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Impact of electron correlations on the nonlinear Edelstein effect
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Nonlinear spintronics, which combines nonlinear dynamics with spintronics, opens a new route for controlling
spin and spin dynamics beyond conventional spintronics based on linear responses. Electron correlations can
lead to a large nonlinear response and thus may play a key role in nonlinear spintronics. This paper focuses
on the nonlinear Edelstein effect (NEE) and examines the impact of electron correlations on the NEE through
numerical calculations on a Hubbard model. We find that electron correlations can either enhance or suppress the
nonlinear response. Specifically, the enhancement and suppression are due to the real and imaginary components
of self-energy, respectively. In addition, the NEE is closely related to photomagnetic and optomagnetic effects.
Our findings demonstrate that electron correlations can either enhance or suppress the optical spin injection,
depending on light frequencies, whereas always strengthening the inverse Faraday effect.
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I. INTRODUCTION

Electric generation and control of spin degrees of freedom
are central issues in modern spintronics [1–3]. A typical tech-
nique is to utilize the linear Edelstein effect (LEE), where
an electric field E induces a nonequilibrium spin density δs
in noncentrosymmetric metals: δs ∝ E. The LEE was first
theoretically proposed in Refs. [4,5] and was experimentally
realized in GaAs [6–8]. Furthermore, a spin torque driven
by the LEE was theoretically proposed in magnetic semi-
conductors [9–11] and a current-induced domain inversion
was observed in GaMnAs [12]. These findings have triggered
increased attention to the LEE in the field of spintronics.

Interestingly, the literature concerning the LEE deals
almost exclusively with noninteracting systems such as topo-
logical insulators [13–18], Weyl semimetals [19–22], and
superconductors [23–28]; only a few works analyzed elec-
tron correlations by using Fermi liquid theory or dynamical
mean-field theory (DMFT) [29–32]. One reason for ignoring
electron correlations is that conventional spintronics is based
on linear responses. Reference [33], for example, has demon-
strated that correlation effects do not strongly affect a linear
response. On the other hand, some theoretical calculations
[33–36] and experimental results [37–41] have shown that
electron correlations can lead to a large nonlinear response.
Thus, electron correlations may play a key role in nonlinear
spintronics.

Recently, nonlinear responses have also been considered in
the field of spintronics. Of particular interest is the nonlinear
Edelstein effect (NEE) [42–48], which is characterized by
δs ∝ E2. The NEE significantly influences the spin response
from the following three points. First, the NEE has no restric-
tions on spatial inversion (P). Because spin is an axial vector,
but electric fields are polar vectors, the LEE only appears in
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noncentrosymmetric materials. On the other hand, the NEE
also exists in centrosymmetric systems, which account for
approximately 80% of all materials. Second, the NEE can also
be observed in semiconductors and insulators, unlike the LEE
[47,48]. This is because optical transition can generate a static
spin density in the same way as the bulk photovoltaic effect
generates a static electric polarization [49–51]. Thus, the NEE
is divided into the current-induced NEE in metals [42–44] and
the light-induced NEE in metals, semiconductors, and insula-
tors [45–48]. Note that here we define the static response in
nonmagnetic materials as the Edelstein effect, regardless of
whether they are metals or insulators. The static response in
magnets is the magnetoelectric effect [52–54]. Third, the NEE
can have a sizable magnitude despite its nonlinear nature.
With a moderate electric field, the strength of the NEE can
exceed that of the LEE in transition-metal dichalcogenides
[47] and common transition metals [42,43]. The criterion is
E = 105 ∼ 107 V/m, which is readily feasible in experiments
[12]. Due to these properties, the NEE is essential to the
development of nonlinear spintronics.

In this work, we study the impact of electron correla-
tions on the NEE by performing numerical calculations on a
Hubbard model. First, we formulate the NEE at finite tem-
peratures on the basis of a diagrammatic approach [33,55–
58]. This formulation allows us to derive an equation based
on single-particle Green’s functions. The self-energy of the
Green’s function includes correlation effects, which enables
us to consider electron correlations. Then, we use DMFT
[59] to obtain the self-energy of the model and calculate the
NEE incorporating electron correlations. Our results show
that electron correlations enhance the current-induced NEE,
but can either enhance or suppress the light-induced NEE.
The enhancement and suppression originate from the real and
imaginary parts of self-energy, respectively.

The light-induced NEE is related to photomagnetic and op-
tomagnetic effects, which are studied in the field of magneto-
optics. Thus, we examine the interaction dependence of these
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effects. Specifically, we focus on the optical spin injection
[1,60] as a photomagnetic effect and the inverse Faraday effect
(IFE) [61,62] as an optomagnetic effect. Our findings show
that electron correlations can either enhance or suppress the
optical spin injection, depending on light frequencies. On the
other hand, electron correlations strengthen the IFE regardless
of light frequencies.

The rest of this paper is organized as follows: In Sec. II,
we introduce the formulation of the NEE to the second order
in electric fields. Section III A presents the details of the
Hubbard model, and Sec. III B shows the self-energy and
spectral functions of the model. We then show the interaction
dependence of the current-induced NEE in Sec. IV A and
the light-induced NEE in Sec. IV B. Section V is devoted
to discussing the results of the previous section. We first
reveal the origin of the enhancement and suppression of the
responses in Secs. V A and V B. We then discuss the interac-
tion dependence of the optical spin injection and the IFE in
Sec. V C. Finally, Sec. VI summarizes this work and gives a
future outlook.

II. FORMULATION

We first introduce the definition of the NEE. The spin
density induced by an electric field is written in the frequency
domain as

〈δŝα (ω� )〉 =
∫

dω1

2π
ζ

(1)
α;β (ω� ; ω1)Eβ (ω1)2πδω1,ω�

+
∫

dω1

2π

dω2

2π
ζ

(2)
α;βγ (ω� ; ω1, ω2)Eβ (ω1)

× Eγ (ω2)2πδω1+ω2,ω�
+ · · · , (1)

where ζ (n)
α;α1...αn

(ω� ; ω1, . . . , ωn) is the nth-order response
function, and the Greek indices label Cartesian components.
The variable ω� corresponds to the frequency of the generated
spin and ωi corresponds to the frequency of the electric field.
In this study, we focus on the static response (ω� = 0) recog-
nized as the Edelstein effect. The first term on the right-hand
side of Eq. (1) represents the LEE and the other terms describe
the NEE. In particular, the second-order NEE is divided into
two cases,

ζ
(2)
α;βγ

:= lim
ω1,ω2→0

ζ
(2)
α;βγ (ω� ; ω1, ω2), (2)

ζ
(2)
α;βγ (
) := ζ

(2)
α;βγ (0; 
,−
), (3)

where 
 is the frequency of the incident light. Equation (2)
describes the current-induced NEE and Eq. (3) describes the
light-induced NEE. To calculate these two types of NEE, we
then formulate the second-order response function using the
path-integral Matsubara formalism.

The response function is obtained by taking a functional
derivative of the partition function of a perturbed system.
Thus, our first step is to construct the perturbed Hamiltonian
from an unperturbed Hamiltonian,

Ĥ (k) = Ĥ0(k) + Ĥint, (4)

where Ĥ0(k) is a noninteracting Hamiltonian and Ĥint is the
two-particle interacting part of the Hamiltonian. Throughout
this paper, we suppose only a local interaction, which does

not depend on momentum k. We then consider the interac-
tion between a carrier and an electromagnetic field. Here, we
assume the electric dipole approximation, under which the
electromagnetic field is approximated by a uniform electric
field, E(t ). This uniformity limits the gauge degree of freedom
to either the length or velocity gauge. Here, we adopt the
velocity gauge, where we treat the effect of the electric field
by rewriting Eq. (4) as

Ĥ (k) → Ĥ

[
k − q

h̄
A(t )

]

= Ĥ (k) +
∞∑

n=1

1

n!

{
n∏

i=1

[
−q

h̄
Aαi (t )∂kαi

]}
Ĥ (k), (5)

where E(t ) = −∂A(t )/∂t , ∂kαi
= ∂/∂kαi , h̄ is the Planck con-

stant, and q is the charge of the carrier. We perform the Taylor
expansion around the vector potential A(t ) in the second line
of Eq. (5) to capture the nonlinear response. Furthermore,
we include an auxiliary term, ĤB = −B(t ) · ŝ, in Eq. (4) to
obtain the spin response. The field B(t ) is the conjugate field
of spin ŝ and is taken to zero after the variation. Note that one
can derive a similar formulation for other physical quantities
by replacing ŝ and B(t ) with the quantity of interest, θ̂, and
its conjugate field, respectively. However, θ̂ must be a local
operator that is well defined in periodic systems, such as the
spin operator ŝ.

