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Microscopic theory of spin Nernst effect
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We present the microscopic theory of the spin Nernst effect, which is a transverse spin current directly induced
by a temperature gradient, employing the linear response theory with Luttinger’s gravitational potential method.
We consider a generic, noninteracting electron system with randomly distributed impurities and evaluate the
spin current response to the gravitational potential. Our theory takes into account a contribution of the local
equilibrium current modified by Luttinger’s gravitational potential and is thus consistent with the thermodynamic
principle that thermal responses should vanish at absolute zero. The Ward-Takahashi identities ensure that the
spin Nernst current is well-behaved at low temperatures in any order of the random impurity potentials. Further-
more, we microscopically derive the spin-current version of Mott’s formula, which associates the spin Nernst
coefficient with the spin Hall conductivity. The spin-current version of the Středa formula is also discussed. To
demonstrate these findings, the spin Nernst current of three-dimensional Dirac electrons is computed. Our theory
is general and can therefore be extended to interacting electron systems, where Mott’s formula no longer holds.
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I. INTRODUCTION

Microscopic theoretical treatment of responses to a tem-
perature gradient involves an essential difficulty because the
temperature gradient is not a mechanical force but a statistical
one and, therefore, cannot be written in a Hamiltonian form.
To overcome this difficulty, Luttinger introduced a fictitious
gravitational potential coupled to the local energy density of
the system [1]. He established a correspondence between the
responses to the gradient of this gravitational potential and
to the temperature gradient, employing Einstein’s relation.
This approach using the gravitational potential has success-
fully described longitudinal thermal transport phenomena,
including the Seebeck effect. An analog of the gravitational
potential, similar to a vector potential, was also introduced by
Tatara [2].

However, it is known that the standard calculation pro-
cedures based on the Kubo formula using the gravitational
potential fail to accurately describe transverse responses to
temperature gradients. As such responses, the thermal Hall
effect [3–6] and thermal spin torques [7–9] are known. This
failure is revealed when we take the low-temperature limit;
these responses diverge as T → 0, although the responses to
temperature gradients should vanish at T = 0 from the ther-
modynamic principle. As highlighted in the previous works
[3–9], the gravitational potential modifies the local equilib-
rium components, which contribute to the observable quan-
tities as well as the nonequilibrium components evaluated
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from the Kubo formula. The contributions from the local
equilibrium components successfully remove the unphysical
divergence at low temperatures and allow us to derive Mott’s
formula for the transverse responses valid at low temperatures.
Similar procedures have been found needed in magnonic
systems [10,11]. The phenomena induced by temperature
gradients mentioned above have only been discussed individ-
ually, and the methodology to evaluate such linear response
coefficients based on the microscopic theory with the gravi-
tational potential, including random impurity potentials, has
been absent so far. Note that such methodology based on a
semiclassical theory is discussed in Ref. [12]. We also note
that a quantum kinetic theory considering the thermal vector
potential is discussed [13].

As an example of responses to a temperature gradient, we
consider the spin Nernst effect, which refers to a transverse
spin current directly induced by the temperature gradient
without magnetic field [12,14–23] and was recently observed
[24–27]. This effect also diverges at low temperatures when
the Kubo formula is employed without considering the contri-
bution from the local equilibrium current [16]. For a specific
model, the spin Nernst effect was precisely evaluated by con-
sidering the local equilibrium spin current [20,28]. In this
paper, we present the guiding principle of the linear response
theory to the temperature gradient based on Luttinger’s grav-
itational potential method (as outlined in Fig. 1) and show
how the contributions from the local equilibrium components
successfully remove the unphysical divergence at low temper-
atures. We focus on the spin Nernst effect, but our theory
can be applied to other quantities induced by the temper-
ature gradient, with the exception of the heat current. The
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FIG. 1. Outline of the present theory. The gravitational potential
causes the following two deviations. One is the deviation of the
density matrix, which is evaluated based on the Kubo formula. The
other is the deviation of the equilibrium expectation value from the
global equilibrium (into the local equilibrium), which is evaluated by
the static linear response theory. The sum of the two contributions
is well-behaved at low temperatures. Finally, by using Einstein’s
relation, we obtain the response to the temperature gradient.

linear response of the spin Nernst current to the gradient of
gravitational potential consists of two distinct currents: the
local equilibrium spin current and the nonequilibrium spin
current. The local equilibrium current is evaluated by the
canonical correlation function, and the nonequilibrium current
is obtained from the Kubo formula. We consider a generic
one-particle Hamiltonian with randomly distributed impuri-
ties and evaluate the two contributions. While the obtained
nonequilibrium spin current diverges at low temperatures, the
sum of the two contributions vanishes at absolute zero. Using
the Ward-Takahashi identities, we prove that the contribution
from the local equilibrium spin current precisely removes the
unphysical divergence of the nonequilibrium spin current at
low temperatures as long as the calculation does not violate
the conservation law. The resultant spin Nernst current in-
duced by the temperature gradient satisfies the spin-current
version of Mott’s formula, which associates the spin Nernst
coefficient with the spin Hall conductivity. We also discuss
the spin-current version of the Středa formula. Finally, we
compute the spin Nernst effect in the three-dimensional Dirac
electron system to demonstrate our theory. Our theory can
be extended to interacting electron systems, where Mott’s
formula no longer holds.

The rest of this paper is organized as follows. Section II is
devoted to the general theory of a response to a temperature
gradient. We first explain Einstein’s relation and Luttinger’s
gravitational potential method (Sec. II A). Then, the nonequi-
librium spin current is evaluated based on the Kubo formula
in the general form (Sec. II B). Section II C describes the
evaluation of the nonequilibrium spin current and shows the
unphysical divergence of the nonequilibrium spin current.
Section II D presents the evaluation of the local equilibrium
spin current and the proof of precise cancellation of the un-
physical divergence based on the Ward-Takahashi identities.
We then discuss the spin Nernst coefficient in the clean limit
and the spin-current version of the Středa formula in Sec. II E.

Finally, we show Mott’s formula in Sec. II F. Furthermore, as
a demonstration, we apply our theory to the three-dimensional
Dirac electron system in Sec. III. Section IV summarizes our
theory.

II. RESPONSE TO TEMPERATURE GRADIENT

In Sec. II, we describe the linear response theory of the
spin Nernst effect. This section is inspired by Refs. [7] and
[8], which discuss the response of a spin density induced by
temperature gradients. First, we review Einstein’s relation and
Luttinger’s gravitational potential method, the foundational
elements of the response theory to temperature gradients, clar-
ifying the importance of the local equilibrium current. Next,
we review the Kubo formula for the spin current induced by
the gravitational potential and evaluate the nonequilibrium
spin current. We demonstrate that the obtained nonequi-
librium spin current diverges at T = 0, contradicting the
thermodynamic principle that dictates it should vanish. To
overcome this discrepancy, we compute the additional con-
tribution from the local equilibrium current and show that
the unphysical divergence at T = 0 is removed when this
contribution is included. In the procedures, we show that
the Ward-Takahashi identities ensure the well-behaved spin
Nernst current at low temperatures. Then, the spin-current
version of the Středa formula is discussed. Finally, we micro-
scopically derive the spin-current version of Mott’s formula
which associates the spin Nernst coefficient with the spin Hall
conductivity.

A. Einstein’s relation and Luttinger’s method

Let us write the linear response of spin current flow-
ing in the i direction (i = x, y, z) with spin polarization
α(= x, y, z) as

〈
jαs,i

〉 = Lα
c,i j

(
Ej + 1

e
∇ jμ

)
+ Lα

Q,i j

(
−∇ jψ − ∇ jT

T

)
, (2.1)

where E = (Ex, Ey, Ez ) is the electric field, −e is the electron
charge, μ is the chemical potential, ψ is the fictitious grav-
itational potential introduced by Luttinger [1], and T is the
temperature, respectively. The repeated indices imply that the
summation is to be carried out. Equation (2.1) is known as
Einstein’s relation which indicates that the responses to the
mechanical forces, E and −∇ψ , coincide with the response
to the statistical forces, ∇μ/e and −∇T/T , respectively.
Einstein’s relation allows us to formulate the response to
temperature gradients, as the response to gradients of the
gravitational potential.

