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Nonlinear magnetoelectric effect under magnetic octupole order: Application to a d-wave
altermagnet and a pyrochlore lattice with all-in/all-out magnetic order
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Extensive investigation has recently been conducted into a new class of antiferromagnetic order known as
magnetic octupole order. However, the high rank of octupoles makes it difficult to detect and manipulate them
by using conventional methods such as the anomalous Hall effect. In this paper, we propose the nonlinear magne-
toelectric effect (NMEE), a second-order response to an electric field that induces a spontaneous magnetization,
as a finite response under magnetic octupole order. First, we classify the magnetic point groups to identify
antiferromagnets with such order, and derive the NMEE tensor using quantum kinetic theory. Then, we confirm
the effectiveness of the NMEE through model calculations for two specific examples: a d-wave altermagnet and
a pyrochlore lattice with all-in/all-out magnetic order. In particular, the intrinsic NMEE exhibits a large response
in a magnetic Weyl semimetal phase of the pyrochlore lattice. This enhanced response is explained by the fact
that the response tensor involves the quantum metric, which is enhanced near Weyl points. Furthermore, our
results show that the NMEE has a sizable value that can be detected by the magneto-optical Kerr effect.

DOLI: 10.1103/PhysRevB.110.184407

I. INTRODUCTION

Atomic-scale magnetic multipoles unify multiple degrees
of freedom of electrons in solids and describe phenomena
such as magnetic anisotropy and unconventional magnetic or-
dering. Such magnetic multipoles have been mainly observed
in f-electron systems, where the orbital is coupled to the
spin through the relativistic spin-orbit coupling (SOC) [1-3].
In addition to these relativistic magnetic multipoles, a non-
relativistic magnetic multipole has recently been discovered
in unconventional collinear antiferromagnets (AFMs) [4,5].
These AFMs exhibit a nonrelativistic spin splitting in k space
[6-15] and have been dubbed altermagnets to distinguish them
from ferromagnets and conventional AFMs [16—18]. In partic-
ular, d-wave altermagnets, such as RuO, [19-24], where the
spin splitting fulfills d-wave symmetry, are known to exhibit
a ferroic ordering of magnetic octupoles [4,5].

Furthermore, by summing the atomic-scale magnetic mul-
tipoles within a cluster, one can describe a magnetic multipole
that spans multiple atomic sites [25-29]. Such cluster-scale
magnetic multipoles can explain complex spin structures,
such as noncollinear and noncoplanar configurations. For
example, the spin configuration of a chiral AFM, Mn3;Z
(Z=Sn,Ge) [30-32], and the all-in/all-out (AIAO) mag-
netic configuration [33-36] of pyrochlore iridates, RyIr, Alyg
(R=rare earth) [37-39], are interpreted as a cluster-scale mag-
netic octupole [26,40].

Here, we focus on the relationship between magnetic
octupole order and response phenomena. In this context,
magnetic octupole order refers to a ferroic ordering of
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atomic-scale or cluster-scale magnetic octupoles. Under mag-
netic octupole order, distinct responses appear depending on
whether the octupole order is the lowest-rank magnetic oc-
tupole order or not. Note that here we define systems in which
the lowest-rank nonvanishing magnetic multipole order is the
octupole order as systems with lowest-rank magnetic octupole
order. For example, AFMs with magnetic dipole and octupole
orders exhibit the anomalous Hall effect (AHE) [12,22,30—
32,41-45] because the dipole order activates the AHE [46].
Given the difficulty of detecting and controlling the Néel
vector of AFMs by external fields, these AFMs are strong
candidates for antiferromagnetic spintronics [47,48]. On the
other hand, AFMs with lowest-rank magnetic octupole order
do not exhibit low-rank responses such as the AHE with-
out further symmetry reduction [12,22,41-45]. Furthermore,
these AFMs do not exhibit magneto-optical effects that are
the optical analogs of the AHE, making domain imaging and
control challenging. Therefore, finding a finite response under
lowest-rank magnetic octupole order, i.e., a magnetic octupole
response, remains an important task.

In this paper, we propose the nonlinear magnetoelectric
effect (NMEE) as a magnetic octupole response. The NMEE
is a second-order response to an external electric field E that
induces a spontaneous magnetization M [49-55]:

M; = ¢ E By, ()
where i, j, k label a Cartesian component. The NMEE tensor
g“l(fl)( is a rank-3, time-reversal (7 )-odd axial tensor with iden-
tical symmetry as magnetic octupoles [56], which suggests the
potential effectiveness of the NMEE.

Here, we confirm the actual effectiveness of the NMEE as
follows: First, we classify the magnetic point groups (MPGs),
examine which multipole orders are activated, and find po-
tential AFMs with lowest-rank magnetic octupole order. In
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TABLE I. Classification of MPGs with magnetic octupole order based on whether they exhibit finite magnetic dipole or quadrupole orders.
The symbol “P O /P x” indicates the presence (P() or absence (P x) of the inversion center, and “v’'/—" denotes whether a certain type
of multipole order is allowed (v') or forbidden (—). The classification is performed by using MTENSOR of the Bilbao Crystallographic Server
[57]. Note that type-I MPGs can be further classified by the presence or absence of magnetic quadrupole order, but this classification is not
included in this paper. Furthermore, we list lowest-rank responses that characterize each category. Each response is also applicable to the lower
categories (e.g., the NMEE is applicable to type-I and type-II MPGs), but it does not characterize these lower categories.

Magnetic Magnetic Magnetic ~ Lowest-rank
MPGs dipole quadrupole  octupole responses
Type I PO) 1,2/m, 2 /m',m'm'm, 4/m, &/mm'm’, 3, 3m’, 6/m, 6 /mm'm’ Va -/ i AHE
(Px) 1,2,2,m,m, 222, m'm2 ,m'm?2,4,4 422 4m'm', 42'm/’,
3,32,3m,6,6,622, 6m'm', 6m'2' (31 groups)

Type 11 (Px) mm2,222, 4, 4,422, 422 4mm, 4 m'm, 42m, 2'm, ¥ 2m’, - J J LME
32,3m, 6, 622, 6mm, 6'm'2, 6m2’, 23, 43m’ (20 groups) INHE

Typelll  (PO) mmm, 4 /m, 4/mmm, 4’ /mm’'m, - - i PME
3m, 6'/m’, 6/mmm, 6 /m'mm’, m3, m3m’ NMEE

(Px) 6,622, 6/mm', 6m2, 432 (15 groups) TNHE

particular, we focus on a d-wave altermagnet and a pyrochlore
lattice with AIAO magnetic order. Then, we derive the NMEE
tensor using quantum kinetic theory and demonstrate through
model calculations that the NMEE takes a finite value in these
systems. Notably, the intrinsic NMEE exhibits a large re-
sponse in a magnetic Weyl semimetal phase of the pyrochlore
lattice [58—62]. This enhanced response is explained by the
fact that the response tensor involves the quantum metric,
which is enhanced near Weyl points. Finally, we discuss ex-
perimental realization and show that the NMEE has a sizable
value that can be detected by the magneto-optical Kerr effect.

The rest of this paper is organized as follows: Section IT A
shows the classification result of the MPGs, and Sec. IIB
introduces the example systems for which we calculate the
NMEE later. In Sec. III, we derive the NMEE tensor and
explain its relation to quantum geometry. Section IV and a
part of Sec. VA show numerical results of the NMEE for
the d-wave altermagnet and the pyrochlore lattice with ATAO
magnetic order, respectively. In the rest of Sec. V A and Sec.
V B, we discuss the origin of the enhanced response. Finally,
we conclude this work and discuss the possible experimental
realization of the NMEE in Sec. V1.

II. CLASSIFICATION OF THE MAGNETIC
POINT GROUPS

We first derive magnetic multipoles and then review their
ferroic orderings, i.e., magnetic multipole orders. Magnetic
multipoles are derived from the spatial gradient expansion
of the interaction energy Ei = — f n(r) - H(r)dr between
a magnetic field H(r) and a magnetization density u(r)
[4,63,64]:

Em=—/uv»mmm—fnwummmMr

1
—EfnmmOM%MWMFP~, P

where 9; = d/dr;. The first term represents a magnetic dipole,
m= f p(r)dr, which acts as an order parameter for ferro-
magnets. The second term denotes a magnetic quadrupole,

qgij = f rip j(r)dr, which can serve as an order parameter for
noncentrosymmetric magnets because of an odd number of
position coordinates. The third term describes a magnetic
octupole, O;jx = f rirjux (r)dr, which acts as the lowest-rank
order parameter when both magnetic dipole and quadrupole
orders are absent. In the following, we classify the MPGs
in terms of possible multipole orders and find AFMs with
lowest-rank magnetic octupole order.

A. Magnetic point groups with lowest-rank magnetic
octupole order

Table I summarizes our classification result. Magnetic
point groups with magnetic octupole order are classified into
three categories: type I, type II, and type III. Type-I and type-1I
MPGs support lowest-rank magnetic dipole and quadrupole
orders, respectively; thus, their magnetic octupole order is
not the lowest rank. On the other hand, type-III MPGs allow
lowest-rank magnetic octupole order because of the absence
of magnetic dipole and quadrupole orders. Thus, type-III
MPGs are the focus of this paper. Note that Table I is con-
sistent with the comprehensive classification based on group
theory [65].

Each category is characterized by its lowest-rank re-
sponses, which have response tensors with identical symmetry
and rank as the lowest-rank multipole. For example, type-I
MPGs activate the AHE as one of their lowest-rank responses.
Indeed, AFMs belonging to this category exhibit the AHE
[12,22,30-32,41-45], which we confirm by reviewing pre-
vious AHE measurements of some centrosymmetric AFMs
in Appendix A. Type-II MPGs include lowest-rank magnetic
quadrupole order, which is an odd-parity multipole order.
Therefore, their lowest-rank responses are emergent phenom-
ena such as the linear magnetoelectric effect (LME) [66,67]
and the intrinsic nonlinear Hall effect INHE) [68]. On the
other hand, type-IIl MPGs require responses that have both
T-odd axial and at least rank-3 response tensors. In partic-
ular, their lowest-rank responses fall into two types: a linear
response with rank-2 input and rank-1 output fields, and
a nonlinear response with rank-1 input and rank-1 output
fields. A typical linear response is the piezomagnetic effect
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FIG. 1. (a) Illustration of a d-wave altermagnet. The spins are
oriented perpendicular to the plane and point in opposite directions
on sublattices A and B. The sublattice degrees of freedom arise from
the arrangement of the nonmagnetic atoms and break #;,,7 or PT
symmetries. (b) Lattice structure of pyrochlore iridates. (c) AIAO
magnetic configuration.
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(PME) [4,5,69], which induces a spontaneous magnetization
by applying a mechanical strain. On the other hand, typical
nonlinear responses are the NMEE and the third-order non-
linear Hall effect (TNHE). Indeed, Refs. [70,71] and [72]
theoretically demonstrated that the TNHE is effective for d-
wave altermagnets and Pr-based heavy-fermion compounds,
PrT;Alyy (T=Ti,V), with ferro-octupole order, respectively.
Unlike the PME, the NMEE and TNHE may lead to a practical
device application because they are electrically controllable
without imposing a large mechanical strain. Of these, the
NMEE may be the most suitable for magnetic octupole re-
sponses because it is a lower-rank response with respect to
electric fields.

