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The exchange interactions in insulators depend on the orbital state of magnetic ions, obeying certain phe-
nomenological principles, known as Goodenough-Kanamori-Anderson rules. Particularly, the ferro order of
alike orbitals tends to stabilize antiferromagnetic interactions, while the antiferro order of unlike orbitals favors
ferromagnetic interactions. The Kugel-Khomskii theory provides a universal view on such coupling between
spin and orbital degrees of freedom, based on the superexchange processes: namely, for a given magnetic order,
the occupied orbitals tend to arrange in a way to further minimize the exchange energy. Then, if two magnetic
sites are connected by the spatial inversion, the antiferro orbital order should lead to the ferromagnetic coupling
and break the inversion symmetry. This constitutes the basic idea of our work, which provides a pathway
for designing ferromagnetic ferroelectrics: the rare but fundamentally and practically important multiferroic
materials. After illustrating the basic idea on toy-model examples, we propose that such behavior can be indeed
realized in the van der Waals ferromagnet VI;, employing for this analysis the realistic model derived from
first-principles calculations for magnetic 3d bands. We argue that the intra-atomic interactions responsible
for Hund’s second rule, acting against the crystal field, tend to restore the orbital degeneracy of the ionic d?
state in VI; and, thus, provide a necessary flexibility for activating the Kugel-Khomskii mechanism of the
orbital ordering. In the honeycomb lattice, this orbital ordering breaks the inversion symmetry, stabilizing the
ferromagnetic-ferroelectric ground state. The symmetry breaking leads to the canting of magnetization, which

can be further controlled by the magnetic field, producing a huge change of electric polarization.

DOLI: 10.1103/PhysRevB.110.205116

I. INTRODUCTION

In a broad sense, multiferroics are materials, where the
ferroelectric (FE) order can coexist with a magnetic one [1,2].
These are the key material systems for achieving the cross-
control of magnetic and electric properties by applying an
electric or magnetic field [3]. Nevertheless, literally, the mul-
tiferroicity implies a somewhat narrower requirement: both
orders should be of the ferro type, so that the material is not
simply magnetic but ferromagnetic [4—6]. This is particularly
important for the cross-control applications: if the ferromag-
netic (FM) moment, M, is finite and preferably large, it can be
manipulated by a relatively weak magnetic field. The same
holds for the ferroelectric polarization, P, and the electric
field. Thus, from the practical point of view, it is desirable
to have materials with large M and P, and strong coupling
between them. However, the ferroelectricity and ferromag-
netism obeys very different principles and very rarely coexist
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in nature. Namely, the ferroelectricity implies breaking of the
inversion symmetry. However, it cannot be achieved by a sim-
ple FM arrangement of spins, which has the same symmetry
as the crystallographic one. On the other hand, if the inversion
symmetry breaking results from the intrinsic instability of the
crystal structure, there is no guarantee that the corresponding
to it magnetic structure will be ferromagnetic. In fact, most of
insulating transition-metal oxides are antiferromagnetic.
Therefore, the main attention is paid to creation of ar-
tificial materials, which would combine the FE and FM
characteristics within one sample or device [5]. One possible
direction is the synthesis of heterostructures, consisting of
FE and FM layers of two different materials [7]. Another
promising direction is the strain engineering. Particularly,
some transition-metal oxides can turn into the FE-FM state
by epitaxial strain [8—10]. The main driving force is the in-
trinsic FE instability of the so-called d° materials, related to
the coupling between the occupied bonding and unoccupied
antibonding states of opposite parity [11,12]. For instance,
the coupling between the occupied O 2p and unoccupied Ti
3d bands in EuTiO;, caused by the FE displacements, can
lower the energy [8]. Moreover, the magnetic Eu*" ions alter
this coupling, making it dependent on magnetic structure of
the Eu sublattice. Thus, although cubic EuTiO; is the para-
electric antiferromagnet, the epitaxial strain can turn it into
the FE-FM state [8,9]. The partial occupation of antibonding
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transition-metal 3d states weakens the FE instability. Nev-
ertheless, the effect can still persist for certain 3d configu-
rations, such as d> [12], as was theoretically proposed for
StMnOj; [10,13], where the same Mn>* ions are responsible
for magnetism and participate in the FE displacements, thus,
resulting in stronger spin-lattice coupling and larger magnetic
transition temperature in comparison with EuTiOs3.

In this article we propose a completely new and so far
unexplored route for designing ferroelectric (or polar) fer-
romagnets, which is based on the Kugel-Khomskii (KK)
mechanism of the orbital ordering [14].

The interatomic exchange interactions between spins de-
pend on the orbital state of atoms participating in these
exchange processes: which orbitals are occupied, which are
empty, and how they are oriented relatively to each other in
the magnetic bonds, i.e., what is commonly called the orbital
ordering [14]. The basic rules describing the character of these
interactions in insulators are widely know as Goodenough-
Kanamori-Anderson (GKA) rules [15-18]. Particularly, the
ferro orbital order, where electrons occupy the same orbitals,
typically leads to the antiferromagnetic (AFM) coupling be-
tween the spins. On the other hand, the antiferro orbital order,
where occupied orbitals alternate on the lattice, usually fa-
vors the FM interactions. These fundamental principles were
further elaborated by KK [14,19,20] on the basis of superex-
change (SE) theory [21], resulting in what is now called the
KK mechanism of the orbital ordering, which states that for
a given spin order, the orbital degrees of freedom will tend to
relax in the direction to further minimize the exchange energy.

The KK mechanism was proposed long before the current
era of multiferroic materials and so far has not been consid-
ered as a possible source of breaking the inversion symmetry.
Typical applications of the KK mechanism are focused on the
analysis of spin and orbital phenomena in compounds, where
magnetic sites are located in the inversion centers and the
materials remain centrosymmetric irrespectively of the spin
or orbital order [22], as in colossal magnetoresistive man-
ganites [23] or other perovskite transition-metal oxides [24].
In fact, many of these materials do exhibit the antiferro
orbital order, which is responsible for the FM character of ex-
change interactions, as it happens, for instance, in YTiO3 [24],
LaMnOs; [14,16], or BiMnO3 [25,26]. However, the existence
of inversion centers makes most of them antipolar [27].

What if the inversion center is located between two mag-
netic sites? Then, one can expect that the antiferro orbital
order across the inversion center will lead to the FM interac-
tions between the spins, as required by GKA rules, and break
the inversion symmetry, giving us a unique possibility for real-
izing simultaneously the ferromagnetism and ferroelectricity
within one phase. This constitutes the main idea of our work,
which will be elaborated as follows.