The gravitational potential ψ (r) modifies the local energy
density Q(r) as

Q(r) = h(r) − μn(r) → (h(r) − μn(r))(1 + ψ (r)), (2.2)

where h(r) and n(r) are the Hamiltonian and electron den-
sities, respectively. We write the linear response to the
gravitational potential as〈

jαs,i
〉 = 〈

jψ,α
s,i

〉 + δ
〈
jαs,i

〉
, δ

〈
jαs,i

〉 = L̃α
Q,i j (−∇ jψ ), (2.3)

where 〈 jψ,α
s,i 〉 is the equilibrium expectation value of the spin

current in the presence of the gravitational potential ψ , and
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L̃α
Q,i j is the response coefficient to −∇ jψ calculated based on

the Kubo formula.
We note that L̃α

Q,i j may differ from Lα
Q,i j in Eq. (2.1). As

shown below, the gravitational potential ψ (r) changes the
equilibrium current 〈 jψ,α

s,i 〉, which gives a contribution to the
response coefficient Lα

Q,i j .
The gravitational potential modifies the physical quantities

(except the quantities related to heat, such as the heat current
and the heat magnetization) as 〈A〉 → (1 + ψ (r)) 〈A〉 up to the
linear order of ψ (r), where 〈A〉 is a physical quantity in the
absence of the gravitational potential. Therefore, the (local)
equilibrium spin current is modified as〈

jψ,α
s,i

〉 = (1 + ψ (r))
〈
j0,α
s,i (r)

〉
, (2.4)

where 〈 j0,α
s,i (r)〉 is the (local) equilibrium spin current in the

absence of the gravitational potential. As described later in
Sec. II D, the local equilibrium spin current in the absence of
the gravitational potential is expressed as〈

j0,α
s,i (r)

〉 = ∇ jJ 0,α
i j [μ(r), T (r)], (2.5)

where ∇ jJ 0,α
i j is assumed to be a functional of μ(r) and T (r).

Using Eq. (2.5), we rewrite Eq. (2.4) as〈
jψ,α
s,i

〉 = (1 + ψ (r))∇ jJ 0,α
i j

= ∇ jJ ψ,α
i j + J 0,α

i j (−∇ jψ (r)) (2.6)

= ∇ jJ ψ,α
i j + 〈

δ jαs,i
〉
,

where J ψ,α
i j = (1 + ψ (r))J 0,α

i j is introduced as J 0,α
i j under

the gravitational potential. The first term in Eq. (2.6) is the
equilibrium spin current circulating the system so that it does
not contribute to the q = 0 component of the spin current or∫ 〈 jαs,i〉dr . However, the second term in Eq. (2.6) contributes
to the response coefficient Lα

Q,i j . Hence, we obtain the proper
response coefficient; Δ〈 jαs,i〉 = Lα

Q,i j (−∇ jψ ) with

Lα
Q,i j = L̃α

Q,i j + J 0,α
i j , (2.7)

where J 0,α
i j should be evaluated at a constant μ(r) and T (r).

We also note that J 0,α
i j is an equilibrium quantity and thus

weakly depends on the lifetime of electrons. As shown later,
J 0,α

i j is significantly important to remove the unphysical diver-
gence of the nonequilibrium spin current expressed by L̃α

Q,i j at
low temperatures.

It is worth considering the case when the spin is conserved.
In this case, the spin current can be expressed as 〈 jz

s〉 =
〈 j↑〉 − 〈 j↓〉, where 〈 jσ 〉 (σ =↑,↓) is the spin-resolved elec-
tric current. Furthermore, the local equilibrium current can be
written with the spin-resolved orbital magnetization Mσ as
〈 j0,z

s 〉 = ∇ × (M↑ − M↓). In the presence of the gravitational
potential, the local equilibrium current is written as〈

jψ,z
s

〉 = (1 + ψ )∇ × (M↑ − M↓)

= ∇ × {(M↑ − M↓)(1 + ψ )} − (∇ψ ) × (M↑ − M↓).
(2.8)

The last term in Eq. (2.8) contributes to the transport, as
discussed in the thermal Hall effect [4–6] and the spin Nernst
effect for the Rashba model [20,28]. In the present paper, we

investigate the generic cases where the spin is not necessarily
conserved.

B. Kubo formula for nonequilibrium spin current

As shown before, the response coefficient consists of L̃α
Q,i j

and J 0,α
i j . We first compute L̃α

Q,i j using the Kubo formula. Let
us introduce the gravitational potential coupled with the local
energy density as

Hext (t ) = Q(−q)ψqe−iωt , (2.9)

where Q(q) and ψq are the Fourier coefficients of the local
energy density and the gravitational potential, respectively.
The response of the spin current is expressed as〈

jαs,i(q, ω)
〉 = −χα

i0(q, ω)ψq. (2.10)

According to the Kubo formula, χα
i0(q, ω) is given by

χα
i0(q, ω) = i

h̄

∫ ∞

0
dt ei(ω+i0)t

〈[
jαs,i(q, t ), Q(−q)

]〉
, (2.11)

where [A, B] = AB − BA is the commutator. Integrating by
parts and rearranging the forms, we obtain

χα
i0(q, ω) = i

h̄

∫ ∞

0
dt

ei(ω+i0)t − 1

iω

〈[
jαs,i(q, t ), Q̇(−q)

]〉
.

We use the continuity equation for the local energy density

Q̇(r) + ∇ · jQ(r) = 0, (2.12)

and then express χα
i0(q, ω) as

χα
i0(q, ω) = χα

i j (q, ω) − χα
i j (q, 0)

iω
iq j . (2.13)

In Eq. (2.13), the response function is defined as

χα
i j (q, ω) = i

h̄

∫ ∞

0
dt ei(ω+i0)t

〈[
jαs,i(q, t ), jQ, j (−q)

]〉
. (2.14)

As a result, the response of the spin current is written as

〈
jαs,i(q, t )

〉 = χα
i j (q, ω) − χα

i j (q, 0)

iω
(−iq jψq)e−iωt . (2.15)

We consider the linear response to the uniform temperature
gradients and thus take the limit of q → 0 and then of ω → 0.
We finally obtain

L̃α
Q,i j = lim

ω→0

χα
i j (ω) − χα

i j (0)

iω
, (2.16)

where χα
i j (ω) = χα

i j (0, ω).

C. Evaluation of the nonequilibrium spin current

The response function χα
i j (ω) is evaluated from the Mat-

subara correlation function defined as

χ̃α
i j (iωλ) =

∫ β

0
dτ eiωλτ

〈
Tτ jαs,i(τ ) jQ, j

〉
, (2.17)

where ωλ = 2πλkBT is the Matsubara frequency of bosons,
jαs,i(τ ) = eτH̃ jαs,ie

−τH̃ is the Heisenberg picture in the imagi-
nary time τ with H̃ = ∫

dr (h(r) − μn(r)), β = 1/kBT , jαs,i =
jαs,i(q = 0), and jQ, j = jQ, j (q = 0). χα

i j (ω) is associated with
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χ̃α
i j (iωλ) by an analytical continuation in the complex fre-

quency space as

χα
i j (ω) = χ̃α

i j (h̄ω + i0). (2.18)

In the following, we assume a noninteracting electron sys-
tem with the randomly distributed impurities described by

H =
∫

dr h(r) = H0 + Vimp, (2.19)

where H0 is a one-particle Hamiltonian with the transla-
tional symmetry and Vimp represents impurity potentials,
respectively. Because of the noninteracting electron system
with the translational symmetry, the one-particle Hamilto-
nian can be diagonalized in the momentum space as H0 =∑

k c†
kh0(k)ck, where c(†)

k is the annihilation (creation) oper-
ator of the electron with momentum k. The impurity potential
has off-diagonal components in momentum space as Vimp =∑

k,q ρ(q)u(q)c†
k+qck, where ρ(q) = ∑

i e−iq·Ri is the impurity
density with the impurity positions Ri and the impurity poten-
tial strength u(q).