Table I allows us to find potential AFMs with lowest-rank
magnetic octupole order. In this paper, we focus on a d-wave
altermagnet and a pyrochlore lattice with AIAO magnetic
order. Other interesting candidates are listed in Table II.

B. Example systems: d-wave altermagnet and pyrochlore lattice
with ATAO magnetic order

We first focus on d-wave altermagnetism, which is char-
acterized by C,7 symmetry with a 90° rotation (C;) and
a spin flip (7) [Fig. 1(a)]. In particular, the crystal ro-
tation distinguishes the altermagnetism from conventional
antiferromagnetism [16,17], which is characterized by #;,,7
symmetry with a half-unit cell translation (¢,,,) or P7T sym-
metry with spatial inversion (P) [73]. This feature leads to
novel phenomena such as efficient spin-current generation
[19], spin-splitting torque [20,21], and lifted Kramers degen-
eracy [23,24]. However, C477 symmetry prohibits the AHE
[70], and realizing a finite AHE requires further symmetry
reduction [22], which is achieved by applying a magnetic field
(see Appendix A). In Table I, d-wave altermagnets RuO, and
MnF, indeed belong to a type-IIl MPG 4'/mm'm with C4T
symmetry [11,12].

The second system is a pyrochlore lattice [Fig. 1(b)] with
ATAO magnetic order [Fig. 1(c)]. Pyrochlore lattices host
cubic crystalline symmetry [37-39], which forbids the AHE
[74]. Furthermore, AIAO magnetic order also preserves cubic
symmetry [35,75], and thus realizing a finite AHE requires
further symmetry reduction [41-45], which is achieved by
applying a magnetic field or strain (see Appendix A). In
Table I, pyrochlore iridates R,IryAlyy forming AIAO mag-
netic order below the Néel temperature indeed belong to a
type-IIl MPG m3m’. Meanwhile, pyrochlore lattices form a
Luttinger semimetal state with fourfold-degenerate quadratic
band crossings at the I" point due to P and 7 symmetries.
This state can change into a topologically nontrivial quan-
tum phase through a symmetry-breaking perturbation [76,77].
For example, some theories predict the emergence of a mag-
netic Weyl semimetal phase driven by AIAO magnetic order
[58-62]. Therefore, pyrochlore lattices with ATAO magnetic
order are good candidates for examining the relationship be-
tween the NMEE and quantum geometry.

III. FORMULATION OF THE NMEE TENSOR

We first outline the derivation of the NMEE tensor. Note
that here we focus only on spin magnetization and neglect
orbital magnetization because spin magnetization usually
dominates the total magnetization [78,79]. The nonequilib-
rium magnetization induced by an electric field E is given by

M=¥ /k S () o (), 3)

n,m

where s,,,(k) and p,,, (k) are the matrix representations of the
spin and density operators in a band basis |u,(k)), respec-
tively. The eigenstates satisfy

Hy (k) |un (k) = en(k)|un (K)), “

where Hy(k) is an unperturbed Hamiltonian, and ¢, (k) is the
eigenvalue labeled by crystal momentum k and a band index
n in the first Brillouin zone (BZ). For simplicity, we denote
Jo, dk/ (27 ¥ as J» where d is the dimension of the system,
and we will omit the k index of the operators in the following.
From Eq. (3), the second-order nonequilibrium magnetization
can be calculated by

) .
Mi( ) = Zfsjlmpfrif’ (5)
n,m k

where p,, is expanded in powers of E: p =), p'¥ with
p© = O(|E|%). Therefore, determining the second-order den-
sity matrix p(2) enables us to derive the NMEE tensor.

The ¢th-order density matrix p) is obtained by solving the
von Neumann equation

(ihd: = Enm)Pp (1) = [He(0), 0~ ()]m, (6)

where 7 is the Planck constant, 0, = 9/0¢, &, = &, — &, and
[A, Blyw = > (A B — BpApm). The perturbed Hamiltonian
Hg(t) is given by

Hg(t) =er-E(1), @)

where e = |e| is the charge of electrons, and r is the position
operator. The position operator breaks translation symmetry,
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TABLE II. Candidate AFMs that are classified as a type-III MPG in Table I. Compounds and their structures and Néel temperatures 7y are
collected from the MAGNDATA database [107,108]. Collinear AFMs that allow a spin-split band are noted by a symbol * next to their names

[109].
MPGs Compounds Structure v (K) References
mmm Mn,GeO,4 Pnma (#62) 17 [110]
o-Mn, 03 Pbca (#61) 80 [111]
CoSOy4 Pnma (#62) - [112]
CoSOy4 Pbnm (#62) 12 [113]
Rb;Fe; O(AsOy), Pnma (#62) 25 [114]
XFe,Fq Pnma (#62) 19 (X = NHy), 16 (X=Rb) [115,116]
X,S104 Pnma (#62) 65.3 (X = Fe), 49 ~ 49.5 (X=Co) [117-119]
XFePOs Pnma (#62) 250 (X = Fe*), 178 (X = Ni*), 195 (X = Cu*) [120,121]
NiTe,0Os Pnma (#62) 30.5 [122]
XCrOs Pnma (#62) 73 (X = Sc*), 93 (X =1In*), 89 (X = TI*) [123]
290 (X = La*), 10 (X=Sm) [124,125]
La0_75Bi0_25Fel_XCrXO3 Pnma (#62) 350 ()C = 05) [126]
Fe;_.Mn,BOs Pbam (#55) 100 (x = 1.5) [127]
Ca;RuQy Pbca (#61) 110 [128]
MnSe, Pa3 (#205) 49 [129]
Nd,_,Sr,CrO3 Pbnm (#62) —(0.05 < x<0.15) [130]
XFeO; Pbnm (#62) 220 (X = Ce), 4 or 73 (X = Dy) [131,132]
NdCoOs3 Pbnm (#62) 1.20 [133]
XCrOy4 Cmcem (#63) —(X = Co,Ni) [134]
LaErO; Pnma (#62) 2.4 [135]
NazMn(H2C3O4)2(H20)2 Pbca (#6]) 8 []36]
TmVO; Pnma (#62) 20 [137]
MnTe P63 /mmc (#194) 323 [138]
4/mmm CdYb, X, Fd3m (#227) 1.92 (X =S), 1.75 (X=Se) [139]
KMnF;* 14/mem (#140) 86.8 [140]
4’ /mm'm XF, P4, /mnm (#136) 67 (X = Mn*), 39 (X = Co¥) [141,142]
ErnX,0, Fd3m (#227) 1.173 (X=Ti), 90 (X = Ru), 0.1 (X = Sn), 0.38 [143-146]
X=Py
Gdy X,04 Fd3m (#227) 1.0(X=3Sn), 1.6 (X =Pt) [147,148]
XMn;,Gey 01, P4/nbm (#125) 8 (X =7Zr"), 8 (X=Ce) [149,150]
LiFe,Fg* P4, /mnm (#136) 105 [151]
Srp7X03C00;_, 14/mmm (#139) 300 (X =Tb,x =0.1), 300 (X = Ho, x = 0.3) [152]
290 (X =Er,x =0.2)
RuO,* P4, /mnm (#136) >300 [102]
CaFe,Alg 14/mmm (#139) 180 [153]
3m FeCOs* R3c (#167) 38 [154]
Mn;Cu,_,Ge, N Pm3m (#221) 380 (x =0.5) [155]
Mn; XN Pm3m (#221) 183 (X=Zn), 298 (X=Ga) [156,157]
CoF3* R3c (#167) 460 [158]
LaCrO; R3c (#167) 380 [159]
Li;MnTeOgq P31c (#163) 8.5 [160]
K,_,Fe4sO7_(OH), P31c (#163) —(x =0.38) [161]
6 /m'mm’ BasCosClO 3 P63 /mmc (#194) 110 [162]
CsCoCl; P65 /mmc (#194) 20.82 ~ 21.5 [163,164]
Mn;_,Gayy, P63 /mmc (#194) 460 (x = 0.15) [165]
RbCoBr3; P63 /mmc (#194) 36 [166]
CrSb* P65 /mmc (#194) >600 [167]
BaMnO; P63 /mmc (#194) 2.3 [168]
CrNb,Sg* P63 /mmc (#194) - [169]
Ba;NiRu,Og* P65 /mmc (#194) 95 [170]
Fe(,5NbS, P63 /mmc (#194) 150 [171]
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TABLE II. (Continued.)

MPGs Compounds Structure Ty (K) References
m3 NiS, Pa3 (#205) 39 [172]
MnTe, Pa3 (#205) 86.5 [173]
Na;Co(CO;),Cl1 Fd3 (#203) 1.5 [174]
Er, 05 1a3 (#206) 34 [175]
(Lao_5Er0_5)203 103 (#206) - [135]
m3m’ U0, Fm3m (#225) 30.8 [176]
Fe,_ Mn, Fm3m (#225) —(x=0.3) [177]
DyCu Pm3m (#221) 64 [178]
NpBi Fm3m (#225) 192.5 [179]
USb Fm3m (#225) 213 [180]

Cd,0s,04 Fd3m (#227) 225 ~ 227 [75,181]

Nd, X,0, Fd3m (#227) 0.4 (X =Zr), 0.91 (X = Sn), 0.55 (X = Hf) [182-184]
Sm, Ti, O, Fd3m (#227) 0.35 [185]

X3Gas0,, Ia3d (#230) 0.24 ~ 0.25 (X=Tb), 0.15 (X=Ho) [186,187]

0.37 (X = Dy), 0.8 (X = Er) [188,189]

X3Al50; Ia3d (#230) 1.35 (X = Tb), 0.85 (X = Ho), 2.49 (X = Dy) [190,191]
Nd,ScNbO, Fd3m (#227) 0.371 [192]

X1, 04 Fd3m (#227) 30 (X=Nd), 120 (X=Eu), 150 (X=Yb) [193-195]
TmGas Pm3m (#221) 4.26 [196]
6 YMnO; P63cm (#185) 66 [197]

6'mm’ XMnO; P65cm (#185) 70 (X = Ho), 85 (X = Yb) [197-199]
HoMn, _,Fe,O; P63cm (#185) 72 (0.0 < x £0.25) [200]

X>Mn;0g P63mc (#186) 59 (X = Fe), 39 ~ 42 (X=Co) [201,202]
Cog(OH);3(TeO3)4(OH)g.9Hag P6smc (#186) 75.5 [203]
6m2 Ba;CoSb,0y P65 /mmc (#194) 3.8 [204]
4'32/ BaCuTe,;0q P4,32 (#213) 6.3 [205]

making it difficult to deal with the Hamiltonian in band theory.
In the infinite volume limit, however, the position operator is
written as a derivative by the crystal momentum d; = 9/0k
and the k-space Berry connection \A,,,, = i (u,|du,) [80,81]:

Fom = iakanm + Anm' (8)

Before solving Eq. (6), we introduce a phenomenological
treatment of the scattering rate n [82—85]:

({113 — &)y (1) = €E@) - [r, 0"V (®)],, — i€npy, (0).

