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Field-induced superconductivity mediated by odd-parity multipole fluctuation
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Field-induced superconductivity has long presented a counterintuitive phenomenon and a pivotal challenge in
condensed matter physics. In this paper, we introduce a mechanism for achieving field-induced superconductivity
wherein the sublattice degree of freedom and the Coulomb interaction are tightly entwined. Our multipole-
resolved analysis elucidates that lifting the fluctuation degeneracy results in an unconventional Cooper pairing
channel, thereby realizing field-induced superconductivity. This research substantively augments the exploration
of the latent potential of strongly correlated electron systems with sublattice degrees of freedom.
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I. INTRODUCTION

Superconductivity, which is typically suppressed by a
magnetic field through both the Pauli and orbital-depairing
effects [1], is paradoxically induced by the magnetic field
in some systems. This counterintuitive phenomenon has gar-
nered significant attention due to its implications for the
unconventional origins of superconductivity. One of the well-
known mechanisms of field-induced superconductivity is the
Jaccarino-Peter effect [2,3], which states that the external
magnetic field compensates for the internal field produced
by magnetic ions. Notably, the Chevrel phase superconduc-
tor EuxSn1−xMo6S8 [4,5] and the organic superconductors
λ-(BETS)2FeCl4 [6,7] and κ-(BETS)2FeBr4 [8] have been
associated with the Jaccarino-Peter effect. In addition, the
decrease of Kondo scattering [9,10] and the reduction of the
quasiparticle renormalization effect [11] have also been dis-
cussed as other possible mechanisms.

Field-induced superconductivity in uranium-based super-
conductors, as observed in UGe2 [12,13], URhGe [14,15],
UCoGe [16,17], and UTe2 [18–21], has been established
experimentally. This class of phenomena has predominantly
been attributed to changes in effective interactions for Cooper
pairing, specifically the amplification of ferromagnetic fluc-
tuations. The application of a magnetic field brings these
systems closer to a quantum critical point, which in turn
enhances the strength of effective interactions responsible for
the observed field-induced superconductivity [22–30].

Recently, the discovery of field-induced parity transition
in CeRh2As2 has illuminated the role of sublattice degrees of
freedom in heavy-fermion systems [31]. Subsequent intensive
experimental and theoretical works have demonstrated that
local inversion symmetry breaking can enable Cooper pairs
to form odd-parity pairings in the high-magnetic-field phase
[32–58]. Interestingly, similar sublattice structures in the unit
cells are also inherent in the uranium compounds mentioned
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earlier. In addition, field-induced superconductivity has been
reported in a locally noncentrosymmetric cerium-based super-
conductor CeSb2 [59,60] and in magic-angle twisted trilayer
graphene [61,62]. Both uranium- and cerium-based supercon-
ductors, as well as moiré systems, may have superconducting
states driven by electron correlation effects. Given this, the-
oretical studies focusing on the strong correlation effect,
sublattice degrees of freedom, and the magnetic field are
of significant interest. Indeed, the introduction of sublattice
degrees of freedom leads to the emergence of multipoles
within the systems, termed augmented multipoles, which are
distributed throughout the unit cell [63–65]. The invoked
interplay between superconductivity and multipole degrees
of freedom has been the subject of extensive investigation
[66–71]. However, most of the previous theoretical studies
have been based on the weak-coupling theory. In particular,
it should be noted that previous research has often assumed
degenerate interactions in the sublattice degrees of freedom.

II. EFFECTIVE ACTION

In this paper, we introduce a mechanism for field-induced
superconductivity that originates from degeneracy-lifted pair-
ing interactions in sublattice degrees of freedom. A theoretical
basis for strongly correlated superconductors is the following
effective action:

Seff [ψ̄, ψ] = Seff, 0[ψ̄, ψ] + Seff, int[ψ̄, ψ]

=
∑

k

ψ̄k,α (−iωnδ
αβ + Hαβ

k + 	
αβ

k )ψk,β

+
∑
k,k′,q

ψ̄k+q,αψk,β
αβγ δ
q ψ̄−k′,δψ−k′+q,γ , (1)

where the abbreviated notations of k = (k, iωn), q = (q, iνn),
and α = (s, σ ) are employed. Here, the momentum k and
the fermionic and bosonic Matsubara frequencies ωn = (2n +
1)πT , νn = 2nπT stand for the space-time dependence of
the electron field ψk,α and the correlation functions. The
indexes s and σ represent the spin and sublattice degrees
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of freedom, respectively. The Hαβ

k is the single-particle
Hamiltonian. We introduce the self-energy (	) and the ver-
tex function (
); the former causes the renormalization of
mass and damping of quasiparticles, while the latter drives
the system toward superconductivity. These quantities obey
the Ward-Takahashi identity: 	

αβ

k = ∑
q 


αγβδ
q Gδγ

k−q [72,73].

