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We present a detailed investigation of the XXZ Heisenberg model for spin-1/2 and spin-1 systems on
square and honeycomb lattices. Utilizing the density-matrix renormalization group method, complemented by
spiral boundary conditions (SBCs) for mapping two-dimensional (2D) clusters onto one-dimensional chains,
we meticulously explore the evolution of staggered magnetization and spin gaps across a broad spectrum of
easy-axis anisotropies. Our study reveals that despite the lower site coordination number of the honeycomb
lattice, which intuitively suggests increased quantum fluctuations in its Néel phase compared to the square
lattice, the staggered magnetization in the honeycomb structure exhibits only a marginal reduction. Furthermore,
our analysis demonstrates that the dependence of staggered magnetization on the XXZ anisotropy �, except
in close proximity to � = 1, aligns with series expansion predictions up to the 12th order. Notably, for the
S = 1/2 honeycomb lattice, deviations from the 10th-order series expansion predictions near the isotropic
Heisenberg limit emphasize the critical influence of quantum fluctuations on the spin excitation in its Néel
state. Additionally, our findings are numerically consistent with the singular behavior of the spin gap near the
isotropic Heisenberg limit as forecasted by spin-wave theory. The successful implementation of SBCs marks a
methodological advancement, streamlining the computational complexity involved in analyzing 2D models and
paving the way for more precise determinations of physical properties in complex lattice systems.

DOI: 10.1103/PhysRevB.110.134418

I. INTRODUCTION

In the complex world of quantum magnetism, the interplay
between spin interactions and lattice geometry crafts a
fascinating landscape of ground states and excitations (e.g.,
see Refs. [1–3]). A central subject for this exploration is the
XXZ Heisenberg model [4], a cornerstone that has deeply
enriched our comprehension of anisotropic magnetic systems
[5,6]. The model, celebrated for its versatility in representing
real materials, allows for the examination of quantum
fluctuations—the quintessential quantum mechanical effect
that destabilizes classical magnetic order, paving the way for
the emergence of novel quantum phases such as spin liquids
[7,8].

This paper focuses on comparing the manifestations of
quantum fluctuations within the S = 1/2 and S = 1 XXZ
models on two fundamentally distinct lattice structures: the
square and the honeycomb. These lattices, emblematic of dif-
ferent coordination environments and geometric constraints,
provide a compelling backdrop against which the interplay
of spin magnitude and lattice topology can be meticulously
dissected. The square lattice, with its direct links to high-
temperature superconductivity [9] and magnetic order [3] in
solid-state compounds, and the honeycomb lattice, notable
for hosting exotic phenomena such as the quantum spin Hall
effect [10] and potential quantum spin liquid states [8], are
ideal platforms for this comparative study.

Numerical simulations of such systems often pose signifi-
cant challenges. When instantiated on a finite-size lattice, the
total degrees of freedom exponentially increase with lattice
size. This constraint on the geometry and size of the cluster
becomes particularly notable for systems in more than two
dimensions. Consequently, an extrapolation of physical quan-
tity to an infinite system size is imperative to ascertain the
bulk value. However, the execution of such finite-size scaling
is usually fraught with challenges due to the presence of
multiple scaling dimensions, such as the x and y directions in
a two-dimensional (2D) case. In our previous studies [11,12],
we introduced an efficient numerical method for determining
the local order parameter in 2D systems through the use of
spiral boundary conditions (SBCs). This method provides a
promising approach to address the challenges associated with
finite-size scaling in numerical simulations.

Applying SBCs allows for the exact projection of lattice
models, even those extending beyond 2D, onto 1D peri-
odic chains that maintain translational symmetry. Within this
projected 1D chain, each lattice site is denoted by a single co-
ordinate, contrary to the dual coordinates used in the original
2D cluster. This simplification means that only one finite-
size scaling analysis along the chain direction is necessary
to ascertain a physical quantity in the thermodynamic limit.
We have demonstrated the capability of precisely determin-
ing the magnitude of staggered magnetization for the XXZ
Heisenberg model on a square lattice ranging from S = 1/2
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to 6 [12]. Here we consider the extension of this technique
to studies of the honeycomb-lattice model and further demon-
strate the systematic calculation of excitation energy in the
bulk limit.

In this paper, we investigate the S = 1/2 and S = 1 XXZ
Heisenberg models on square and honeycomb lattices em-
ploying the density-matrix renormalization group (DMRG)
method. We delve into the evolution of staggered magnetiza-
tion and the accompanying spin gap with easy-axis anisotropy.
It is shown that by applying SBCs to both lattice types,
a finite-size scaling analysis towards the thermodynamic
limit can be effortlessly conducted for the studied physical
quantities. The efficacy of our approach is corroborated by
comparing our findings with pre-existing numerical and an-
alytical results. Our analysis reveals that for most cases, the
staggered magnetization and spin gap within the easy-axis
Néel phase can be approximately accounted for by series
expansions (SEs) of the 10th to 12th order in terms of 1/�.
However, for the S = 1/2 honeycomb lattice, the results sig-
nificantly deviate from those of the 10th-order SE across a
broad range near the isotropic Heisenberg limit due to strong
quantum fluctuations. Furthermore, for all models that are
considered, we obtain results that are numerically consistent
with the singular behavior of the spin gap near the isotropic
Heisenberg limit as predicted by spin-wave theory (SWT).
Also, we find a marked reduction in quantum fluctuations
transitioning from S = 1/2 to S = 1 across all physical quan-
tities that are assessed.