First, in Sec. II, we will explore this basic idea by consid-
ering toy-model examples of degenerate yz and zx orbitals in
the zigzag chain and honeycomb lattice, where the problem
can be solved analytically providing a transparent expression
for the exchange energy, which explains the emergence of
the antiferro orbital order and electric polarization. The key
aspect of the zigzag chain and honeycomb lattice is that both
of them are centrosymmetric. However, the inversion centers
are located in the mid-points connecting two magnetic sites.
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FIG. 1. (a) Fragment of the crystal structure of VI5: each V atoms
is surrounded by six I atoms, forming the hexagon of edge-sharing
VIg octahedra. The vanadium sublattices, which are transformed to
each other by the inversion operation are shown by different colors
and denoted as V1 and V2. The inversion centers are denoted by
+. (b) Stacking of the honeycomb planes. (c) Densities of states
(DOS) in the local-density approximation. Shaded areas show partial
contributions of the V 3d states. The Fermi level is at zero energy.

Therefore, these are the structures where the antiferro orbital
order will simultaneously break the inversion symmetry and
stabilize the FM ground state. The role of charge and orbital
degrees of freedom in assisting the multiferroic behavior was
known before [1,28]. The new aspect of our proposal is that
the orbital ordering alone can be the source of both ferroelec-
tricity and ferromagnetism.

Then, in Sec. III, we will turn to a realistic example of
VI3, which has attracted a considerable attention as a new
layered FM semiconductor with relatively high Curie tem-
perature Tc ~ 50 K [29]. The main structural motif of this
quasi-two-dimensional van der Waals ferromagnet is again
the honeycomb planes (Fig. 1). According to formal valence
arguments, each V site has two 3d electrons. In the octahe-
dral environment they populate two out of three t,, orbitals,
indicating the importance of orbital degrees of freedom in
the physics of VI3. The main question is, however, how well
these orbital degrees of freedom are quenched by the local
distortions of the VIg octahedra. Indeed, the distortions will
tend to split the #,, levels. The fundamental Jahn-Teller the-
orem states in this respect that the splitting should lift the
orbital degeneracy in the direction to form a nondegenerate
ground state [30]. Nevertheless, if the splitting is small, other
ingredients can come into play. Particularly, two electrons in
the 3d shell are subjected to Hund’s rule effects, which act
in the opposite direction and tend to reenforce the ground
state with maximal multiplicity. The corresponding energy
gain is controlled by the Racah parameter B [31,32]. Using
electronic structure calculations based on density functional
theory (DFT), we will evaluate relevant parameters and show
that B in VI3 is sufficiently large to overcome the crystal-field
splitting and activate the KK mechanism of the orbital order-
ing, as it will follow from the analysis of atomic multiplet
structure and dynamical mean-field theory (DMFT) calcula-
tions on the honeycomb lattice [33,34]. Then, we will show
that for the realistic parameter range, the antiferro orbital
order can be indeed established in VI3, resulting in the FM-
FE ground state. The relativistic spin-orbit (SO) interaction
interplays with the symmetry breaking caused by the orbital
ordering, resulting in a canted magnetic structure, which can
be further controlled by the magnetic field, leading to a huge
change of electric polarization.

205116-2



FERROMAGNETIC FERROELECTRICITY DUE TO THE ...

PHYSICAL REVIEW B 110, 205116 (2024)

Finally, in Sec. IV, we will summarize our results, dis-
cussing their implications to the properties of VI3 as well as
more general aspects of the Hund’s rule physics in solids.

II. TOY-MODEL CONSIDERATIONS

The goal of this section is to illustrate the basic idea of
inversion symmetry breaking by the orbital ordering, result-
ing in coexistence of ferroelectricity and ferromagnetism. For
these purposes we consider toy-model examples of degenerate
yz and zx orbitals in the zigzag chain and honeycomb lattice.
We do not aim to find the correct ground state of the Hubbard
model in a certain parameter range, which is an interesting
problem on its own right. There may be other possible candi-
dates for the ground state, including spin-dimerized or ordered
complex harmonic states [22]. The analysis of these states is
beyond the scopes of our work. Nevertheless, we would like to
emphasize that the scenario of ferromagnetic ferroelectricity,
which we propose, should be seriously considered among
other possible solutions of the Hubbard model.

A. Ordering of the yz and zx orbitals in the zigzag chain

The simplest model, which explains the basic physics of
how the KK mechanism can break the inversion symmetry and
induce the electric polarization is the one-dimensional zigzag
chain (see Fig. 2). In this case, there are two sites in the unit
cell (1 and 2), which can be transformed to each other by the
spatial inversion about the midpoint of the bond, connecting
these two sites. Let us assume that there is only one electron
per site, which is shared by two atomic states, yz and zx. Thus,
in the atomic limit, the ground state is degenerate. Then, the
electron hoppings 7;; are such that in the neighboring bonds
they will connect zx with zx in the direction x and yz with
yz in the direction y [35]: £7" = ;" = t. This hopping lifts
the degeneracy, ordering the orbitals in the alternating way, as
explained in Fig. 2, which minimizes the energy of SE interac-
tions for the FM state [14]. The same orbital ordering makes
the atomic sites inequivalent and, thus, breaks the inversion

FIG. 2. Ordering of the yz and zx orbitals in the zigzag chain,
breaking the inversion symmetry and stabilizing the ferromagnetic
coupling: side view (upper panel) and top view (lower panel). The
electron densities across the inversion centers (denoted by +) are
plotted by different colors: larger objects are the densities in the
atomic limit and smaller objects are the densities transferred from
the neighboring sites due to the superexchange processes in the
directions, which are shown by arrows. aj is the lattice parameter.

symmetry. The corresponding electric polarization can be
evaluated along the same line as in the theory of SE interac-
tions [36,37] but starting for these purposes with the general
expression for P in periodic systems, formulated in terms of
the Wannier functions [38—40]. Namely, if |«) is the occupied
Wannier function at site i in the atomic limit, # will induce the
tail of this orbital, |er’, ;), spreading to the neighboring site ;.
It can be evaluated by treating 7 as a perturbation, the same as
in the SE theory, which yields |af_>j) = —%|a;f)(al’;|fji|af),
where A is the proper combination of on-site Coulomb re-
pulsion U and intra-atomic exchange interaction J describing
the splitting of occupied and unoccupied states with the same
spin and |ej) is the unoccupied Wannier function. It is as-
sumed that J is sufficiently large so that the hopping processes
resulting in the AFM exchange coupling can be neglected.
This yields P|la = ;e(’z)z [41], where two signs stand for
the orbital ordering depicted in Figs. 2(a) (+) and 2(b) (—),
and e is the minus electron charge. In the one-dimensional
case, P||a is nothing but the edge charge [39]. Similar model
was considered in Refs. [36,43] to explain the emergence of
electric polarization in the E-phase of manganites. The main
difference is that, in manganites, the orbital order is driven by
the Jahn-Teller distortion, which is an external factor in the
considered electronic model, while here it originates solely
from the SE interactions and, formally, no distortion is needed
to break the inversion symmetry.