Here, Gαβ

k = −〈ψk,αψ̄k,β〉 describes the single-particle Green
function. While the k and k′ dependences of the vertex func-
tion are ignored for brevity, the extension of the following
discussion to include such momentum dependence is straight-
forward [66,71].

By virtue of diagrammatic techniques (e.g., the fluctuation
exchange (FLEX) approximation [74–76] or Parquet approx-
imation [77,78]), the above effective action can be derived
from a bare action,

Sbare[ψ̄, ψ] =
∑

k

ψ̄k,α (−iωnδ
αβ + Hαβ

k )ψk,β

+
∑
k,k′,q

ψ̄k+q,αψk,β
0,αβγ δ
q ψ̄−k′,δψ−k′+q,γ . (2)

In this study, we focus on two-sublattice superconductors, in-
cluding bilayer superconductors and twofold nonsymmorphic
crystalline superconductors. In the bare action, Hαβ

k repre-
sents the Hamiltonian of the two-sublattice system [44],

Hk = εks0 ⊗ σ0 + αgk · s ⊗ σz + t⊥s0 ⊗ σx − μBHsz ⊗ σ0.

(3)

Here, εk = −2t (cos kx + cos ky) + 4t ′ cos kx cos ky − μ and
t⊥ represent intra- and intersublattice hopping term, respec-
tively, and the sublattice-dependent gk · s term represents
staggered Rashba-type spin-orbit coupling, which are orig-
inated from local inversion symmetry breaking [32,79–
90]. The g-vector gk = [−∂εk/∂ky, ∂εk/∂kx, 0] introduces the
momentum- and sublattice-dependent spin polarization [91].
The H represents the Zeeman magnetic field parallel to the z
axis. The interaction term in the bare action is the Hubbard-
type on-site Coulomb repulsion,

Sbare, int = U
∑

σ

ψ̄i,↑,σ ψi,↑,σ ψ̄i,↓,σ ψi,↓,σ . (4)

The bare interaction tensor 
0 is obtained from the above
Hubbard interaction (see Appendix A).

The internal degrees of freedom of the two-sublattice
model are classified by the augmented multipole operator Q̂
[63–65],

Q̂μν =
∑

k

ψ̄k+q,αQμν

αβψk,β , (5)

where Qμν = s̄μ ⊗ σ̄ ν satisfies the normalization condition
tr[QQ†] = 1. Here, s̄μ = sμ/

√
2 (σ̄ μ = σμ/

√
2) are the nor-

malized Pauli and unit matrices. The completeness of the Pauli
matrices and the unit matrix leads to the following identity:∑

Q
Q̄i jQ̄kl = δilδ jk, (6)

where δi j is Kronecker’s delta. This identity facilitates the
analysis of multipole-resolved fluctuations [92]. The interac-
tion term Seff, int in the effective action can be expressed as the

sum of the bilinear interaction of the multipoles [93–97],

Seff, int[ψ̄, ψ] ≈
∑
Q,q

Q̂qV Q
q Q̂−q, (7)

where V Q
q = Qαβ


βαγ δ
q Qγ δ describes the coupling constants

of interaction between the augmented multipoles. For sim-
plicity of the physical picture, interactions between different
multipoles are omitted here, but they are appropriately taken
into account later in the numerical calculations.

From the multipole-resolved interaction, a zero-
momentum (q = k − k′ = 0) Cooper pairing interaction
can be obtained [66,71]. The intrasublattice even- and
odd-parity multipole fluctuations, denoted by σ̄ 0 and σ̄ z,
result in the following Cooper pairing interactions [71]:

Sσ0 [ψ̄, ψ] = 1

2

∑
k,k′

V σ 0

k−k′
{
P̂0,†

k P̂0
k′ + P̂ z,†

k P̂ z
k′

+ P̂x,†
k P̂x

k′ + P̂y,†
k P̂y

k′
}
, (8)

Sσz [ψ̄, ψ] = 1

2

∑
k,k′

V σ z

k−k′
{
P̂0,†

k P̂0
k′ + P̂ z,†

k P̂ z
k′

− P̂x,†
k P̂x

k′ − P̂y,†
k P̂y

k′
}
, (9)

where P̂μ = ψασ̄
μ

αβψβ (see Appendix B). In the degenerate
case, where even- and odd-parity multipole interactions have
the same coupling constant (i.e., Vk−k′ := V σ 0

k−k′ = V σ z

k−k′ ), we
obtain

Sdegenerate =
∑
k,k′

Vk−k′
{
P̂0,†

k P̂0
k′ + P̂ z,†

k P̂ z
k′
}
. (10)

This is simply the frequently assumed pairing interaction for
two-sublattice models [32,80–85,88,98,99]. When the degen-
eracy is lifted, the second-line terms in Eqs. (8) and (9) could
result in an unconventional intersublattice Cooper pairing
channel. Field-induced superconductivity, a main result of
this paper, is attributed to such degeneracy-lifted interactions,
which are ubiquitous in strongly correlated systems.