The paper is structured as follows: Sec. II provides a de-
tailed description of our spin model. In Sec. III, we elucidate
the method of mapping 2D models to 1D using SBCs, along
with the procedures for calculating physical quantities via the
DMRG technique. Section IV presents our numerical find-
ings, examining the influence of lattice type, XXZ anisotropy
magnitude, and spin size on the stability of staggered mag-
netization and the magnitude of the spin gap. Additionally,
we incorporate a discussion on the specific behavior of the
spin gap for the S = 1/2 honeycomb-lattice case. Finally, in
Sec. V, we conclude the paper with a summary and further
insights into the observed phenomena.

II. MODEL

The Hamiltonian of the XXZ Heisenberg model is repre-
sented as follows:

H =
∑
〈i j〉

(
Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

)
, (1)

where Sγ

i (γ = x, y, z) are the spin-S operators, � is the
anisotropy parameter, and the sum 〈i j〉 runs over all nearest-
neighbor pairs. In this context, we consider two types of lattice
structures: the square lattice and the honeycomb lattice. The
XXZ models associated with these lattices have been signifi-
cantly examined thus far.

There are three phases depending on � [13–17]: (i) For
� > 1 easy-axis Néel phase with antiferromagnetic (AFM)
spin alignment along the z direction, (ii) for −1 < � < 1
easy-plane Néel (XY) phase with AFM spin alignment along
some arbitrary direction in the xy plane, and (iii) for � < −1
ferromagnetic (FM) phase with fully polarized spins along the
z direction. The phase transitions at � = ±1 are both first

order. For � = −1, this model can be exactly solved: the Néel
and FM states are degenerate at the ground state where the
energies are E0 = −2NS2 and E0 = −(3/2)NS2 for square-
and honeycomb-lattice models. The exact wave functions at
� = −1 were given in Ref. [12].

In regards to the square-lattice model, it has been numer-
ically confirmed that for S = 1/2 [12,18], Néel long-range
order (LRO) always exists for � > −1. On the other hand,
for the honeycomb-lattice model, due to fewer bonds between
adjacent sites compared to the square lattice, quantum fluctu-
ations are larger and there is not yet a complete consensus on
which S and � regions stabilize Néel LRO [19,20].

III. METHOD

A. Spiral boundary conditions

Applying the DMRG method to 2D systems introduces
significant challenges, primarily due to two factors. First, the
entanglement entropy, which quantifies the quantum correla-
tions within different parts of the system, follows an “area
law.” This law indicates that entanglement entropy scales with
the boundary area of a region, complicating the simulation of
large systems. Second, the DMRG’s sweeping process, which
optimizes quantum states site by site in a linear fashion in 1D
systems, encounters difficulties in the more complex geome-
tries of 2D systems. This complexity can lead to inaccuracies
because a straightforward sweeping mechanism is harder to
implement across 2D lattices.

To address these challenges, careful management of
boundary conditions is essential for accurate DMRG simu-
lations. Traditional approaches often employ cylinder or torus
configurations for 2D systems. Yet, these configurations can
create short bond loops and impose an unnatural periodic-
ity on the wave function, leading to inaccuracies such as
an unexpected plaquette constraint on particles or spins. An
inappropriate choice of boundary conditions might also skew
the energy states observed in finite clusters away from those
relevant in the thermodynamic limit, instead of systematic
errors due to the finite-size effects.

A promising alternative that circumvents these limitations
involves the implementation of SBCs [11,21]. SBCs enables
the exact projection of lattice models, including those ex-
tending beyond two dimensions, onto 1D periodic chains that
preserve translational symmetry. This projection effectively
transforms a 2D L × L cluster into a 1D chain, maintain-
ing nearest-neighbor and (L − 1)th-neighbor bonds for square
lattices, and nearest- and (2L − 1)th-neighbor bonds for hon-
eycomb lattices, as depicted in Figs. 1(a) and 1(b). This
innovative approach prevents the emergence of artificial short
bond loops and ensures an even distribution of quantum entan-
glement across the chain, leveraging translational symmetry.

Notably, SBCs minimize the distance of the longest bonds,
denoted as d , to L − 1 for square and 2L − 1 for honey-
comb lattices, optimizing conditions for DMRG calculations.
In contrast, conventional periodic boundary conditions would
increase d to 2L and 4L − 2, respectively, posing challenges
for DMRG analysis.

Furthermore, SBCs provide a significant benefit for finite-
size scaling analysis. By projecting the original 2D lattice
onto a 1D chain, SBCs enable the indexing of each lattice
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FIG. 1. (a) 2D square-lattice 4 × 4 cluster and (b) 2D
honeycomb-lattice 3 × 3 cluster. The regions outlined by red lines
represent the original clusters. Through the application of SBCs, the
2D clusters are projected onto 1D periodic chains, where the sites are
aligned along the green lines. (c) Schematic depiction of the 1D open
chain utilized for our DMRG calculations, focusing on staggered
spin moment mz

α (S,�) and spin gap εα (S, �). In the square lattice,
pinning is applied to L sites at each end, while in the honeycomb
lattice, pinning is applied to 2L sites. Upward and downward arrows
signify pinned spins with Sz = S and Sz = −S, respectively.

site with a singular coordinate, rather than the dual-coordinate
system inherent to 2D clusters. This transition to a single-
coordinate framework simplifies the analytical process to a
unidimensional scale. It facilitates a more direct method for
extrapolating physical quantities to the thermodynamic limit,
enhancing the accuracy and efficiency of our simulations.