The heat current density is expressed as

jQ,i = 1

2

∑
k

(ċ†
kvi(k)ck − c†

kvi(k)ċk), (2.20)

where ċ(†)
k = dc(†)

k /dτ is the imaginary-time derivative and
vi(k) = (1/h̄)(∂h0(k)/∂ki ) is the velocity operator in the
Fourier space. This expression is obtained from the Heisen-
berg equation of the local energy density combined with the
continuity equation of Eq. (2.12). Jonson and Mahan [29]
showed that this type of equation (2.20) holds for the impurity
potential and for part of the electron-phonon interaction to
prove the Mott’s formula for the Seebeck coefficient. This
method was extended to the Hubbard interaction by Kontani
[30] and for more general cases by one of the authors [31]
to clarify the range of validity of Mott’s formula. For the
derivation in the three-dimensional Dirac electron system, see
Appendix A in Ref. [32].

The spin current density is expressed as

jαs,i = h̄

2

∑
k

c†
kv

α
s,i(k)ck, (2.21)

where vα
s,i(k) is the velocity of the spin current. Note that we

do not assume the explicit form of vα
s,i(k). We also note that

one can discuss other responses to the temperature gradient
by replacing (h̄/2)vα

s,i(k) in Eq. (2.21) with the focused quan-
tities, such as the spin density (h̄/2)σα and the electric current
−evi(k).

Substituting Eqs. (2.20) and (2.21) into Eq. (2.17) and then
using Wick’s theorem, we have

χ̃α
i j (iωλ) = + h̄

4

∫ β

0
dτ eiωλτ

∑
k,k′

tr
[
vα

s,i(k)〈Tτ ck(τ )ċ†
k′ 〉

× v j (k
′)Gk′,k(−τ ) − vα

s,i(k)Gk,k′ (τ )v j (k
′)

× 〈Tτ ċk′c†
k(τ )〉], (2.22)

where Gk,k′ (τ − τ ′) = −〈Tτ ck(τ )c†
k′ (τ ′)〉H is the imaginary-

time Green’s function of H = H0 + Vimp and tr represents the

trace over spin degrees of freedom. Note that Gk,k′ (τ ) is not a
diagonal in momentum space due to Vimp. We use

〈Tτ ck(τ )ċ†
k′ 〉 = d

dτ
Gk,k′ (τ ) + δkk′δ(τ ), (2.23a)

〈Tτ ċkc†
k′ (τ )〉 = d

dτ
Gk,k′ (−τ ) − δkk′δ(τ ), (2.23b)

to rewrite Eq. (2.22) as

χ̃α
i j (iωλ) = − h̄

2βV 2

∑
n

∑
k,k′

tr

[
vα

s,i(k)Gk,k′ (iε+
n )

×
(

iε+
n + iεn

2

)
v j (k

′)Gk′,k(iεn)

]
, (2.24)

where εn = (2n + 1)πkBT is the Matsubara frequency of
fermions and ε+

n = εn + ωλ. In Eq. (2.24), the terms propor-
tional to δ(τ ) are neglected because they do not depend on
iωλ and thus are independent of ω after taking the analytic
continuation.

Now, we take the statistical average on the impurity posi-
tions defined as

〈A({Ri})〉av =
∏

i

∫
dRi

V
A({Ri}), (2.25)

where {Ri} is the set of the positions of the impurity potentials.
With this statistical average, we define the impurity averaged
Matsubara Green’s function as

Gk(iεn) = 〈Gk,k(iεn)〉av = {iεn − h0(k) − �k(iεn)}−1,

(2.26)

with the self energy due to the impurity potential. Using
Gk(iεn), we express the correlation function as

〈
χ̃α

i j (iωλ)
〉
av = − h̄

2βV

∑
n

∑
k

tr

[
�α

s,i(k; iεn, iε+
n )Gk(iε+

n )

×
(

iεn + iωλ

2

)
v j (k)Gk(iεn)

]
, (2.27)

where �α
s,i(k; iεn, iε+

n ) is the full vertex of the spin currnet
including the vertex correction corresponding to the impurity
self energy.

Next, we rewrite the Matsubara summation using the con-
tour integral and then take the analytic continuation iωλ →
h̄ω + i0. The resultant expression is

〈
χα

i j (ω)
〉
av = h̄

2

∫ ∞

−∞

dε

2π i

[
( f (ε+) − f (ε−))εϕRA,α

i j (ε+, ε−)

+ f (ε−)εϕRR,α
i j (ε+, ε− − f (ε+)εϕAA,α

i j (ε+, ε−)
]
,

(2.28)

with f (ε) = (eβε + 1)−1 and ε± = ε ± h̄ω/2. In Eq. (2.28),

ϕXY,α
i j (ε, ε′) = 1

V

∑
k

tr
[
�YX,α

s,i (k; ε′, ε)GX
k (ε)v j (k)GY

k (ε′)
]

(2.29)

is defined, where X, Y ∈ {R, A} and GR(A)
k (ε) is the retarded

(advanced) Green’s function. Here, �AR,α
s,i (k; ε′, ε) is the full
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vertex of the spin current obtained by taking the analytic con-
tinuations, iε′

n → ε′ − i0 and iεn → ε + i0 in �α
s,i(k; iε′

n, iεn).
Similarly, �RR,α

s,i (k; ε′, ε) (�AA,α
s,i (k; ε′, ε)) is obtained by tak-

ing the analytic continuations, iε′
n → ε′ + i0 and iεn → ε +

i0 (iε′
n → ε′ − i0 and iεn → ε − i0) in �α

s,i(k; iε′
n, iεn). By

expanding for ω in χα
i j (ω), we finally obtain

L̃α
i j = h̄2

4π

∫ ∞

−∞
dε

[(
−∂ f

∂ε

)
εFα

1,i j (ε + μ) + f (ε)εFα
2,i j (ε + μ)

]
,

(2.30)

where

Fα
1,i j (ε + μ) = ϕRA,α

i j (ε, ε) − 1
2

{
ϕRR,α

i j (ε, ε) + ϕAA,α
i j (ε, ε)

}
,

(2.31)

Fα
2,i j (ε + μ) = − 1

2 (∂ε − ∂ε′ ){ϕRR,α
i j (ε, ε′)

− ϕAA,α
i j (ε, ε′)}∣∣

ε′→ε
. (2.32)

Let us show that the nonequilibrium current diverges at
T = 0. At low temperatures, we expand∫ ∞

−∞
dε

(
−∂ f (ε)

∂ε

)
εFα

1,i j (ε + μ) � π2(kBT )2

3

∂Fα
1,i j (ε)

∂ε

∣∣∣∣
ε=εF

,

(2.33)∫ ∞

−∞
dε f (ε)εFα

2,i j (ε + μ) �
∫ εF

−∞
dε (ε − εF)Fα

2,i j (ε) (2.34)

with the Fermi energy εF defined as εF = μ(T = 0). Hence,
we obtain the expression of L̃α

i j at low temperatures as

L̃α
i j = h̄2

4π

{
π2(kBT )2

3

∂Fα
1,i j (ε)

∂ε

∣∣∣∣
ε=εF

+
∫ εF

−∞
dε (ε − εF)Fα

2,i j (ε)

}
. (2.35)

We note that the second term does not depend on T at low
temperatures so that L̃α

i j/T diverges as T → 0. Since thermo-
dynamics requires that the response to temperature gradients
should vanish at T = 0, the above standard procedures of
the Kubo formula for the thermal response seemingly lead
to the unphysical result. As shown in Sec. II A, we need to
consider the contribution from the local equilibrium current,
J 0,α

i j , which precisely removes the unphysical divergence as
shown below.

To see this more precisely, we show the expression of L̃α
i j

in the clean limit, where no impurity potential is present. In
this limit, the Green’s function can be expressed using the
Bloch eigenstate |nk〉 with the band index n and the crystal
momentum vector k as

GR/A
k (ε) =

∑
n

|nk〉 〈nk|
ε + μ − εnk ± i0

, (2.36)

where εnk is the corresponding eigenvalue. In this limit, we
can compute the above calculation exactly (see Appendix A

for the calculation detail) and obtain

L̃α
i j = − 1

V

∑
n,k

fFD(εnk)

(
(εnk − μ)�α

nk,i j − 1

2
mα

nk,i j

)
,

(2.37)

where fFD(ε) = {e(ε−μ)/kBT + 1}−1 is the Fermi-Dirac distri-
bution function, and �α

nk,i j is the Berry curvature-like quantity
(sometimes called the spin Berry curvature [33,34]),

�α
nk,i j = ih̄2

2

∑
m �=n

〈n|vα
s,i|m〉 〈m|v j |n〉 − 〈n|v j |m〉 〈m|vα

s,i|n〉
(εnk − εmk)2

(2.38)

and mα
nk,i j is the spin-dependent magnetic moment,

mα
nk,i j = ih̄2

2

∑
m �=n

〈n|vα
s,i|m〉 〈m|v j |n〉 − 〈n|v j |m〉 〈m|vα

s,i|n〉
εnk − εmk

.