B. Ordering of the yz and zx orbitals in the honeycomb plane

Now we turn to a more realistic model of the honeycomb
plane, which may have some relevance to realistic materi-
als, such as TiCl; [44]. In the honeycomb lattice, there are
also two sites in the unit cell, which can be transformed to
each other by the spatial inversion [see Fig. 3(a)]. Again, we
assume that there are only two orbitals, yz and zx, and one
electron per site. The transfer integral operates only between
orbitals, which are parallel to the bond. For instance, for the
bond 1-2 in Fig. 3, these are zx orbitals. The transfer integrals
in other bonds can be obtained by threefold rotations, as
explained in the Supplemental Material [41].

FIG. 3. Ordering of yz and zx orbitals in the honeycomb plane,
breaking the inversion symmetry and stabilizing ferromagnetic inter-
actions. The electron densities across the inversion centers (denoted
by +) are plotted by different colors. The unit cell is shown by dashed
line. ay is the lattice parameter. (a) Ideal lattice. (b) Distorted lattice,
where B # B’ (as explained in the inset).
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Defining at each site (v) of the unit cell the occupied (o)
and unoccupied (u) orbitals as

) = cosgylyz) + sin ¢, [xz),

|0‘3> = —sing,|yz) + cos ¢, |xz),

and treating the transfer integrals as a perturbation, it is
straightforward to find the following expression for the total
energy change [41]:

-0 2
= — (2~ cos2(¢1 — ),

which takes the minimum if ¢, = ¢ + 5 mod 7. Thus, one
of the angles, ¢;, remain unspecified. Then, the polarization
is given by

r=(e) =52 ()

—\P) al\A sin2¢; )’
where aq is the lattice parameter. Thus, the orbital order-
ing breaks the spatial inversion, yielding finite |P| = a—‘;(é)z.
However, the ground state remains degenerate and P can have

any direction in the xy plane, depending on the angle ¢ .

There can be several scenarios of lifting the degeneracy.
For instance, in a more general case, where there are several
unoccupied states, such a degeneracy does not occur (see
Sec. IIID). In the simplest two-orbital model, considered
here, the value of ¢; can be decided by the exchange stric-
tion effects. Particularly, the orbital ordering in Fig. 3(a) will
make the bond 1-2" and 1-2” different from the bond 1-2 and
the structure will tend to relax in order to further minimize
the energy change. Here, we assume that such deformation
of the honeycomb plane can be described by the angle 8 =
27” + &8, formed by the bonds 1-2" and 1-2” with the bonds

1-2, which is different from the angle 8’ = ZT” — 268, formed
by the bonds 1-2’ and 1-2” with each other, while the bond
lengths are assumed to be the same. § 8 = 0 corresponds to the
undistorted structure. The situation is explained in Fig. 3(b).
The transfer integrals in the bond 1-2 operate only between
zx orbitals, while the ones in the bonds 1-2" and 1-2” are
obtained by considering rotations of 1-2 by the angle F8 [41].
For small 48, the corresponding energy change is given by

2
&= —% <2 —cos2(p1 — ¢2) + %5/‘5 cos 2(¢1 + ¢z)>-
Then, 8 > 0 strengthens the antiferro orbital order in the
bonds 1-2" and 1-2”. In this case, the second and third terms
in (... ) can be minimized independently, yielding ¢; = 0 and
¢ = 5. Thus, the degeneracy is lifted and the polarization is
parallel to the x axis.

The considered models dealing with the d' systems implies
that the degenerate yz and zx states are split off by the crystal
field to become the lowest energy atomic states, which accom-
modate a single electron. Although these models are easy to
solve, and in this sense can be very insightful, they are hardly
practical. The main obstacle for the practical realization of
the considered scenarios is the direction of the crystal field,
which typically acts to form a nondegenerate ground state, as
it is required by the Jahn-Teller theorem [30]. For instance,
one possible d! candidate to form the antiferro orbital order

in the honeycomb lattice is TiCl; [44]. However, the crystal
field in TiCl; tends to stabilize the nondegenerate 72 orbital,
in the direction perpendicular to the honeycomb plane, while
the degenerate states lie higher in energy. The basic limitation
of the d' system is that the crystal field is the only parameter,
which can control the order of the atomic states. Due to the
one-electron character of the problem, the atomic Hund’s rules
simply do not apply here. Thus, there is no way to reverse the
order of the crystal-field orbitals in the favor of the degenerate
ground state. In this sense, a more promising direction is to
explore d? materials. Then, the crystal field will still tend to
select a nondegenerate ground state. Nevertheless, the new
aspect of the d? systems is that the interaction between two
3d electrons is subjected to the Hund’s rule effects, which
act in the opposite direction and tend to stabilize the ground
state with maximal orbital multiplicity. In the next section, we
will argue that VIs is indeed a good candidate for practical
realization of such scenario.

III. IMPLICATIONS TO THE PROPERTIES OF VI;

VI; exhibits the structural phase transition at 7y >~ 78 K,
which is followed by the FM transition at Tz >~ 50 K [29].
Another structural phase transition, at around 32 K, was also
suggested [45,46]. However, currently there is no clear con-
sensus even about the crystallographic symmetry of VI3. For
instance, the high-temperature (7T > T;) phase was proposed
to have trigonal R3 (space group No. 148) [29,45,46], trigonal
P31c¢ (163) [47], and monoclinic C2/m (12) [48] symmetry.
The low-temperature (T < T;) phase was proposed to be tri-
clinic P1 (2) [46,49], monoclinic C 2/c (15) [47], and trigonal
R3 (148) [48]. Thus, even the direction of the distortion with
lowering temperatures appears to be the subject of contro-
versy: some reports suggest symmetry lowering [46,47], while
another report suggests that the symmetry becomes higher,
similar to what is observed in Crl; [48]. To a certain extent,
the value of T; can be controlled by the magnetic field [45].
Moreover, the 32 K transition was also suggested to be mag-
netic, due to either disappearance of the magnetic order in
one of the V sublattices [50] or reorientation of the magnetic
moments [49].

In this section, we systematically study the symmetry
breaking in VI3 caused by the orbital ordering, starting for
these purposes with the structure with highest R3 symme-
try [46]. The R3 space group can be generated by considering
the threefold rotations about z in combination with spatial
inversion. We will show that the experimentally observed
breaking of the threefold rotation symmetry can be rational-
ized by considering the KK mechanism of the orbital ordering
in combination with the Hund’s second rule effects. Further-
more, we predict the new symmetry pattern, also driven by
the KK mechanism, where both threefold rotation and in-
version symmetries are broken by the orbital ordering. The
prediction remains largely intact even for the low-symmetry
experimental P1 structure. This structure has inversion sym-
metry. However, it can be again broken by the orbital order.
We evaluate the electric polarization, induced by the inversion
symmetry breaking, and propose how it can be controlled by
magnetic field.
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A. Method