B. Density-matrix renormalization group

The investigation of the ground state of the 1D chain, trans-
formed via SBCs, is conducted using the DMRG method [22].
For this purpose, we implement open boundary conditions on
the 1D chain, a choice that significantly enhances the preci-
sion of our DMRG calculations. Our study encompasses open
chains with lengths up to N = L2 = 196 sites for the square
lattice and up to N = 2L2 = 162 sites for the honeycomb
lattice. To ensure the robustness of our calculations, we retain
up to m = 8000 density-matrix eigenstates, with all calculated
values subsequently extrapolated to the limit of m → ∞. The
maximum discarded weight that is observed is of the order
of 10−6.

Furthermore, we intentionally break the spin-rotation sym-
metry by employing a spin pinning technique. This approach
effectively lifts the degeneracy of the ground state, thereby
efficiently reducing the dimensionality of the Hilbert space
required for our calculations. As a result, even for computa-
tions of 2D systems, the discarded weight remains minimal,
enhancing the accuracy and feasibility of our analysis.

C. Physical quantities

1. Staggered magnetization

We examine the Néel state for � � 1, where the magni-
tude of staggered magnetization serves as the order parameter
in both square and honeycomb lattice XXZ models. In the
original 2D clusters, Néel order characterized by k = (π, π )

is transformed into a magnetic order with k = π along the
projected 1D chain through our implementation of SBCs.
For the analysis, we utilize open chains and determine the
magnitude of staggered magnetization by measuring half the
amplitude of the magnetization oscillation of 〈Sz

i 〉 from the
system edges. Given the condition � � 1, it is sufficient to
focus on the z component of the spin moment.

To establish such an open chain configuration, we sever
L (L + 1) bonds between adjacent sites on the projected 1D
periodic chain for square (honeycomb) lattices, as described
in recent works [12,23]. We specifically examine the local mo-
ments of the two central spins, 〈Sz

N/2〉 and 〈Sz
N/2+1〉, employing

spin pinning near the system edges, such as setting 〈Sz
i 〉 =

(−1)i−1S at sites i = 1, . . . , L and i = L2 − (L − 1), . . . , L2

for the square lattice, and at sites i = 1, . . . , 2L and i = 2L2 −
(2L − 1), . . . , 2L2 for honeycomb lattice.

While pinning is typically positioned at the system edges,
i.e., at i = 1, i = N , the last L − 1 (2L − 1) sites at both
ends of the projected 1D chain corresponding to a square
(honeycomb) lattice are left without their original bonds, ne-
cessitating the placement of pinnings at these outer sites to
accurately estimate staggered magnetization [see Fig. 1(c)].
Therefore, we define the magnitude of staggered magnetiza-
tion for a given spin S and XXZ anisotropy � as

mz
α (S,�) = lim

N→∞
∣∣〈Sz

N/2

〉 − 〈
Sz

N/2+1

〉∣∣/2. (2)

Examples of local spin moment profiles, 〈Sz
i 〉, for the Sz = 0

sector at � = 1 are depicted in the top panels of Fig. 2. Here,
the parameter α adopts the value “sq” for square lattices and
“hon” for honeycomb lattices. In both square and honeycomb
lattices, the oscillation of 〈Sz

i 〉 smoothly decays towards the
center of the system, validating the approach of defining the
Néel order parameter via the local moments of the two central
spins, 〈Sz

N/2〉 and 〈Sz
N/2+1〉.

2. Spin gap

The spin gap offers insight into phenomena such as quan-
tum fluctuations and the stability of the Néel state. It also
provides us with an understanding of how classical behavior
emerges from quantum systems. The spin gap (singlet-triplet
gap) for given S and � is defined as follows:

εα (S,�) = lim
N→∞

[E0(N, 1) − E0(N, 0)], (3)

where E0(N, Sz ) is the total ground-state energy of the system
with N sites and the z component of the total spin, Sz. Here,
the parameter α adopts the value “sq” for square lattices and
“hon” for honeycomb lattices.

To verify the validity of our spin gap calculations under the
imposed pinning distribution, we examine the spatial distribu-
tion of increased magnetization as the spin sector transitions
from Sz = 0 to Sz = 1. The spatial distribution of the in-
creased magnetization is visualized by observing the variance
in 〈Sz

i 〉 between the Sz = 0 and Sz = 1 sectors, denoted as
δ〈Sz

i 〉. We plot the profile of this distribution for � = 1 in
the bottom panels of Fig. 2. In both square and honeycomb
lattices, it is observed that the presence probability of the
increased magnetization is maximized near the center of the
system, with minimal presence near the edges. This obser-
vation confirms that the spin gap in the bulk limit can be
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FIG. 2. Comparative profiles of the local spin moment for
12 × 12 square (left panels) and 8 × 8 honeycomb (right panels)
lattices at spin-isotropic case � = 1. The profiles depict 〈Sz

i 〉, the
expectation value of the z component of spin at site i, for two distinct
total spin sectors: Sz = 0 (top row) and Sz = 1 (middle row). The
bottom row illustrates the differential profiles, showing the variance
in 〈Sz

i 〉 between the Sz = 0 and Sz = 1 sectors.

correctly estimated using Eq. (3). We note that the distribution
of 〈Sz

i 〉 for the Sz = 1 sector and δ〈Sz
i 〉 are asymmetric because

the rotational symmetry as well as the mirror symmetry of the
system is broken.