(2.39)

When the spin is conserved, the Berry curvature-like quantity
and the spin-dependent magnetic moment are expressed as

�z
nk,i j = εi jl

b↑
nk,l − b↓

nk,l

2
, (2.40)

mz
nk,i j = εi jl

m↑
nk,l − m↓

nk,l

2
, (2.41)

where bσ
nk and mσ

nk with σ =↑,↓ are the spin-resolved Berry
curvature and magnetic moment, respectively.

D. Local equilibrium spin current

Next, we evaluate the local equilibrium current 〈 j0,α
s,i 〉 =

∇ jJ 0,α
i j [μ(r), T (r)]. We hereafter write 〈 j0,α

s,i 〉 as 〈 jαs,i〉leq to
emphasize the local equilibrium quantity. To obtain the func-
tional J 0,α

i j [μ(r), T (r)], we consider a situation in which the
chemical potential μ(r) and the temperature T (r) have the
form

μ(r) = μ0 + δμ(r), 1/T (r) = 1/T0 + δ(1/T (r)). (2.42)

Here, μ0 and T0 are the chemical potential and temperature in
the global equilibrium. Then, the deviation of the local equi-
librium current 〈 j0,α

s,i 〉 is calculated from the static response
theory [35] as

δ
〈
jαs,i(r)

〉
leq =

∫
dr′ φα

c,i(r, r′)δμ(r′)

−
∫

dr′ φα
Q,i(r, r′)T0δ

(
1

T (r′)

)
, (2.43)

with

φα
c,i(r, r′) =

∫ β0

0
dτ

〈
Δ jαs,i(r, τ )Δn(r′)

〉
0, (2.44a)

φα
Q,i(r, r′) =

∫ β0

0
dτ

〈
Δ jαs,i(r, τ )[Δh(r′) − μ0Δn(r′)]

〉
0,

(2.44b)
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where 〈 · · · 〉0 is the expectation value in global equilib-
rium, β0 = 1/kBT0, Δ jαs,i(r) = jαs,i(r) − 〈 jαs,i(r)〉0, Δn(r) =
n(r) − 〈n(r)〉0, and Δh(r) = h(r) − 〈h(r)〉0. Note the effect
of δμ(r) appears through −μ(r)n(r) in the static expectation

values and that of δ(1/T (r)) through β(r)[h(r) − μn(r)],
which leads to Eq. (2.44).

Assuming the uniform system, we perform the Fourier
transformation to obtain

δ
〈
jαs,i(r)

〉
leq = 1

V

∑
q

eiq·rφα
c,i(q)δμq − 1

V

∑
q

eiq·rφα
Q,i(q)T0δ

(
1

T

)
q
. (2.45)

In the similar way to calculate χα
i j (ω) in the Kubo formula, we can show

φα
c,i(q) =

∫ β0

0
dτ

〈
Δ jαs,i(q, τ )Δn(−q)

〉
0

= h̄

2V

∫ ∞

−∞

dε

2π i
f (ε)

∑
k

tr
[
�RR,α

s,i (k, q, ε, ε)GR
k+q/2(ε)GR

k−q/2(ε) − �AA,α
s,i (k, q, ε, ε)GA

k+q/2(ε)GA
k−q/2(ε)

]
. (2.46)

By using the following relation

h(q, τ ) − μn(q, τ ) = 1

2
(∂τ − ∂τ ′ )

∑
k

c†
k− q

2
(τ )ck+ q

2
(τ ′)

∣∣∣∣
τ ′→τ

, (2.47)

we can see that φα
Q,i(q) is obtained by replacing f (ε) in Eq. (2.46) with f (ε)ε.

Then, expanding for small q as

φα
c,i(q) � φα

c,i(0) + iq jφα
c,i j, φα

Q,i(q) � φα
Q,i(0) + iq jφα

Q,i j,

we can see that φα
c,i(0) = φα

Q,i(0) = 0 since the q = 0 components are nothing but the quantities in the global equilibrium. In the

linear order of q, considering that the vertex function �XX,α
s,i contains GX

k+q/2(ε) and GX
k−q/2(ε), we obtain

φα
c,i j =

∫ ∞

−∞

dε

2π i
f (ε)�α

i j (ε + μ0), (2.48)

φα
Q,i j =

∫ ∞

−∞

dε

2π i
f (ε)ε�α

i j (ε + μ0), (2.49)

with f (ε) = (eβ0ε + 1)−1. In Eqs. (2.48) and (2.49), �α
i j (ε + μ0) is defined as

�α
i j (ε + μ0) = h̄

4iV

∑
k

tr
[
�RR,α

s,i

(
∂ jG

R
k

)
�RR

0 GR
k − �RR,α

s,i GR
k �RR

0

(
∂ jG

R
k

) − �AA,α
s,i

(
∂ jG

A
k

)
�AA

0 GA
k + �AA,α

s,i GA
k �AA

0

(
∂ jG

A
k

)]
,

(2.50)

with ∂ jGR
k = ∂GR

k /∂k j and �RR,α
s,i = �RR,α

s,i (k; ε, ε). The vertex �RR
0 is the full vertex of the electron number and �AA

0 is obtained
by replacing GR

k with GA
k in �RR

0 .
Using the Ward-Takahashi identities,

GR
k �RR

0 GR
k = −∂εGR

k , h̄GR
k �RR

v,i GR
k = ∂iG

R
k , (2.51)

GA
k �AA

0 GA
k = −∂εGA

k , h̄GA
k �AA

v,i GA
k = ∂iG

A
k , (2.52)

we find

tr
[
�RR,α

s,i

(
∂ jG

R
k

)
�RR

0 GR
k − �RR,α

s,i GR
k �RR

0

(
∂ jG

R
k

)] = −h̄ tr
[
�RR,α

s,i GR
k �RR

v, j

(
∂εGR

k

) − �RR,α
s,i

(
∂εGR

k

)
�RR

v, jG
R
k

]
, (2.53)

where �XX
v,i (X ∈ R, A) is the full velocity vertex. A similar form is obtained for the advanced part by replacing R → A. Hence,

we obtain

�α
i j (ε + μ0) = − h̄2

4iV

∑
k

tr
[
�RR,α

s,i GR
k �RR

v, j

(
∂εGR

k

) − �RR,α
s,i

(
∂εGR

k

)
�RR

v, jG
R
k − �AA,α

s,i GA
k �AA

v, j

(
∂εGA

k

) + �AA,α
s,i

(
∂εGA

k

)
�AA

v, j GA
k

]
.

(2.54)
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Decomposing the full velocity vertex �RR
v, j and �AA

v, j and then recollecting the terms, we have

�α
i j (ε + μ0) = h̄2

4iV
(∂ε − ∂ε′ )

∑
k

tr
[
�RR,α

s,i (k; ε, ε′)GR
k (ε)v j (k)GR

k (ε′) − �AA,α
s,i (k; ε, ε′)GA

k (ε)v j (k)GA
k (ε′)

]∣∣
ε′→ε

= ih̄2

2
Fα

2,i j (ε + μ0). (2.55)

Hence, we obtain

δ
〈
jαs,i(r)

〉
leq = ih̄2

2β0

∫ ∞

−∞

dε

2π i
f (ε)Fα

2,i j (ε + μ0)

× ∇ j

{
δμ(r)

kBT0
− εδ

(
1

kBT (r)

)}
. (2.56)

By changing the variable as ε + μ0 → ε and writing {· · · } as
−δ((ε − μ(r))/kBT (r)), we find

β0δ〈 jαs,i(r)〉leq = ∇ j
ih̄2

2

∫ ∞

−∞

dε

2π i
Fα

2,i j (ε)

× δ

(
ln

[
1 + exp

(
−ε − μ(r)

kBT (r)

)])
,

(2.57)

where we have assumed that the μ- and T -dependences of
Fα

2,i j (ε) is negligible [36]. Therefore, we obtain

〈
jαs,i(r)

〉
leq = ∇ jJ 0,α

i j [μ(r), T (r)], (2.58)

where

J 0,α
i j [μ, T ] = h̄2kBT

4π

∫ ∞

−∞
dε Fα

2,i j (ε)

× ln

[
1 + exp

(
−ε − μ

kBT

)]
. (2.59)

At T = 0, this expression becomes

J 0,α
i j [εF, 0] = − h̄2

4π

∫ εF

−∞
dε (ε − εF)Fα

2,i j (ε). (2.60)

As mentioned before, this contribution from the local equilib-
rium current exactly cancels with T = 0 limit of L̃α

i j , i.e., this
is significantly important to remove the unphysical divergence
of the spin Nernst current at T = 0.