®

Finally, by performing the Fourier transformation to the fre-
quency domain o and taking the limit @ — 0, the fth-order
density matrix is obtained as
© _ [r.p“" "],
o = € p—— E. (10)
Note that the zeroth-order density matrix o2 is assumed to be
O — 8, fn» Where f, = [1 + e~ #/T 171 g the Fermi dis-
tribution function, and u, kg, and T are the chemical potential,
Boltzmann constant, and temperature, respectively.
The NMEE tensor can be split into different parts using

the action of 7: g";i,? and 777" The T-odd response (Ci‘?]‘?lf) is

finite only in magnets, and the 7 -even response (¢; 2k ) 1s finite
in both magnetic and nonmagnetic systems. ThlS difference
appears when the NMEE tensor is separated according to the
order of the relaxation time 7 = /i/n:
2 .[2 1'.l 0

S = e i F S (D
where g“l "= = O(t"). Specifically, 7-odd and T-even re-
sponses are proportional to even and odd powers of T,
respectively [65]; thus,

1

even __ T
- gi;jk'

Lo = C,f;k + é“z';r;k’ Sijk (12)
In this study, we assume an applied electric field in the x-y
plane and thus focus only on the 7-odd responses. This is
because the C,4;7 symmetry of d-wave altermagnets and the
symmetry of pyrochlore lattices with AIAO magnetic order
prohibit any components in the T—even response [50].

From Egs. (5) and (10), ¢ k and ¢ 1< are expressed as

e
zT;k = ZZ/S Ok Ok S
=5 / Gl

13)

2(3, &% + 3, &) ] fur (14
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where the details of the derivation are given in Appendix B.
The 72 term is analogous to the higher-order Drude con-
ductivity [85-87], and the 7° term involves two geometric
quantities: Gi/ and &}/. The quantity G/ is the k-space Berry
connection polarizability (BCP) [88] and is related to the
k-space quantum metric [89,90]

uty,) (un|)|ak-un>

= Y Re (Ounltn) (nld ) = Y gl (15)
m(#£n) m(z#n)

g7 = Re (pu,|(1 —

Specifically, Gi,j is written as

Gi =2 Z Sin _ op2 Y R

vnmvmn

=, 16
o[ =] ae)
m(;ﬁn) m(#n)

nm

o Uy o, Ho|u,,) is the matrix representation of
the velocity operator. Here, the second equality results from
an identity for n # m,

where vi =k~

(U O t) = A, (17)

nm

(8k,-un|um> = -

On the other hand, & is related to the h-k space quantum
metric [52]

gl = Re (3,10l (1 — [t} )13, 1)
Z Re (0, tn |um) “m|ak1un = Z gnm, (18)
m(#n) m(#n)

which is defined in the extended parameter space spanned
by the momentum k and a magnetic field k. This magnetic
field h couples to spin s, which is akin to a vector potential A
coupling to current j:

5H 5H
__SH LAY 19
ST (‘i” 6A) (19)

where H is a general Hamiltonian. Based on this analogy, &
is referred to as the s-space BCP [49] and is written as

Bl = Z Sin _ _yp YR [ ’"] (20)

m(tn) © m(n) Eim

Here, the second equality results from Eq. (17) and an identity
for n # m,

Silln
— (ttn| Op, ) = ———. 2D

(8h; Up |um) =
Enm

This identity is derived by performing the following steps on
Eq. (17): first, use a relation d; = (%i/e)da, and then replace
d4 with —dp. These steps are based on minimal coupling
and Eq. (19), respectively. On the other hand, by taking the
opposite steps for Eq. (14), we can reproduce the intrinsic
nonlinear conductivity [85]

ljk ZEZ/akGﬂ(

Specifically, this is achieved by replacing d, with d; and
multiplying a factor of e/A.

2(3, G + 9, G fu (22)

The intrinsic NMEE exhibits two distinctive properties,
as indicated by Eq. (14). First, it is related to the quan-
tum metric, which measures the distance between quantum
states in parameter space [89,90]. Thus, band structures
with a large distance between neighboring quantum states,
such as Weyl points, can lead to a large intrinsic NMEE.
Second, the intrinsic NMEE can occur even in insulators
because of the presence of a Fermi sea term. This property
is absent in the TNHE, essentially a transport phenomenon,
rendering the NMEE more ideal for magnetic octupole
responses.

IV. MODEL CALCULATION FOR A d-WAVE
ALTERMAGNET

A. Model

We first introduce a four-band model of a d-wave altermag-
net. The four bands consist of the basis with two spins on each
of two sublattices A and B [Fig. 1(a)]. The Hamiltonian reads
as [12,70]

ky ky, k
H(k) =t cos cos( =2 ) cos[ = }oOc*
2 2 2
kx ky ky — kx
+A|:sin( ;— })ax+sin<yT>ay:|

k,
X sm<2>t + Joo*t* + Ji(cosk, — cosky)o® 70

(23)
where ¢° and t° are the identity matrices, and o =
(0,07, 0% and T = (7%, ©7, t°) are the Pauli matrices of the

spin and sublattice, respectively. Specifically, ¢ describes the
nearest-neighbor (NN) hopping, A represents the SOC, and Jy
and J; denote an antiferromagnetic molecular field and the
d-wave altermagnetic order parameter, respectively.

We then derive an effective two-band model for the cal-
culation from the four-band model by assuming that Jy
dominates Eq. (23). The four bands can be divided into two
groups, each of which consists of the basis with the opposite
spins on the different sublattices [70]: {|A, 1), |B, })} and
{IA, ]),|B, 1)}. The effective two-band Hamiltonian takes
the form

2 k k, k
H. (k) = T cosz< 2x> c0s2<7}> c052<§)00
ke + k k, — k, i
+k|:sin(%>ax + sin( B 5 >a}]

k,
X sm( 2) + Ji(cosk, — cosky)o®, (24)

where we shift the effective two bands by —Jy. In the absence
of the SOC, the energy eigenvalues are given by

t? k k. k;
&L = 2—10 COSZ(EX> cos? <Ey> cos? (?)
+ Ji(cos ky — cosky), (25)

where “+” indicates the upper (+) and lower (—) bands.
Equation (25) generates spin splittings without the SOC and
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FIG. 2. (a) Band structure of Eq. (24) for (¢, A, Jy, J1) = (1.0,0.4, 1.7, 1.0). (b) Chemical potential dependence of {"dd separated into the
72 (red color) and 7° (blue color) components. (¢) Altermagnetic order parameter (J;) dependence of |£2%| for different chemical potentials. We
select two chemical potentials: u = 0.2 (solid line) and & = —0.1 (dashed line), at which the NMEE takes a local maximum when J, = 1.0,
as shown in (b). The inset is a magnified view of the region highlighted in the main panel.

nodal lines along k, = %k,, which correspond to d-wave al-
termagnetism. Figure 2(a) shows the band structure of this
effective Hamiltonian, which exhibits such spin splittings
along the I'-X-M and Z-R-A lines. The symmetry leading
to these spin splittings can be identified by the spin groups
[91,92], which describe the symmetry of magnets without
SOC. In the presence of the SOC, however, the spin-group
symmetry breaks down, reducing the symmetry of the Hamil-
tonian to 4’ /mm’m. Furthermore, gaps open on the spin group
protected nodal lines, such as the Z-A line, except for Dirac
nodesatZ = (0,0, 7)and A = (7r, , ).

The presence or absence of SOC is also an important
factor for observing the NMEE. Collinear magnets without
SOC do not exhibit a finitt NMEE even if they break 7T
symmetry because they always preserve effective 7 sym-
metry [93]. Effective 7 symmetry combines 7 symmetry
with a spin rotation and prohibits the manifestation of
responses that have identical transformation properties as
spin, such as the AHE and NMEE [26]. However, SOC breaks
effective 7 symmetry, activating the NMEE in altermagnets
with collinearity. Indeed, the SOC reduces the symmetry
to 4'/mm’'m, which is an MPG allowing the NMEE (see
Table I). Note that a complete absence of SOC is not a re-
alistic scenario, and altermagnets typically exhibit, at least, a
weak SOC.

B. Results

First, we calculate the chemical potential dependence of
the NMEE tensor by assuming an applied electric field in
the x-y plane. Under this assumption, a generator Cs, 7 of
4’ /mm'm leaves the following nonvanishing components of
{l"ff [49]: {Z"fﬁ =—¢ O‘;;l and C"d;i Furthermore, mirror sym-
metries M,, and M,T, which are the other generators,
prohibit £2% and only leave £29¢ = —¢25¢. Figure 2(b) shows

the chemical potential dependence of ;Z"g;i for (¢, A, Jo, J1) =
(1.0,0.4,1.7,1.0), kgT =0.1, i/t =0.1, and h=e=1.
Note that we make a replacement called smearing [94] in
Eq. (14) to avoid divergences at crossing points: 1/&,,, —
Enm/ (S,%m + yz), and set y = 0.005 in the calculation. Both

the 72 and 7° responses take finite values without any bias

fields, which directly demonstrates the effectiveness of the
NMEE for d-wave altermagnets.

Then, we examine the relationship between the NMEE
and the magnetic octupole. Here, we assume that the d-
wave altermagnetic order parameter J; reflects the strength
of the magnetic octupole. Figure 2(c) shows the J; depen-
dence of [£2%] for two chemical potentials and (¢, &, Jo) =
(1.0,0.4,1.7), kgT =0.1, i/t =0.1, y =0.005, and & =
e = 1. For small order parameters, the > and 7° responses
show an approximately linear relationship to J; (see the
inset). As the order parameter increases, however, this lin-
ear relationship breaks down. Specifically, the 72 response
starts to decrease beyond a certain point (J; ~ 0.3), while
the 70 response decreases rapidly before rising again, in-
dicating a sign change. Still, the NMEE (combining the
72 and 7Y responses) is finite when J; # 0 and zero when
J1 = 0, which satisfies the conditions as a magnetic octupole
response.