IV. RESULTS

A. Staggered magnetization

We start by looking at what we found about staggered
magnetization. This measure adeptly quantifies the AFM
alignment of magnetic moments throughout the lattice, offer-
ing profound insights into the stability and resilience of the
Néel state against external perturbations. Our investigation
spans two lattice configurations, i.e., square and honeycomb
structures, and encompasses systems with spin magnitudes of
S = 1/2 and S = 1. The primary objective of this analysis is
to delineate the degree to which staggered magnetization is
influenced by the lattice geometry and spin values.

1. Square lattice

In our preceding study [12], the magnitude of staggered
magnetization for the S = 1/2 and S = 1 square-lattice XXZ
Heisenberg models was quantified as a function of �. Here
we revisit these results to consider the extent of quantum
fluctuations in the Néel state at � � 1. They are plotted in
Fig. 3. For any S, the quantum fluctuations are maximized at

FIG. 3. Extrapolated values of mz
sq(S, �) to the thermodynamic

limit as a function of � for the (a) S = 1/2 and (b) S = 1 square-
lattice XXZ models. Dashed lines represent the results from the SE
up to the 12th order 1/� [24–26]. Red crosses denote the results
obtained via the CCM [27] for the S = 1/2 case. Insets: mz

sq(S, �) vs
1/�2 in the large-� region, with solid lines indicating the SE results
up to the sixth order of 1/�.

� = 1, correspondingly minimizing the staggered magneti-
zation magnitude. The values of mz

sq( 1
2 , 1.0) and mz

sq(1, 1.0)
estimated by various numerical methods are summarized
in Table I. The differences in performance between our
SBC method and previous DMRG studies is discussed in
Appendix A. For S = 1/2, these values approximate 60%
of the classical one, mz

sq( 1
2 ,∞) = 0.5, while for S = 1, the

staggered magnetization rises to about 80% of its classical
counterpart, mst

z (1,∞) = 1. These results underscore the sub-
stantial suppression of quantum fluctuations with an increase
in S. In fact, an expansion in terms of 1/S yields mz

sq(S, 1.0) =
1 − 0.196 601 9S−1 + 0.000 87S−3 + O(S−4) [28–30]. Since
the coefficients of higher-order terms than 1/S are very
small, a rapid convergence to the classical (or Ising) limit
mz

sq(S, 1.0)/S → 1 with increasing S is naively expected. This
trend has received numerical validation [12].

To explore the evolution of quantum fluctuations with
�, we compare our DMRG results to SE analyses. The
deviation from the fixed-order SE results quantifies the
extent of quantum fluctuations. The SE results are plot-
ted as dotted lines in Fig. 3. At � = 1, our DMRG
analysis yields mz

sq( 1
2 , 1.0) = 0.3065 and mz

sq(1, 1.0) =
0.8017, whereas SE up to the 12th order (SE12) of-
fers mz

sq( 1
2 , 1.0) = 0.3462 and mz

sq(1, 1.0) = 0.8579. Despite
incorporating terms up to the 12th order, a discrep-

TABLE I. Magnitude of staggered magnetization for the S = 1/2
and S = 1 square-lattice Heisenberg models at the isotropic point
(� = 1), estimated using various numerical methods; DMRG, cou-
pled cluster method (CCM), quantum Monte Carlo (QMC), and
infinite projected entangled-pair states (iPEPS).

Method mz
sq

(
1
2 , 1.0

)
Refs. Method mz

sq(1, 1.0) Refs.

DMRG 0.3065 [12] DMRG 0.8017 [12]
DMRG 0.3067 [31] iPEPS 0.802 [32]
CCM 0.3093 [27] SE 0.8039(4) [26]
QMC 0.30743 [33]
SE 0.307(1) [26]
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ancy remains due to unaccounted quantum fluctuations,
with a deviation of approximately 7.9% for S = 1/2 and 5.6%
for S = 1. However, a slight increase in � to 1.05 yields
mz

sq( 1
2 , 1.05) = 0.3640 (DMRG) and mz

sq( 1
2 , 1.05) = 0.3678

(SE12) for S = 1/2, and mz
sq(1, 1.05) = 0.8767 (DMRG)

and mz
sq(1, 1.05) = 0.8811 (SE12) for S = 1, significantly

reducing deviations to 0.76% and 0.44%, respectively. This
suggests a pronounced reduction in quantum fluctuations
attributable to XXZ anisotropy. In the � = ∞ limit, SE
approaches exactness, nullifying quantum fluctuations. To
demonstrate the accuracy of our DMRG analyses, a compari-
son of our DMRG results with SE ones in the � = ∞ limit is
provided in Appendix B.

Additionally, in contrast to the singular behavior near
� = 1 predicted by SWT, which posits that mz

sq( 1
2 ,�) =∑∞

n=0 mn(� − 1)n/2 [14,26,34], our observations reveal that
mz

sq( 1
2 ,�) is almost linearly proportional to � − 1 within the

range 1 � � � 1.01. This behavior aligns with results from
the CCM [27]. However, we further ascertain that except in
the immediate vicinity of � = 1, the staggered magnetization
for the square-lattice XXZ Heisenberg model at � � 1 can
be approximately and quantitatively captured by SE, provided
the expansion includes up to the 12th order of 1/�.