For finite temperatures, we use a relation

kBT ln

[
1 + exp

(
−ε − μ

kBT

)]

=
∫ ∞

ε−μ

dε′ f (ε′)

= −(ε − μ) f (ε − μ) −
∫ ∞

ε−μ

dε′ ε′ ∂ f

∂ε′ . (2.61)

Substituting this relation into in Eq. (2.59) and then changing
the variable ε − μ′ → ε in the ε integral. We obtain

J 0,α
i j [μ, T ]

= − h̄2

4π

∫ ∞

−∞
dε Fα

2,i j (ε + μ)

[
f (ε)ε +

∫ ∞

ε

dε′ ε′ ∂ f

∂ε′

]

= − h̄2

4π

∫ ∞

−∞
dε

[
f (ε)εFα

2,i j (ε + μ) + ∂ f

∂ε
εFα

2,i j (ε + μ)

]
.

(2.62)

where Fα
2,i j (ε + μ) is defined as

Fα
2,i j (ε + μ) ≡

∫ ε

−∞
dε′ Fα

2,i j (ε
′ + μ), (2.63)

and the change of the integral
∫ ∞
−∞ dε

∫ ∞
ε

dε′ =∫ ∞
−∞ dε′ ∫ ε′

−∞ dε has been used in the second term. The
first term exactly cancels with the second term of the
nonequilibrium spin current obtained by the Kubo formula in
Eq. (2.30). This indicates that the local equilibrium current
successfully removes the divergence of the nonequilibrium
spin current at low temperatures.

Finally, the total of Eqs. (2.30) and (2.62) leads to the
following expression of the response coefficient:

Lα
Q,i j = h̄2

4π

∫ ∞

−∞
dε

(
−∂ fFD

∂ε

)
(ε − μ)

[
Fα

1,i j (ε) + Fα
2,i j (ε)

]
.

(2.64)

Note that our discussion above only relies on the Ward-
Takahashi identities and hence is generic. The Ward-
Takahashi identities guarantee that the computed spin Nernst
current does not involve the unphysical divergence at T = 0
as long as the calculation does not break the conservation law.

E. Clean limit and Středa formula

Here, we examine the results obtained in the preceding sec-
tions in the clean limit. With the Green’s function represented
by the Bloch eigenstate [Eq. (2.36)], the local equilibrium
current in the clean system is expressed as

J 0,α
i j (μ, T ) = − 1

2V

∑
n,k

mα
nk,i j fFD(εnk) + 1

V

∑
n,k

�α
nk,i jgnk,

(2.65)

where gnk = gnk(μ, T ) = −kBT ln(1 + e−(εnk−μ)/kBT ) is the
grand-canonical free energy for fermions at energy εnk (see
Appendix A for the calculation detail). From Eqs. (2.37) and
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(2.65), we then obtain

Lα
Q,i j = L̃α

i j + J 0,α
i j = −T

V

∑
n,k

�α
nk,i j snk, (2.66)

where we introduce the entropy snk as

T snk = (εnk − μ) fFD(εnk)

+ kBT ln

[
1 + exp

(
−εnk − μ

kBT

)]
(2.67)

= enk − (μ fFD(εnk) + gnk) (2.68)

= enk − fnk, (2.69)

where enk = εnk fFD(εnk) is the energy, and fnk = gnk + μ fFD

is the Helmholtz free energy. As already pointed out for the
thermal spin torques in Ref. [9], once introducing a thermo-
dynamic quantity,

�α
i j (μ, T ) = − 1

V

∑
nk

�α
nk,i jgnk, (2.70)

and using the relation fFD = −∂gnk/∂μ and snk = −∂gnk/∂T ,
we have the spin Hall conductivity and spin Nernst
coefficient as

Lα
c,i j = − ∂

∂μ
�α

i j (μ, T ), (2.71)

Lα
Q,i j = −T

∂

∂T
�α

i j (μ, T ), (2.72)

which is the spin-current version of the Středa formula [37].
To see the convergence at low temperatures, we rewrite the

second term in Eq. (2.67) using Eq. (2.61). Then, we obtain

T snk = −
∫ ∞

εnk−μ

dε′ ε′ ∂ f

∂ε′

=
∫ εnk

−∞
dε (ε − μ)

∂ fFD

∂ε
, (2.73)

where we have used the fact that ε′ ∂ f
∂ε′ is an odd function of ε′.

Thus T snk ∝ T 2 as T → 0, indicating that the local equilib-
rium current successfully removes the unphysical divergence
of the nonequilibrium spin current in the clean limit.

F. Generalization of Mott’s formula

We next establish the spin-current version of Mott’s for-
mula, which associates the spin Nernst effect with the spin
Hall effect. To establish this formula, we evaluate the spin
Hall conductivity Lα

c,i j in Eq. (2.1). According to the Kubo
formula, the spin Hall conductivity is expressed as

Lα
c,i j = lim

ω→0

Kα
i j (ω) − Kα

i j (0)

iω
, (2.74)

where Kα
i j (ω) is evaluated from the corresponding correlation

function in the Matsubara formalism; Kα
i j (ω) = K̃α

i j (h̄ω + i0)
with

K̃α
i j (iωλ) =

∫ β

0
dτ eiωλτ

〈
Tτ jαs,i(τ ) jc, j

〉
, (2.75)

where jc, j = −e
∑

k c†v j (k)ck is the electric current. With the
Matsubara Green’s function, we write K̃α

i j (iωλ) as

K̃α
i j (iωλ) = eh̄

2βV 2

∑
n

∑
k,k′

tr
[
vα

s,i(k)Gk,k′ (iε+
n )v j (k

′)Gk′,k(iεn)
]
.

(2.76)

We take the statistical average on the impurity configuration
and then obtain

〈K̃α
i j (iωλ)〉av = eh̄

2βV

∑
n

∑
k

tr
[
�α

s,i(k; iεn, iε+
n )Gk(iε+

n )

× v j (k)Gk(iεn)
]
. (2.77)

Rewriting the Matsubara summation using the contour inte-
gral and then taking the analytic continuation iωλ → h̄ω + i0,
we find

Kα
i j (ω) = −eh̄

2

∫ ∞

−∞

dε

2π i

[(
f (ε+) − f (ε−)

)
ϕRA,α

i j (ε+, ε−)

+ f (ε−)ϕRR,α
i j (ε+, ε−) − f (ε+)ϕAA,α

i j (ε+, ε−)
]
.

