C0gv

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )

× ωbb′ Im{(〈χ̌b′2|χb1〉 ∓ 〈χb′1|χ̌b2〉)〈ϕ̌b1|ϕb′2〉}
(ω + iδ)2 − ω2

bb′
.

Note that σ
12(21)
BL,

xy
yx

+ σ
12(21)
BL,

yx
xy

= 0, inferred from Eq. (C28) by re-

placement of Re(·) by Im(·); thus, σ
12(21)
BL,

xy
yx

= −σ
12(21)
BL,

yx
xy

= σ 12
e,xy

with

σ 12
e,xy(ω) = i2C0gv

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )

× ωbb′ Im(e−iθ 〈χb′2|χb1〉〈ϕb1|ϕb′2〉)

(ω + iδ)2 − ω2
bb′

. (C30)

Equations (C5) and (C12) follow.

c. σ13 and σ31 tensors

Consider (�, �′) = (1, 3) and (3,1). By Eq. (C1), σ13,31

contain contributions from the two effective systems and the
coupling term σc that are similar to those for σ11. By inspec-
tion of V 13,31

ηη in comparison to V 11
ηη, from Eq. (C1) we can

derive Eq. (C6).
In more detail, for α12 = α23, we see that

V 11
bb = 1

4

(
eiH2tτ1e−iH2tτ1 + eiH2tτce−iH1tτ †

c

)
,

whereas

V 13
bb = 1

4

(
eiH2tτ1e−iH2tτ1 − eiH2tτce−iH1tτ †

c

) = V 31
bb;

ditto for V 11,13
ss via the switch of H2 and H1, τ1 and τ −θ , and

τc and its Hermitian adjoint. Thus, in the case with mirror
symmetry, the matrix σ11 of Eq. (C16) is replaced by the σ13

given in Eq. (C18).
Now consider α12 �= α23. Notice the terms in

V 11
bb(ss) = α2

12(23)

λ4

(
α2

12(23)e
iH2(1)tτ

(−θ )
1 e−iH2(1)tτ

(−θ )
1

+α2
23(12)e

iH2(1)tτ (†)
c e−iH1(2)tτ †( )

c

)
,

and map this to its 13- (and 31-) counterpart, viz.,

V 13
bb(ss) = α2

12α
2
23

λ4

(
eiH2(1)tτ

(−θ )
1 e−iH2(1)tτ

(−θ )
1

−eiH2tτ (†)
c e−iH1(2)tτ †( )

c

)
.

Equation (C6) results from Eq. (C3) via this map.

d. σ22 tensor

By inspection of V 22
ηη, we notice that σ22 is identical to σ22

BL
according to the expression

(
σ 22

BL,νν ′
)

K =−C0
e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )
〈b|τ2ν |b′〉〈b′|τ2ν ′ |b〉

i(ω + ωbb′ + iδ)
,

(C31)

which comes from Eq. (C24) after the replacement of τ1 by
τ2. The resulting expression for σ22 = σ22

BL depends on α12,23

through the effective Hamiltonian H2, and is a diagonal matrix
(as is σ11

BL). Thus, we obtain Eq. (C8). The nonzero (diagonal)
elements of σ22

BL come from σ (2)
e by replacement of ϕ1,2 by

χ1,2:

σ22
BL,xx = σ22

BL,yy = −i2C0gv

e2

h̄(ω + iδ)

∑
bb′

( fb − fb′ )

× ωbb′

(ω + iδ)2 − ω2
bb′

|〈χb1|χb′2〉|2

= σ 22
0 = σ (2)

e .
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In the above, we assumed that |〈χb1|χb′2〉| = |〈ϕb1|ϕb′2〉| since
H2,K is invariant under the simultaneous operations of layer
switch, complex conjugation, and x-direction reversal.

e. σ23, σ32, and σ33 tensors

Let us first consider σ23 and σ32. Evidently, V 23,32
ηη

come from V 21,12
ηη under the replacement of α12 with α23.

By a rescaling and transposition of formula (C5), we ob-
tain Eq. (C9). Recall that time-reversal symmetry dictates
σ12

BL(ω) = σ21
BL(ω)T .

Regarding σ33, notice that V 33
ηη results from V 11

ηη by switch
of the parameters α12 and α23. This implies that Eq. (C3)
yields Eq. (C10). Hence, matrix σ33 is diagonal. We set σ33 =
diag(σ 33

0 , σ 33
0 ) where the scalar σ 33

0 (ω) directly comes from
σ 11

0 (ω) by the interchange of α12 and α23 [cf. Eqs. (C11) and
(C15)].

APPENDIX D: IN-PLANE CURRENTS
AS MAGNETIZATION CURRENTS

In this Appendix, we show that the in-plane currents of
any number (n) of layers can always be written as the sum
of the average current plus magnetization currents. The latter
are imagined as coming from filling the space between ad-
jacent layers with uniformly, in-plane magnetized materials.
The electric currents (Ji ) are numbered from bottom to top,

as in Fig. 1 for n = 3. As in Sec. III B, we use the symbol
mi to describe the magnetic moment (per unit surface) of
the (imagined) magnetized material filling the space between
layers i and i + 1. For the reference case of the trilayer
system (n = 3), we have three currents {J1, J2, J3} and two
magnetized regions with magnetic moments per unit surface
{m1, m2}, filling the space between layers 1 and 2, and layers
2 and 3, respectively.

We can always write

Ji = Jtot

n
+ ji, (D1)

where Jtot = ∑
i Ji is the total current, and ji represents the

deviation from the average. Given that
∑

i ji = 0, each ji can
be considered to be the sum of the magnetization currents
associated with the regions above and below the layer i. There-
fore, we have

mi−1 − mi

l
= ez × ji, 1 � i � n (D2)

with the constraint
∑

i ji = 0, and l is the distance between
layers and ez the normal unit vector. In Eq. (D2), it is un-
derstood that mi = 0 for i outside its allowed range, that is,
for i /∈ {1, . . . , n − 1}. Equation (D2) provides the set of mag-
netizations {mi} associated with any set of deviation currents
{ji}, and vice versa. In the trilayer system, for instance, the
use of Eqs. (D1) and (D2), together with −iωp = Jtot, leads
to Eqs. (25)–(27) of Sec. III B.
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