2. Honeycomb lattice

In exploring the honeycomb-lattice XXZ model, we note
that each site is connected to three neighboring sites, a
contrast to the four neighbors in the square-lattice model.
This difference leads us to hypothesize that the Néel state
in the honeycomb-lattice model might exhibit less stability
compared to its counterpart in the square model due to the
potential for increased quantum fluctuations. To investigate
this, we delve into the dependence of staggered magnetization
on the anisotropy parameter � for both S = 1/2 and S = 1
within the honeycomb lattice, drawing comparisons with our
previous findings for the square-lattice model.

In Figs. 4(a) and 4(b), we perform finite-size scaling anal-
yses for mz

hon( 1
2 ,�) and mz

hon(1,�) over various values of
�. Broadly, this scaling examines the decay of magnetization
oscillations with distance from a spin pinned at the system
edge. Given that the Néel state features a staggered (commen-
surate) arrangement of spins in our projected 1D chain, we
anticipate a smooth decay of the magnetization oscillations
with distance. This has been verified in Sec. III C 1. Conse-
quently, mz

hon( 1
2 ,�) and mz

hon(1,�) extrapolate smoothly to
the thermodynamic limit as functions of inverse system size.
Furthermore, the observation that convergence with respect
to size occurs more rapidly as � increases reflects the di-
minishing quantum fluctuations. Unless otherwise specified,
the finite-size scaling in this paper is performed using least-
squares fitting with the fitting function f (L) = a + bL−2 +
cL−3. For all scaling analyses, the fraction of variance that
is unexplained is estimated to be 1 − R2 < 0.001, where R2 is
the coefficient of determination.

The extrapolated values of mz
hon( 1

2 ,�) and mz
hon(1,�) are

plotted as a function of � in Figs. 4(c) and 4(d), respec-
tively. In the case where the quantum fluctuations are largest
at � = 1, we obtain mz

hon( 1
2 , 1.0) = 0.2764 for S = 1/2 and

mz
hon(1, 1.0) = 0.7646 for S = 1. These values are in close

FIG. 4. Magnitude of staggered magnetization for the S = 1/2
and S = 1 honeycomb-lattice XXZ models as a function of �.
Finite-size scaling analyses of (a) mz

hon( 1
2 , �) and (b) mz

hon(1, �).
Extrapolated values of (c) mz

hon( 1
2 , �) and (d) mz

hon(1, �) to the
thermodynamic limit as a function of �. The dashed lines show the
SE results up to the 12th order of 1/� [35]. Insets: mz

hon(S, �) vs
1/�2 in the large-� region. Solid lines represent the SE results up to
the 6th order of 1/�.

agreement with various numerical methods from previous
studies. The values of mz

hon( 1
2 , 1.0) and mz

hon(1, 1.0) estimated
by various numerical methods are summarized in Table II.
Our estimations are ∼55% and ∼76% of their respective
classical values, only slightly smaller despite the greater quan-
tum fluctuations compared to the square-lattice case. On the
other hand, the SE analyses up to the 12th order of 1/� lead
to mz

hon( 1
2 , 1) = 0.3409 and mz

hon(1, 1) = 0.8139 for S = 1/2
and S = 1, respectively. These values, when compared with
those obtained from our DMRG simulations, exhibit discrep-
ancies of 6.5% for S = 1/2 and 4.9% for S = 1. Interestingly,
these deviations are rather smaller than those observed for
the square lattice, where the discrepancies are notably lower

TABLE II. Magnitude of staggered magnetization for the
S = 1/2 and S = 1 honeycomb-lattice Heisenberg models at the
isotropic point (� = 1), estimated using various numerical methods.

Method mz
hon

(
1
2 , 1.0

)
Refs. Method mz

hon(1, 1.0) Refs.

DMRG 0.2764 this study DMRG 0.7646 this study
DMRG 0.2857 [36] CCM 0.7412 [18]
DMRG 0.2720 [37] SE 0.748(3) [35]
DMRG 0.2611 [38]
CCM 0.2730 [18]
QMC 0.2677 [39]
ED 0.262 [40]
SE 0.266(9) [35]
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at 7.9% for S = 1/2 and 5.6% for S = 1. Furthermore, the
increase in magnetization when S changes from 1/2 to 1 is
similar to that in the square lattice. This may be expected from
the coefficients of the 1/S series expansion for the honeycomb
lattice, mz

hon(S, 1.0) = 1 − 0.258 193/S + · · · [14], which are
close to those for the square lattice.

Let us then see the � dependence. As illustrated in
Figs. 4(c) and 4(d), the magnetization rapidly approaches
classical values with increasing �. It is also evident that
apart from the immediate vicinity of � = 1, the magnetization
is well captured by the SE12 predictions. Indeed, a slight
increase in � from 1 to 1.05 yields mz

hon( 1
2 , 1.05) = 0.3188

(DMRG) versus mz
hon( 1

2 , 1.05) = 0.3478 (SE12) for S = 1/2,
and mz

hon(1, 1.05) = 0.8242 (DMRG) versus mz
hon(1, 1.05) =

0.8427 (SE12) for S = 1. The discrepancies between the
DMRG and SE12 values significantly decrease from 6.5% and
4.9% at � = 1 to 2.9% and 1.9% at � = 1.05 for S = 1/2 and
S = 1, respectively. Nevertheless, the quantum fluctuations
remain comparatively large and thus the reduction is not as
dramatic as in the case of the square lattice (see Sec. IV A 1).
A comparison of our DMRG results with SE ones in the
� = ∞ limit is provided in Appendix B.