V. MODEL CALCULATION FOR A PYROCHLORE
LATTICE WITH ATAO MAGNETIC ORDER

In this section, we calculate the NMEE for a pyrochlore
lattice with AIAO magnetic order. In Sec. V A, we numeri-
cally show that the intrinsic response is enhanced near band
crossings that are proven to be Weyl points. In Sec. VB,
we analytically demonstrate that the Weyl points are indeed
responsible for the large intrinsic response by analyzing an
effective Weyl Hamiltonian.

A. Numerical calculation
1. Model

The general Hamiltonian composed of NN hopping on a
pyrochlore lattice reads as [9,41,60—62,95,96]

= —t Z clacja+lk Z c.tx(d,-fa)aﬁcj,g,

(i.J).aB

(26)

where c and ¢, are creation and annihilation operators of
electrons with the spin ¢ = {1, |} atasitei, o = (6%, 07, 0%)
are the Pauli matrices, and ), ;y 1s the sum over the NN sites.
The first term is the NN hopplng with hopping strength ¢. The
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(a)

r r

FIG. 3. (a) Unit cell of a pyrochlore lattice. The blue and red
arrows correspond to @;; in Eq. (28) and b;; in Eq. (29), respectively.
(b) First BZ of a pyrochlore lattice (face-centered cubic lattice)
with marked high-symmetry lines. (c) Band structure of Eq. (32)
for (t,m/~/3) = (1.0,0.5) with A = 0.1 (solid line) and A = 0.0
(dashed line). The points L', W’, and X’ are obtained by applying a
transformation (ky, ky, k;) — (k., —k,, —k;) to the points L, W, and
X. (d) Locations of eight Weyl points (red and blue dots) in an AIAO
magnetic phase. The green lines connect two Weyl points related by
P symmetry. () Magnified view of the band structure highlighted
in (c).

second term is the effective SOC with coupling strength A
acting between the NN bond. The vector d;; is composed of
two vectors a;; and b;; [Fig. 3(a)]:

dij:2aiij[j, (27)
a;; = %(xi +x;)—xg, (28)
b,‘j :xj — X, (29)

where b;; points from the jth site x; to the ith site x;,
and a;; points from the center of the unit tetrahedron, xg =
(1, 1, 1)/2, to the midpoint of the (i, j) bond.

The Hamiltonian in momentum space is given by

Ho =Y W{Ho(k)W, (30)
k

[HO(k)];w = 2[_t + i)\(d;w . 0')] Cos(bp,v k), (31)

where Wi = (Cri4, Ckats Ck31» Chkdgs Ckly> Ck2)» Ck34» Ckay) 1S
the basis with the momentum k and the spin {*, |} on four
sublattices u = 1, 2, 3, 4 [Fig. 3(a)]. The final Hamiltonian H

is constructed by adding an ATAO magnetic order term H,,
with strength m/+/3 to Eq. (30) [9,61]:

m
H= W(H (k)+—Hm>w, (32)
Xk: k 0 ﬁ k
H,, =diag(l, —1, —1, )o* + diag(1, —1, 1, —1)o”
+ diag(1, 1, —1, —1)o?%, (33)

where “diag” denotes a diagonal matrix. This ATAO magnetic
order term reduces the symmetry to m3m’, allowing lowest-
rank magnetic octupole order (see Table I). Figure 3(b) shows
the first BZ of a pyrochlore lattice, and Fig. 3(c) shows the
band structure of this Hamiltonian along the high-symmetry
lines depicted in it. This band structure retains a resemblance
to the fourfold-degenerate quadratic band crossings at the
I" point. However, AIAO magnetic order splits such a band
crossing into four pairs of Weyl points, and each pair is con-
nected by P symmetry. Figure 3(d) shows that the Weyl points
are located along the [111] direction or the other three equiv-
alent directions [41,42,59-62,96]. Indeed, Fig. 3(e), which
magnifies the band structure, suggests the presence of Weyl
points at the points designated by the red arrows when the
SOC is turned on.

2. Results

First, we calculate the chemical potential dependence of
the NMEE tensor by assuming an applied electric field in
the x-y plane. Under this assumption, the generators of m3m’
leave only one nonvanishing component §$§. Figures 4(a)
and 4(b) show the chemical potential dependence of {Zﬁy
and {z’;y, respectively, for (¢, m/«/§) =(1.0,0.5),kgT = 0.1,
hi/t =0.1,and i = e = 1. Note that we use a smearing value
of ¥ = 0.005 in the calculation for the same reason as in the
calculation for the d-wave altermagnet. Both the 72 and 7°
responses take finite values; in particular, the t° response is
strongly enhanced around g = 2.5 when the SOC is turned
on. Furthermore, the system does not require SOC to activate
the NMEE, unlike the d-wave altermagnet. This is because the
noncollinearity of the AIAO configuration breaks effective 7~
symmetry regardless of SOC.

Then, we examine the relationship between the NMEE and
the magnetic octupole. As in the d-wave altermagnet, we as-
sume that the AIAO magnetic order parameter m/~/3 reflects
the strength of the magnetic octupole. Figure 4(c) shows the
m/~/3 dependence of |§Z‘§S| for two chemical potentials and
(t,2) =(1.0,0.0), kgT =0.1, a/r =0.1, y =0.005, and
h = e = 1. Note that we only focus on the case where the
SOC is absent (A = 0) to exclude the effect of the enhanced
response. The approximately linear relationship in the small
order-parameter region (see the inset) and its absence in the
large order-parameter region are analogous to the behavior in
the d-wave altermagnet. Furthermore, the NMEE is finite only
when the order parameter is finite, which further supports its
validity as a magnetic octupole response.

3. Discussion

Here, we discuss the origin of the enhanced response
in Fig. 4(b). This enhancement may be attributed to three
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FIG. 4. (a), (b) Chemical potential dependence of the NMEE tensors: (a) T2 response and (b) t° response. Furthermore, we examine the
SOC dependence: A = 0.0 (red color) and A = 0.1 (blue color). The inset of (b) is a magnified view of the region of 1.5 < u < 3.0, and the
green line corresponds to u = 2.5. (¢) AIAO magnetic order parameter (m/~/3) dependence of |{§f€| for different chemical potentials and
A = 0.0. The red and blue colors denote the 72 and t° responses, respectively. We select two chemical potentials: 1 = 1.8 (solid line) and
@ = —1.5 (dashed line), at which the NMEE takes a local maximum when m/ /3 = 0.5, as shown in (a) and (b). The inset is a magnified view

of the region highlighted in the main panel.

possibilities. The first possibility is the presence of a flat
band around E = 2.5 [see Fig. 3(e)]. Flat bands result in
a large density of states (DOS), which can lead to an en-
hanced response. Therefore, we show the DOS of the model
in Fig. 5. It is clear, however, that a large DOS does not
necessarily lead to a large NMEE response. For example,
although the peak in the DOS above E = 2.5 is higher than
below E = 2.5, the intrinsic response at the corresponding
chemical potential does not show an enhancement [compare
the insets of Figs. 4(b) and 5]. Thus, the flat band is unlikely
the cause of the enhanced response. The second possibility
is the presence of band crossings around E = 2.5 [see
Fig. 3(e)]. Band crossings result in a small band gap of
Aeg, which can enhance the intrinsic NMEE by a factor of
1/(Ag)’, as seen from Egs. (16) and (20). However, mere
band crossings cannot explain the enhanced response because
some band crossings do not lead to an enhanced response.
For example, the band crossings around E = —2.0 do not
lead to an enhanced response at the corresponding chemical
potential [see Figs. 3(c) and 4(b)]. This suggests that the band

0.8

0.6

7p)
Q0.4
A

0.2

0.0

-2

FIG. 5. DOS of the model. The solid and dashed lines show the
DOS for A = 0.1 and 0.0, respectively. The inset is a magnified view
of the region of 1.5 < E < 3.0, and the green line corresponds to
E =25.

crossings around £ = 2.5 are different from the others; that is,
they may be Weyl points, which are hot spots for the quantum
metric. Thus, the most promising possibility is the presence of
Weyl points.

To confirm that the band crossings around E =2.5
are Weyl points, we calculate the Berry curvature €, (k)
[90,97,98] and the Chern number Ch,, [90,99,100]:

. 1 .
Q (k) = Esijksz,ﬁ"(k), (34)

Ch,, (k) - dk. (35)

= g g
Here, n is the band index of the bands in Fig. 3(c), S is a closed
manifold in the first BZ, and Q;* (k) is given by

Qf =212 Y Im UiV (36)
n 82 .
m(En) nm

We note that the band crossings around £ = 2.5 comprise the
bands with indices n = 6 and 7. Weyl points act as a source or
drain of Berry curvature flux. Therefore, if a closed manifold
contains Weyl points, the integral of the Berry curvature is
quantized in units of 2. Consequently, an integer value of
the Chern number in Eq. (35) demonstrates the presence of
Weyl points.

We calculate the Chern number by selecting an arbitrary
quadrant and focusing on the expected Weyl point within it
[see Fig. 3(d)]. Selecting any quadrant does not make any
difference because the eight expected Weyl points are related
by the symmetry of the system. Specifically, the inversion
symmetry P and three mirror symmetries My, M,, M, act
on the Berry curvature as [12]

PR, (k) = R,(—k), 37
MR, k) = (R, —Q), =) (ke ky k), (38)
MR, (k) = (95, Q) =) ke, —ky k), (39)

M., (k) = (-, -, Q) (ky, ky, —k.).  (40)

n’
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FIG. 6. Chern number of each band calculated by varying the
size of a closed manifold for the integration, which is characterized
by the volume ratio r regarding the initial manifold. The lightly
shaded area in the inset represents the initial manifold (» = 1), and
the darkly shaded area represents a shrunk manifold (» < 1). Note
that we do not perform any smearing when calculating the Berry
curvature in Eq. (36).

Therefore, finding one Weyl point necessarily reveals the pres-
ence of the other seven. Figure 6 shows the Chern number of
each band, which is calculated by varying the size of a closed
manifold (inset of Fig. 6). The manifold used in the calcu-
lation is characterized by a variable r, which is the volume
ratio between the initial manifold and the manifold. Notably,
the bands comprising the band crossings only yield nonzero
Chern numbers for a certain range of r. Moreover, the values
are nearly integers, which provides evidence that the band
crossings are Weyl points. Note that the sudden change in the
Chern numbers near r = 0 is due to the shrunk manifold no
longer containing the Weyl point.