Then, we derive the second-order response function from
the partition function of the perturbed system. This partition
function is written in the path-integral formalism as

Z[A, B] =
∫

Dψ̄Dψexp[−S[A, B]], (6)

where ψ̄ and ψ are fermionic creation and annihilation op-
erators represented by Grassmann numbers, Dψ denotes a
path-integral measure that goes over all possible field values,
and S[A, B] is the action of the system in imaginary time τ .
This action is described as

S[A, B] =
∫ β

0
dτ

[∑
λ,η

∫
dk

(2π )d
ψ̄kλ(τ )

{
(∂τ − μ)δλη

+ Hλη

0

[
k − q

h̄
A(τ )

]
− B(τ ) · sλη

}
ψkη(τ ) + Hint

]
,

(7)

where ∂τ = ∂/∂τ , β = 1/kBT with the temperature T and the
Boltzmann constant kB, d is the dimension of the system, μ

is the chemical potential, and X λη is the matrix representation
of an operator X̂ . The expectation value of the spin density is
expressed by a functional derivative as [63]

〈δŝα (τ )〉 = δ

δBα (τ )

∣∣∣∣
B=0

lnZ[A, B]. (8)

We then expand Z[A, B] in powers of the vector
potential A(τ ) and define the nth-order response
function, χ (n)

α;α1...αn
(τ ; τ1, . . . , τn), as the coefficient to
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Aα1 (τ1) . . . Aαn (τn). As a result, we obtain

χ (n)
α;α1...αn

(τ ; τ1, . . . , τn)

= 1

Z[0]

(
n∏

i=1

δ

δAαi (τi )

)
δ

δBα (τ )

∣∣∣∣∣
B=A=0

Z[A, B]. (9)

We further express the second-order response function with
single-particle Green’s functions. Taking the Fourier transfor-
mation to Matsubara frequencies and performing an analytic
continuation, we obtain

ζ
(2)
α;βγ (ω� ; ω1, ω2)

= h̄

(ω1 + iδ)(ω2 + iδ)

∫
dk

(2π )d

∫ ∞

−∞

dω

2π i

× f (ω)Tr
[
sαGR(k, ω + ω� )gR

βγ (k, ω + ω2)GR−A(k, ω)

+ sαGR(k, ω + ω1)gR−A
βγ (k, ω)GA(k, ω − ω2)

+ sαGR−A(k, ω)gA
βγ (k, ω − ω1)GA(k, ω − ω� )

]
+ [(β, ω1) ↔ (γ , ω2)], (10)

where ga
βγ (k, ω) is given by

ga
βγ (k, ω)

=
{

Jβ (k)Ga(k, ω)Jγ (k) + 1
2 Jβγ (k) for a = R, A

Jβ (k)Ga(k, ω)Jγ (k) for a = R − A.

(11)

Here, f (ω) = [1 + exp(β h̄ω)]
−1

is the Fermi distribu-
tion function, GR/A(k, ω) is a retarded/advanced Green’s
function, Jα1...αn (k) = (q/h̄)n∂kα1

. . . ∂kαn
H0(k) is a current

operator, and GR−A = GR − GA. The symbol [(β, ω1) ↔
(γ , ω2)] corresponds to the interchange of these indices
and frequencies. Note that we redefine the nth-order re-
sponse function, ζ (n)

α;α1...αn
(ω� ; ω1, . . . , ωn), as the coefficient

to Eα1 (ω1) . . . Eαn (ωn), using the relation E(ω j ) = i(ω j +
iδ)A(ω j ). The infinitesimal value δ > 0 is an adiabatic factor
of the external field and is taken to zero after calculation.
Additionally, we ignore the vertex correction in the occur-
ring many-particle Green’s functions, which enables us to
describe the response function as the product of single-particle
Green’s functions. The details of the derivation are given in
Appendix A. Correlation effects are incorporated through the
self-energy �R/A(ω) of the Green’s function, GR/A(k, ω) =
[h̄ω − H0(k) + μ − �R/A(ω) ± iη]−1, where η > 0 is an adi-
abatic factor of the Green’s function. Throughout this paper,
we ignore the momentum dependence of self-energy by an
approximation of DMFT [59]. Thus, ignoring vertex correc-
tion does not break the generalized Ward identity [64]. On the
other hand, if self-energy includes momentum dependence,
the inclusion of vertex correction is necessary to satisfy the
generalized Ward identity.

From Eq. (10), we can calculate the current-induced NEE
and the light-induced NEE. For the current-induced NEE,
however, we need to avoid the divergence that occurs in
the low-frequency region. Correctly taking the DC limit,

FIG. 1. (a) Top and side views of a buckled two-dimensional
honeycomb lattice. The green solid arrows indicate lattice vectors,
and the orange solid arrows indicate vectors connecting between
nearest-neighbor sites. (b) Energy dispersion of the model at U = 0
for (t, tR ) = (0.1, 0.01). The solid lines show the dispersion for
tso = 0.1, and the dashed lines show the dispersion for tso = 0.0.

ω1, ω2 → 0, we can rewrite Eq. (10) as

ζ
(2)
α;βγ

= −2h̄
∫

dk
(2π )d

∫ ∞

−∞

dω

2π

×
(

−∂ f (ω)

∂ω
Im

{
Tr

[
sα

∂GR(k, ω)

∂ω
gR

βγ (k, ω)GA(k, ω)

]}

− f (ω)Im

{
Tr

[
sα

∂

∂ω

(
∂GR(k, ω)

∂ω
gR

βγ (k, ω)

)
GR(k, ω)

]})

+ (β ↔ γ ), (12)

which is derived in Appendix B.
We additionally comment on relevant previous studies. For

the light-induced NEE, an expression similar to Eq. (10) was
derived by using the Keldysh formalism [65,66]. In addition,
we reproduce results of the semiclassical approach [42,53]
and the reduced density matrix (RDM) formalism [48] by
taking the weak-scattering limit for Eqs. (10) and (12), which
is given in Appendices C and D.

III. MODEL AND METHOD

A. Model

We consider a Kane-Mele-Hubbard (KMH) model defined
on a buckled two-dimensional honeycomb lattice [Fig. 1(a)].
The Hamiltonian takes the form

Ĥ = − t
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ + itso

∑
〈〈i j〉〉,σσ ′

νi j ĉ
†
iσ σ z

σσ ′ ĉ jσ ′

− itR
∑

〈〈i j〉〉,σσ ′
μi j ĉ

†
iσ (σ × d i j )

z
σσ ′ ĉ jσ ′ + U

∑
i

n̂i↑n̂i↓,

(13)

where the noninteracting part is based on a Kane-Mele model
[42,67–69] and belongs to the D3d point group. Here, ĉ†

iσ
and ĉiσ are creation and annihilation operators of electrons
with the spin σ = {↑,↓} at a site i, n̂iσ = ĉ†

iσ ĉiσ is the num-
ber operator, and

∑
〈i j〉 and

∑
〈〈i j〉〉 denote the sums over

the nearest-neighbor (NN) and next-nearest-neighbor (NNN)
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sites, respectively. The first term represents the NN hopping
with hopping strength t . The second term represents the in-
trinsic spin-orbit coupling (SOC) with coupling strength tso

between NNN electrons. Here, σ z is the z component of the
Pauli matrix σ and νi j = + (−) when an electron moves
counterclockwise (clockwise) around a hexagon. The third
term represents the Rashba SOC with coupling strength tR
between NNN electrons. Here, d i j is a unit vector pointing
from the jth site to the ith site, and μi j = + (−) for A (B)
sites. This term originates in the lattice buckling, resulting in
symmetry reduction from D6h to D3d . The visualization of the
lattice buckling is shown in Fig. 1(a). The last term represents
a Hubbard-like on-site interaction with interaction strength U .

In momentum space, the noninteracting part is given by

Ĥ0 =
∑
k,σ

[η(k)ĉ†
kAσ

ĉkBσ + H.c.]

+
∑

k,ss′,σσ ′
g(k) · σσσ ′τ z

ss′ ĉ†
ksσ ĉks′σ ′ , (14)

where �̂k = (ĉkA↑, ĉkA↓, ĉkB↑, ĉkB↓)� is the basis with mo-
mentum k and the spin σ = {↑,↓} on two sublattices, s =
A, B, and σ (τ) is the Pauli matrix for the spin (sublattice)
degrees of freedom. The coefficients are defined as

η(k) = −t
3∑

i=1

eik·d i , (15)

gx(k) =
√

3tR(sin k · a1 + sin k · a2), (16)

gy(k) = −tR[sin k · a1 − sin k · a2 + 2 sin k · (a1 − a2)],

(17)

gz(k) = 2tso[sin k · a1 − sin k · a2 − sin k · (a1 − a2)],

(18)

where a1 = (
√

3a/2, 3a/2) and a2 = (−√
3a/2, 3a/2) are

lattice vectors, d1 = (
√

3a/2, a/2), d2 = (−√
3a/2, a/2),

and d3 = (0,−a) are vectors connecting between NN sites,
and a is the lattice constant. Equation (15) is responsible
for linear dispersions at the K and K ′ points (Dirac points),
similar to graphene. Equations (16) and (17) represent the
sublattice-dependent antisymmetric SOC in a locally noncen-
trosymmetric system. The locally noncentrosymmetric system
lacks P symmetry at the site level, but the global P symmetry
is preserved by interchanging the sublattices [31,67,70–72].
Specifically, the site symmetry is denoted by a noncentrosym-
metric point group C3v and the global symmetry belongs to a
centrosymmetric point group D3d . Equation (18) represents
the SOC that opens gaps at the Dirac points, as shown in
Fig. 1(b).