Thus, our examination of the honeycomb-lattice XXZ
model reveals that akin to the case for a square lattice, stag-
gered magnetization can be reasonably approximated by SE12
for � > 1.

B. Spin gap

Next, we delve into the investigation of the spin gap, which
serves as an indicator of the stability of Néel LRO when
spin-rotation symmetry about the z axis is explicitly broken
by staggered magnetization. This parameter is essential for
understanding the energy required to excite the system from
its Néel ground state, a facet less explored compared to di-
rect magnetization measurements. Employing methodologies
analogous to those used in our magnetization studies, we
extend our analysis to both square- and honeycomb-lattice
configurations for S = 1/2 and S = 1 systems. Our aim is to
elucidate the behavior of the spin gap across varying lattice
geometries and spin magnitudes, offering insights into the
intricacies associated with excitations from the Néel state.

1. Square lattice

Let us first examine the spin gap in the case of a square
lattice. In Figs. 5(a) and 5(b), finite-size scaling analyses for
εsq( 1

2 ,�) and εsq(1,�) are shown across various values of �.
Our scaling analysis reveals that a smooth extrapolation of the
spin gap often suggests that the scaling function resembles the
contour of a magnon band near the Fermi level. For both spin
magnitudes at � = 1, the spin-gap data closely align with a
linear fit, extrapolating towards zero in the thermodynamic
limit, albeit with minor numerical uncertainties inherent to
the extrapolation process. This linear fit aligns with expec-
tations for gapless systems where the linear magnon band
structure near the Fermi points dominates. The actual values
of the extrapolated spin gap are εsq( 1

2 , 1) = −0.001 700 06
and εsq(1, 1) = 0.006 843 18. This hints at a Néel LRO that
despite being stable, exhibits a spin gap of zero due to the ar-
bitrary direction of symmetry breaking. Moreover, at slightly

FIG. 5. Spin gap for the S = 1/2 and S = 1 square-lattice
XXZ models as a function of �. Finite-size scaling analyses of
(a) εsq( 1

2 , �) and (b) εsq(1, �). Extrapolated values of (c) εsq( 1
2 , �)

and (d) εsq(1, �) to the thermodynamic limit as a function of �. The
dashed lines show the SE results up to the 10th order of 1/� [26].
Insets: εsq(S,�) in the large-� region. Solid lines represent the SE
results up to the 6th order of 1/�.

increased values of �, namely, 1.1 and 1.2, the observed small
gaps corroborate the quadratic dispersion expected near the
Fermi points. As the gap widens, quantum fluctuations wane,
leading to a narrower bandwidth and, thus, a diminished size
dependence of the gap. Utilizing SBCs to transform the 2D
lattice into an effective 1D system allows for the original 2D
Fermi surface to be conceptualized as a “Fermi line,” aiding
in the smooth scaling of the gap.

Figures 5(c) and 5(d) display the extrapolated spin gaps
εsq( 1

2 ,�) and εsq(1,�), showcasing a trend similar to that
of magnetization with increasing �, rapidly approaching
the classical values 4�S. Excluding the region immediately
around � = 1, the behavior of the spin gap correlates well
with SE predictions up to the 10th order in 1/�. A comparison
of our DMRG results with SE ones in the � = ∞ limit is
provided in Appendix C.

Investigating the behavior of the spin gap near � = 1,
SWT anticipates a singularity, encapsulated by the following
relation:

ε

�
= η1(1 − �−2)1/2 + η2(1 − �−2)

+ η1(1 − �−2)3/2 + · · · , (4)

with constants η1 = 4S − 0.431 436 and η2 = 1.2732 derived
from SWT predictions [41]. To scrutinize this predicted be-
havior, we present DMRG results for the normalized spin
gap, ε

�
, as a function of 1 − �−2 around � = 1 in Figs. 6(a)

and 6(b). For both S = 1/2 and S = 1, we can reasonably fit
our DMRG data by Eq. (4), yielding η1 = 1.363 949 87, η2 =
0.066 724 577 2, η3 = 0.572 388 620 for S = 1/2 and η1 =
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FIG. 6. �-normalized spin gap for the (a) S = 1/2 and (b) S = 1
square-lattice XXZ models as a function of 1 − �−2. Circles denote
DMRG results in the thermodynamic limit, while the solid line
represents a fit using Eq. (4).

3.234 503 60, η2 = 0.754 467 400, η3 = 0.022 688 166 0 for
S = 1. These leading coefficients are close to the SWT pre-
diction of η1 = 1.568 564 for S = 1/2 and η1 = 3.568 564 for
S = 1, indicating an increase in η1 with S, consistent with the
fact that in the large-S limit, the gap jumps to εsq(S = ∞,� =
1+) = 4�S as soon as XXZ anisotropy is introduced. Our
numerical investigation thus substantiates the SWT-predicted
singularity in the spin gap near � = 1. Nonetheless, for S =
1/2, contrasting viewpoints emerge, such as those from CCM
analyses, which suggest a near-linear relation, ε ∝ �, diverg-
ing from the expected singular behavior. This discrepancy
could arise from our extrapolations to the thermodynamic
limit, particularly near � = 1, which are marginally higher
than those deduced from CCM. As a reference, Table III
compares the spin-gap values derived from DMRG and CCM
for various � settings in the S = 1/2 case. A more in-depth
examination will be imperative in future studies to resolve
these discrepancies and fully delineate the characteristics of
the spin gap near � = 1.