(2.78)

As a result, we obtain the expression of the spin Hall conduc-
tivity

Lα
c,i j = −eh̄2

4π

∫ ∞

−∞
dε

[
− ∂ f (ε)

∂ε
Fα

1,i j (ε + μ)

+ f (ε)Fα
2,i j (ε + μ)

]

= −eh̄2

4π

∫ ∞

−∞
dε

(
−∂ fFD

∂ε

)[
Fα

1,i j (ε) + Fα
2,i j (ε)

]
,

(2.79)

where we have carried out an integration by parts in the second
term. From Eqs. (2.64) and (2.79), we obtain the following
spin-current version of Mott’s formula at low temperatures

Lz
Q,yx = π2(kBT )2

−3e

∂σSH(εF)

∂εF
, (2.80)

where σSH(εF) is the spin Hall conductivity at the zero tem-
perature given as

σSH(εF) = Lz
c,yx

∣∣
T =0 = −eh̄2

4π

[
F z

1,yx (εF) + F z
2,yx(εF)

]
. (2.81)

III. DIRAC ELECTRON SYSTEM

A. Model

As a demonstration of our theory, we compute the spin
Nernst coefficient of a three-dimensional Dirac electron sys-
tem. Following Ref. [38], we consider the effective (isotropic)
Dirac Hamiltonian,

HD =
(

� ih̄vk · σ

−ih̄vk · σ −�

)
= −h̄vρ2k · σ + �ρ3, (3.1)

where v is the velocity, σ = (σ x, σ y, σ z ) are the Pauli matrices
in spin space, and ρi (i = 1, 2, 3) are the Pauli matrices in
particle-hole space. The eigenenergies of the Dirac Hamil-
tonian are given as ±εk = ±

√
h̄2v2k2 + �2. We use ρ0 and
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σ 0 as the unit matrices when emphasizing them. We consider
the short-range impurity potential V (r) = u

∑
i ρ0σ

0δ(r −
Ri ), where u is the impurity potential strength and Ri is the
positions of the impurities. The retarded/advanced Green’s
function within the Born approximation is given by Eq. (2.10)
with Eq. (2.11) in Ref. [39]. Note that the treatment of impu-
rities in this model is described in Refs. [32] and [39].

The velocity operator in the Dirac electron system is
given by

vi = 1

h̄

∂HD

∂ki
= −vρ2σ

i (i = x, y, z), (3.2)

and the velocity operator of the spin current with spin compo-
nent α is given by

vα
s,i = 1

2μB
[vi, μs,α]+ (i, α = x, y, z) (3.3)

= −g∗v
2

εiα jρ1σ
j, (3.4)

where [A, B]+ = AB + BA is the anticommutator and μs =
−(g∗μB/2)ρ3σ is the spin magnetic moment with the effective
g-factor g∗ = 2mv2/� and the Bohr magneton μB. Using
these, the electric, spin, and heat current operators in the
second quantization are given by

Ji = ev
∑

k

c†
kρ2σ

ick, (3.5)

jαs,i = −g∗v
2V

εiα j

∑
k

c†
kρ1σ

jck, (3.6)

JQ,i = −v

2

∑
k

(ċ†
kρ2σ

ick − c†
kρ2σ

iċk), (3.7)

where V is the system volume.
The retarded Green’s function with the Born approxima-

tion is given by [32,39]

GR
k (ε) = 1

DR
k (ε + μ)

(
gR

0 (ε + μ)

+ ρ2gR
2 (k) · σ + ρ3gR

3 (ε + μ)
)
, (3.8)

where

DR
k (ε) = (ε + iγ0(ε))2 − h̄2v2k2 − (� − iγ3(ε))2, (3.9a)

gR
0 (ε) = ε + iγ0(ε), (3.9b)

gR
2 (k) = −h̄vk, (3.9c)

gR
3 (ε) = � − iγ3(ε). (3.9d)

Here,

γ0(ε) = π

2
niu

2ν(ε), (3.10a)

γ3(ε) = π

2
niu

2 �

ε
ν(ε) (3.10b)

are the damping rates of electrons with the impurity concen-
tration ni. ν(ε) is the density of states given by

ν(ε) = 1

V

∑
k,η=±

δ(ε − ηεk )

= |ε|
2π2h̄3v3

√
ε2 − �2

∑
η

�(ηε − �). (3.11)

The advanced Green’s function GA
k (ε) is obtained by replac-

ing γ0 and γ3 with −γ0 and −γ3 in GR
k (ε). In this model,

the Fourier coefficient of the impurity potential is u(q) = u
because the short-range impurity potential is assumed.

B. Response coefficients

We consider that temperature gradients are applied along x
direction and the response of the spin current flowing in the y
direction with the z spin polarization; i = y, j = x, α = z. We
evaluate the leading order with respect to the μτ/h̄ and hence
we approximate Eq. (2.31) as

F z
1,yx (ε + μ) � ϕRA,z

yx (ε, ε) ≡ ϕladder + ϕskew, (3.12)

where ϕladder is the contribution of the side jump, and ϕskew is
the contribution of the skew scattering, which are given by

ϕladder = 1

4V

∑
k

tr
[
ρ1σ

xGR
k �2,xGA

k

]
, (3.13)

ϕskew = niu3

4V 3

∑
k,k′,k′′

tr
[
�∗

1,xGR
k GR

k′�2,xGA
k′GA

k′′GA
k

+�∗
1,xGR

k GR
k′′GR

k′�2,xGA
k′GA

k

]
, (3.14)

with GR/A
k = GR/A

k (ε). �∗
1,x and �2,x are velocity vertexes

of the spin and charge currents with the ladder-type vertex
corrections satisfying

�∗
1,x = ρ1σ

x + niu2

V

∑
k

GA
k �∗

1,xGR
k , (3.15)

�2,x = ρ2σ
x + niu2

V

∑
k

GR
k �2,xGA

k . (3.16)

From the calculation of Ref. [39], we have

�∗
1,x = 1

1 − 2U
ρ1σ

x − V

(1 − U )(1 − 2U )
ρ2σ

x, (3.17)

�2,x = − V

(1 − U )(1 − 2U )
ρ1σ

x + 1

1 − U
ρ2σ

x (3.18)

with

U (ε) = 1

3

ε2 − �2

ε2 + �2
, V (ε) = niu

2 π�

ε2 + �2
. (3.19)

Immediately, we find

ϕladder = − 1

niu2

V

(1 − U )(1 − 2U )
, (3.20)

ϕskew = 1

niu

2U

1 − 2U

U

1 − U

−2γ3

niu2
. (3.21)

Equation (2.32) is calculated as

Fα
2,i j (ε + μ) = ϕsea(ε + μ) (3.22)

with

ϕsea (ε + μ) = 1

8�

∑
k

tr
[
ρ1σ

xGR
k ρ2σ

x
(
∂εGR

k

)
− ρ1σ

x
(
∂εGR

k

)
ρ2σ

xGR
k − (R → A)

]
. (3.23)
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The leading order in ϕsea (ε) for μτ/h̄ is zero so that the limit
ni → 0 can be taken. Using

∂εGR/A
k = 1

DR
k (ε)

− ∂εDR
k (ε)

DR
k (ε)

GR
k (ε), (3.24)

we obtain

1

8
tr

[
ρ1σ

xGR
k ρ2σ

x
(
∂εGR

k

)
− ρ1σ

x
(
∂εGR

k

)
ρ2σ

xGR
k − (R → A)

]
= 1

8DR
k (ε)

tr
[
ρ1σ

xGR
k ρ2σ

x − ρ1σ
xρ2σ

xGR
k − (R → A)

]

= − i

4DR
k (ε)

tr
[
ρ3GR

k − ρ3GA
k

]

= −i�

(
1

{DR
k (ε)}2

− 1

{DA
k (ε)}2

)
. (3.25)

From Ref. [39], Eq. (3.25) is evaluated as

1

8
tr [· · · ] = π�

2

∑
η=±

1

ε + μ

∂

∂ε

(
δ(ε + μ − ηεk )

ε + μ

)
. (3.26)

We thus have

ϕsea(ε) = π�

2V

∑
k

∑
η=±

1

ε

∂

∂ε

(
δ(ε − ηεk )

ε

)

= π�

2ε

∂

∂ε

(
ν(ε)

ε

)

= ∂

∂ε

(
π�

2ε2
ν(ε)

)
+ π�

2ε3
ν(ε). (3.27)

We finally obtain∫ ∞

−∞
dε f (ε)εϕsea(ε + μ)

=
∫ ∞

−∞
dεε

{(
−∂ f

∂ε

)
π�

2(ε + μ)2
ν(ε + μ)

+ f (ε)
π�

2(ε + μ)3
ν(ε + μ)

}
(3.28)

=
∫ ∞

−∞
dε(ε − μ)

{(
− ∂ fFD

∂ε

)
π�

2ε2
ν(ε)

+ fFD(ε)
π�

2ε3
ν(ε)

}
. (3.29)

Note that the last term in Eq. (3.29) causes the divergence of
the nonequilibrium spin current at T = 0.