In the numerical calculations, we use the following pa-
rameters: (t, tso, tR, T ) = (0.1, 0.01, 0.01, 0.001), and set h̄ =
q = kB = a = 1. Furthermore, we use the basis that satisfies

Ĥ0(k) |un(k)〉 = εn(k) |un(k)〉 , (19)

where |un(k)〉 is the periodic part of the Bloch state and εn(k)
is the eigenvalue labeled by the crystal momentum k in the
first Brillouin zone. The other index, n = (n, in), denotes a
band n and the spinor index, in = 1, 2. The matrix representa-

tion of an operator X̂ under this basis is given by

X nm(k) = 〈un(k)|X̂ |um(k)〉 = [U (k)−1XU (k)]nm, (20)

where U (k) is a unitary matrix diagonalizing the noninteract-
ing Hamiltonian H0(k), and X on the rightmost side denotes
the matrix representation under the basis �̂k. As a specific
example, the spin operator is given by

snm(k) = h̄

2

[
U (k)−1

(
σ 0
0 σ

)
U (k)

]nm

, (21)

where σ is the Pauli matrix for each sublattice. In the follow-
ing, we will often omit the k index of an operator X (k) to
enhance readability.

B. Dynamical mean-field theory

The role of DMFT is to map an original lattice problem
onto a self-consistent quantum impurity problem [59]. This
mapping is performed by calculating the local Green’s func-
tion,

G(ω) =
∫

dk
(2π )d

[h̄ω − H0(k) + μ − �(ω) + iη]−1. (22)

The local Green’s function satisfies the following self-
consistent equation:

g−1(ω) = G−1(ω) + �(ω), (23)

where g(ω) denotes the coupling of a quantum impurity to
a bath of conduction electrons. Here, we use the numerical
renormalization group [73,74] to solve the quantum impurity
problem and find the self-consistent solution of the KMH
model.

In this study, we assume a homogeneous paramagnetic
state to focus on the NEE defined as a spin response in
paramagnetic systems. Accordingly, we neglect any possible
spin and sublattice dependence of the self-energy. However,
we note that the homogeneous paramagnetic phase is the
energetically stable state only for U/t < 4 in KMH-like mod-
els [75,76]. For larger interaction strengths, a magnetically
ordered state becomes the stable state. The same behavior
might apply to this KMH model. Nevertheless, we calculate
the NEE for interaction strengths above this critical value,
noting that the paramagnetic state might be only metastable
at these strengths.

First, we show the imaginary and real parts of the self-
energy of the KMH model at half filling in Figs. 2(a) and
2(b), respectively. The imaginary part of the self-energy be-
comes large with increasing interaction. The real part of the
self-energy represents the renormalization effect of the quasi-
particles. The renormalization factor is defined as

Z =
(

1 − 1

h̄

∂Re�(ω)

∂ω

∣∣∣∣
ω=0

)−1

, (24)

where Z−1 > 1 for correlated electron systems. We see the
enhancement of the renormalization effect with increasing
interaction in Fig. 2(b).

Then, we show spectral functions of the KMH model at
half filling in Fig. 2(c) and in an electron-doped regime in
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FIG. 2. (a),(b) Self-energy at half filling for different interaction
strengths U/t from 0 to 8. The left and right figures show the
imaginary and real parts of the self-energy, respectively. We shift the
real part of the self-energy by −Re�(0). (c),(d) Spectral functions,
(c) at half filling and (d) in an electron-doped regime for different
U/t from 0 to 12. We show only the ω/t > 0 region in (c) because of
particle-hole symmetry. We set the electron density to 〈n〉 = 1.097 in
(d).

Fig. 2(d). The spectral function is defined via the Green’s
function as

A(ω) = − 1

π

∫
dk

(2π )d
ImGR(k, ω). (25)

To visualize the spectral functions, we use η = 0.001 for
both cases. Note that during the DMFT self-consistent cycle,
we use η = 0.01 at half filling and η = 0.02 in the doped
regime to improve the convergence. As interaction increases,
the peak is gradually suppressed, and the spectral weight
continuously shifts to higher energy because of the imaginary
part of the self-energy. Meanwhile, the peak position moves
closer to the Fermi energy because of the renormalization
of the band structure. These behaviors are characteristic of
correlated electron systems. In the following, we calculate
the current-induced NEE in the electron-doped regime and
the light-induced NEE at half filling. Note that the current-
induced NEE vanishes at half filling because the system is an
insulator.

IV. RESULTS

First, we discuss the symmetry constraints of the NEE.
The NEE tensor obeys the following symmetry transformation
rule:

ζ
(2)
α′;β ′γ ′ = det(R)Rα′αRβ ′βRγ ′γ ζ

(2)
α;βγ , (26)

where R is a point group operation. This response tensor is
divided into the symmetric component Sα;βγ and the antisym-
metric component Aα;βγ , regarding the incident electric field:

Sα;βγ = (
ζ

(2)
α;βγ + ζ

(2)
α;γ β

)
/2, (27)

Aα;βγ = (
ζ

(2)
α;βγ − ζ

(2)
α;γ β

)
/2. (28)

Reference [42] has clarified the symmetry constraints of the
symmetric part. According to this literature, the symmetry of
the KMH model, D3d , allows for the following symmetric
components: Sx;yy = Sy;xy = −Sx;xx. The antisymmetric part
for the KMH model includes Ax;xy = Ay;xy = 0 and the non-
vanishing component Az;xy.

Then, we consider whether the current-induced NEE tensor
and light-induced NEE tensor are symmetric or antisymmet-
ric. Obviously, the current-induced NEE tensor is symmetric.
The light-induced NEE is further classified into the responses
under linearly polarized light (LPL) and circularly polar-
ized light (CPL). Using a relation E(
) = E∗(−
), we
extract the LPL and CPL components from the light-induced
NEE [72],

〈δŝα〉 =
∫

d


2π
ζ

(2)
α;βγ (
)Eβ (
)Eγ (−
) →

{〈δŝα〉LPL

〈δŝα〉CPL,

(29)

where 〈δŝα〉LPL represents the LPL-induced NEE and 〈δŝα〉CPL

represents the CPL-induced NEE. Specifically, they are
given by

〈δŝα〉LPL =
∫

d


2π
η

(2)
α;βγ (
)Lβγ (
), (30)

〈δŝα〉CPL =
∫

d


2π
εβγ δξ

(2)
α;βγ (
)Cδ (
), (31)

where Lβγ (
) = Re{Eβ (
)[Eγ (
)]
∗} and C(
) =

i
2 E(
) × E∗(
) are the LPL and CPL components of
the product of the electric fields, respectively. The coefficients
are given by

η
(2)
α;βγ (
) = 1

2 Re
{
ζ

(2)
α;βγ (
) + ζ

(2)
α;γ β (
)

}
, (32)

ξ
(2)
α;βγ (
) = 1

2 Im
{
ζ

(2)
α;βγ (
) − ζ

(2)
α;γ β (
)

}
, (33)

which denote the LPL-induced NEE tensor and the CPL-
induced NEE tensor, respectively. Thus, the LPL-induced
NEE tensor is symmetric and the CPL-induced NEE tensor is
antisymmetric. In the following, we calculate the xyy compo-
nent for the current-induced NEE and the LPL-induced NEE,
and the zxy component for the CPL-induced NEE.

A. Current-induced NEE

Figure 3(a) shows the interaction dependence of the
current-induced NEE. The orange and blue lines indicate the
contributions of the Fermi surface and Fermi sea terms in
Eq. (12), respectively. The response from the Fermi surface
terms increases with increasing interaction, whereas the re-
sponse from the Fermi sea terms becomes zero. We first
discuss this difference. The current-induced NEE requires
breaking time-reversal (T ) symmetry because spin is odd
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FIG. 3. Magnitude of the calculated current-induced NEE over
(a) U/t and (b) 1/Z . The orange and blue lines in (a) and (b) in-
dicate the contributions of the Fermi surface and Fermi sea terms,
respectively. The dashed line in (b) corresponds to ζ (2)

x;yy = Z−1ζ (2),free
x;yy ,

where ζ (2),free
x;yy denotes ζ (2)

x;yy at U/t = 0.0.

under T , but electric fields are even. Dissipation due to impu-
rity scattering breaks T symmetry in nonmagnetic materials.
However, such dissipation does not appear in Fermi sea terms
because the electrons below Fermi surfaces are not free to
move. Thus, the contribution of the Fermi sea terms becomes
zero [see Fig. 3(a)] and we ignore these terms in the follow-
ing. Then, we replot the result in Fig. 3(b) by replacing the
horizontal axis with the inverse of the renormalization factor.
The dashed line represents

ζ (2)
x;yy = Z−1ζ (2),free

x;yy , (34)

where ζ (2),free
x;yy denotes ζ (2)

x;yy at U/t = 0.0. The response fol-
lows the dashed line and is thus enhanced by Z−1 compared
to noninteracting systems. This enhancement agrees with pre-
vious results showing that the renormalization effect enhances
the nonlinear DC conductivity to the same extent [33,36].