B. Analytical calculation
1. Model

We consider an effective Weyl Hamiltonian for any one
of the eight Weyl points, which are located at either ke, =
m/2t(1, 1, 1) (t, m > 0) or its equivalent positions [61]. For
concreteness, we focus on kwey = +/m/2t(1, 1, 1), for which
the effective Weyl Hamiltonian reads as [61]

HWeyl(k)
2 5 0, Lo 2 N x Lo o
:—?k o +§(kx+ky —Zkz)a _ﬁ(kx —ky)ay
2t . .
— ?(kxky + kyk, + k:k)o® +mo*. 41

Here, o0 is the identity matrix, ¢ = (¢*, 07, 0%) are the Pauli
matrices, k = |k|, and the momentum k is taken around the
I" point. Note that this Hamiltonian is derived from a Lut-
tinger Hamiltonian that describes the low-energy physics of
pyrochlore lattices [61,76,96]. Figure 7 shows the band struc-
ture of this Hamiltonian, which reproduces the band structure
of the I'"-L line in Fig. 3(e), except for an energy shift. Fur-
thermore, we rewrite Eq. (41) by redefining the momentum k
around the Weyl point and introducing new coordinates g via

0.5¢

0.0t

= -0.5¢

-1.0 /
_15 L

L I
FIG. 7. Band structure of Eq. (41) for (z, m/«/g) = (1.0, 0.5).

a transformation,

qx = ki + ky — 2k, 42)
gy = 3k, — k), 43)
q, = —2(ky + ky + k). (44)

Specifically, the new effective Weyl Hamiltonian is given by
Hwey(q) = g0(q)0” +g(q) - o with

go(g) = —m + a,q, + O(q"), (45)
t
8x(@) = g — 75 (@ — @) +29:42), (46)
t
gy(q) = aiqy — 55]y(% — qx), (47)

t

5@+ — ), (48)

g:(q) = aiq; +
where a, = (2t /3)/m/2t. This Hamiltonian is an example of
the tilted Weyl Hamiltonian, which reads as [101]

H(k) = Ck,0® + Cok - o, (49)

where C < Cj describes type-I Weyl semimetals, and C > Cy
describes type-II Weyl semimetals. Specifically, up to the
linear order terms in the momentum, Hwey1(¢q) corresponds to
C = () in Eq. (49), and thus hosts a flat band, as shown in
Fig. 7. The quadratic order terms describe the anisotropy of
the Fermi surface.

2. Results

First, we introduce the analytical expression of the NMEE
tensor in two-level systems, H (k) = go(k)o® + g(k) - o. The
band-resolved NMEE tensor is given by

o2 e’ 2 (&

i =i—4h kgi;jk( 31,3, D fs, (50)
70 ezfl

(ot = F /kgg?]?k(k;4, 15, 1) fs, (51)

which are derived in Appendix C. Here, {if;,’(i and fi
are the NMEE tensor and the Fermi distribution function
for the upper (+) and lower (—) bands, respectively, and
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gl (e, B, y) is given by

gl (ko B.y)

1 8- 8k,8kkg>
= ——( 0 — ——5— )&
|g|3”( ! lgI?

1 B& - 0k,8)(g " I8
— == |8i| %8 k& — 5
olgl gl
+ v (0, 8i(8 - 9, 8) + 0, &i(8 - 3k,-g))]- (52)

Then, we derive the analytical expression of the NMEE
tensor in the effective Weyl Hamiltonian Hweyi(k) by per-
forming the momentum integrals in Egs. (50) and (51). Here,
we assume zero temperature (7 = 0) and set the chemical
potential w to cross the lower band. Note that the origin of
the chemical potential is defined as the energy of the Weyl
point. Furthermore, changing the coordinates from k to g by
Egs. (42)—(44) and taking the limit ¢ <« m/¢t, we expand the
NMEE tensor in powers of t°/a?. After the integration, the
leading-order term (~1°/a?) cancels out, leaving the next-
leading-order term (~t/a}) to determine the NMEE near the
Weyl point. The expression is given by

2 621'2 t

o = = 5 (AL = ), 53
Coy ScTi af( Pl 171 ) (53)
2
20 e“ht
é‘z;)cy = 4 E 1n(Aa,/|l/«|)7 (54)

where ¢ = 648+/372, and A, = 2a,A. Note that we intro-
duce a cutoff A because the radial integral [ g’dq diverges
for the flat band. The details of the derivation are given in
Appendix D.

3. Discussion

Taking the limit © — 0O in these expressions, we can qual-
itatively explain the behavior of the NMEE tensors near the
Weyl points. Equation (53) does not exhibit divergences but
takes a local maximum. Indeed, Fig. 4(a) shows such ex-
treme points around the chemical potential corresponding to
the Weyl points. Notably, Eq. (54) logarithmically diverges,
which explains the large peak in Fig. 4(b). Therefore, from
Eq. (54) and the discussion in Sec. V A, we conclude that the
Weyl points strongly enhance the intrinsic NMEE.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have proposed the NMEE as a mag-
netic octupole response. First, we have classified the MPGs
(Table I) and have found many candidates with lowest-rank
magnetic octupole order (Table II). Then, we have derived
the NMEE tensor and have confirmed the effectiveness of
the NMEE through model calculations for a d-wave alter-
magnet and a pyrochlore lattice with AIAO magnetic order.
Notably, the intrinsic NMEE exhibits a large response in
magnetic Weyl semimetal phases because its response tensor
involves the quantum metric, which is enhanced near Weyl
points. These results demonstrate that the NMEE is capable
of detecting and controlling lowest-rank magnetic octupole
order, which cannot be achieved by conventional methods

such as the AHE. Furthermore, the NMEE can be one of the
most promising octupole responses because of its electrical
controllability and possible effectiveness in insulators. With
these unique properties, the NMEE will give a new direction
for antiferromagnetic spintronics based on the perspective of
magnetic octupoles.

Finally, we comment on the experimental realization of
the NMEE in a d-wave altermagnet RuO, and pyrochlore iri-
dates R,Iry Alyg. As for RuO», its high Néel temperature (Ty),
which exceeds 300 K [102,103], allows the measurement at
room temperature. Pyrochlore iridates form ATAO magnetic
order below Ty, with Ty increasing monotonically from 30
to 150 K as the atomic number of R elements increases
[37-39]. However, their magnetic Weyl semimetal phases can
only be realized within a narrow temperature window just
below 7x. This is because a charge gap can easily appear
due to the pair annihilation of the Weyl points. Nevertheless,
Ref. [42] has observed this phase at a ~4 K width in the
R=Nd compound, which suggests the possibility of observing
an enhanced NMEE there.

In addition, we estimate the magnitude of the spin den-
sity generated by the NMEE from Figs. 2(b), 4(a), and 4(b)
by considering various magnitudes of applied electric fields.
Note that we assume room temperature (7 = 300 K) and
take the relaxation time 7 as 10 fs in the calculations. For
example, with a driving electric field of £ = 10° V/m, which
is feasible in experiments [104], the value is on the order of
1071910~ pup/nm?>. Furthermore, if one can apply a tera-
hertz electric field with an intensity exceeding E = 107 V/m
[105], the value can reach 1077=107% xz/nm3. On the other
hand, spin density with a magnitude of 10~°-10~% pp/nm?
has already been measured by using the magneto-optical Kerr
effect [106]. Therefore, spin density generated by the NMEE
can be detected by the same method.
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APPENDIX A: REVIEW OF PREVIOUS AHE
MEASUREMENTS

In this appendix, we review previous AHE measurements
in some centrosymmetric AFMs.

1. Altermagnets: RuO, and MnTe

Altermagnets RuO, and MnTe do not exhibit the AHE
in the ground state, and different approaches are employed
to induce the AHE. Tetragonal RuO, belongs to a space
group P4,/mnm (No. 136), with the collinear Ru spin along
the [001] magnetic easy axis [102,103]. The magnetic struc-
ture belongs to a type-IIl MPG 4'/mm’m, which excludes

184407-11



OIKE, SHINADA, AND PETERS

PHYSICAL REVIEW B 110, 184407 (2024)

(a) (c)

P

L Y
ﬂ [010]

z||[001] x| [100]

(b)

Dipole

A, octupole

@ Magnetic fields, Strain

T octupole

A, octupole

FIG. 8. (a) Crystal structure of RuO, with the Néel vector along the [110] direction. The spins in the x-y plane break the C,, 7 symmetry,
allowing the AHE. (b) Spin texture of Mn;Sn. (c) Magnetic moments of R,Ir, Aly;. The magnetic ground state is usually described only by
an A, octupole. Magnetic fields or strain cause the Ir spin to reorient, leading to a superposition of a dipole, A, octupole, and 7} octupole and

allowing the AHE.

the AHE. Therefore, Ref. [22] applied a magnetic field to
reduce the symmetry and induce the AHE. Specifically, the
magnetic field along the [110] direction induces a continu-
ous rotation of the Néel vector towards the [110] direction
[Fig. 8(a)]. This reduces the symmetry from 4'/mm’'m to a
type-1 MPG m'm’'m [12,22], activating the AHE. On the other
hand, hexagonal MnTe belongs to a space group P63/mmc
(No. 194), and the Néel vector aligns along the [2110] mag-
netic easy axis [138]. The magnetic structure belongs to a
type-IIl MPG mmm, which excludes the AHE. Therefore,
Ref. [206] fabricated a thin film to reduce the symmetry and
induce the AHE. Specifically, the thin film changes the mag-
netic anisotropy: the magnetic easy axis is modulated from
the [2110] direction to the [1100] direction. This reduces the
symmetry from mmm to a type-1 MPG m'm’m. Thus, unlike
RuO,, thin-film MnTe does not require any bias fields to
induce the AHE.

2. Noncollinear AFM: Mn;Sn

A noncollinear AFM, Mn;Sn, exhibits a distinctive AHE
in the ground state. This AFM has a hexagonal Ni3Sn-type
structure with a space group P63/mmc (No. 194) and forms
an inverse triangular spin texture of the Mn magnetic moments
[Fig. 8(b)]. The magnetic structure belongs to a type-I MPG
m'm’m, which allows the AHE. Furthermore, angle-resolved
photoemission spectroscopy measurements have revealed the
presence of Weyl points near the Fermi level [207]. Together
with its high Néel temperature Ty = 420 K [208], this leads to
a giant AHE comparable to ferromagnets at room temperature
[30]. Therefore, Mn3Sn is a strong candidate for antiferromag-
netic spintronics [47,48].