C. Local equilibrium current

To obtain the proper spin Nernst coeffient, we compute
the local equilibrium current. In this model, Eq. (2.54) is
computed as

�z
yx(ε + μ)

= −h̄ Im
∑

k

tr

[(
−g∗v

2V
εyz jρ1σ

j

)
GR

k (−vρ2σ
x )

(
∂εGR

k

)

−
(

−g∗v
2V

εyz jρ1σ
j

)(
∂εGR

k

)
(−vρ2σ

x )GR
k

]

= − h̄g∗v2

2V
Im

∑
k

tr
[
ρ1σ

xGR
k ρ2σ

x
(
∂εGR

k

)
− ρ1σ

x
(
∂εGR

k

)
ρ2σ

xGR
k

]
= 2ih̄g∗v2ϕsea. (3.30)

We then obtain the local equilibrium current

J 0,z
yx (μ, T ) = h̄g∗v2

π

∫ ∞

−∞
dε f (ε)

∫ μ

−∞
dμ′ϕsea(ε + μ).

(3.31)

In total, we obtain the spin Nernst coefficient

Lz
Q,yx = L̃z

Q,yx + J 0,z
yx

= h̄g∗v2

π

∫ ∞

−∞
dε

[(
−∂ f

∂ε

)
εϕsurf (ε + μ)

+ f (ε)εϕsea(ε + μ) + f (ε)
∫ μ

−∞
dμ′ϕsea(ε + μ′)

]
.

(3.32)

The obtained spin Nernst coefficient does not involve the
unphysical divergence at T = 0. Below, we clarify that the
absence of the unphysical divergence of the computed spin
Nernst effect. Because ϕsea is the function of ε + μ′, we have

�sea (ε + μ) ≡
∫ μ

−∞
dμ′ϕsea =

∫ ε

−∞
dε′ϕsea (ε′ + μ). (3.33)

With ∂
∂ε

�sea = ϕsea, we obtain∫ ∞

−∞
dε

(
f (ε)εϕsea(ε + μ) + f (ε)

∫ μ

−∞
dμ′ϕsea(ε + μ)

)

=
∫ ∞

−∞
dε

(
f (ε)ε

∂

∂ε
�sea (ε + μ) + f (ε)�sea(ε + μ)

)

=
∫ ∞

−∞
dε f (ε)

∂

∂ε
(ε�sea(ε + μ))

=
∫ ∞

−∞
dε

(
−∂ fFD

∂ε

)
(ε − μ)�sea (ε). (3.34)

We finally obtain

Lz
Q,yx = L̃z

Q,yx + J 0,z
yx

= h̄g∗v2

π

∫ ∞

−∞
dε

(
−∂ fFD

∂ε

)
(ε − μ){ϕsurf (ε) + �sea(ε)}.

(3.35)

Equation (3.35) clarifies that the calculated spin Nernst con-
ductivity goes to zero as T → 0 and does not involve the
unphysical divergence.

From Eq. (3.27), we express the local equilibrium
current as

J 0,z
yx (μ, T ) = h̄g∗v2

π

∫ ∞

−∞
dε f (ε)�sea(ε + μ), (3.36)
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where

�sea(ε) =
∫ ε

−∞
dε′ϕsea (ε′) = π�

2ε2
ν(ε) + π�

∫ ε

−∞
dε′ ν(ε′)

2ε′3 .

(3.37)

D. Results and discussion

We finally summarize the results and discuss the spin
Nernst effect in the three-dimensional Dirac electron system.
When the electric field and temperature gradient are applied
along the x direction, the response of the spin current flowing
in the y direction with the z spin polarization is described by

jz
s,y = Lz

c,yxEx + Lz
Q,yx

(
−∇xT

T

)
. (3.38)

Note that the other components of the spin current response
are zero. From Ref. [39] and Eq. (3.35), the spin Hall conduc-
tivity and the spin Nernst coefficient are expressed as

Lz
c,yx = −eh̄g∗v2

π

∫ ∞

−∞
dε

(
−∂ fFD

∂ε

)
{ϕsurf (ε) + �sea (ε)},

(3.39)

Lz
Q,yx = h̄g∗v2

π

∫ ∞

−∞
dε

(
−∂ fFD

∂ε

)
(ε − μ){ϕsurf (ε) + �sea(ε)}.

(3.40)

ϕsurf (ε) describes the two distinct extrinsic (impurity) contri-
butions to these transport phenomena and expressed as

ϕsurf (ε) = ϕladder (ε) + ϕskew(ε). (3.41)

ϕladder (ε) arises from the ladder-type diagrams and describes
the so-called side-jump contribution

ϕladder (ε) = − π�

ε2 + �2
β(ε)ν(ε). (3.42)

and ϕskew(ε) describes the skew-scattering contribution

ϕskew(ε) = − 2

niu

π�

ε
{U (ε)}2β(ε)ν(ε). (3.43)

Here, ν(ε) is the density of states given by Eq. (3.11) and

β(ε) = 9(ε2 + �2)2

2(ε2 + 2�2)(ε2 + 5�2)
+ O

(
n2

i

)
, (3.44)

U (ε) = 1

3

ε2 − �2

ε2 + �2
+ O

(
n2

i

)
. (3.45)

The intrinsic contribution �sea(ε) is given by

�sea (ε) = π�

2ε2
ν(ε) + π�

∫ ε

−∞
dε′ ν(ε′)

2ε′3 . (3.46)

As shown before, at low temperatures, the spin-current
version of Mott’s formula is satisfied as

Lz
Q,yx = π2(kBT )2

−3e

∂σSH(εF)

∂εF
, (3.47)

where σSH(εF) is the spin Hall conductivity at the zero tem-
perature given as

σSH(εF) = Lz
c,yx

∣∣
T =0 = −eh̄g∗v2

π
{ϕsurf (εF) + �sea (εF)}.

(3.48)

Now, we discuss the dependence of the spin Hall and
spin Nernst coefficient on the chemical potential depicted in
Fig. 2. The upper panels of Fig. 2 show the chemical po-
tential dependence of the spin Hall coefficient for kBT/� =
0.01, 0.1, and 1, where the skew-scattering contribution is
not included. When the chemical potential lies in the band
gap (|μ/�| < 1), the spin Hall coefficient takes the nonzero
(and not-quantized) value due to the Fermi-sea term, which
arises from the intrinsic contribution. This feature has been
discovered in Refs. [38,39]. At higher temperatures, the sharp
chemical potential dependence becomes masked, although
the magnitude of the spin Hall coefficient does not change
significantly.

The lower panels of Fig. 2 indicate the chemical poten-
tial dependence of the spin Nernst coefficient for kBT/� =
0.01, 0.1, and 1 without the skew-scattering contribution. The
spin Nernst coefficient is odd for the chemical potential. The
blue and yellow lines, corresponding to the Fermi-surface and
Fermi-sea terms, respectively, are sensitive to the chemical
potential, but the sum of them is not. This is because the
contribution from the spin-dependent magnetic moment in the
Fermi-surface term is canceled by that in the Fermi-sea term.
Note that, in contrast with the spin Hall effect, the magnitude
of the spin Nernst effect is sensitive to the temperature.

Next, we show the contribution from the skew scattering in
Fig. 3. We plot the spin Hall and spin Nernst coefficients in
the upper and lower panels, respectively. The spin Hall coeffi-
cient without the skew-scattering contribution is even for the
chemical potential, whereas the skew-scattering contribution
is odd for it. Hence, the total spin Hall coefficient is neither
even nor odd for the chemical potential. Similarly, for the
spin Nernst coefficient, the skew-scattering contribution is an
even function for the chemical potential, and thus the total
spin Nernst coefficient has no such symmetry. We again note
that the increase of the temperature leads to the significant
enhancement of the spin Nernst coefficient, whereas the spin
Hall coefficient does not change drastically.

Then, we plot the chemical potential dependence of the
local equilibrium current for low temperatures in Fig. 4.
We find that the dependence for �/kBT ∼ 0.1 is different
from that of the Fermi-sea term, whereas the dependence for
�/kBT ∼ 0.01 is similar to that of the Fermi-sea term (see the
orange line in the upper panel of Fig. 2).