B. Light-induced NEE

Figure 4(a) shows the interaction dependence of the LPL-
induced NEE. A single peak appears in each spectrum and
takes a maximal value. As interaction increases, the peak
magnitude gradually increases and the peak position shifts
toward the low-frequency region. Then, we replot the result
in Fig. 4(b) by using the renormalized frequency 
/Z on the
horizontal axis and analyze the influence of the renormaliza-
tion. The peaks originate in the same interband transition and
electron correlations enhance its contribution. The degree of
the enhancement is shown in Fig 4(c), which displays the
magnitudes of the peaks at 
/Z = 0.15 over the renormal-
ization parameter. However, the magnitudes are not enhanced
by the factor of Z−1, unlike the current-induced NEE.

More interesting is the interaction dependence of the CPL-
induced NEE, which is shown in Fig. 4(d). Three peaks appear
in each spectrum and their peak positions imply the contribu-
tions from interband transitions around the K, M, and Γ points
[see Fig. 1(b)]. Interaction effect is different for these peaks:
the peak at the lowest frequency is enhanced by interaction,
whereas the peaks at the higher energies are suppressed.

V. DISCUSSION

In this section, we discuss the results of the previous
section. First, we analytically show that the renormalization

FIG. 4. (a)–(c) Calculated LPL-induced NEE. (a),(b) Interaction
dependence of the response over 
 and 
/Z , respectively. (c) Inter-
action dependence of the peak at 
/Z = 0.15 in (b). The dashed line
corresponds to η(2)

x;yy(
/Z ) = Z−1η(2),free
x;yy (
/Z ) at 
/Z = 0.15, where

η(2),free
x;yy denotes η(2)

x;yy at U/t = 0.0. (d) Calculated CPL-induced NEE
over 
/Z for different interaction strengths.

effect enhances the current-induced NEE by Z−1 in Sec. V A.
Furthermore, we discuss the weak degree of the enhancement
for the light-induced NEE. Then, we explain the complex
frequency dependence exhibited by the CPL-induced NEE in
Sec. V B. Finally, in Sec. V C, we comment on the interac-
tion dependence of photomagnetic and optomagnetic effects
related to the light-induced NEE.

A. Origin of the increased response and factor of the weak
degree of the enhancement

Current-induced responses are mainly generated at the
Fermi energy (ω = 0). Self-energy is expanded in the vicinity
of the Fermi energy as

�R(ω) � Re�R(0) + h̄ω
∂Re�R(ω)

h̄∂ω

∣∣∣∣
ω=0

+ iIm�R(0).

(35)

This expansion allows us to divide the Green’s function into
the coherent part GR

coh and the incoherent part GR
inc as

GR(ω) = GR
coh(ω) + GR

inc(ω), (36)

GR
coh(ω) = Z

h̄ω − Zε′ + i�
, (37)

where ε′ = ε − μ + Re�R(0) and � = −ZIm�R(0). The
coherent part expresses quasiparticles with energy ε′ and life-
time h̄/�. We note that � is very small in our calculations.
Supposing that a Green’s function is expressed only by its
coherent part and that � is sufficiently small, we can describe
the Green’s function as

GR(ω) = GR,free(Z−1ω), (38)
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FIG. 5. Frequency-resolved response functions at U/t = 6 for (a) the current-induced NEE, (b) the LPL-induced NEE (
/Z = 0.15), and
(c) the CPL-induced NEE (
/Z = 0.20). The black line indicates the contribution of the full Green’s function and the orange line indicates
the contribution of the coherent part.

where GR,free is a Green’s function for noninteracting systems.
Following the same procedure as Ref. [33], we find

ζ
(2)
α;βγ ≈ Z−1ζ

(2),free
α;βγ , (39)

where ζ
(2),free
α;βγ is the response function for noninteracting

systems. Equation (39) states that the renormalization effect
enhances the current-induced NEE by Z−1. Consequently,
large interaction strengths with a large renormalization effect
result in a large response [see Figs. 2(b) and 3(b)]. Obviously,
this enhancement is due to the real part of the self-energy.
On the other hand, Eq. (35) is not valid for the light-induced
NEE because of the frequency dependence of the self-energy.
Nevertheless, we cannot explain the increased response of
the light-induced NEE without the renormalization effect. Ac-
cordingly, to evaluate the contribution of the coherent part, we
calculate the frequency-resolved response function ζ

(2)
α;βγ (ω),

which is defined as

ζ
(2)
α;βγ =

∫
dω

2π
F (ω)ζ (2)

α;βγ (ω), (40)

where F (ω) = −∂ f (ω)/∂ω for the current-induced NEE, and
F (ω) = f (ω) for the light-induced NEE.

Figures 5(a)–5(c) show the frequency-resolved response
functions for the current-induced NEE, the LPL-induced
NEE, and the CPL-induced NEE, respectively. The black line
indicates the contribution of the full Green’s function and the
orange line indicates the contribution of the coherent part. For
the current-induced NEE, the contribution of the coherent part
near the Fermi energy is identical to the total contribution. On
the other hand, for the light-induced NEE, the coherent part
overestimates the total response. Therefore, the light-induced
NEE is not as strongly enhanced as the current-induced NEE
because of the frequency dependence of the self-energy.

B. Complex frequency dependence exhibited by the
CPL-induced NEE

We analyze the CPL-induced NEE by using the Bloch
basis and Eq. (21). We first divide Eq. (10) into the diago-
nal part [∝ snn

α (k)] and the off-diagonal part [∝ snm
α (k)], and

then calculate the response for each part. Figures 6(a) and
6(b) show the contributions of the diagonal and off-diagonal
parts, respectively. Although the main contribution comes
from the diagonal part, the response from the off-diagonal part
is also finite. Most importantly, electron correlations enhance

the off-diagonal response, whereas the diagonal response is
suppressed for the large frequencies. Here, we note that the
diagonal response is an intraband effect, which depends on
extrinsic scattering time. On the other hand, the off-diagonal
response is an interband effect, which is intrinsic and only de-
pends on light frequencies. These can be confirmed in Eq. (54)
of Ref. [48]. Furthermore, the LPL-induced NEE is also an
interband effect, as seen in Eq. (53) of Ref. [48]. Therefore,
reduction of the lifetime due to electron correlations can
suppress dissipative responses, such as the diagonal response
of the CPL-induced NEE. To verify this hypothesis, we re-
calculate the CPL-induced NEE by effectively excluding the
imaginary part of the self-energy, which reflects dissipation.

Figures 6(c) and 6(d) show the results for the diagonal and
off-diagonal parts, respectively. The second peak of Fig. 6(c)
is indeed enhanced when we neglect the imaginary part of
the self-energy. This result indirectly shows that the imagi-
nary part suppresses the response. Moreover, the second peak
of Fig. 6(a) is strongly suppressed at the large interaction

FIG. 6. CPL-induced NEE calculated by including or neglecting
the imaginary part of the self-energy. The upper panels show the NEE
including the imaginary part for (a) the diagonal part and (b) the
off-diagonal part. The lower panels show the NEE neglecting the
imaginary part for (c) the diagonal part and (d) the off-diagonal part.
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strengths because of the increased imaginary part with in-
creasing interaction [see Figs. 2(a) and 6(a)]. On the other
hand, the off-diagonal response does not include the suppres-
sion by the imaginary part. Comparing Figs. 6(b) and 6(d),
we can see that the real part of the self-energy is sufficient to
explain the NEE.

Besides the suppression by the imaginary part, the diago-
nal response is enhanced by the real part of the self-energy,
which creates the complex frequency dependence. For exam-
ple, the first peak in the low-frequency region is enhanced
because the renormalization effect of the real part exceeds
the suppression effect of the imaginary part. On the other
hand, the suppression effect is stronger for the peaks at the
larger frequencies [see Fig. 6(a)]. Furthermore, the frequency
dependence of the real part explains why some peak positions
in the low-frequency region shift to the smaller frequencies.
The renormalization effect of the real part is weaker for larger
frequencies. Together with the suppression effect of the imag-
inary part, this leads to a shift in the peak positions for the
large interaction strengths [compare Figs. 6(a) and 6(c)].

C. Interaction dependence of photomagnetic
and optomagnetic effects

Photomagnetic and optomagnetic effects are nonthermal
phenomena, where light changes the magnetic properties of
materials, but does not involve the heating of electrons by
laser pulses [62]. Photomagnetic effects depend on photon
absorption and are associated with the optical spin injection
[1,60]. Optomagnetic effects do not require photon absorption
and are related to the IFE [61] and the inverse Cotton-Mouton
effect (ICME) [77].