2. Honeycomb lattice

Finally, we examine the spin gap for the honeycomb-lattice
model. In Figs. 7(a) and 7(b), we conduct finite-size scaling
analyses for εhon( 1

2 ,�) and εhon(1,�) over various values of
�. We see that smooth scaling is possible for all values of �,

TABLE III. Comparison of spin gaps as a function of � for the
S = 1/2 square-lattice XXZ Heisenberg model obtained via DMRG
and CCM calculations.

εsq( 1
2 , �) εsq( 1

2 , �)

� DMRG CCM � DMRG CCM

1.00 −0.0017 −0.0086 1.60 2.1995 2.2279
1.10 0.6810 0.5601 1.70 2.4578 2.4921
1.15 0.8722 0.7811 1.80 2.7083 2.7465
1.20 1.0461 0.9805 1.90 2.9535 2.9934
1.25 1.2088 1.1646 2.00 3.1942 3.2344
1.30 1.3627 1.3371 2.50 4.3496 4.3828
1.35 1.5118 1.5004 3.00 5.4546 5.4790
1.40 1.6560 1.6563 3.50 6.5306 6.5481
1.50 1.9334 1.9509 4.00 7.5880 7.6008

FIG. 7. Spin gap for the S = 1/2 and S = 1 honeycomb-lattice
XXZ models as a function of �. Finite-size scaling analy-
ses of (a) εhon( 1

2 , �) and (b) εhon(1, �). Extrapolated values of
(c) εhon( 1

2 ,�) and (d) εhon(1,�) to the thermodynamic limit as a
function of �. The dashed lines show the SE results up to the 10th
order of 1/� [35] and the solid lines show the the Padé approximant
applied to the SE10 results. Insets: εsq(S, �) in the large-� region.
Solid lines represent the SE results up to the 6th order of 1/�.

similar to the case of the square lattice. Consistently, at � = 1,
the scaling function is almost linear, approaching to nearly
zero as 1/L decreases; while for � > 1, a quadratic behavior
indicative of gap opening is observed. The actual extrapo-
lated values are εhon( 1

2 , 1) = −0.019 166 48 and εhon(1, 1) =
−0.014 476 16, indicating slight but larger deviations from
zero than those observed in the square-lattice case. The square
lattice, having one site per structural unit cell, allowed cal-
culations up to L = 14, whereas the honeycomb lattice, with
two sites per structural unit cell, limits computations to L = 9
for a comparable computational cost, potentially leading to
relatively larger scaling errors towards the thermodynamic
limit in the honeycomb-lattice case.

The extrapolated values of εhon( 1
2 ,�) and εsq(1,�) are

plotted as a function of � in Figs. 7(c) and 7(d), showing
a behavior broadly similar to the magnetization versus �

relationship. Interestingly, the saturation towards the clas-
sical value 3�S seems to be more gradual than observed
in the square-lattice case, due to the heightened quantum
fluctuations.

A notable finding is that SE analyses up to the 10th order in
1/� are almost inapplicable in the region � � 2 for S = 1/2.
Due to the large coefficients of higher-order terms, adding
each successive term causes significant oscillations near � =
1, making approximation solely by SE very challenging in
this vicinity (see Appendix D). Nevertheless, the SE10 curve
is significantly improved by applying the Padé approximant.
However, the value of εhon( 1

2 ,�) remains not very close to 0
at � = 1: −1.1318 from the Padé approximant of order [4/6]
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FIG. 8. �-normalized spin gap for the (a) S = 1/2 and (b) S = 1
honeycomb-lattice XXZ models as a function of 1 − �−2. Circles
denote DMRG results in the thermodynamic limit, while the solid
line represents a fit using Eq. (4).

and 0.2683 from that of order [6/4]. These findings emphasize
the critical influence of quantum fluctuations on the spin exci-
tation in its Néel state. Conversely, for S = 1, the SE results up
to the 10th order in 1/� can reasonably describe the general
gap behavior, except in the immediate vicinity of � = 1. The
Padé approximant provides εhon(1,�) = 0.5571 and 0.4284
from its orders [4/6] and [6/4], respectively. Furthermore, a
comparison of our DMRG results with SE ones in the � = ∞
limit is provided in Appendix C.

In alignment with observations for the square lattice, SWT
also forecasts singular behavior near � = 1 for the hon-
eycomb lattice. The asymptotic form of this behavior is
encapsulated by Eq. (4), with SWT providing the coefficients
as η1 = 3S − 0.423 239 and η2 = 1.2405 [14]. To verify if
our DMRG data align with these predictions, we analyze the
normalized spin gap, ε

�
, as a function of 1 − �−2 approaching

� = 1, as depicted in Figs. 8(a) and 8(b).
Our fits to Eq. (4) for both S = 1/2 and S = 1

seem to be reasonable and yield η1 = 1.030 931 09, η2 =
−0.614 589 918, η3 = 1.062 001 53 for S = 1/2, and η1 =
2.129 142 13, η2 = 0.923 738 066, η3 = −0.055 019 266 1 for
S = 1. These leading coefficients exhibit a notable corre-
spondence with SWT-anticipated η1 = 1.076 761 for S = 1/2
and η1 = 2.576 761 for S = 1, underscoring our numerical
validation of the predicted singularity in the spin gap as �

approaches 1. Incidentally, the observation that η1 for S = 1
is larger than that for S = 1/2 suggests a trend towards the
discontinuity where the gap leaps to εsq(S = ∞,� = 1+) =
3�S with the introduction of XXZ anisotropy in the limit of
S = ∞.