3. Noncoplanar AFMs: R;Ir;Aly (R=Nd, Eu)

Noncoplanar AFMs, pyrochlore iridates, R»IryAlyg
(R=Nd,Eu), do not exhibit the AHE in the ground state and
requires further symmetry reduction for a finite AHE. This
AFM belongs to a space group Fd3m (No. 227). In particular,
the paramagnetic states of R=Nd and R=FEu exhibit a metallic
behavior above Ty = 33K for R=Nd and Ty = 120K for
R=FEu, below which AIAO magnetic order stabilizes. The
magnetic structure belongs to a type-IIl MPG m3m’, which
forbids the AHE. Therefore, Refs. [41,42] applied a magnetic
field to reduce the symmetry and induce the AHE. This
symmetry reduction and the resulting AHE can be understood
from the following argument [43,96]. In general, AIAO
magnetic order is characterized by an A, octupole, which
forms the basis of the A, representation of pyrochlore iridates.
Meanwhile, it intrinsically contains a magnetic dipole and a
T octupole, which is an antiferromagnetic order distinct from
AIAO magnetic order. This 7] octupole shares the irreducible
representation of the magnetic dipole, which satisfies the
condition to activate the AHE [26,209]. The magnetic field
induces a spin rearrangement and activates a 77 octupole
[Fig. 8(c)]. In the same way, Refs. [43-45] applied a strain to
a thin film to induce a 7} octupole.

4. Chiral spin liquid: R,Ir;Al,y (R=Pr)

The R=Pr compound of pyrochlore iridates exhibits an un-
conventional AHE, unlike the other pyrochlore iridates. This
compound uniquely remains in a paramagnetic metal state
down to an extremely low temperature [210]. In particular,
the state in the temperature range of 0.3 < 7 < 15isa
chiral spin liquid, which orders the scalar spin chirality. This
ordering is composed of a superposition of the above three
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multipoles (dipole, A, octupole, and 7; octupole) [43] and
symmetrically allows for the AHE [211].

APPENDIX B: DERIVATION OF THE NMEE TENSOR
WITH QUANTUM KINETIC THEORY

In this appendix, we present the details of the derivation of
the NMEE tensor, which is originally defined as

(2) (2)
ljk Z/Sknmpkmn/EjEk'

n,m

B

Specifically, we first review the dynamics of the density op-
erator in Appendix B 1 and then discuss the derivation of the
NMEE tensor in Appendix B 2.

1. Dynamics of the density operator

The dynamics of the density operator o (¢) is derived from
the fact that the full density operator p(¢) obeys the von
Neumann equation

i, p(t) = [H(t), p(t)].

Here, 7 is the Planck constant, 9, = d/dt, [A, B] = AB — BA,
and H(t) is a Hamiltonian. The operator p(t) is defined
within a subspace labeled by crystal momentum k, and p(¢) is
written as a tensor product of pr(1): p(t) = [[; ®px(t). The
matrix representation of px () is defined as

(B2)

Pl (1) = Tl p(t)ef,, Crnl. (B3)
and from Eq. (B2), its equation of motion is written as
iRd; pram (1) = Tr[p(D)lcy,, chns H(O]]. (B4)

Here, c,tn and ¢y, are fermionic creation and annihilation
operators of a Bloch state |u,) labeled by the momentum k
and a band n. In general, H(t) is given by H(t) = Hy + V (1),
where Hj is an unperturbed Hamiltonian, and V (¢) is a per-
turbation by an external field F (¢). These Hamiltonians are
described as

(B5)

Hy = Z/gknclinckm
V)= Z/Cknvknm(t)ckmv

n,m

(B6)

where [, = [, dk/(2m)?, d is the dimension of the sys-
tem, &, is the eigenvalue of Hy, and Vi, (¢) is the matrix
representation of V(¢). Under these expressions, Eq. (B4)
becomes

(lﬁat - 18knm),oknm(l‘) = [Vk(t), pk(t)]nm’

where Eknm = Ekn — Ekm> [Aka Bk]nm = Z](AknlBklm -
BinApim), and we use anticommutation relations

B7)

(BY)
(B9)

il —
{ckn’ K m} 0,

{ctns €}, } = Q) 8,d e — ).

{ckn ) Ck/m} =

In particular, we focus on the equation for the £th-order den-
sity matrix plii)m(t),

14

Y v Po. p 0], ®10)

A=0

(ihd; — ekam)Pr) () =

where pr(t) and Vi (¢) are expanded in powers of F(¢) as
o) =Y, p0(t) and Vi(r) = 3, V() with pi”, V) =
O(|F|*). Furthermore, we phenomenologically introduce a
scattering term into Eq. (B10) [82-85]:

14

(i1, — Etam) g ) = Y _ [V ), p V)],

A=0

— itnpg, (1), (BI1)

where 7 is the scattering rate.
To solve this equation, we first take the Fourier transforma-
tion to the frequency domain w:

(hw — Egnm + iemp,if;’,,,(w)

:/ dwldwzz V(l Do), p(k)(a&)]nm

A=0

x 8(w, W) + @»). (B12)

Then, taking the limit w;, w; — 0, we can obtain the fth-
order density matrix as

L
Pl = D

[Vlc(47k) ’ plg)\)]nm

7 (B13)
=0 Ekmn T 1 n
In this study, we set V;, = ery, - E, resulting in
£-1)
Tk,
CRLLY. Sy (B14)

Ekmn + le’l

where e = |e| is the charge of electrons, r; is the position
operator, and E is an electric field. In this context, the matrix
representation of ry, is given by rgum = i0%8um + Akum [80,81],
where 0 = 3/0k, and Ay, = i (Ugn|Okurn) is the k-space
Berry connection.

Each order of the density matrix is obtained as follows:
Note that we will omit the k index for simplicity in the fol-
lowing. The zeroth-order density matrix is defined as p{%) =
8um fn, Where f, is the Fermi distribution function. The first-
order density matrix is given by

() 0 ) .j
p(l)_ [/, ,0( )]"mE, ZeZ nl'Olm — Pu rlmE
" Emn +in Emn + 11

1

]

) )
- Z (lakj nl + ’Anl)plm B 'O ‘A{m
=e€

e e Al
= ;8nmak,-mej - nmfrmej»

B15
Emp 1 17] (B1)

where f,,, = f, — f- The first and second terms in the last
line are intraband (i) and interband (e) effects, respectively.
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Therefore, we symbolically describe each term as

o = sanmak,me,, (B16)

(le) _ eA{sznm

= E;. B17
nm 8mn+in J ( )

Similarly, the second-order density matrix is further decom-
posed into intraband and interband effects as

Qi) _ [rj’ p(li)]nm

— E = (2ii) + (2ie)’ B18
1011m 8mn + 2”7 J lonm Ionm ( )
i p(le)
(2¢) _ — [rj’p—]nmE (2ei) (Zee) B19
Prm Emn + 2”7 = Pum + Poum ( )
where each term is given by
2 e2
Pim’ = 375 SO fE Ex (B20)
20 = = Al o JEi. (B21)
n(gmn + 2”})
_jeo2
p’(liel) — e . 8k( nmfnfn )EjEk, (B22)
Emn + 217] ! Emn + 11
(2ee) —
ee) __
pnm - Xl: Emn + 2”7
ALAE o A AR E
x ( nl lm.f[ _ Im nl,fl)EjEk. (B23)
Eml + 1N &in +in

2. Derivation of the NMEE tensor

From Eq. (B1) and Egs. (B20)-(B23), the corresponding
NMEE tensors are given by

1(3};) =27 Zfs e Ok fras (B24)
i S Amna nm .
Gk = Z f "’;’ +§kf +( ek, (B2)

(251) _ ie’ f Amnf;1m R k
ik Z kenm+2m ’(snm+in Uk,

(B26)
(2ee)
llk Z/£nm+2”7
Al Ak 1, Al AR fi
< ml fl _ In ml-ﬁ >+(]<—>k), (B27)
Enl + ”7 Eim + m

where s,, is the matrix representation of the spin operator.
Here, we symmetrize the indices of the electric fields (j, k)
to explicitly indicate that their permutation does not affect
the result. In particular, the (2ee) term is further separated
into the (2eed) term and the (2eeo) term, which correspond
to the diagonal and off-diagonal parts of the spin operator,

respectively:
(Zeed)
1 ik
N n,m 2177
Aél‘ﬂ Ak A%’l}‘l Ak mi .
X ( mnfnm _ nmf ’1) +(] <—>k)
Enm + 1N Emn + 17
- AimAk fnm
nn mm mn . PN k ,
4”72/ Enm + I U )
(B28)

(2eeo)
=5 T [

n,m(#n),l
.A’ A fim
Eim + ”7

(Af s S

pp—— ) + (j < k). (B29)

In the following, we expand the above terms in powers of n up
to O(n) and derive each term of Eq. (11) by replacing n with
the relaxation time t based on t = 7i/n. Obviously, the (2ii)
term determines the 72 response,

=T Z / Stk - (B30)
a. 2ie term
The (2ie) term results in
(216) snm Amn 8kk fnm . k
G = Z/ G ek
mna Snm Ymn Ok J nm 2i .
2n Enm
nm(n)
/Q‘ mnakkfnm
n,m(#n)
A A ,
¢’ Z / Oy fum+(J < k), (B31)
n,m(#n)

where we use the relation (u,|dy,uy) = s,,/€m in the third
line [see Eq. (21)] and define the h-space Berry connection as
U,m = i (Uy|Opuy). Furthermore, performing m < n for the
second subscript of f,, and taking a partial integral, we can
write Eq. (B31) as

(2ie)

‘L’U
ik = fif;k + ot (B32)
7! ¢ ik ij
te= 55 Z /k (3, T + 8, Y711, (B33)
,ka = ¢ Z/ 3, O* + 8, B f,. (B34)

Equation (B33) describes the t! response, and Eq. (B34)
forms a part of the intrinsic response tensor, the rest of which
is derived in the following two subappendices. Here, we in-
troduce the anomalous spin polarizability Y,/ [50], the h-k
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space quantum metric gi{ [52], and the h-space BCP Qﬁi{

[49]:
Y = —21Im (Opunl (1 = lutn) (14 ])] 0k, 14
=2y Im[2, Al 1 (B35)
m(#n)
g = Re (3t (1 — [t} ()] 3y, 1)

= > Re[, Al ]= > gl. (B36)

m(#n) m(#n)
®Y =2 = B37
i > - (B37)

m(#n)

and the k-space BCP G [88], respectively, which are
given by

QY = —2Tm (3, (1 — |ty (1413, 14)

=-2 Z Im[ AL, Al ] (B38)
m(#n)
g = Re (gt (1 — ) ()|, 1)
= Y Re[A, AL ]= > gl (B39
m(z£n) m(#n)
} g
Gl=23) == (B40)

——e

Therefore, replacing Y/ with QY and multiplying a factor of
e/h in Eq. (B33), we can reproduce the Berry curvature dipole
contribution in the nonlinear conductivity [85-87,212]