The optical spin injection generates a finite spin expecta-
tion value of electrons by transferring the angular momentum
of photons during optical excitation induced by CPL. Using
band representation, we see that the optical spin injection
corresponds to the diagonal response of the CPL-induced
NEE [47,48,78]. This correspondence can also be confirmed
from Fig. 6(a): the peak positions suggest the presence of
optical excitation induced by CPL. Therefore, we conclude
that electron correlations can either enhance or suppress the
optical spin injection, depending on light frequencies.

The IFE and ICME generate effective magnetic fields un-
der CPL and LPL, respectively. According to Ref. [47], these
effects are described as

Hγ

IFE ∝ aαβγ {Eα (
)[Eβ (
)]∗ − Eβ (
)[Eα (
)]∗}, (41)

Hγ

ICME ∝ bαβγ δMδ{Eα (
)[Eβ (
)]∗ + Eβ (
)[Eα (
)]∗},
(42)

where H IFE/ICME is an effective magnetic field for the
IFE/ICME, M is a magnetization, and aαβγ and bαβγ δ are
phenomenological parameters. The IFE and ICME look at
the same effect as the light-induced NEE because spin den-
sity excited by light generates an effective magnetic field.
These responses require breaking T symmetry similarly to the
current-induced NEE. However, different T properties of LPL
and CPL lead to different results for the IFE and ICME when
we focus on their interaction dependence.

TABLE I. Response characteristics on the NEE to incident elec-
tric fields: The real and imaginary parts of self-energy enhance
(↗) and suppress (↘) the response, respectively. The symbol �/×
means the existence (�) or absence (×) of each effect. Furthermore,
we use �� when each effect is possible but not as large as �.

Self-energy Effect on the response Current LPL CPL

Real ↗ � �� ��
Imaginary ↘ × × �

Basically, LPL does not inherently break T symmetry
because the oscillation directions of LPL do not change
under T . Accordingly, energy dissipation associated with in-
terband transitions induced by LPL breaks T symmetry in
nonmagnetic materials. However, the ICME is an equilibrium
phenomenon and thus finite only in magnets, which can be
confirmed from Eq. (42). On the other hand, the LPL-induced
NEE involves interband transitions and takes a finite value
even in nonmagnetic materials, as shown in Fig. 4(b). There-
fore, the ICME does not correspond to the LPL-induced NEE
in nonmagnetic materials and we cannot conclude whether
electron correlations enhance or suppress the ICME.

Unlike LPL, CPL inherently breaks T symmetry because
the helicities of CPL change under T . Thus, the IFE can have
a finite value in nonmagnetic materials, unlike the ICME.
Notably, the IFE corresponds to the off-diagonal response
of the CPL-induced NEE. Indeed, Fig. 6(b) shows that the
off-diagonal response generates a nonzero value even in the
nonresonant-frequency region (
/Z � 0.10), indicating its
independence from photon absorption. Therefore, we con-
clude that electron correlations enhance the IFE regardless of
light frequencies.

VI. SUMMARY AND OUTLOOK

We have analyzed the impact of electron correlations on
the NEE in a nonmagnetic system. Specifically, we have for-
mulated the NEE using a full quantum mechanical approach
and have performed numerical calculations on a Hubbard
model. The NEE consists of three types: the current-induced
NEE, the LPL-induced NEE, and the CPL-induced NEE.
Then, we have found that electron correlations can either
enhance or suppress the nonlinear responses. The enhance-
ment is due to the renormalization effect, which originates
in the real part of the self-energy. On the other hand, the
suppression only occurs in dissipative responses and depends
on the imaginary part of self-energy. Specifically, the current-
induced NEE and the LPL-induced NEE only include the
real-part effect, whereas the CPL-induced NEE includes both
the real-part and imaginary-part effects. However, we found
that the light-induced NEE is not as strongly enhanced as the
current-induced NEE because of the frequency dependence
of the self-energy. Finally, Table I summarizes the effects of
self-energy on the different types of NEE.

Then, we have examined the interaction dependence of
the optical spin injection, the IFE, and the ICME, which are
related to the light-induced NEE. The optical spin injection
and the IFE correspond to the diagonal and off-diagonal
responses of the CPL-induced NEE, respectively. The

165111-8



IMPACT OF ELECTRON CORRELATIONS ON THE … PHYSICAL REVIEW B 110, 165111 (2024)

diagonal response includes both the real-part and imaginary-
part effects, whereas the off-diagonal response only includes
the real-part effect. Therefore, electron correlations can
either enhance or suppress the optical injection, depend-
ing on light frequencies, whereas always strengthening the
IFE. On the other hand, we cannot discuss the interaction
dependence of the ICME because the ICME does not nec-
essarily correspond to the LPL-induced NEE. In addition,
we stress that the above analyses focus on an insulator. The
light-induced NEE in metals has another intraband effect
originating from a Fermi surface contribution [48]. Therefore,
the response in metals might show more complex inter-
action dependence. We will leave these open questions as
future work.

Note added. Recently, Kodama et al. have experimentally
detected the current-induced nonlinear magnetoelectric effect

on a Pt-Py bilayer [79]. Their study suggests that one can
experimentally capture the current-induced NEE in correlated
electron systems. In addition, the equations formulated in
this study enable quantitative evaluation by combining first-
principles calculations with DMFT. This capability will give a
material platform for correlated electron spintronics mediated
by nonlinear responses.
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APPENDIX A: DERIVATION OF THE RESPONSE FUNCTION BASED ON THE
PATH-INTEGRAL MATSUBARA FORMALISM

The derivation of Eq. (10) in the main text consists of four main steps. We also derive the first-order response function for
reference and omit

∫
dk/(2π )d for brevity.

First, we express the response functions in terms of Matsubara Green’s functions. The response functions are expressed by
the functional derivatives as

χ
(1)
α;β (τ ; τ1) = 1

Z[0]

δ

δAβ (τ1)

δ

δBα (τ )

∣∣∣∣
B=A=0

Z[A, B] =
∑

λ,η,σ,ρ

〈
ψ̄λ(τ )sλη

α ψη(τ )ψ̄σ (τ1)Jσρ

β ψρ (τ1)
〉
, (A1)

χ
(2)
α;βγ (τ ; τ1, τ2) = 1

Z[0]

δ

δAγ (τ2)

δ

δAβ (τ1)

δ

δBα (τ )

∣∣∣∣
B=A=0

Z[A, B] = −δ(τ1 − τ2)
∑

λ,η,σ,ρ

〈
ψ̄λ(τ )sλη

α ψη(τ )ψ̄σ (τ1)Jσρ
βγ ψρ (τ1)

〉

+
∑

λ,η,σ,ρ,μ,ν

〈
ψ̄λ(τ )sλη

α ψη(τ )ψ̄σ (τ1)Jσρ

β ψρ (τ1)ψ̄μ(τ2)Jμν
γ ψν (τ2)

〉
, (A2)

where δ(x) is the Dirac delta function, and 〈X 〉 = Z[0]−1
∫
Dψ̄DψXe−S[0] is a functional integral over an action without external

fields. Using Wick’s theorem and neglecting vertex correction, we can write these many-particle Green’s functions as the product
of single-particle Green’s functions,

χ
(1)
α;β (τ ; τ1) = −

∑
λ,η,σ,ρ

sλη
α 〈−ψη(τ )ψ̄σ (τ1)〉Jσρ

β 〈−ψρ (τ1)ψ̄λ(τ )〉, (A3)

χ
(2)
α;βγ (τ ; τ1, τ2) = δ(τ1 − τ2)

∑
λ,η,σ,ρ

sλη
α 〈−ψη(τ )ψ̄σ (τ1)〉Jσρ

βγ 〈−ψρ (τ1)ψ̄λ(τ )〉

+
∑

λ,η,σ,ρ,μ,ν

[
sλη
α 〈−ψη(τ )ψ̄σ (τ1)〉Jσρ

β 〈−ψρ (τ1)ψ̄μ(τ2)〉Jμν
γ 〈−ψν (τ2)ψ̄λ(τ )〉 + [(β, τ1) ↔ (γ , τ2)]

]
. (A4)

Note that the other terms vanish because they are proportional to the expectation value of a current operator in the absence of
applied electric fields.