The FLEX approximation extended to spin-orbit-coupled
two-sublattice systems is employed to derive the effective
action in this work [100–103] (see Appendix A). Hereafter,
we set t ′ = 0.3, μB = 1, and U = 3.9 with a unit of energy
t = 1 and determine the chemical potential so that the elec-
tron density per site is n = 0.85. In the numerical study, we
use 64 × 64 k meshes, and 16 384, 8192, or 4096 Matsubara
frequencies for T = 0.004, 0.004 < T < 0.01, or 0.01 � T ,
respectively.

III. ODD-PARITY MULTIPOLE FLUCTUATION

A. Phenomenology

In the FLEX approximation, the enhanced multipole sus-
ceptibilities are given by the following equation:

χξ1ξ2ξ3ξ4 (q) = χ
(0)
ξ1ξ2ξ3ξ4

(q)

+ χ
(0)
ξ1ξ2ξ5ξ6

(q)Uξ5ξ6ξ7ξ8χξ7ξ8ξ3ξ4 (q), (11)

where χ (q) and χ (0)(q) are full and irreducible suscepti-
bility tensors, respectively. Here, the abbreviated notation
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ξ = (s, σ ) is adopted. Upon inserting Eq. (6), Eq. (11) can
be reformulated into a multipole-resolved form as

χQ(q) = Q̄ξ1ξ2χξ2ξ1ξ3ξ4 (q)Q̄ξ3ξ4

= χ0,Q(q) +
∑
Q′

χ0,QQ′
UQ′

χQ′Q

≈ χ0,Q(q) + χ0,Q(q)UQχQ(q), (12)

where UQ = Q̄ξ1ξ2Uξ1ξ2ξ3ξ4Q̄ξ4ξ3 . In the final expression, the
cross terms between different multipole terms, denoted as
χQQ′ = Q̄ξ1ξ2χξ1ξ2ξ3ξ4Q̄′

ξ4ξ3
, are ignored. Note that the cross

term of interaction UQQ′
is absent due to the high symmetry

of Eq. (4). Solving Eq. (12), we obtain the enhanced multipole
susceptibility due to interactions,

χQ(q) ≈ χ0,Q(q)

1 − UQχ0,Q(q)
. (13)

A sufficient condition for achieving a large χQ(q) entails hav-
ing a large χ0,Q(q) and a positive U Q. To reveal the criterion
for realizing a large χ0,Q(q), here we discuss the multipole
susceptibilities approximately derived without the self-energy,

χ0,Q(q) =
∑

k

Qk−q,k
ηζ Qk,k−q

ζη Lζη(k, q, iνn), (14)

where Qk,k′
ζη = 〈uζ ,k|Q|uη,k′ 〉 represents the matrix element

of the multipole operator Q, and Lζη(k, q, iνn) =
− 1

N { f (εη,k−q) − f (εζ,k)}/{iνn + εη,k−q − εζ,k} is the
momentum-resolved Lindhard function (see Appendix C).
The eigenvector and eigenvalue of a band ζ of the
Hamiltonian are denoted by |uζ ,k〉 and εζ,k. To activate the
multipole Q fluctuation, a sizable matrix element Qk−q,k

ηζ and
a positive interaction for the multipole, UQ > 0, are required.
Thus, the electronic structure of the system inherently
dictates the enhanced multipole fluctuation. Note that the
approximated expressions (12)–(14) are used only to grasp
the physical idea and to interpret the numerical results.
The numerical calculations are carried out with the full
FLEX approximations and the above approximations are not
adopted.

B. Electronic band structure and wave function

Herein, we demonstrate that a two-sublattice structure
intrinsically favors odd-parity multipole fluctuations. Fig-
ure 1(a) illustrates the Fermi surfaces (FSs) of our two-
sublattice tight-binding model with two bands, labeled |1〉
and |2〉. Our system exhibits a type-II van Hove singular-
ity (vHS) resulting from the Rashba-type spin-orbit coupling
[104–106]. Specifically, the type-II vHS is located around
k = (±δ, π ), (0, π ± δ), (π,±δ), and (π ± δ, 0). Figure 1(a)
displays the expectation values of the inversion symmetry op-
erator, I = s0 ⊗ σx, on the FSs. The bonding and antibonding
orbitals, defined as

|BO〉 ≡ 1√
2

(
1
1

)
σ

, (15)

|ABO〉 ≡ 1√
2

(
1

−1

)
σ

, (16)

FIG. 1. (a) The Fermi surface of the two-sublattice tight-binding
model with the model parameters α = 0.2, t⊥ = 0.2. The coloration
on the Fermi surface signifies the expectation value of the inversion
symmetry operator I = s0 ⊗ σx . (b) The intersublattice hopping t⊥
dependence of static multipole fluctuations obtained by the FLEX
approximations. The maximum of the even-parity (odd-parity) lon-
gitudinal (transverse) magnetic multipole susceptibilities is shown.
Other multipole fluctuations are negligibly small. We assume α =
0.2, t⊥ = 0.2, and T = 0.01. (c),(d) The momentum dependence of
the even-parity and odd-parity longitudinal magnetic susceptibilities,
respectively.

satisfy I |BO〉 = |BO〉 and I |ABO〉 = − |ABO〉. Consider-
ing that the expectation values of I on the FSs are close to
±1, we find that the wave functions around the type-II vHS
are well approximated by either the bonding or antibonding
orbitals.