. - 3
These geometric quantities correspond to the Berry curva- 7! ¢ / ik ij
£ pp ol,=—T OS2+ O, 27 | fore B41
ture €2,/ [90,97,98], the k-space quantum metric g7 [89,90], kT g2 Xn: k[ ki 5 ]fn (B41)
J
b. 2eed term
The (2eed) term becomes
— .A’ Ak f, — )A’ Ak f, in
(2 d) nn nm<YmpJ nm nn mm nmv Yy ) nm .
uie - Z[ Enm + 1N +U <—>k)—>— Z/ & <_€ >+(1<_)k)
nm n,m(n) nm nm
- .Ailm.A fnm - Alj1m-/4 fnm
nn mm mn nn mm mn .
i X[ e M
n,m(#n) n,m(#n)
= _¢2 Z / |: mm) ]fn — ¢ Z /Re[Ar]lm.Afnn]ah ( )fn (B42)
n,m(#n) nm n,m(#n)

Here, the transformations in the bottom three lines are specifically as follows: In the first line, n <> m is performed to the
(j < k) terms, resulting in the cancellation of the first term and leaving twice the second term. This remaining term leads to the
second line after performing m <> n for the second subscript of f,,,. The last line results from a relation derived from Eq. (19),

O, (1/&nm) = (Sim - Sinm)/grzlm'

c. 2ei and 2eeo terms

The (2ei) and (2eeo) terms are described as

o+ oo
Ak fnm A] A fnl A] Aklﬁm)
mn _ ] k
Z/’fgnm‘*‘z”i kj(€nm+i77> n(X;é:)l\/Enm+21n( En + 1IN Eim + 1IN ek
nm Al A n A./ Ak -
Z/ { ( f)_i(z Aulufn_ 5~ Ay mlﬁ)}ww)
n,m(#n) Enm nm 1) Enl frl Eim
- Z / { a (AL — A )](M)_i ¥ <AZ;,A5‘,,fnz_A’Ak,f,,,,>}+(jek)
nm(zn) * K Enm " " Enm 1(#n,m) Enl €]
i j j
_ le Z Amnfnm —0 + i(A] A/ ) nm _i Z S Alm _ 'Anl m LG
Enm ’ nn mm . o g]
n,m(#n) m 1) n "
= Z / <Amnfnm>{ (DA, — i Z - Ailmﬁm)} +(j < k). (B43)
n,m(#n) 1(#n,m)
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Here, the transformations in the bottom three lines are specifically as follows: In the first line, we divide it into the two-band
terms and the multiband terms. In the second line, we take a partial integral for the first two- band term and perform / <> m and

I <> n for the first and second multiband terms, respectively. In the last line, we use 2/, = is’ /&, and introduce the k-space
covariant derivative D, which acts on a physical quantity O in Bloch representation as [213— 215]
[D7Olun = 0%, Oum — i( A}, — AlL,.) O (B44)
Equation (B43) is further transformed by defining the Ah-space covariant derivative 2 as
[D/ Ol = O, O — (A, — A, ) O (B45)
This covariant derivative satisfies the following sum rule,
[giAj]nm - [Djmi]mn =1 Z (Qlitl‘Agm - Q’lﬁm) (B46)
[(#n,m)
which results in
1 Amnf"m Amnf"m j
e - T [ (A en- S 3 [ ()
n,m(#n) n,m(#n)
A nm 1 1 .
Z f < ’Z"f ) — A NAL + (<> k). (B47)
n,m(#n) nm

In particular, the second term in the second line cancels with its (j <> k) term after performing n <> m, leaving only the first
term. This remaining term leads to

e =5 X [l A (22) =5 5 [aaan) ()

n,m(#£n) n,m(#n) Enm
=— Y / oy Re[ Al A’,;m]<8ﬁ’ ) (B48)
n,m(n) nm

where the third line results from performing m <> n for the second subscript of f,,,. From this expression and Eq. (B42), the rest
of the intrinsic response tensor is obtained as

. Re Ann Amn
ey e v = B [a(ME)- gy [aan aw

n,m(#n)
where the last line results from Egs. (B39) and (B40).

d. Intrinsic response tensor

The final expression of the intrinsic response tensor is derived from Eqs. (B34) and (B49):
‘L'U ‘L’O. 1 1
C;J('Jk = i;jl’cA + é_i;jkB =775 Z/ 8;, G]k ak 6 . + 8kk® ])]f” (B50)

Note that the analytical expression of dp, Gf;k is given by [49]

i

, 3(sh, — v
ahiGljlk =2Fl2 Z Re[ (snn ‘:4 )U VU, :| 2h2 Z Z |: nl lm mn +(] (—)k):|

m(#n) nm m(#n) 1(#n) 8n1118"1
U
_ 2h2 Z Z |: il Vin ¥ nm +(] (_)k)i| (BS])
m(zn) (£m) EnmEm

(

APPENDIX C: ANALYTICAL EXPRESSION OF THE NMEE where o9 is the identity matrix, and ¢ = (¢%, 6”7, 0%) are the

TENSOR IN TWO-LEVEL SYSTEMS Pauli matrices. This derivation is performed by expressing

the geometric quantities comprising the NMEE tensor in the

basis that diagonalizes Eq. (C1) after converting the Cartesian
coordinates (g, gy, &;) to spherical coordinates (g, 6, ¢).

We first derive the analytical expressions of two physi-

g0 +g g — igv) cal quantities comprising the geometric quantities: the Pauli

In this appendix, we derive the analytical expression of the
NMEE tensor in two-level systems,

0
H=go +g-0= <gx +ig, 80 — & (€D matrices o and a k derivative of the Hamiltonian d;H. Equa-
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tion (C1) is diagonalized as

U™'HU = diag(e, 6-) = diag(go + 8. 80 — &), (C2)

where “diag” denotes a diagonal matrix, ¢4 is the energy
eigenvalue for the upper (4) and lower (—) bands, g = |g|,
and U is a unitary matrix,

Sglg+g)\8x+i8& —8—8&

In the spherical coordinates (8xs 8y» 82) =
g(sin @ cos ¢, sin O sin ¢, cos ), the Hamiltonian and unitary
matrix become

go+gcosh  ge®sind
H = ( ge?sind gy —gcosh ) (€4
cosd e ®sin
u=\{. ", Ak (C5)
e?sin§  —cos§

The unitary transformation of a physical quantity A by this
unitary matrix yields

Ad  A°
—1 _ -1 + +
U'AU =U <A° Ad)U

B UtAau)s  UTAU) 6)
w-'avy  wT'Au )
where each component is given by
0 1.,
(UT'AU )Y = cos® EA‘i + Eei"f’ sin A,
1 Fip o 9 d
+ 26 sin 9A + sin® EAqE, (C7)

1., 0
(UT'AU), = iiew sin /AL — cos? 744

A 0 |
+ T2 gin? EA(;F F Ee:pd) sin QA?F' (C8)

Here, we apply the above expressions to the Pauli matrices o
and the k derivative of the Hamiltonian,

WHY = g0 £ (cos Odg — g sinH30), (C9)
WHS = T (sin kg + g cos OO F ig sinOep). (C10)

Specifically, the unitary transformation of the Pauli matrices
is written as

U le'U) = | | (C11)

(U™ 'o*U)% = —cos® % + €T gin? — (C12)
U™ 'eU)% = :I:i(cosz g + €729 sin? g) (C13)
(U™ '0%U)%. = ™ sin 6. (C14)

Similarly, the unitary transformation of the k derivative of the
Hamiltonian is given by

(U'8%HU) = & (g0 £ 8), (C15)

(U™'"%HU)S, = —ge™? (340 F i sin 0 ¢). (C16)

Equations (C11)—~(C16) lead to the analytical expressions of
the geometric quantities. In the following, we first introduce
these expressions in Appendix C 1 and then derive the analyt-
ical expression of the NMEE tensor in Appendix C 2.

1. Geometric quantities in two-level systems
The analytical expressions of the geometric quantities are
obtained by rewriting Eqgs. (B35)—(B4Q) based on identities
derived from Egs. (17) and (21), A, = lhv”m/enm and
A, = is,,,/ €. The rewritten expressions are given by

ij 2 Uy Umn
QU =-21 )" Im[T], (C17)
m(#n) nm
Uzm
Y =2h Z Im "'"2 , (C18)
m(z£n) nm
Gl =21 3 R [” v] (C19)
m(#n) Eim '
.. s:;m Urjrm
G = —2h ) Re| 22|, (C20)
m(z£n) Enm

which lead to the analytical expressions in two-level systems
(U—lak,.HU)g[(U—laijU);}

(ex — 81F)2

Q= —21m|:

=7F 8 (08 x 0x,8), (C21)

2lgl?

y U~ 'o'U)L (U HU)®
i VR0

(e+ — 8;)2

X akjg)i’ (C22)

—r
4lgl?
Re[(Ulak,HU)i(UlaleU);’F}

G{ =
* (e+ — 8:|:)3

1 (& 08" 08
4lg)? ( lgI?
(U‘an)‘;(Ulak,HU);]

(e+ — 81)3

F i (3 g'ak"g>g
= ki — i
8lgl*\ lg|?

where s' = (i/2)o’, and v/ = i~ '8, H. Here, we symboli-
cally denote the quantities for the upper band as “+4” and
for the lower band as “—" and use the following identities:

g = (g 3g)/lgl

>, (C23)

& = —hRe[

(C24)

cos O cos ¢y, — sin6 sin ¢poy, ¢

o8
o8 — & 2 g g| cos 6 sin@dy,0 + sin6 cos por. @ |,
I8l
—sin 60,0
(C25)
—sin ¢ 9,0 — sinf cos O cos ¢y, ¢
gx hg=g| cospdd —sin6 cosd singdd |

sin 09y, ¢
(C26)
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(g 0,8)(g - 0,8

0.8 - 0,8 —
/ gl
= (3,000 + sin® 03, Py, ), (C27)
g (g x 0,8) = & sin0(0,00,¢ — d,Ppd,0).  (C28)

J

O, & =+h

3(g- 8k,g)< g g ) i
——— | W &i— =g |F O; O, 8i —
8lgl® ‘ lg|? 8lglP\

Bkjg . Bkkg +g- 8k‘, 8kkg

2. NMEE tensor in two-level systems

The final expression of the NMEE tensor is obtained by de-
riving the analytical expressions of derivatives of the physical
quantities that compose Egs. (13) and (14). Note that here we
only focus on the T2 and 7° responses, but a similar expression
can be obtained for the t! response. From Eqs. (C24) and
(B51), the k derivative of the h-space BCP and the & derivative
of the k-space BCP are given by

N g akkg

i k;8i

2(g- 0,8)(g - 08 )

gi
lgl*

lgl? lg1?

h 8 Ok 08 h 5(g - 0,8)(& - I8
= :F@Gk/akk - : )gi + T |:gi(3kjg' 0,8 — =2 ) + (0,818 0 8) + 30k, 8i(g - 0k,8)) |,

lgl?

lgl?