Second, we take the Fourier transformation to Matsubara frequencies,

χ
(1)
α;β (iωn; iωn) = − 1

β

∑
ωl

Tr[sαG (iωl + iωn)JβG (iωl )], (A5)

χ
(2)
α;βγ (iωn + iωm; iωn, iωm) = 1

β

∑
ωl

Tr

[
1

2
sαG (iωl + iωn + iωm)Jβγ G (iωl )

+ sαG (iωl + iωn + iωm)JβG (iωl + iωm)Jγ G (iωl )

]
+ [(β, iωn) ↔ (γ , iωm)], (A6)
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(a) (b)

FIG. 7. (a) Locations of the poles (×) of f (z) and integral paths (blue curves) around them. Each integral path does not span the different
regions of the analyticity of X (z). (b) Integral paths to sum over the Matsubara frequency. Each integral path is along the axis parallel to the
real axis, at a distance of ±iη from the analytical boundary of X (z). Note that the displayed paths correspond to using X (z) as the second-order
response function.

where ωl = (2l + 1)π/β is a fermionic Matsubara frequency, and ωn = 2nπ/β and ωm = 2mπ/β are bosonic Matsubara
frequencies originating from photons. Here, we define G (τ − τ ′) = 〈−ψ (τ )ψ̄ (τ ′)〉, and use G (τ ) = β−1 ∑

l G (iωl )e−iωl τ and∫ β

0 ei(ωn−ωm )τ = βδnm.
Third, we perform the sum over the Matsubara frequency by using an identity β−1 ∑

l X (iωl ) = − ∮
C

dz
2π i f (z)X (z). The

integral symbol
∮

C represents paths that avoid the poles of X (z) and only surround the poles of the Fermi distribution function,
f (z) = (1 + eβz )−1 [Fig. 7(a)]. Because each path can be transformed within each regular region [Fig. 7(b)], the response
functions are calculated by

χ
(1)
α;β (iωn; iωn) =

∫ ∞

−∞

dε

2π i
f (ε)Tr{sαG (ε + iωn)Jβ [G (ε + iη) − G (ε − iη)] + sα[G (ε + iη) − G (ε − iη)]JβG (ε − iωn)},

(A7)

χ
(2)
α;βγ (iωn + iωm; iωn, iωm) = −

∫ ∞

−∞

dε

2π i
f (ε)Tr

{
1

2
{sαG (ε + iωn + iωm)Jβγ [G (ε + iη) − G (ε − iη)]

+ sα[G (ε + iη) − G (ε − iη)]Jβγ G (ε − iωn − iωm)} + sαG (ε + iωn + iωm)

× JβG (ε + iωm)Jγ [G (ε + iη) − G (ε − iη)] + sαG (ε + iωn)Jβ[G (ε + iη) − G (ε − iη)]

× Jγ G (ε − iωm) + sα[(G (ε + iη) − G (ε − iη)]JβG (ε − iωn)Jγ G (ε − iωn − iωm)

}

+ [(β, iωn) ↔ (γ , iωm)], (A8)

where η denotes an infinitesimal value and we use f (ε − iωn) = f (ε − iωn − iωm) = f (ε) and iωn, iωm � iη to derive the final
expressions.

Fourth, we perform an analytic continuation by iωn → h̄ω1 + iη, iωm → h̄ω2 + iη. Using that analytic functions in the
upper/lower plane become retarded/advanced Green’s functions, we describe the response functions as

χ
(1)
α;β (ω1; ω1) =

∫ ∞

−∞

dε

2π i
f (ε)Tr{sαGR(ε + h̄ω1)Jβ[GR(ε) − GA(ε)] + sα[GR(ε) − GA(ε)]JβGA(ε − h̄ω1)}, (A9)

χ
(2)
α;βγ (ω� ; ω1, ω2) = −

∫ ∞

−∞

dε

2π i
f (ε)

(
1

2
Tr{sαGR(ε + h̄ω� )Jβγ [GR(ε) − GA(ε)] + sα[GR(ε) − GA(ε)]Jβγ GA(ε − h̄ω� )}

+ Tr{sαGR(ε + h̄ω� )JβGR(ε + h̄ω2)Jγ [GR(ε) − GA(ε)] + sαGR(ε + h̄ω1)Jβ[GR(ε)

− GA(ε)]Jγ GA(ε − h̄ω2) + sα[GR(ε) − GA(ε)]JβGA(ε − h̄ω1)Jγ GA(ε − h̄ω� )}
)

+ [(β, ω1) ↔ (γ , ω2)],

(A10)

where ω� = ω1 + ω2. Lastly, using ζ
(2)
α;βγ (ω� ; ω1, ω2) = χ

(2)
α;βγ (ω� ; ω1, ω2)/i(ω1 + iδ)i(ω2 + iδ) and changing the integration

variable from ε to ω by ε = h̄ω, we can derive Eq. (10) in the main text.
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APPENDIX B: DC LIMIT FOR THE RESPONSE FUNCTION

First, we expand the single-particle Green’s function and the Fermi distribution function for small frequencies,

GR/A(ω + ω1) � GR/A(ω) + ∂GR/A(ω)

∂ω
ω1, (B1)

GR/A(ω + ω1 + ω2) � GR/A(ω) + ∂GR/A(ω)

∂ω
(ω1 + ω2) + ∂2GR/A(ω)

∂ω2
ω1ω2, (B2)

f (ω + ω1) � f (ω) + ∂ f (ω)

∂ω
ω1. (B3)

Then, using these equations, we rewrite Eq. (10) as

ζ
(2)
α;βγ (ω1 + ω2; ω1, ω2) = h̄

ω1ω2

∫ ∞

−∞

dω

2π i

{
A0(ω) + A1(ω)ω1 + A′

1(ω)ω2 + A2(ω)ω1ω2 + O
(
ω3

i

)}
, (B4)

where each component is given by

A0(ω) =
∫

dk
(2π )d

f (ω)Tr

{
1

2
[sαGR(ω)Jβγ GR(ω) − sαGA(ω)Jβγ GA(ω)]

+ sαGR(ω)JβGR(ω)Jγ GR(ω) − sαGA(ω)JβGA(ω)Jγ GA(ω)

}
+ (β ↔ γ ), (B5)

A1(ω) =
∫

dk
(2π )d

(
∂ f (ω)

∂ω

)
Tr[sαGR(ω)Jβγ GA(ω) + sαGR(ω)JβGA(ω)Jγ GA(ω) + sαGR(ω)Jγ GR(ω)JβGA(ω)]

+
∫

dk
(2π )d

f (ω)

{
Tr

[
sα

∂GR(ω)

∂ω
Jβγ GR(ω) + sα

∂GR(ω)

∂ω
JβGR(ω)Jγ GR(ω)

+ sα

∂GR(ω)

∂ω
Jγ GR(ω)JβGR(ω) + sαGR(ω)Jγ

∂GR(ω)

∂ω
JβGR(ω)

]
+ c.c.

}
, (B6)

A′
1(ω) = A1(ω; β ↔ γ ), (B7)

A2(ω) =
∫

dk
(2π )d

(
∂ f (ω)

∂ω

){
Tr

[
sα

∂GR(ω)

∂ω
JβGR(ω)Jγ GA(ω) + 1

2
sα

∂GR(ω)

∂ω
Jβγ GA(ω)

]
− c.c.

}

+
∫

dk
(2π )d

f (ω)

{
Tr

[
sα

∂

∂ω

(
∂GR(ω)

∂ω
JβGR(ω)

)
Jγ GR(ω) + 1

2
sα

∂2GR(ω)

∂ω2
Jβγ GR(ω)

]
− c.c.

}
+(β ↔ γ ). (B8)

Here, we use (GR)† = GA when calculating the complex conjugates (c.c.). By using the following relation derived from the
generalized Ward identity:

(q/h̄)∂kα
GR/A(k, ω) = GR/A(k, ω)Jα (k)GR/A(k, ω), (B9)

Eqs. (B5) and (B6) become

A0(ω) = q2

h̄2

∫
dk

(2π )d
f (ω)∂kγ

∂kβ
Tr{sα[GR(k, ω) − GA(k, ω)]}, (B10)

A1(ω) = q

h̄

∫
dk

(2π )d

((
∂ f (ω)

∂ω

)
∂kγ

Tr[sαGR(k, ω)Jβ (k)GA(k, ω)]

+ f (ω)

{
∂kγ

Tr

[
sα

∂GR(k, ω)

∂ω
Jβ (k)GR(k, ω)

]
+ c.c.

})
. (B11)

Equations (B10) and (B11) vanish because they are written as an integral over the corresponding derivative. Therefore,
divergence does not occur even when we take the DC limit, and A2(ω) determines the current-induced NEE.
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APPENDIX C: BAND REPRESENTATION OF THE RESPONSE FUNCTION FOR THE DC LIMIT

In this section, we derive the band representation of the response function for the DC limit by taking the weak-scattering limit
for Eq. (12). We define the Green’s function of the nth band as

GR/A
n (k, ω) = 1

h̄ω − εn(k) ± iη
, (C1)

where η is a scattering rate. Here, we shift the integral variable ω and include the chemical potential μ into the Fermi distribution
function: f (ω) = (1 + eβ(h̄ω−μ) )−1. Note that weak scattering means that the scattering rate is sufficiently small compared to the
kinetic energy of electrons, 1/β, the energy of incident photons, h̄ω1, and the interband energy, εn − εm. In the following, we first
perform the frequency integral and then expand the resulting response function in powers of η to obtain the final expressions.