In itinerant electron systems, multipole fluctuations emerge
from the nesting of FSs especially around vHS [107,108].
Two potential nesting scenarios exist: one involves nesting
within the same FSs, either bonding to bonding or antibonding
to antibonding. The other involves nesting between different
FSs, i.e., bonding to antibonding. The nesting vectors corre-
sponding to each of these scenarios are illustrated in Fig. 1(a).
Employing the previously approximated wave functions, we
can roughly evaluate the matrix element of the sublattice
operator: 〈1|σ 0|1〉 ≈ 〈1|σ z|2〉 ≈ 1 and 〈1|σ 0|2〉 ≈ 〈1|σ z|1〉 ≈
0. Notably, while the nesting vectors connecting the same
FSs are not equivalent to each other, those connecting dif-
ferent FSs are equivalent. Furthermore, the Hubbard-type
Coulomb interaction can be expressed in the multipole
basis as

Sint = −U

4

∑
ν=0,z

Q̂0ν
q Q̂0ν

−q + U

4

∑
μ=x,y,z
ν=0,z

Q̂μν
q Q̂μν

−q. (17)

This expression for the multipole-resolved interaction implies
that the Coulomb interaction equally enhances the even-
parity and odd-parity magnetic multipoles. As a result, in the
two-sublattice model, odd-parity multipole fluctuations are
expected to be strongly enhanced by nesting of different FSs
and Coulomb interaction, especially for large t⊥ and chemical
potentials near the vHS.
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C. Numerical results

While the above phenomenological arguments are not
assumed in our numerical calculations, where spin and sub-
lattice degrees of freedom are exactly dealt with, the above
expectation is verified by the numerical results. Figure 1(b)
depicts the dependence of multipole fluctuations on t⊥, mi-
croscopically calculated using the FLEX approximation. As
the intersublattice hopping parameter t⊥ increases, odd-parity
fluctuations are notably enhanced while even-parity fluctua-
tions are suppressed, consistent with the above discussions.
Figures 1(c) and 1(d) show the momentum dependence of
multipole susceptibilities. The even-parity longitudinal mag-
netic fluctuation represented by the multipole operator Qz0 =
s̄z ⊗ σ̄ 0 exhibits a double-peak structure around Q ∼ (π, π )
and (π − δ, π − δ) [Fig. 1(c)]. In contrast, the odd-parity
longitudinal magnetic fluctuation given by the multipole op-
erator Qzz = s̄z ⊗ σ̄ z presents a single-peak structure around
Q ∼ (π, π ) [Fig. 1(d)]. These findings further substantiate the
previous analysis of the nesting and wave functions of the FSs,
offering a more quantitative view. Note that the transverse
magnetic fluctuations manifest a similar momentum depen-
dence to the longitudinal ones. This is a consequence of the
momentum dependence of Rashba spin-orbit coupling which
tends to vanish around vHS.

IV. SUPERCONDUCTIVITY

Here we study superconductivity predominantly mediated
by the odd-parity multipole fluctuations using the linearized
Éliashberg equation (see Appendix E). Figure 2(a) depicts the
magnetic field dependence of the eigenvalues of this equa-
tion. In the left figure for t⊥ = 0.1, the typical behavior of
superconductivity under an external magnetic field is evi-
dent. All eigenvalues across all irreducible representations are
suppressed by the magnetic field. Notably, at H = 0.22, the
eigenvalue curves of the Bg and Bu representations intersect.
This intersection signals a phase transition from even-parity
to odd-parity superconductivity, reminiscent of phenomena
observed in CeRh2As2 [31,44,82]. Evident from Fig. 1(b),
multipole susceptibilities nearly degenerate at t⊥ = 0.1 and,
therefore, the effective interaction has nearly isotropic form
in the sublattice space. Thus, the mechanism of the parity
transition in the left figure of Fig. 2(a) is essentially the
same as that discussed in CeRh2As2 [31,44,82]. In contrast,
at t⊥ = 0.2 [right figure of Fig. 2(a)], the eigenvalue for
the Bu representation increases upon magnetic field appli-
cation, while that of Bg diminishes. Such behavior suggests
the possible emergence of field-induced odd-parity supercon-
ductivity in the two-sublattice strongly correlated electron
systems.