Finally, we note that temperature gradients induce the
transverse spin current in two ways: the spin Nernst effect
and the combined effect of the Seebeck effect and spin Hall
effect. Both mechanisms should be considered because the
sum of these are observed in experiments. The Seebeck effect
of the three-dimensional Dirac electron system is calculated
in Ref. [32]. As shown in Fig. 5, when the chemical potential
lies near the band bottom, the combined effect is dominant,
because the Seebeck effect is enhanced as 1/T . This enhance-
ment would be useful for thermoelectric power generation via
the thermospin conversion [40].

Here, we discuss previous studies on the spin Nernst effect
in the two-dimensional Rashba electron system [20,28]. The
results in Refs. [20,28] have similarities to ours, which are
summarized as follows: First, the spin Nernst conductivity
evaluated using the Kubo formula exhibits physically unre-
alistic behavior at low temperatures, but by considering the
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FIG. 2. Chemical potential dependences of the spin Hall and spin Nernst coefficients without the skew-scattering contributions.

FIG. 3. Chemical potential dependences of the spin Hall and spin Nernst coefficients for various niu/�.
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FIG. 4. Chemical potential dependence of the local equilibrium
current for various temperatures.

local equilibrium contribution (spin-resolved orbital magne-
tization), this unphysical behavior is corrected. Second, the
precise spin Nernst conductivity shows a T 2 dependence at
low temperatures, as demonstrated in Eq. (2.80) and Fig. 5(a)
in this paper as well as Fig. 4 of Ref. [20]. However, there
are some differences as follows: The previous work [20] is

based on the eigenstate representation, i.e., the spin-resolved
expression of the Rashba Hamiltonian, while our calculations
are performed without using the eigenstate representation and
instead rely on Green’s function for general Hamiltonian. The
advantage of our approach is that we do not need to analyti-
cally diagonalize the specific Hamiltonian. Using the Green’s
function method, we can include impurity effects and extend
them to many-body systems.

IV. SUMMARY

We established the linear response theory of the spin
Nernst effect by using Luttinger’s gravitational potential
method and considering the contribution from the local equi-
librium current. We clarified that the contribution precisely
removes the unphysical divergence of the nonequilibrium spin
current at T = 0 with the Ward-Takahasi identities. As a
demonstration, the spin Nernst effect of three-dimensional
Dirac electrons is computed. Our theory is general and thus
straightforward to be extended to interacting electron systems,
where Mott’s formula no longer holds.
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APPENDIX: NONEQUILIBRIUM AND EQUILIBRIUM CURRENT IN CLEAN LIMIT

Here, we show the calculation details in the clean limit. First, we calculate Fα
1,i j . In the clean limit, the vertex of velocity of

the spin current is reduced to the bare one: �YX,α
s,i (k; ε′, ε) = vα

s,i(k).

Fα
1,i j (ε + μ) = − 1

2V

∑
k

tr
[
vα

s,i(k)
(
GR

k − GA
k

)
v j (k)

(
GR

k − GA
k

)] + 1

2V

∑
k

tr
[
vα

s,i(k)GR
k v j (k)GA

k − vα
s,i(k)GA

k v j (k)GR
k

]
, (A1)

where GR/A
k = GR/A

k (ε). The first term in Eq. (A1) contributes only to the longitudinal response and the second contributes to
the transverse response, so that we omit the first and consider the second term below. By using Eq. (2.36), we have

Fα
1,i j (ε + μ) = 1

2V

∑
k

∑
n �=m

[ 〈n| vα
s,i(k) |m〉 〈m| v j (k) |n〉

(ε + μ − εmk + i0)(ε + μ − εnk − i0)
− 〈m| vα

s,i(k) |n〉 〈n| v j (k) |m〉
(ε + μ − εnk − i0)(ε + μ − εmk + i0)

]
. (A2)

For the ε-integral in Eq. (2.30), we rewrite the contour integral and take the pole of ε = εnk − μ + i0, and then we get

h̄2

4π

∫ ∞

−∞
dε

(
−∂ f

∂ε

)
εFα

1,i j (ε + μ) = − 1

2V

∑
k

∑
n

f ′
FD(εnk)(εnk − μ)mα

nk,i j, (A3)

where f ′
FD(ε) = ∂ fFD(ε)/∂ε and mα

nk,i j is the spin-dependent magnetic moment defined by Eq. (2.39).
Next, we calculate Fα

2,i j as

Fα
2,i j (ε + μ) = − 1

2V

∑
k

tr
[
vα

s,i(k)
(
∂εGR

k

)
v j (k)GR

k − vα
s,i(k)GR

k v j (k)
(
∂εGR

k

) − (R → A)
]
. (A4)

Here, the derivative of the Green’s function is calculated as

∂εGR/A
k = ∂

∂ε

(∑
n

|nk〉 〈nk|
ε + μ − εnk ± i0

)
= −

∑
n

|nk〉 〈nk|
(ε + μ − εnk ± i0)2

, (A5)
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FIG. 5. Temperature dependences of two paths of spin current generation for various chemical potentials.

so that we have

Fα
2,i j (ε + μ) = 1

2V

∑
k

∑
n �=m

[ 〈n| vα
s,i(k) |m〉 〈m| v j (k) |n〉

(ε + μ − εmk + i0)2(ε + μ − εnk + i0)
− 〈m| vα

s,i(k) |n〉 〈n| v j (k) |m〉
(ε + μ − εmk + i0)2(ε + μ − εnk + i0)

− (+i0 → −i0)

]
. (A6)

We rewrite the ε-integral as the contour integral and we use the residue theorem for ε = εnk − μ − i0 and ε = εmk − μ − i0.
Then, we get

h̄2

4π

∫ ∞

−∞
dε f (ε)εFα

2,i j (ε + μ) = − ih̄2

2V

∑
k

∑
n �=m

[
fFD(εnk)(εnk − μ)

(εnk − εmk)2
+ ∂

∂ε

(
ε f (ε)

ε + μ − εnk + i0

)∣∣∣∣
ε=εmk−μ−i0

]

× {〈n| vα
s,i(k) |m〉 〈m| v j (k) |n〉 − 〈m| vα

s,i(k) |n〉 〈n| v j (k) |m〉}

= − ih̄2

2V

∑
k

∑
n �=m

[
2 fFD(εnk)

εnk − μ

(εnk − εmk)2
− fFD(εnk)

εnk − εmk
− f ′

FD(εnk)
εnk − μ

εnk − εmk

]

× {〈n| vα
s,i(k) |m〉 〈m| v j (k) |n〉 − 〈m| vα

s,i(k) |n〉 〈n| v j (k) |m〉}

= − 1

V

∑
k

∑
n

{
fFD(εnk)(εnk − μ)�α

nk,i j − 1

2
fFD(εnk)mα

nk,i j − 1

2
f ′
FD(εnk)(εnk − μ)mα

nk,i j

}
.

(A7)

Finally, we obtain L̃α
i j as

L̃α
i j = − 1

V

∑
n,k

fFD(εnk)

(
(εnk − μ)�α

nk,i j − 1

2
mα

nk,i j

)
, (A8)

which is Eq. (2.37) in the main text.
Similarly, for the equilibrium current, we calculate

J 0,α
i j [μ, T ] = h̄2kBT

4π

∫ ∞

−∞
dε Fα

2,i j (ε) ln

[
1 + exp

(
−ε − μ

kBT

)]

= − ih̄2kBT

2V

∑
k

∑
n �=m

⎡
⎣ ln

[
1 + exp

( − εnk−μ

kBT

)]
(εnk − εmk)2

+ ∂

∂ε

(
ln

[
1 + exp

( − ε−μ

kBT

)]
ε + μ − εnk + i0

)∣∣∣∣∣
ε=εmk−μ−i0

⎤
⎦
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× {〈n| vα
s,i(k) |m〉 〈m| v j (k) |n〉 − 〈m| vα

s,i(k) |n〉 〈n| v j (k) |m〉}
= − 1

V

∑
k

∑
n

{
kBT �α

nk,i j ln

[
1 + exp

(
−εnk − μ

kBT

)]
+ 1

2
fFD(εnk)mα

nk,i j

}
, (A9)

which is Eq. (2.65) in the main text.
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