When we perform a partial integral in Eq. (12) and ignore the Fermi sea terms, Eq. (12) becomes

ζ
(2)
α;βγ = 2h̄

∑
n,m,l

∫
dk

(2π )d

∫ ∞

−∞

dω

2π

(
− ∂ f (ω)

∂ω

)
Im

[
snm
α (k)

∂GR
m(k, ω)

∂ω
Jml
β (k)GR

l (k, ω)Jln
γ (k)GR−A

n (k, ω)

+ 1

2
snm
α (k)

∂GR
m(k, ω)

∂ω
Jmn
βγ (k)GR−A

n (k, ω)

]
+ (β ↔ γ ). (C2)

Furthermore, we divide ζ
(2)
α;βγ into

ζ
(2)
α;βγ = 2h̄2q2

∫
dk

(2π )d

[
ζ

(2),A
α;βγ (k) + ζ

(2),B
α;βγ (k) + ζ

(2),C
α;βγ (k) + ζ

(2),D
α;βγ (k) + ζ

(2),E
α;βγ (k)

] + (β ↔ γ ), (C3)

where each component is given by

ζ
(2),A
α;βγ (k) = 1

2

∑
n

∫ ∞

−∞

dω

2π

(
− ∂ f (ω)

h̄∂ω

)
Im

[
snn
α

∂GR
n (ω)

∂ω
vnn

βγ GR−A
n (ω)

]
, (C4)

ζ
(2),B
α;βγ (k) =

∑
n

∫ ∞

−∞

dω

2π

(
− ∂ f (ω)

h̄∂ω

)
Im

[
snn
α

∂GR
n (ω)

∂ω
vnn

β GR
n (ω)vnn

γ GR−A
n (ω)

]
, (C5)

ζ
(2),C
α;βγ (k) =

∑
n,m
m �=n

∫ ∞

−∞

dω

2π

(
− ∂ f (ω)

h̄∂ω

)
Im

[
snn
α

∂GR
n (ω)

∂ω
vnm

β GR
m(ω)vmn

γ GR−A
n (ω)

]
, (C6)

ζ
(2),D
α;βγ (k) =

∑
n,m
m �=n

∫ ∞

−∞

dω

2π

(
− ∂ f (ω)

h̄∂ω

)
Im

[
snm
α

∂GR
m(ω)

∂ω
vmn

β GR
n (ω)vnn

γ GR−A
n (ω)

]
, (C7)

ζ
(2),E
α;βγ (k) = 1

2

∑
n,m
m �=n

∫ ∞

−∞

dω

2π

(
− ∂ f (ω)

h̄∂ω

)
Im

[
snm
α

∂GR
m(ω)

∂ω
vmn

βγ GR−A
n (ω)

]

+
∑
n,m,l

m �=n,l �=n

∫ ∞

−∞

dω

2π

(
− ∂ f (ω)

h̄∂ω

)
Im

[
snm
α

∂GR
m(ω)

∂ω
vml

β GR
l (ω)vln

γ GR−A
n (ω)

]
. (C8)

Here, vα1...αn (k) = q−nJα1...αn (k) is a velocity operator. When we perform a partial integral in ζ
(2),B
α;βγ (k), Eq. (C5) becomes

ζ
(2),B
α;βγ (k) = 1

2

∑
n

∫ ∞

−∞

dω

2π

(
∂2 f (ω)

h̄∂ω2

)
Im

[
snn
α GR

n (ω)vnn
β GR

n (ω)vnn
γ GR−A

n (ω)
]
. (C9)

Assuming the weak-scattering limit yields

GR−A
n (ω) = −2iη

(h̄ω − εn)2 + η2
∼ −2π i

h̄
δ(ω − εn/h̄), (C10)

where δ(x) is the Dirac delta function. By performing the frequency integral using this equation, we find

ζ
(2),A
α;βγ (k) = − 1

2η2

∑
n

Re
(
snn
α vnn

βγ

)(−∂ fn

∂εn

)
, (C11)

ζ
(2),B
α;βγ (k) = 1

2η2

∑
n

Re
(
snn
α vnn

β vnn
γ

)(∂2 fn

∂ε2
n

)
, (C12)
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ζ
(2),C
α;βγ (k) = − 1

η2

∑
n,m
m �=n

Im

[
isnn

α

vnm
β vmn

γ

εnm + iη

](
−∂ fn

∂εn

)
, (C13)

ζ
(2),D
α;βγ (k) = 1

η

∑
n,m
m �=n

Im

[
snm
α vmn

β

(εnm + iη)2
vnn

γ

](
−∂ fn

∂εn

)
, (C14)

ζ
(2),E
α;βγ (k) = 1

2

∑
n,m
m �=n

Im

[
i

snm
α vmn

βγ

(εnm + iη)2

](
−∂ fn

∂εn

)
+

∑
n,m,l

m �=n,l �=n

Im

[
i

snm
α vml

β vln
γ

(εnm + iη)2(εnl + iη)

](
−∂ fn

∂εn

)
, (C15)

where εnm = εn − εm, and fn = f (εn) = (1 + eβ(εn−μ) )−1.
Then, expanding Eqs. (C13)–(C15) in powers of η up to the order of O(η) results in

ζ
(2),C
α;βγ (k) = − 1

η2

∑
n,m
m �=n

Im

[
isnn

α

vnm
β vmn

γ

ε2
nm + η2

(εnm − iη)

](
−∂ fn

∂εn

)

= − 1

η2

∑
n,m
m �=n

Im

[
isnn

α

vnm
β vmn

γ

εnm

(
1 − η2

ε2
nm

)
+ ηsnn

α

vnm
β vmn

γ

ε2
nm

](
−∂ fn

∂εn

)
+ O(η)

=
∑
n,m
m �=n

{
− 1

η2
Re

[
snn
α

vnm
β vmn

γ

εnm

]
+ Re

[
snn
α

vnm
β vmn

γ

ε3
nm

]
− 1

η
Im

[
snn
α

vnm
β vmn

γ

ε2
nm

]}(
−∂ fn

∂εn

)
+ O(η), (C16)

ζ
(2),D
α;βγ (k) = 1

η

∑
n,m
m �=n

Im

[
snm
α vmn

β(
ε2

nm + η2
)2 vnn

γ (εnm − iη)2

](
−∂ fn

∂εn

)

=
∑
n,m
m �=n

{
1

η
Im

[
snm
α vmn

β

ε2
nm

vnn
γ

]
− 2Re

[
snm
α vmn

β

ε3
nm

vnn
γ

]}(
−∂ fn

∂εn

)
+ O(η), (C17)

ζ
(2),E
α;βγ (k) = 1

2

∑
n,m
m �=n

Im

[
i

snm
α vmn

βγ(
ε2

nm + η2
)2 (εnm − iη)2

](
−∂ fn

∂εn

)

+
∑
n,m,l

m �=n,l �=n

Im

[
i

snm
α vml

β vln
γ(

ε2
nm + η2

)2(
ε2

nl + η2
) (εnm − iη)2(εnl − iη)

](
−∂ fn

∂εn

)

= 1

2

∑
n,m
m �=n

Re

[
snm
α vmn

βγ

ε2
nm

](
−∂ fn

∂εn

)
+

∑
n,m,l

m �=n,l �=n

Re

[
snm
α vml

β vln
γ

ε2
nmεnl

](
−∂ fn

∂εn

)
+ O(η). (C18)

Replacing η with h̄/τ , where τ is a relaxation time, and classifying ζ
(2)
α;βγ according to powers of τ , we obtain

ζ
(2),τ 2

α;βγ = q2τ 2
∑

n

∫
dk

(2π )d
Re

[
snn
α vnn

β vnn
γ

(
∂2 fn

∂ε2
n

)
+

(
snn
α vnn

βγ + 2
∑

m( �=n)

snn
α

vnm
β vmn

γ

εnm

)(
∂ fn

∂εn

)]
+ (β ↔ γ )

= 2q2

h̄2 τ 2
∑

n

∫
dk

(2π )d
snn
α ∂kβ

∂kγ
fn, (C19)

ζ
(2),τ
α;βγ = 2h̄q2τ

∑
n,m
m �=n

∫
dk

(2π )d
Im

[
snm
α vmn

β

ε2
nm

vnn
γ

](
−∂ fn

∂εn

)
− 2h̄q2τ

∑
n,m
m �=n

∫
dk

(2π )d
Im

[
snn
α

vnm
β vmn

γ

ε2
nm

](
−∂ fn

∂εn

)
+ (β ↔ γ )

= −q2τ
∑
n,m
m �=n

∫
dk

(2π )d
2Im

[
snm
α vmn

β

ε2
nm

]
∂kγ

fn + (β ↔ γ ), (C20)
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ζ
(2),τ 0

α;βγ = h̄2q2
∑
n,m
m �=n

∫
dk

(2π )d
Re

[
snm
α

ε2
nm

(
vmn

βγ +
∑
l ( �=n)

2
vml

β vln
γ

εnl

)
+ 2snn

α

vnm
β vmn

γ

ε3
nm

− 4
snm
α vmn

β

ε3
nm

vnn
γ

](
−∂ fn

∂εn

)
+ (β ↔ γ ), (C21)

where ζ
(2),τ n

α;βγ = O(τ n), and we use

h̄−1∂kβ
vnn

γ = vnn
βγ +

∑
m( �=n)

vnm
β vmn

γ + vnm
γ vmn

β

εnm
, (C22)

to derive Eq. (C19), and drop the second term in the first line of Eq. (C20) because it cancels out with the corresponding term
where the indices of the electric fields are interchanged. The τ 2 term and τ term are consistent with Eq. (68) of Ref. [48] and
Eq. (6) of Ref. [42], respectively. As for the τ 0 term, the second and third terms of Eq. (C21) are consistent with the Fermi
surface terms of Eq. (9) in Ref. [53].