The electronic structure calculations have been performed
for the experimental crystal structure of VI3, reported in
Ref. [46], and using for these purposes either linear muffin-tin
orbital (LMTO) method [51,52] or the pseudopotential Quan-
tum ESPRESSO (QE) method [53], which were supplemented
with, respectively, local density approximation (LDA) [54]
and generalized gradient approximation (GGA) [55] for the
exchange-correlation potential. After that, we construct the
five-orbital model for the magnetic V 3d bands located near
the Fermi level [V1, + Ve, bands in Fig. 1(c)]:

o ao,ba’ AT A
H= E , § : E :tij Ciao € jbo

ij oo’ ab

+ % Z Z Z Uabmé:aaéjw’éiba 6ial(r” (1)

i oo’ abed

where éjaa (Ciao) stands for the creation (annihilation) of an
electron with spin o at the Wannier orbital a of site i. For
the construction of Wannier functions in QE, we use the
maximally localized Wannier functions method [56], as im-
plemented in the WANNIER9O package [57], while in LMTO
we employ the projector-operator technique [56,58]. Then,
the one-electron part in Eq. (1), 7 = [/ be"]is given by
the matrix elements of the LDA (GGA) Hamiltonian in the
Wannier basis. The dependence of ti"j“’b " on the spin indices
is due to the SO interaction, where the main contributions
come from the heavy I sites. In order to include these con-
tributions, it is essential that the electronic structure for the V
3d bands should be calculated with the SO coupling before
the construction of the model Hamiltonian. Without SO cou-
pling, the matrix elements """ become t;‘j"”’“’ = ti”j’bc‘iw
Then, the crystal-field splitting is given by the site-diagonal
parameters 72",

The screened Coulomb interactions are evaluated within
constrained random-phase approximation [59]. In LMTO, this
is done in an approximate way, basically by considering the
self-screening effect of on-site Coulomb interactions in the V
3d bands by the same V 3d states, which are admixed into the
I 5p and other bands [see Fig. 1(c)], as explained in Ref. [58].
After that, the 5 x 5 x 5 x 5 matrix U = [U%*“] of screened
intra-atomic Coulomb interactions was fitted in terms of three
parameters, which would describe these interactions in a
spherical atomic environment: the Coulomb repulsion U =
F?, responsible for the overall stability of atomic shell with
the given number of electrons; the intra-atomic exchange in-
teractionJ = (F? + F*%) /14, responsible for Hund’s first rule;
and the Racah parameter B = (9F? — F*)/441, responsible
for Hund’s second rule (where F 0 F2? and F* are Slater
integrals) [31,32]. The obtained parameters U, J, and B are
listed in Table I. The value of U is somewhat smaller in
LMTO, while the values of J and B, obtained LMTO and QE
methods, are comparable.

B. Hund’s second rule and orbital degeneracy

In this section we consider the interplay between crys-
tal field and Coulomb interactions in the atomic limit. The
crystal-field orbitals, obtained after the diagonalization of the

TABLE 1. Parameters U, J, and B of intra-atomic Coulomb in-
teractions, and trigonal splitting A, between e; and a,, levels (all

are in eV) in the R3 phase of VI3, as obtained in the model based on
the LMTO and QE methods.

Method U J B Ay
LMTO 1.21 0.74 0.07 0.01
QE 1.97 0.64 0.06 0.03

site-diagonal part of 7 are shown in Fig. 4(a). The octahedral
field, 10Dgq, splits the 3d levels into the three-dimensional
representation f,, and two-dimensional representation eg,

|eg’1> = —sina|xy) + cos o|zx),
|e;,”2> = —sina|x? — y*) + cosa|yz).

The t,, levels are further split by the trigonal field A into the
doubly-degenerate states ey,

|eg'1) = cosalxy) + sin |zx),

w2

7% = cos ar|x? — y?) + sina|yz),

le
which belong to the same representation as ¢, and the non-

degenerate state |a, ¢ ) = |z%). The numerical value of « is

about 34°. Since A > 0, the eif states lie lower than a, ¢ [see
Fig. 4(d)] and accommodate both 3d electrons. Thus, from
the viewpoint of the one-electron crystal-field splitting, the
ground state is expected to be nondegenerate (the so-called
e;’ eg state [60]), in agreement with the Jahn-Teller theo-
rem [30], which should be satisfied at the level of LDA/GGA
calculations. Nevertheless, LDA (GGA) is an approximation,
which does not properly take into account the interactions
responsible for Hund’s second rule [61]. The latter are pro-
portional to the Racah parameter B and can easily overcome
the trigonal splitting if B > A. Realistic estimate of the pa-
rameters suggests that this situation is indeed realized in VIs:
B is certainly small. However, A appears to be even smaller
(see Table I). This trend appears to be generic as very similar
behavior was obtained for the triclinic modifications of VI; at
T = 9 and 60 K [46]: the triclinic distortion further splits the
1, levels. However, the splitting (~10 - 20 meV [41]) remains
to be smaller than B.

Thus, the intra-atomic Coulomb interactions will tend to
reverse the order of eg and a;, levels. This is due to the funda-
mental property of the Hund’s rule coupling to form a ground
state with the greatest value of multiplicity. The intuitive rea-
son can be understood as follow: The main contribution to
the ey states are associated with the xy and x* — y? orbitals
(the corresponding cos o ~ 0.83), which are both located in
the xy plane and, therefore, experience a strong Coulomb
repulsion. In order to reduce this repulsion, it is energetically
more favorable to replace one of the occupied ¢y states by the

a, state. Simple mean-field considerations can be found in
Supplemental Material [41], which clearly show that the effect
is indeed driven by the Racah parameter B.

Results of diagonalization of the two-electron Hamilto-
nian, combining the on-site Coulomb interactions with the
crystal field are summarized in Fig. 4. First, we enforce
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FIG. 4. (a) Crystal-field orbitals for VI;. (b) The effect of Racah parameter B on the two-electron energies without trigonal crystal field.
(c) Amplified low-energy part of (b). (d) Parameters of the crystal field splitting and their values obtained in the model based on the LMTO
method. (e) Two-electron energies, relative to the lowest state, depending on the trigonal splitting 8, = 100(A,/AQ), where A? = 12 meV is
the actual value obtained in the LMTO based model. The value of B is set to 70 meV.

Ay = 0. Then, without B, the energy diagram is pretty much
similar to the one obtained by Tanabe and Sugano for the
d? configuration in octahedral environment [62] [Fig. 4(b)].
Namely, the ground state is *T;, which is ninefold degenerate
(being both spin and orbital triplet). Some states, like T; and
T, remain accidentally degenerate when B = 0. Finite B lifts
this degeneracy not only between T and T,, but also within
each of these states. Particularly, the 3T ground state is split
into the sixfold degenerate state: the spin triplet with orbital
magnetic quantum numbers m = +1 and threefold degenerate
spin triple state with m = O [Fig. 4(b)]. Then, we consider the
effect of Ay [Fig. 4(e)]: As expected, for small Ay, the states
with m = £1 remain lower in energy, while further increase
of A will eventually change the order of the m = 41 and
m = 0 states.