We delve into the mechanism behind this field-induced
superconductivity. Initially, the intrasublattice pair potential,
given by �intra

Bu
(k) = ψ (k)isy ⊗ σz + d(k) · s isy ⊗ σ0, is illus-

trated in Figs. 2(b)–2(d). Influenced by the antiferromagnetic
fluctuation, the spin-singlet component shows a dx2−y2 -wave
form. In addition, the spin-triplet components induced by the
spin-orbit coupling display a p-wave momentum dependence.
Interestingly, these gap functions are relatively impervious
to the external magnetic field [31,44,82]. Subsequently, the

(a)

(b)

(e) (f)

(c) (d)

FIG. 2. (a) The magnetic field dependence of eigenvalues of the
Éliashberg equation for each irreducible representation. We assume
α = 0.2 and T = 0.01. Left: t⊥ = 0.1. Right: t⊥ = 0.2. Supercon-
ducting instabilities are classified by the irreducible representation
of the point group of the system, C4h. The superscript of E 1,2

g/u repre-
sentations expresses the degeneracy lifted by time-reversal symmetry
breaking due to the magnetic field. As the temperature decreases,
the eigenvalues of the Éliashberg equation increase and eventually
exceed unity at a sufficiently low temperature. (b)–(d) The momen-
tum dependence of intrasublattice spin-singlet and spin-triplet gap
functions, ψ (k) and d(k), of the Bu representation for H = 0.15.
Results for the Bg representation are almost the same as the figures.
(e) The magnetic field dependence of the component-resolved weight
of the intersublattice gap function. (f) The momentum dependence of
the intersublattice spin-triplet gap function, ImdAB

z (k).

intersublattice pair potentials are analyzed. In Fig. 2(e), the
component-resolved magnetic field dependence of intersub-
lattice gap functions is shown. Evidently, the magnetic field
induces a sizable spin-triplet and sublattice-antisymmetric
pair potential,

ImdAB
z (k)szisy ⊗ σy, (18)

which is prohibited at the zero magnetic field by time-reversal
symmetry. The momentum dependence of this pair potential is
depicted in Fig. 2(f). Notably, Eq. (18) represents a σy compo-
nent in the sublattice degree of freedom. This implies that the
pairing channel of Py

k in Eqs. (8) and (9), which arises from
the lifting of degeneracy between even-parity and odd-parity
multipole fluctuations, plays a pivotal role in the mani-
festation of field-induced superconductivity. In essence, the
Cooper pairing inherent in Eq. (18) is fundamentally rooted
in the multipole-mediated interactions, given by Eqs. (8) and
(9), and the disruption of the time-reversal symmetry by
the external magnetic field allows this pairing to emerge.
As a result, the field-induced superconductivity occurs in
the two-sublattice system through a cooperative interplay
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FIG. 3. (a),(b) The diagrammatic representation of the dominant
scattering process between the Cooper pairs represented by ψAA,
ψBB, and dAB

z . The black line and orange line represent the intrasub-
lattice Green function GAA(k) and the intersublattice Green function
GAB(k), respectively. The scattering process between dAB

z and ψAA

or ψBB via the transverse magnetic fluctuation are shown. (c) The
momentum dependence of the intrasublattice transverse magnetic
fluctuation which appears in diagram (a). (d) The momentum de-
pendence of the intersublattice transverse magnetic fluctuation which
appears in diagram (b).

between the odd-parity multipole fluctuation and the magnetic
field.

Further support for our interpretation of the mechanism
behind field-induced superconductivity comes from consider-
ations based on Feynman diagram analyses for the Éliashberg
equation. The gap function outlined in Eq. (18) plays a crucial
role in facilitating the coupling between intrasublattice gap
functions through a second-order scattering process. While
simplification is attained by solely considering the transverse
spin fluctuation denoted by χ± or χ∓, expanding the fol-
lowing analysis to include longitudinal spin fluctuation χ zz is
straightforward. In the following, we denote the dominant in-

trasublattice spin-singlet component in the A and B sublattices
as ψAA(k) and ψBB(k), respectively.

The scattering processes illustrated in Figs. 3(a) and 3(b)
highlight how the unusual intersublattice pairing, represented
by ImdAB

z (k)szisy ⊗ σy, introduces the attractive force be-
tween ψAA(k) and ψBB(k). By amalgamating these two
diagrams and tracing out the gap function dBA

z , a compos-
ite diagram elucidating the second-order scattering process
between ψAA(k) and ψBB(k) is derived. Due to the positive
sign of χ±

AA and the negative sign of χ∓
BA [see Figs. 3(c) and

3(d)], the overall sign of this second-order scattering process
is negative. This scattering process with negative sign neces-
sitates a sign change of gap functions through 2q = (0, 0)
momentum transfer, a condition intrinsically met due to the
relation ψAA(k) = −ψBB(k). Notably, spin-orbit coupling is
not required in this mechanism, thereby implying that field-
induced superconductivity can be achieved in materials with
weak spin-orbit coupling.