APPENDIX D: BAND REPRESENTATION OF THE RESPONSE FUNCTION FOR FINITE FREQUENCIES

In this section, we derive the band representation of the response function for finite frequencies by taking the weak-scattering
limit. In the following, we first derive the spin density using the RDM formalism in the velocity gauge and then compare it with
the result of taking the weak-scattering limit for Eq. (10). Note that the RDM formalism in the length gauge was derived in
Ref. [48].

1. Reduced density matrix formalism in the velocity gauge

Instead of the full density matrix ρ̂(t ), we only have to consider the dynamics of the RDM ρ̂k(t ) in a subspace Vk labeled
by crystal momentum k. This is because we can express ρ̂(t ) as a tensor product of the RDMs: ρ̂(t ) = ∏

k ⊗ρ̂k(t ), and we first
solve the equation of motion for the RDM. The matrix representation of the RDM is

ρknm(t ) = Tr[ρ̂(t )ĉ†
kmĉkn], (D1)

where ĉ†
kn and ĉkn are fermionic creation and annihilation operators with the momentum k and a band n. According to the von

Neumann equation, ih̄∂t ρ̂(t ) = [Ĥ (t ), ρ̂(t )], the equation of motion for the RDM is described as

ih̄∂tρknm(t ) = Tr{ρ̂(t )[ĉ†
kmĉkn, Ĥ (t )]}, (D2)

where ∂t = ∂/∂t , Ĥ (t ) is a general Hamiltonian and the inner bracket denotes the commutator. Here, we assume Ĥ (t ) = Ĥ0 +
V̂ (t ), where Ĥ0 is an unperturbed Hamiltonian and V̂ (t ) is a perturbation by an external field F(t ). These Hamiltonians are
described as

Ĥ0 =
∑

n

∫
dk

(2π )d
εknĉ†

knĉkn, V̂ (t ) =
∑
n,m

∫
dk

(2π )d
ĉ†

knVknm(t )ĉkm. (D3)

By using anticommutation relations,

{ĉkn, ĉk′m} = {ĉ†
kn, ĉ†

k′m} = 0, {ĉkn, ĉ†
k′m} = (2π )dδnmδ(k − k′), (D4)

Eq. (D2) becomes

(ih̄∂t − εknm)ρknm(t ) = [Vk(t ), ρk(t )]nm, (D5)

where εknm = εkn − εkm, and [Vk(t ), ρk(t )]nm = ∑
l [Vknl (t )ρklm(t ) − ρknl (t )Vklm(t )]. Here, we present a phenomenological treat-

ment of the scattering rate [80]. The scattering rate η is introduced by modifying Eq. (D5) to

(ih̄∂t − εknm)ρ (p)
knm(t ) =

p∑
q=0

[
V (p−q)

k (t ), ρ (q)
k (t )

]
nm − ipηρ

(p)
knm(t ), (D6)

where we focus on the equation for the pth-order RDM, ρ
(p)
knm(t ), by expanding ρknm(t ) and Vknm(t ) in powers of F(t ): ρknm(t ) =∑

p ρ
(p)
knm(t ) and Vknm(t ) = ∑

p V (p)
knm(t ) with ρ

(p)
knm,V (p)

knm = O(|F|p). Furthermore, taking the Fourier transformation results in

(h̄ω − εknm + ipη)ρ (p)
knm(ω) =

∫
dω1

2π

dω2

2π

p∑
q=0

[
V (p−q)

k (ω1), ρ (q)
k (ω2)

]
nm2πδω1+ω2,ω. (D7)
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Then, we derive the pth-order RDM, ρ
(p)
knm(ω), in the velocity gauge and calculate the expectation value of the spin density.

From Eq. (5), we can express Ĥ (t ) as

Ĥ (t ) = Ĥ0

[
k − q

h̄
A(t )

]
= Ĥ0(k) − qv̂β (k)Aβ (t ) + q2

2
v̂βγ (k)Aβ (t )Aγ (t ) + · · · , (D8)

where v̂α1...αn (k) = (1/h̄)n∂kα1
. . . ∂kαn

Ĥ0(k) is a velocity operator. When we perform the Fourier transformation, V (p)
knm(ω) (p =

1, 2) are given by

V (1)
knm(ω) = −qvnm

β

∫
dω1

2π
Aβ (ω1)2πδω1,ω, (D9)

V (2)
knm(ω) = q2

2
vnm

βγ

∫
dω1

2π

dω2

2π
Aβ (ω1)Aγ (ω2)2πδω1+ω2,ω. (D10)

Thus, the pth-order RDMs (p = 0, 1, 2) are expressed as ρ
(0)
knm(ω) := δnm fm2πδ(ω) with the Fermi distribution function fm, and

ρ
(1)
knm(ω) =

∫
dω1

2π

qvnm
β fnm

h̄ω1 − εnm + iη
Aβ (ω1)2πδω1,ω, (D11)

ρ
(2)
knm(ω) =

∫
dω1

2π

dω2

2π
Aβ (ω1)Aγ (ω2)2πδω1+ω2,ω

× q2

[
1

2

vnm
βγ fmn

h̄ω − εnm + 2iη
+

∑
l

1

h̄ω − εnm + 2iη

(
vnl

β vlm
γ fml

h̄ω2 − εlm + iη
− vnl

γ vlm
β fln

h̄ω2 − εnl + iη

)]
, (D12)

where fnm = fn − fm. The expectation value of the spin density is calculated by using the spin operator and the RDM,

〈δŝα (ω)〉 =
∑
n,m

∫
dk

(2π )d
snm
α (k)ρkmn(ω). (D13)

In particular, the second-order spin density 〈δŝα (ω)〉(2)
with respect to the electric field is given by

〈δŝα (ω)〉(2) = 2
∑
n,m

∫
dk

(2π )d
snm
α ρ

(2)
kmn(ω)

=
∫

dω1

2π

dω2

2π
Eβ (ω1)Eγ (ω2)2πδω1+ω2,ω

× − q2

(ω1 + iδ)(ω2 + iδ)

∑
n,m

∫
dk

(2π )d

[
1

2

snm
α vmn

βγ fnm

h̄ω − εmn + 2iη

+
∑

l

snm
α

h̄ω − εmn + 2iη

(
vml

β vln
γ fnl

h̄ω2 − εln + iη
− vml

γ vln
β flm

h̄ω2 − εml + iη

)]
+ [(β, ω1) ↔ (γ , ω2)]. (D14)

Here, we multiply a factor of 2 in the first line of the above expression to include the term interchanging the indices and
frequencies of the electric fields. This additional contribution is reflected in the term [(β, ω1) ↔ (γ , ω2)]. Furthermore, we
replace the vector potentials A(ω j ) with electric fields E(ω j ) by using E(ω j ) = i(ω j + iδ)A(ω j ).

2. Weak-scattering limit for Eq. (10)

Considering Eqs. (C1) and (C10), we can describe Eq. (10) as

ζ
(2)
α;βγ (ω; ω1, ω2) = − q2

(ω1 + iδ)(ω2 + iδ)

∑
n,m

∫
dk

(2π )d

{
1

2

snm
α vmn

βγ fnm

h̄ω − εmn + iη

+
∑

l

snm
α vml

β vln
γ

(h̄ω − εmn + iη)(h̄ω1 − εml + iη)(h̄ω2 − εln + iη)

× [(h̄ω1 − εml + iη) fn − (h̄ω − εmn + iη) fl + (h̄ω2 − εln + iη) fm]

}
+ [(β, ω1) ↔ (γ , ω2)], (D15)
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where we change ω� with ω after the calculation. Then, we replace h̄ω + iη with h̄ω + 2iη for a technical reason. Note that this
modification has an impact on the results in the region of a peak (h̄ω = εnm) and in the low-frequency region for the diagonal
response (n = m), as already pointed out in Refs. [55,81]. Using this modification, we find

ζ
(2)
α;βγ (ω; ω1, ω2) = − q2

(ω1 + iδ)(ω2 + iδ)

∑
n,m

∫
dk

(2π )d

[
1

2

snm
α vmn

βγ fnm

h̄ω − εmn + 2iη

+
∑

l

snm
α

h̄ω − εmn + 2iη

(
vml

β vln
γ fnl

h̄ω2 − εln + iη
− vml

γ vln
β flm

h̄ω2 − εml + iη

)]
+ [(β, ω1) ↔ (γ , ω2)], (D16)

which is consistent with Eq. (D14).
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