Thus, within realistic parameters range, the ground state of
the V37 ion in VI; remains to be orbitally degenerate, opening
a possibility for the KK mechanism of orbital ordering, once
we consider the transfer integrals in the honeycomb lattice.

It is also instructive to compare the behavior of VI3 with
V,03. The latter compound, formally hosting the same V3*
ions in the trigonal environment, was regarded as the canoni-
cal S = % Mott insulators, where a,, electrons are dimerized
in the V-V bonds and form a singlet, while the remaining
e, electrons form an orbitally ordered state, resulting in a
peculiar AFM structure [63]. However, this picture was later
revisited on the basis of first-principles calculations, suggest-
ing the predominantly egey configuration of V3* in V,03,
corresponding to the nondegenerate m = 0 state [60]. Then,
why is the behavior of V37 in VI; so different from V,03? We
have constructed the model for the V 3d bands in V,03 using
the experimental R3c structure at T = 175 K [64]. The cor-
responding parameters, controlling the order of the m = +1
and m = 0 states, are B = 0.09 eV and A, = 0.15 eV. Thus,
although B > A in Vs, it appears that B < Ay in V,03,
reversing the order of states and forcing the m = 0 ground

state. Furthermore, 10Dgq is another important parameter in
the problem. The Hund’s rule interactions tend to mix the
e, and eg states, belonging to the same representation, to
further minimize the energy of intra-atomic interactions. This
mixing acts against the octahedral field. Thus, the perspec-
tives of realization of the orbitally degenerate ground state
depend not only on the values of B and Ay, but also on
10Dgq. In this respect, it is also important that 10Dgq is rel-
atively small in VI3 (10Dg = 1.49 eV) in comparison with
V703 (10Dg = 2.31 eV, see Supplemental Material [41] for
details).

It is needless to say that the use of the five-orbital model,
constructed for both the 7, . and eg bands, is essential to incor-
porate the effects of Hund’s second rule. Formally, the V 1,,
bands in VI; are well separated from other bands (see Fig. 1).
Then, it would be straightforward to construct a more compact
three-orbital model for the Vz, " bands, which is certainly eas-
ier to solve. However, there can be no separate Hund’s second
rule in the isolated 7, . shell, where two-electron configuration
with § = 1 is equivalent to a noninteracting single-hole con-
figuration. Therefore, such a model would be meaningless for
the purposes of our work, as it does not take into account the
essential piece of physics.

C. Basic electronic structure

In most of the applications, the model (1) was solved in
mean-field Hartree-Fock (HF) approximation [58], replacing
the interaction part by

2.2

i oo’ ab

00 AOT A0
i,abCia Cip

(@)
and solving the obtained one-electron equations with the
mean-field potential V; = [Vfa"b/] self-consistently. In order
to check the validity of the HF method, we also employ
the DMFT. The details can be found in the Supplemental

205116-6



FERROMAGNETIC FERROELECTRICITY DUE TO THE ...

PHYSICAL REVIEW B 110, 205116 (2024)

B=0

B#0
7=580 K B—AT—%O K
N AA Pa
/&&120 K &20 K

pall
4 Jh Il e m
a
&
2 eo‘
g
Faal

DOS (1/eV VI,)
S = N W RO — N WS

DOS (1/eV VI,)
[=)

e
)

W ™

2 W

:

-2 -1 0 1 2 3 4 5.2 -1 0 1 2 3 4 5
Energy (eV) Energy (eV)

FIG. 5. Total and partial densities of states in the crystal-field
representation as obtained in the dynamical mean-field theory for
T = 580 and 120 K in the paramagnetic state (top) and Hartree-
Fock approximation for the ferromagnetic state (bottom). The Racah
parameter B was set to either O (left) or 0.06 eV (right). Other
parameters were taken from the QE set (see Table I). The Fermi level
is at zero energy (the middle of the band gap).

Material [41]. In order to reproduce the semiconducting be-
havior of VI3 in the framework of DMFT, it is important to use
the QE model parameters. The smaller value of U, obtained in
the LMTO method, was insufficient to open the gap.

As we will see below, the HF approximation gives us a sta-
ble mean-field solution, where the orbitally ordered state has a
much lower energy compared to other possible configurations.
Therefore, we believe that the mean-field approach is a reli-
able starting point for the analysis of multiferroic behavior in
VI;. Furthermore, the HF approximation is a more convenient
tool for the analysis of electric polarization in terms of the
Berry-phase theory as it can be adapted for the use of the
King-Smith-Vanderbilt formula [38—40]. On the other hand,
the quantum orbital fluctuations are known to play an impor-
tant role in the physics of d? materials [65-67]. With this in
mind, we employed a more sophisticated DMFT technique,
which allows us to incorporate local quantum effects and be-
comes exact in the limit of infinite dimensions [33,34]. While
DMEFT calculations in our work have been carried out for the
paramagnetic state, the results are very reasonable and support
our main conclusions derived from the HF approximation.

The corresponding densities of states are shown in Fig. 5.
First, the HF method captures the main tendencies of two-
electron calculations in the atomic limit considered in the
previous section. Namely, without B, the doubly degenerate
majority-spin ey states are occupied, while the nondegenerate
a,, states are located in the unoccupied part of the spec-
trum, which is totally consistent with the fact that for B = 0
the occupation of atomic states is controlled solely by the
crystal field. Nevertheless, the situation changes dramatically
when we switch on B. Then, the degeneracy of the ¢; states
is lifted, splitting them into the occupied and unoccupied
bands. Furthermore, the a,, states become occupied. This
tendency is supported by DMFT calculations for the paramag-
netic state. However, these calculations are performed at finite

temperatures, which additionally affect the distribution of
the atomic states. Particularly, 7 = 580, 230, and 120 K
used in the calculations (all are far above 7¢) correspond to
kgT = 0.05,0.02, and 0.01 eV. The results for T = 580 and
120 K are shown in Fig. 5 and the ones for 7 = 230 K are
discussed in the Supplemental Material [41]. The first value of
kgT 1is larger than A, = 0.03 eV, while two other values are
smaller than A (but all the values are comparable to Ay, and
B = 0.06 eV). This readily explains the fact that even for B =
0 there is a finite weight of the a,, states in the occupied part.
Nevertheless, this weight clearly decreases with the decrease
of T and practically vanishes for T = 120 K. Therefore, it
can be attributed to the finite temperature effects. On the other
hand, when B is finite, the same weight of the occupied a, "
states practically does not depend on 7', meaning that in this
case it is the feature of Hund’s second rule.

D. Orbital ordering and magnetic ground state

In order to study the orbital ordering in VI3, we turn to
the HF calculations. The use of the QE set of model pa-
rameters was important at the level of DMFT calculations
to reproduce the semiconducting character of VI;. However,
the HF approximation tends to overestimate the band gap
in comparison with DMFT (see Fig. 5). To be specific, the
energy gap in DMFT is well consistent with the experimental
value of 0.6 eV [29], while the HF band gap, 0.9 eV, is clearly
overestimated. Therefore, we believe that at the level of HF
calculations, it would be more reasonable to use a smaller
value of U in order to mimic the band gap obtained in DMFT.
This is the main reason why we switch to the LMTO set
of model parameters (Table I). The corresponding electronic
structure can be found in the Supplemental Material [41].