V. PHASE DIAGRAM

Figures 4(a)–4(d) show the phase diagrams for α/t⊥ = 0,
0.5, 1, and 2 with t⊥ = 0.2. As expected, the odd-parity super-
conducting state exhibits field-induced behaviors in all cases.
It is noteworthy that even in the case of α = 0 (i.e., with-
out spin-orbit coupling), the external magnetic field induces
the odd-parity superconducting phase. Thus, the field-induced
superconductivity does not require spin-orbit coupling. This
phenomenon can be attributed to the strong-coupling effect
that is anticipated in strongly correlated electron systems.
A considerable interband gap function in combination to
the field-induced pairing interaction could be responsible for
the significant condensation energy, which in turn leads to
the emergence of field-induced superconductivity. However,
larger spin-orbit coupling renders the field-induced odd-parity
superconducting phase more stable, as the transition tem-
perature increases. Indeed, with spin-orbit coupling, the gap

(a) (b)

(c) (d)

FIG. 4. (a)–(d) H -T phase diagrams of the two-sublattice Rashba-Hubbard model for α/t⊥ = 0, 0.5, 1, 2. We show the superconducting
transition lines of the even-parity Bg and odd-parity Bu states, on which eigenvalues of the Éliashberg equation become unity. The intersublattice
hopping parameter t⊥ is set to 0.2 for all cases.
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function in Eq. (18) incorporates intraband components,

�±(k) = dAB
z (k)

|g(k)|2 + t2
⊥

{∓d̃ · s̃ + iψ̃ (k)s̃0}is̃y, (19)

where ψ̃ (k) = |g(k)|2 and d̃ = [gy(k), gx(k), 0]. Conse-
quently, the spin-orbit coupling significantly enhances the
thermodynamic stability of the odd-parity superconducting
phase.

The field-induced odd-parity superconducting state suffers
from the Pauli depairing effect of Cooper pairs at extremely
high fields, H > 0.3. Thus, the observed nonmonotonic be-
havior of the phase transition line of the Bu state can result
from the competition between the field-enhancement mecha-
nism, associated with the intersublattice gap function, and the
Pauli depairing effect.

VI. SUMMARY

In summary, we have conducted a multipole-resolved
analysis for unconventional superconductivity in strongly
correlated two-sublattice systems. The lifting of degeneracy
between even- and odd-parity multipole fluctuations gives rise
to the unconventional pairing channel. We demonstrated that
the two-sublattice structure inherently favors multipole fluctu-
ations with a predominating odd-parity nature, which induce
sublattice-antisymmetric pairing only when the magnetic field
is applied. Consequently, the field-induced superconductivity
occurs. Notably, the obtained phase diagram reveals the field-
reentrant odd-parity superconducting states.

Field-induced superconductivity within the bilayer model
has also been proposed in previous studies [109–113]. In these
theories, a magnetic field is posited to shift the energy levels
of electronic states, thereby facilitating unconventional inter-
band Cooper pairing. However, these models assume isotropic
interaction within the layers, which distinctly sets them apart
from our mechanism. Note that the cornerstone of our pro-
posal is the anisotropic effective interaction, a direct result of
the degeneracy-lifted multipole fluctuations.

Finally, we would like to highlight a possible application of
our theory. The electronic structure of magic-angle twisted tri-
layer graphene consists of a flat band from the moiré structure
and a dispersive Dirac band in the absence of a displace-
ment field [114–116]. The flat band potentially enhances the
degenerated multipole fluctuation ensured by symmetry. For
instance, 15-fold degenerate fluctuations protected by SU(4)
symmetry have been proposed in magic-angle twisted bilayer
graphene [117]. The introduction of a displacement field leads
to the hybridization of these bands, which could result in
the lifting of the degeneracy in multipole fluctuations [62].
Application of an external magnetic field possibly induces
unconventional Cooper pairing, as discussed in this paper.
This mechanism might explain the magnetic field-reentrant
superconductivity observed in magic-angle twisted trilayer
graphene [62]. Other potential candidates include uniaxially
strained CeRh2As2 and pressurized CeSb2 [60]. The pres-
sure amplifies the intersublattice hopping and leads to the
degeneracy-lifted multipole fluctuations. Comprehensive in-
vestigations into these phenomena are still highly anticipated.
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APPENDIX A: SELF-CONSISTENT CONDITION FOR
FLUCTUATION EXCHANGE APPROXIMATION

The noninteracting Green functions for U = 0 are ex-
pressed by the 4 × 4 matrix form in the spin and sublattice
basis,

G(0)(k, iωn) = (iωns0 ⊗ σ0 − Hk)−1, (A1)

where ωn = (2n + 1)πT and Hk are the fermionic Matsubara
frequencies and Hamiltonian. Here, s and σ represent spin and
sublattice degrees of freedom, respectively. In the interacting
case U �= 0, the dressed Green functions contain a self-energy
	(k),

G(k) = [iωns0 ⊗ σ0 − Hk − 	(k)]−1. (A2)

In the FLEX approximation, the self-energy is expressed with
the use of an effective interaction 
n(q) as