(C29)

WG = hRe[
= (62 — &)t

3[((U'e ) — (UlaiU)iiF](Ulak/.HU)‘i(UlakkHU)‘ﬂ

WU 'o VLU HUL WU 0 HUY, (U o' U)G (U 3, HU)LW ™" HU DS e k)}

(e+ — 5$)4

— hRe|: v
(e+ — 8$)
6g: - hg)g- D
- ﬂz%(ak,.g. g — & OE Mg))
16g| gl
h 5(8 - %;8)(& - Q)
=+ gi(33k,g' 08 — -
8IgI5[ ' lgI?

which result in

3, G —2(0, % + 8, 8Y)

h (8 5 _ & 3k,,-3kkg)g
PYSETY ki Ok — — 2 i
2lgl? ‘ lgl?

ol % o g 15(g - 3,8)(g - 3. 8)

+ 7(0k;8i(g - O, &) + 0k, 8i(g - 3k,-g))]-

==

(C31)

Furthermore, the k derivative of Eq. (C11) is described as

8i
()

1 g Bk.akkg)
=x— 00k — ——5— )&
Ig] < ‘ gl
1 3(g- 0,8)(g - Q)
+ _3 8i 8k‘,'g . 8kkg - 2
g gl

+ <3k,gi(g' 0.8 + 0, 8i(g - 3k,8)>:|. (C32)

From these expressions, we can derive the analytical expres-
sion of the NMEE tensor in two-level systems, as shown in
Egs. (50) and (51).

2 [g 3k-g( (g g :
i 2o g — ——gi |+ (j < k)
16|g|4[ Iy ! lgl?

) + (ak,g,-<g~ 38+ (j < k))],

(C30)

(

APPENDIX D: ANALYTICAL EXPRESSION OF THE NMEE
TENSOR IN THE EFFECTIVE WEYL HAMILTONIAN

In this appendix, we derive the analytical expression of the
NMEE tensor in the effective Weyl Hamiltonian Hwey (k) =
g(k) - o with

t
gc(k) = a,(ky + ky — 2k;) + 3(kf +ky —2Kk2), (D1)

t

g (k) = —3a,(k, — ky) 7

(k5 = K5), (D2)

2t
gz(k) = —2a;(k; + ky +k)— ?(kxky + kykz + k:ky), (D3)

where a, = (2t/3)/m/2t. Specifically, we first express the
k-resolved NMEE tensor of Eq. (52) in spherical coordinates
of the ¢ space defined by Eqgs. (42)-(44). Then, we expand
it by taking the limit ¢ <« m/t and perform the ¢ integral.
The details of each step are presented in Appendices D 1 and
D 2. Note that Egs. (D1)-(D3) are derived by redefining the
momentum around the Weyl point in Eq. (41) after ignoring
the go(k) term (o< o©).

1. Expression of the momentum-resolved NMEE tensor

First, we rewrite g(k) and its k derivatives involved in
the k-resolved NMEE tensor in terms of the g space. The k
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derivatives of g(k) are given by

2t
O sk, 8x (k) = a; + ?kx/ ky, (D4)
O, sk, 8y (k) = F~3a, F %kx/kya (D5)
2t
akk/kygz(k) = —2a; — ?(ky/kx + k), (D6)
Ok, Ok, &x (k) = O, O, gy (k) = 0, (D7)
2t
Ok, Ok, 8- (k) = 3 (D8)

where di, and 0y, take the upper and lower signs of F, respec-
tively. The transformation of these expressions to the g space
results in

Ak, 8x(q) = ar + (qx FV3¢—q), (DY)
01, 8y(@) = F3a, F i(qx FV3q,—q). (D10
Ok, 8:(q) = —2a, + 5(% F+3q,+2¢.). (DI
O, 01, 8:(q) = 0k, 8, 8,(q) = 0, (D12)
Ok, 0, 8:(q) = —?I, (D13)

where we use relations derived from Eqs. (42)—(44),
ke/ky = H(q. F v3ay — q2), (D14)
ke = =524 + q)- (D15)

Meanwhile, Egs. (D1)—(D3) are rewritten as

8@ =aa— = (d — & +24.0,), (D16)
8@ = ady — 54,(¢: — a0) (D17)
8:(¢9) = aig: + lg(qx +4q,—4q.). (D18)

Therefore, each component of the k-resolved NMEE tensor is
given by

2att 2
g O Org = 3 +0(q7). (D19)
+4.) + 0(q;), (D20)
(€ 0,.8)(g g

402 2 2 alt 3 2

=a;(q; =3¢, +49; — 49:9x) + 5~ (= @ — 1304,
+ 10g:q; — 4479 — 1247) + O(q}). (D21)

O /k, 82(8 + Oy /1, Q)
243t
= —267(q: & V34, = 24:) + =~ (% — 4q; = 5¢2

F3V3q:qy £3V3qy4; + .9:) + O(q}),  (D22)
L_ atlql* — a—’t(q3 —3q.q;
lg]" ! 9 iy
—n/2
+ 4+ G+ ) + - ] , (D23)

where we use the following relation to derive Egs. (D21) and
(D22):

g g = al(qe F v3qy —2q.) — 3 & —5q; — 647
+ 6v/3¢:qy F 2v/34y4; + 29.q:) + O(q;).
(D24)

Then, we rewrite Egs. (D19)—-(D23) in the spherical coordi-
nates (¢x, gy, q:) = q(sinf cos ¢, sinf sin ¢, cos 6). Specifi-
cally, the expressions are given by

g 0k g=— (D25)

5 Aot . 2
08 dg = 2a> — Tq(2 sinf cos ¢ + cos6) + O(q”),

(D26)
adt
€ %88 W8 =da'qg(0, )+ Fq 2200, ¢) + 0(g"),
(D27)
0, 82(8 - 01, 8) + 0k, 8:(& - Ok .8)
2
= —4a’
+ 0(q), (D28)
1 1 n t —n/2
—=(—) |1-—af@.0)+| . (D29
Ig] aq 9a,
where g;(6, ¢) (i = 1,2,3) and f(6, ¢) are given by
g10,0)=—-1+5 cos’6 — 4 sin6 cosb cos ¢
+ 2 sin? @ cos2¢, (D30)

2200, ) = —2 cosO(1 + 5 cos> ) — 14 sin’ 6 cos ¢
+10 sin @ cos ¢ + 2 sin> @ cos B cos 2¢

+ 3 sin® @ cos 3¢, (D31)

g3(0,¢) = —%(3 +7 cos29) + sin 6 cos @ cos ¢

+ % sin? 0 cos 2¢, (D32)

£(0,¢) =sin>6 cos3¢p + cosb. (D33)

Equations (D25)-(D29) lead to the expression of the k-
resolved NMEE tensor. In particular, we focus on a specific
expression derived from a relation obtained by taking the limit
q < m/t for Eq. (D29):

1 1 n
>l — ) |14+ ==—4qf(0,
gl (a;q) [ +29,qf( Pt }

(D34)
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In the following, we perform the ¢ integral for the specific expression, which is given by

o LN 2t 2a 1\’
v, py)=— - —+ q cos@| — | a,q cos6 + ---
arq 3 3 arq
1/1\™ 5— t
——(— 1+ ——qf(e &) )| arg cos6 — —g*(cos> 6 — sin® 9)
o \aq 2 9q, 18

) 1\’ ! 42 @t 4
X {Zat — ﬂ(-) (1 + —6]f(9,¢)> <a;6] 810,9)+ —q 82(9,05))}
agq 9a, 9
2

4yat
—4dya’q(sin cos¢p — 2 cosf) + ygat q°g3(0, ¢>)] +

1 1 1 t
=————Wg,(0,9)— T{lZa(l —cos?0) — 8 cosH(2 sinf cos ¢ + cos )
aal q n

— 2B cosO(f(0, $)gi(0, d) + 220, 9)) + 8y83(8, ) + (1 — 2 cos’ H)[2 — Bg1(6, ¢)]
+ (5 —n)f (O, 9)Ws, (0, $)} + Ot /a}"g* "), (D35)

where Wg, (6, ¢) is written as

Wg, (0, ) =cosO(2 — Bgi(6,¢)) —4y(sinf cos¢p — 2 cosb). (D36)

2. Integration of the momentum-resolved NMEE tensor

Equation (D35) is integrated over the volume unit in the spherical coordinates [ q*dq fon sin6 d6 fozn d¢. First, we perform
the integral over the surface unit fon sin @ dé foh d¢ by using the following relations:

2 2 T
. . . . . " _J2/(n+1) (n=even),
/(; sinng d¢ = [) cosngdp =0 (n = integer), /(; sinf cos" 6dO = {0 (n = odd). (D37)

Explicitly including the terms that are finite after the surface integration, we can write Eq. (D35) as

T
¢ (qia, B, y) = —@m{ma(l —c0s26) — 8 cos*0 — 28 cosB(cosO(—1 +5 cos? ) — 2 cosO(1 + 5 cos*0))
t

—4y(B+7cos’0)+ (1 —2 cos’0)(2 — B(—1+5 cos’ 0))
+ (5 —n)cosB(cosH[2 — B(—1 + 5cos’0)] + 8y cosb)} + 0(t2/af_”q2_”)

1 t
—— ————{Q+ 120+ B — 12y) + (=2(1 +n) — 120 + (4 — n)B + (12 — 8n)y) cos’ O
18« a; ng3—n
—5(1 —n)B cos* 0} + O(t*/a;"q*™")
2 t
——”_—{2(2 —n)+24a + 22 +n)p — 8B +n)y}+ O(t*/a/"¢*™"), (D38)
270 a3 !

where the surface integration is performed in the last line. Note that the leading-order term vanishes after the surface integration.
Then, the radial integration in the next-leading-order term of Eq. (D38) results in

2
[t = s / Fdg / sinfdo [ Ao\ ar g 4l e, B )

—2[A% = ()] for(n e, p.y) = (2. 1,3, 1),
) (D39)

t

64843124, a%m( 2

Tl /5 for (n,«, B,y) = (0,4,15,7),
where go = |ul/2a, [216], and |J(qx, qy, q.)| = |0(kx, ky, k2)/0(qx, gy, g2)| = 1/12+/3 is the Jacobian determinant for the
change of the coordinates from k to ¢. Note that we introduce a cutoff A to avoid the divergence of the radial integral | q*dq.

From this expression, we can obtain the analytical expression of the NMEE tensor in the effective Weyl Hamitonian, as shown
in Egs. (53) and (54).
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