The orbital ordering (the distribution of electron densities
around V sites) obtained in the HF approach for the FM state
is displayed in Fig. 6. Particularly, we have performed three
types of calculations (by properly averaging the HF potential
in the process of calculations): (i) by enforcing the original R3
symmetry of the lattice, including threefold rotation about z
and inversion symmetries; (ii) by enforcing only the inversion
symmetry and treating two V sites in the unit cell as equivalent
(the space group P1); (iii) by fully relaxing the symmetry
and allowing a different shape of the electron density around
two V sites, which are crystallographically connected by the

i o

AE=0 AE=—0.36 meV/VI, AE=—475 meV/VI,

FIG. 6. Orbital ordering in the ferromagnetic state of rhombohe-
dral R3 phase of VI; as obtained in the Hartree-Fock calculations by
enforcing the original trigonal R3 symmetry, the triclinic P1 sym-
metry, and fully relaxing the symmetry (P1). The crystallographic
inversion centers are denoted by 4. AE is the corresponding energy
change relative to the ferromagnetic R3 state.
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FIG. 7. Spin-wave stiffness tensors (in meVA?) for the orbital
states of the R3, P1, and P1 symmetry, and corresponding spin-wave
dispersions near the I point of the Brillouin zone.

spatial inversion (the space group P1). In the R3 case, both
electrons are forced to occupy two ey states, resulting in the

ey e, configuration with small admixture of the e states due

to the hybridization effects. In the P1 case, one of the occupied
states is eg while another one is a,, (the configuration ez a, ).
Nevertheless, the occupied e;’ states are the same at the sites
V1 and V2 (see Fig. 1). Thus, the threefold rotational symme-
try is broken, but the spatial inversion is preserved. In the P1
case, the occupied e? states are different at the sites V1 and
V2, thus breaking both threefold rotational and inversion sym-
metries. The total energy steadily decreases in the direction
R3 — P1 — P1. Thus, the R3 phase experiences the internal
instability due to the orbital ordering, which tends to lower the
symmetry.

By enforcing B = 0 in the HF calculations, we were able
to obtain only one solution corresponding to the R3 symmetry.
Other solutions with the P1 and P1 symmetries, obtained for
B # 0, steadily converge to the R3 one after setting B = 0.
Thus, the Hund’s second rule effects play a crucial role in
breaking the symmetry and establishing the antiferro orbital
order in the P1 phase. Yet, the precise meaning of “antiferro
orbital order” in this context needs to be clarified, because the
occupied ey orbitals in the vanadium sublattices V1 and V2
are not orthogonal and, strictly speaking, there are simultane-
ously ferro and antiferro components of the orbital ordering.
Nevertheless, contrary to the P1 phase, where there is only the
ferro component, the P1 phase also contains the antiferro one.

Employing linear response theory [68], we study the local
stability of the FM state. The spin-wave stiffness tensors,
D, calculated for each of the orbital states of the R3, P1,
and P1 symmetry, and the corresponding spin-wave disper-
sions near the I' point of the Brillouin zone are displayed
in Fig. 7. For the R3 symmetry, the tensor D is negative
definite in the xy plane, meaning that the FM state is unstable.
With lowering the symmetry R3 — P1 — P1, the tensor D
becomes positive-definite. Thus, the FM order is stabilized
by the orbital order in the P1 and P1 phases. Furthermore,
lowering the symmetry results in the anisotropy of D in the
xy plane, which increases in the direction P1 — P1. The

FIG. 8. Orbital ordering of the P1 symmetry around two V sites
in the rhombohedral cell.

AFM alignment of two V sublattices was also considered.
However, the obtained AFM phases were substantially higher
in energy than the FM ones. The details can be found in the
Supplemental Material [41].

We also tried to choose various starting conditions in the
HF calculations, assuming different populations of the atomic
states in the initial guess for the potential (2) and then solving
the problem self-consistently. Nevertheless, such calculations
steadily converged to one of the orbital ordering displayed in
Fig. 6. Thus, the degeneracy of the orbitally ordered states,
which was encountered, for instance, in the toy-model analy-
sis in Sec. II B, is lifted, even without lattice distortions. The
reason is that the degeneracy of unoccupied ey states is lifted
by electron-electron interactions with the occupied configura-
tion ega, . Therefore, the virtual hoppings into the subspace
of unoccupied ey orbitals, relevant to the SE process, are no
longer equivalent, leading to a specific type of the orbital
ordering. In the R3 crystal structure, the only equivalent types
of the orbital order can be obtained by rotating the ones in
Fig. 6 by +120° about z. Then, the orbital ordering pattern of
the R3 symmetry will transform to itself, while for each of the
P1 and P1 symmetries, such rotations will generate two more
equivalent domains. Then, applying the inversion operation
to such three orbital domains of the P1 symmetry, one can
generate three more domains.

In the P1 state, the orbital ordering breaks the inver-
sion symmetry and induces the electric polarization P. The
latter can be evaluated using Berry-phase theory [38—40],
which can be adapted for the model Hamiltonian (1) in the
HF approximation [69]. Without SO interaction, it yields
P = (—0.06,0.18, —0.05) uC/cm?. Thus, P appears to be
finite in the honeycomb plane as well as in the direction
perpendicular to the plane. In the SE approximation, which
can be derived starting from the general Berry-phase the-
ory [37,69], this polarization takes the pairwise form P =
> @jy Pij and can be expressed via weights of the Wannier

functions, transferred to the neighboring sites, |o;—, j|2:
etT;;
\%4

where 7;; = R; — R; is the vector connecting the atomic site
j with the site i. The crystal structure of VI; is such that
around each site V1 there are three neighboring sites V2
in the ohoneycomb plane (2¥ - 2! in Fig. 8, separated by
3.95 A) and one next-nearest-neighbor site V2 in the

P = (lotjmil® = letims i), ©)
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perpendicular direction (21, separated by 6.55 A). In the
R3 structure, the sublattices V1 and V2 are transformed to
each other by the spatial inversion. Therefore, such bonds
are centrosymmetric and |o;_, j|2 = |« j_>,-|2. Nevertheless, the
orbital order breaks the inversion symmetry, so that besides
the symmetric part, each of |e;_, ;|* will also acquire the anti-
symmetric one, resulting in finite P;;. Similar situation occurs
around site 2. If for each of the bond 1 around site 1, 2’ is the
equivalent to it bond around site 2 (say, 12'1I and 21‘]‘, or 12+
and 21+ in Fig. 8), we have |oij|2 = |aj’~>2|2, T, = —T2,
and therefore Py; = P, resulting in final total P. Thus, the
bonds 12+ and 21+ are responsible for finite P?, while other
bonds are responsible for finite polarization in the honeycomb
plane.