	ξξ ′ (k) = T

N

∑
q


n
ξξ1ξ ′ξ2

(q)Gξ1ξ2 (k − q), (A3)

and the effective interaction is given by


n
ξ1ξ2ξ3ξ4

(q) = Uξ1ξ2ξ5ξ6χξ5ξ6ξ7ξ8 (q)Uξ7ξ8ξ3ξ4

− 1

2
Uξ1ξ2ξ5ξ6χ

(0)
ξ5ξ6ξ7ξ8

(q)Uξ7ξ8ξ3ξ4 , (A4)

where Uξ1ξ2ξ3ξ4 is the bare interaction tensor which satisfies the
following relation:∑

ξ1ξ2ξ3ξ4

Uξ1ξ2ξ3ξ4 c†
ξ1

cξ2 cξ3 c†
ξ4

= U
∑
i,σ

ni↑σ ni↓σ , (A5)

Uξ1ξ2ξ3ξ4 = δσ1,σ2δσ2,σ3δσ3,σ4Us1s2s3s4 , (A6)

U↑↓↑↓ = U↓↑↓↑ = −U↑↑↓↓ = −U↓↓↑↑ = U, (A7)

and iνn are bosonic Matsubara frequencies. Here, χ (q) is
the generalized susceptibility. The abbreviated notation ξ =
(s, σ ) is employed. We introduce the bare susceptibility,

χ
(0)
ξ1ξ2ξ3ξ4

(q) = −T

N

∑
k

Gξ1ξ3 (k)Gξ4ξ2 (k − q), (A8)

and compute the generalized susceptibility by

χξ1ξ2ξ3ξ4 (q) = χ
(0)
ξ1ξ2ξ3ξ4

(q)

+ χ
(0)
ξ1ξ2ξ5ξ6

(q)Uξ5ξ6ξ7ξ8χξ7ξ8ξ3ξ4 (q). (A9)

According to Eqs. (A2)–(A9), G, 	, 
n, χ (0), and χ depend
on each other and, therefore, we self-consistently determine
these functions. The FLEX approximation is a conserving
approximation in which several conservation laws are satisfied
in the framework of the Luttinger-Ward theory [100–103].
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For functions with fermionic Matsubara frequencies
A(q, iωn), the static limit A(q, 0) is evaluated by an approx-
imation justified at low temperatures,

A(q, 0) � A(q, iπT ) + A(q,−iπT )

2
. (A10)

For the analysis of the superconducting phase transition,
the particle-particle channel irreducible vertex function 
a is
needed, and it is obtained by


a
ξ1ξ2ξ3ξ4

(q) = Uξ1ξ2ξ3ξ4/2

+ Uξ1ξ2ξ5ξ6χξ5ξ6ξ7ξ8 (q)Uξ7ξ8ξ3ξ4 . (A11)

APPENDIX B: COOPER PAIRING CHANNEL FROM
MULTIPOLE FLUCTUATIONS

In this Appendix, we give a comprehensive classification of
Cooper pairing channels mediated by multipole fluctuations.
First, we summarize Cooper pairing channel decomposition
in the presence of a single degree of freedom, σ ,

Sσ0 = ψ̄ασ 0
αβψβV σ 0

ψ̄γ σ 0
γ δψδ

= 1
2V σ 0{P̂0,†P̂0 + P̂x,†P̂x + P̂y,†Py + P̂ z,†P z}, (B1)

Sσx = ψ̄ασ x
αβψβV σ x

ψ̄γ σ x
γ δψδ

= 1
2V σ x {P̂0,†P̂0 + P̂x,†P̂x − P̂y,†P̂y − P̂ z,†P̂ z}, (B2)

Sσy = ψ̄ασ
y
αβψβV σ y

ψ̄γ σ
y
γ δψδ

= 1
2V σ x {−P̂0,†P̂0 + P̂x,†P̂x − P̂y,†P̂y + P̂ z,†P̂ z},

(B3)

Sσz = ψ̄ασ z
αβψβV σ z

ψ̄γ σ z
γ δψδ

= 1
2V σ x {P̂0,†P̂0 − P̂x,†P̂x − P̂y,†P̂y + P̂ z,†P̂ z}, (B4)

where the Cooper pair operators are defined by P̂μ =
ψασ

μ

αβψβ . Here, the following identities on the Pauli and unit
matrix are used [71]:

σ 0
αβσ 0

γ δ = 1
2

(
σ 0

αγ σ 0
δβ + σ x

αγ σ x
δβ + σ y

αγ σ
y
δβ + σ z

αγ σ z
δβ

)
, (B5)

σ x
αβσ x

γ δ = 1
2

(
σ 0

αγ σ 0
δβ + σ x

αγ σ x
δβ − σ y

αγ σ
y
δβ − σ z

αγ σ z
δβ

)
, (B6)

σ
y
αβσ

y
γ δ = 1

2

(−σ 0
αγ σ 0

δβ + σ x
αγ σ x

δβ − σ y
αγ σ

y
δβ + σ z

αγ σ z
δβ

)
, (B7)