E. Triclinic distortion

In this section we briefly consider the effect of triclinic
distortion on the orbital ordering, using for these purposes
experimental parameters of the P1 structure at T = 9 K [46].
The triclinic distortion additionally splits the ey levels. How-
ever, the magnitude of this splitting (~10 — 20 meV [41]) is
smaller than B, so that the main tendencies obtained for the
trigonal structure remain largely intact.

In the HF approximation, we were able to obtain two dis-
tinct solutions for the FM state (Fig. 9). The first one has
the P1 symmetry, the same as the crystal structure, where two
V sublattices are transformed to each other by the spatial in-
version. The second solution has the P1 symmetry, where the
inversion symmetry is broken by the antiferro orbital order.
The solutions are nearly degenerate. The spin-wave stiffness

P1 P1

AE=0.25 meV/V,

(9,,0.0) (0,4,,0)  (0,0,9,)
I

-1\ -
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FIG. 9. Top: Two types of the orbital ordering of the P1 and
P1 symmetry, obtained in the triclinic structure of VI; for the fer-
romagnetic state. The crystallographic inversion center is denoted
by +. AE is the energy change relative to the orbital state of the
P1 symmetry. Bottom: Spin-wave stiffness tensors (in meVA?) for
the orbital states of the P1 and P1 symmetry, and corresponding
spin-wave dispersions near the I point of the Brillouin zone.

tensor D is positive-definite for both symmetries, meaning that
the FM state is stable. Enforcing B = 0 in the HF calculations,
the P1 solution steadily relaxes to the P1 one. Thus, the Racah
parameter B is solely responsible for the antiferro orbital order
and breaking the inversion symmetry.

F. Spin-orbit interaction and magnetic-field control
of electric polarization

Similar to more studied Crl; [70], the main source of
the SO interaction in VI; are the heavy iodine atoms. The
corresponding parameter of the SO coupling, £ ~ 0.1 eV, is
comparable to B and larger than A,. Moreover, unlike in
Crl3, the majority-spin f, shell in VI3 is only partially filled.
Therefore, one can generally expect the SO coupling to play a
very important role in VI3.

The SO interaction practically does not change the dis-
tribution of electron density around V sites [see Fig. 10(a)].
However, it has a profound effect on other elements of the den-
sity matrix, responsible for magnetic properties. Furthermore,
besides spin, there is an appreciable orbital magnetization.
Breaking the threefold rotation symmetry in the orbitally or-
dered states of the P1 and P1 symmetry will lead to a canted
magnetic structure. On the microscopic level, this canting is
related to the population of the a;, orbital and one of the ey
orbitals, so that the SO interaction operating between the oc-
cupied a,, and unoccupied e orbitals will obey the selection
rules: Ao = £1 and Am = F1, leading to rotation of spin
(M) and orbital (M|) magnetic moments away from the z
axis. In the P1 state, where two V sites remain equivalent, this
rotation occurs in the same direction for v = V1 and V2. Thus,
the canting is ferromagnetic. The additional breaking of inver-
sion symmetry in the P1 state will lead to the AFM canting of
spin and orbital magnetic moments, which can be regarded
as an effect of Dzyaloshinskii-Moriya interaction [71,72],
induced by the antiferro orbital ordering in the otherwise
centrosymmetric crystal structure. Microscopically, the AFM
canting occurs because, in the P1 state, the unoccupied eg

(b) (-0.07,-0.79,1.83)

(0,-0.79,1.83)

(C) (-0.06,0.17,-0.49)

zléy
X

FIG. 10. Results of Hartree-Fock calculations with the spin-orbit
interaction: (a) Orbital ordering of the P1 symmetry, (b) Spin mag-
netic moments (Mg), (c) Orbital magnetic moments (M;). The
numerical values of Mg and M| in two magnetic sublattices are given
in parentheses. The crystallographic inversion center is denoted
by +.

(0.06,0.17,-0.49)
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FIG. 11. Magnetic-field dependence of magnetization (top) and
electric polarization (bottom). The field is applied parallel to the z
axis. Mg and Mg + M; are the z components of, respectively, spin
and total magnetic moments. P° is the z component of the electric
polarization.

orbital at the sites 1 and 2 are different, resulting in the differ-
ent coupling with the occupied a,, orbitals. The FM canting
takes place mainly in the yz plane [see Figs. 10(b) and 10(c)].
First, we note that besides the spin, there is a large orbital
magnetic moment M{ = 0.5 ug, which is consistent with the
experimental value of 0.6 ug derived from the x-ray magnetic
circular dichroism spectra [73]. The polar angles formed by
the spin, orbital, and total (Mg + M|) magnetic moments
with the z axis can be estimated as Vs = 24°, ¥, = 160°,
and Vs = 25°, respectively. The latter is consistent with the
experimental estimate of ¥ ~ 36° [49]. Then, the AFM
canting takes place mainly in the xy plane, where the magnetic
moments of the sublattices V1 and V2 are additionally rotated
relative to each other by Agps = 5° and Agp = 36°, for the
spin and orbital counterparts, respectively.

Thus, the SO interaction largely modifies the magnetic
structure of VI3. This changes the electric polarization dra-
matically. Using Berry-phase theory, one can readily evaluate
the electronic part of P, associated with the change of the
electronic structure after taking into account the SO coupling.
It yields P = (—1.86, 1.59, —3.85) MC/sz, which exceeds
the same value obtained without SO coupling by more than
one order of magnitude. This change is associated with the ad-
ditional contributions to the magnetoelectric coupling, which
are activated by the SO interaction. First, the orbital magne-
tization can additionally contribute to P [74,75], which is a
quite plausible scenario in the present case because M is
large. Another contribution to P is due to the noncollinear
magnetic alignment [76-78].

Then, we consider how the electric polarization can be
controlled by external magnetic field H. The basic idea is that

by applying the magnetic field one can control the canting
of magnetic moments and the degree of mixing of the a,,
and e characters in the ground state, which plays a crucial
role in establishing the antiferro orbital ordering and devel-
oping the electric polarization. Thus, P can be eventually
controlled by H. Then, we apply the magnetic field parallel
to z, H = (0,0, H), and monitor the behavior of spin and
orbital magnetic moments as well as the electric polarization,
derived from the HF calculations. The results are summarized
in Fig. 11: the magnetization reveals the specific hysteresis
loop, while the polarization has a butterflylike shape. The
magnetic field # ~ 10 T applied in the direction of M is
sufficient to saturate both magnetization and the electric polar-
ization (P* ~ 3 uC/cm?). The magnetic field in the opposite
direction gradually decreases M§ and M + M; and increases
the xy components of these moments. Then, H ~ —7 T causes
the reorientation of Mg along the field. The corresponding
polarization undergoes the jump AP? ~ 2.4 uC/cm?, which
is comparable to AP* ~ 1.7 uC/cm? in CaBaCo,O7 and so
far regarded as the largest experimentally observed change of
electric polarization induced by the magnetic field [79].

IV. SUMMARY AND OUTLOOK

We have proposed a route for designing ferroelectric ferro-
magnets: a fundamentally and practically important subclass
of multiferroic materials, which are not simply magnetic,
but ferromagnetic. Our basic idea is that the antiferro orbital
ordering across the inversion center should not only produce
the FM interactions between the spins, as it follows from the
GKA rules, but can also break the inversion symmetry. The
vitality of this idea was illustrated on the toy models of the
orbital ordering in the zigzag chain and honeycomb plane.
Then, we have proposed that such a scenario can be indeed
realized in the van der Waals ferromagnet VI3, where the
Hund’s second rule effects tend to form the atomic ground
state with the greatest possible multiplicity, thus unquenching
the orbital degrees of freedom and activating the KK mech-
anism of the orbital ordering. This mechanism is responsible
for the antiferro orbital order in VI3, which breaks not only the
threefold rotation, but also inversion symmetry, resulting in
the FE-FM ground state. Thus, the orbital degeneracy is lifted,
as it is required by the Jahn-Teller theorem [30]. However,
this degeneracy lifting occurs via the SE processes, whereas
the crystal distortions probably play a secondary role. This
is in line with general symmetry considerations suggesting
that the pseudo-Jahn-Teller mechanism, which results in the
noncentrosymmetric ionic displacements, is not operative in
the d? systems, such as VI3 [12].

The relativistic SO interaction, collaborating with the sym-
metry breaking, results in the canting of magnetization, which
can be further manipulated by the magnetic field. This opens
a possibility for controlling the electric polarization, which
undergoes a huge change in the magnetic field.

The available experimental information about the crystal
structure of VI3, especially regarding the stacking of the hon-
eycomb planes as well as the symmetry of these planes, is
very controversial, as several different structures have been
proposed for the room-temperature as well as low-temperature
phases [45-50]. We consider such fragility of the crystal
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structure to be a manifestation of the orbital phenomena in
VI;: it appears that the orbital degrees of freedom in VIj
remain flexible and there may be several scenarios of lifting
the orbital degeneracy depending on the experimental condi-
tions. We hope that our scenario, where the orbital ordering
not only lifts the degeneracy but also breaks the inversion
symmetry, leading to the ferroelectric ferromagnetism, can be
eventually realized in VI;. From this perspective, particularly
interesting are the results of Ref. [47], where the P31c and
C2/c structures were proposed for, respectively, the high-
and low-temperature phases of VI3. These structures are still
centrosymmetric. However, the vanadium sites V1 and V2,
forming the honeycomb planes, become inequivalent. Thus,
within each honeycomb plane, the inversion symmetry ap-
pears to be broken and this is consistent with our scenario
of the antiferro orbital order. Another, again indirect, indica-
tion of the inversion symmetry breaking in the honeycomb
plane is the different behavior of the magnetic sublattices V1
and V2 reported in certain temperature range (36 K < T <
51 K) [50].

There is a number of theoretical studies reporting the
threefold rotation breaking in VI3 at the level of DFT + U
calculations with the SO coupling, due to partial popula-
tion of the q, o State [73,80-83]. Nevertheless, none of these
studies reported the inversion symmetry breaking. The sym-
metry breaking in Refs. [73,80-83] is solely related to the SO
interaction: the eg ey configuration, respecting the threefold
rotation symmetry, would yield only small M} (being about
—0.1 pg, along the z axis, emerging due to the mixing of e}
with the unoccupied e states by the SO coupling). Therefore,
in order to increase My, and thus maximize the energy gain
caused by the SO interaction, it is essential to rotate M, away
from the z axis by breaking the threefold rotation symmetry
and populating the a,, state. Another theoretical scenario of
threefold inversion breaking is based on the electron-lattice
interactions, resulting in three distinct V-V bond lengths in
the honeycomb plane, as was theoretically proposed for the
FM VCl; monolayer without SO coupling [84]. Then, the
electric polarization can be induced by considering a substrate
effect, i.e., pretty much similar to the standard procedure
employed in heterostructures [7]. What we propose here is
fundamentally different: according to our scenario, the sym-
metry can be broken by ordering the orbitals, which would
remain degenerate in the atomic limit. Formally, neither SO
interaction nor lattice distortion are needed in our case, though
they can play an important role by further facilitating the
symmetry breaking and for establishing the magnetic-field
control of P. Whether such behavior can be indeed achieved at
the level of DFT 4 U calculations depends on the implemen-
tation, which must include all necessary terms proportional
to the Racah parameter B. Although it was considered on
earlier stages, where the DFT + U functional was formulated
in terms of all Slater integrals and, therefore, explicitly in-
cluded the dependence on the Racah parameter B [85,86],
the latter, commonly used but simplified, versions are for-
mulated in terms of only one parameter Uy = U — J and,
thus, disregard the contributions responsible for Hund’s sec-
ond rule [87,88].

In the most general formulation, DFT should be able to
incorporate the exchange-correlation interactions responsible
for atomic Hund’s second rule. However, such effects are
omitted in many popular approximations supplementing DFT,
such as LDA or GGA, which take the functional form of
these interactions from the limit of homogeneous electron
gas, where, strictly speaking, the atomic Hund’s rules are no
longer applicable, resulting in a number of fundamental issues
for atomic systems [61]. Therefore, a very popular direction
around 1990s was to simulate the Hund’s rule physics on the
top of LDA by introducing a phenomenological correction,
proportional to some appropriate Racah parameter (B for 3d
electrons), with the aim to reproduce the orbital magnetization
in solids, which was severely underestimated in the local
spin-density approximation [§9-91]. For the Mott insulators,
the logic behind was that the Coulomb repulsion U should
split the occupied and unoccupied 3d states [92]. However, the
Racah parameter B is another important ingredient to decide
the correct symmetry of states, which will be further split by
U [90]. Nevertheless, in most of the cases, such symmetry is
already decided by the crystal field and SO interaction. More-
over, the orbital magnetization strongly depends on the value
of Coulomb repulsion U, as it controls the strength of the hy-
bridization between occupied and unoccupied states [93,94].
In many cases, the value of orbital magnetization can be
reproduced by the Coulomb U alone, especially when it is
treated as an adjustable parameter. From this perspective, the
unique aspect of VIj is that both parameters, U and B, appear
to be important for finding the correct ground state.

While the importance of intra-atomic exchange coupling
J in the physics of strongly correlated materials is well rec-
ognized today [95], the more delicate effects, driven by the
Racah parameter B, remain largely unexplored. It is true that
B is much smaller than J (typically, B ~ 0.1J), reflecting
the well-known hierarchy of atomic Hund’s rules, when the
second rule always follows the first one. Nevertheless, if B
is larger or comparable to the characteristic crystal field, the
Hund’s second rule effects can lead to a number of interesting
and so far unexplored effects. The ferromagnetic ferroelec-
tricity in VI3, which we propose in this work, is certainly one
of them.
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