σ z
αβσ z

γ δ = 1
2

(
σ 0

αγ σ 0
δβ − σ x

αγ σ x
δβ − σ y

αγ σ
y
δβ + σ z

αγ σ z
δβ

)
. (B8)

Next, for the multipole composed of spin and sublattice de-
grees of freedom, as in the case of our model, we obtain the
Cooper pairing channel as follows:

SQ = ψ̄αQμν

αβψβV Qψ̄γQμν

γ δψδ

= ψ̄sασα
s̄μ

sαsβ
σ̄ ν

σασβ
ψsβσβ

V Qψ̄sγ σγ
s̄μ

sγ sδ
σ̄ ν

σγ σδ
ψsδσδ

= V Qψ̄sασα
ψ̄sγ σγ

ψsδσδ
ψsβσβ

s̄μ
sαsβ

s̄μ
sγ sδ

σ̄ ν
σασβ

σ̄ ν
σγ σδ

. (B9)

For example, if we take μ = x and ν = y, the Cooper pairing
channel is given as follows:

S = V Q

4
{−P̂00,†P̂00 + P̂0x,†P̂0x − P̂0y,†P̂0y + P̂0z,†P̂0z

− P̂x0,†P̂x0 + P̂xx,†P̂xx − P̂xy,†P̂xy + P̂xz,†P̂xz

+ P̂y0,†P̂y0 − P̂yx,†P̂yx + P̂yy,†P̂yy − P̂yz,†P̂yz

+ P̂ z0,†P̂ z0 − P̂ zx,†P̂ zx + P̂ zy,†P̂ zy − P̂ zz,†P̂ zz}.
(B10)

APPENDIX C: BARE MULTIPOLE SUSCEPTIBILITY

When we ignore the self-energy, the bare multipole suscep-
tibility χ0,Q(q) can be expressed in the band basis as

χ0,Q(q) = Q̄βαχ
(0)
αβγ δ (q)Q̄γ δ

= −Q̄βα

T

N

∑
k

Gαγ (k)Gδβ (k − q)Q̄γ δ

= −Q̄βα

T

N

∑
k

Uαζ (k)Gζ (k)U ∗
γ ζ (k)

× Uδη(k − q)Gη(k − q)U ∗
βη(k − q)Q̄γ δ

=
∑

k

[U †(k − q)Q̄U (k)]ηζ

× [U †(k)Q̄U (k − q)]ζη

× −T

N

∑
iωn

Gζ (k)Gη(k − q)

=
∑

k

Qk−q,k
ηζ Qk,k−q

ζη Lζη(k, q, iνn). (C1)

Here, U (k)αζ = 〈α|uζ ,k〉 represents the unitary matrix that
diagonalizes the Hamiltonian,

U †(k)H(k)U (k) = Hdiag(k), (C2)

H(k) |uζ ,k〉 = εζ (k) |uζ ,k〉 . (C3)

The Green function in the band basis is given by

G(k) = U †(k)G(k)U (k),

Gζ (k) = 1

iωn − εζ (k)
. (C4)

APPENDIX D: MULTIPOLE-RESOLVED
EFFECTIVE INTERACTION

Similar to Eq. (12), we can decompose the effective inter-
action 
n(q) [as defined in Eq. (A4)] and 
a(q) [as defined
in Eq. (A11)] into their respective multipole channels. The
decomposition is expressed as follows:


n,Q(q) ≈ UQ[
χQ(q) − 1

2χ0,Q(q)
]
UQ, (D1)


a,Q(q) ≈ UQ

2
+ UQχQ(q)UQ. (D2)
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FIG. 5. The diagrammatic representation of the Éliashberg equa-
tion. The shaded square and the black line represent the irreducible
four-point vertex function in the particle-particle channel and the
single-particle Green function, respectively.

In Eq. (D1), the effective interaction for the particle-hole
channel, 
n,Q(q), is expressed as a function of the multi-
pole susceptibility χQ(q) and the bare susceptibility χ0,Q(q)
modulated by the interaction UQ. Similarly, Eq. (D2) de-
picts the effective interaction for the particle-particle channel,


a,Q(q), also as a function of the multipole susceptibility and
interaction.

APPENDIX E: ÉLIASHBERG EQUATION

To investigate superconductivity, we adopt the linearized
Éliashberg equation, which is expressed as

λ�αβ (k) = T

N

∑
k′


a
αγ δβ (k − k′)Gγ γ ′ (k)�γ ′δ′ (k)Gδδ′ (−k),

(E1)

where � is the gap function and 
a is the particle-particle
channel irreducible vertex function obtained in Eq. (A11).
Figure 5 shows the diagrammatic representation of the lin-
earized Éliashberg equation. With the power method, we
numerically evaluate λ, eigenvalues of the linearized Éliash-
berg equation, and determine the critical temperature Tc from
the criterion λ = 1.
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