V. SUMMARY AND DISCUSSION

We have achieved a comprehensive study of the S = 1/2
and S = 1 XXZ Heisenberg model on square and honeycomb
lattices. By employing the DMRG method, we systemati-
cally analyzed the evolution of staggered magnetization and
the associated spin gap across a wide range of easy-axis
anisotropies. A key to enhancing DMRG performance was the
implementation of SBCs, which enabled an exact mapping
of the original 2D clusters onto a 1D chain. This technique
significantly improved our ability to perform efficient finite-

size scaling analysis, thereby facilitating the extrapolation
of physical quantities to the thermodynamic limit with high
accuracy. This methodological innovation opens new avenues
for the study of quantum phenomena in complex lattice sys-
tems, providing a robust framework for exploring the effects
of lattice geometry and spin interactions on magnetic order
and excitations.

Given the difference in the number of adjacent sites—four
for the square lattice versus three for the honeycomb lattice—
it is reasonable to anticipate greater quantum fluctuations in
the Néel phase for the honeycomb structure. This implies a
potentially lower stability of the Néel LRO in the honeycomb
lattice as compared to the square lattice. Contrary to what
might be expected from the increased quantum fluctuations,
we found that the magnitude of staggered magnetization in
the honeycomb lattice is only marginally smaller than that
in the square lattice. Furthermore, across all models that are
investigated, the dependence of staggered magnetization on
�, except very close to � = 1, is well captured by SE up
to the 12th order. The � dependence of the spin gap closely
mirrors that of staggered magnetization, with most cases be-
ing approximately describable by SE up to the 10th order.
However, for the S = 1/2 honeycomb lattice, significant de-
viations from the 10th-order SE predictions are observed near
the isotropic Heisenberg limit, underscoring the pivotal role
of quantum fluctuations on the spin gap in its Néel state.
Moreover, for all models that are considered, our results align
numerically with the singular behavior of the spin gap near
the isotropic Heisenberg limit as predicted by SWT.

Finally, we delve into why the � dependence of the spin
gap for the S = 1/2 honeycomb-lattice case largely deviates
from the high-order SE results compared to other model cases,
although its � dependence of staggered magnetization can be
approximately explained by the SE analyses for most of the �

range. To consider this issue, we calculate the ratio of the spin
gap to the magnitude of magnetization, defined for the square
and honeycomb lattices, respectively, as

rsq(S,�) = εsq(S,�)

4�mz
sq(S,�)

, rhon(S,�) = εhon(S,�)

3�mz
hon(S,�)

.

(5)

This quantity can be an indicator of the stability of staggered
magnetization in the z direction within the Néel LRO. In
the isotropic case � = 1, where quantum fluctuations are
maximized, the ratio becomes 0, while in the classical limit
� = ∞, where quantum fluctuations are absent, it becomes
1. The ratios for all four models are plotted as a function of
� in Fig. 9(a). As expected, the rhon( 1

2 ,�) curve is apparently
lower than the other three cases, implying a relatively unstable
Néel LRO. In other words, the wave function contains more
components with disordered spin configurations. This is con-
sistent with the larger coefficients for higher-order terms in
SE (see Appendix D). We also plot the differences between
rhon( 1

2 ,�) and the other three ratios in Fig. 9(b), revealing
large deviations at � ≈ 1 to 2. This means that introducing
XXZ anisotropy rapidly stabilizes the Néel LRO in the three
models compared to the S = 1/2 honeycomb-lattice model.
Interestingly, this quantity appears less dependent on the lat-
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FIG. 9. (a) Ratio of the spin gap to the magnitude of magneti-
zation, which is normalized to approach unity in the classical limit,
as a function of � for the the S = 1/2 and S = 1 XXZ Heisenberg
models on square and honeycomb lattices. (b) The values plotted in
(a) subtracted by rhon( 1

2 , �).

tice geometry for S = 1. For reference, the data in Fig. 9 are
shown in Appendix E.

Although we focus on the range of � � 1 in this paper,
a similar calculation for the magnitude of staggered magneti-
zation is possible by applying a pinning field, e.g., along the
x axis for the region of � between −1 and 1. However, cal-
culating the spin gap becomes more challenging since Eq. (3)
cannot be used due to the nonconservation of total Sz. It would
be necessary to target the excitation energies or evaluate the
dynamical response when a spin is flipped.
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APPENDIX A: COMPARISON OF STAGGERED
MAGNETIZATION AT � = 1 WITH

PREVIOUS DMRG STUDIES

In this Appendix, we discuss the differences in per-
formance between the SBC method used in this paper to

determine the staggered magnetization at � = 1 and the meth-
ods used in previous DMRG studies.

For the S = 1/2 square-lattice case, we estimated
mz

sq( 1
2 , 1.0) = 0.3065, whereas Ref. [31] estimated 0.3067.

In Ref. [31], a cylindrical cluster was used; importantly, the
lattice is tilted by 45◦ to avoid the formation of plaquette
singlets along the circumference. Additionally, similar to our
approach, a staggered pinning field is applied to the open
edges. This pinning significantly reduces the global quantum
fluctuations in the system, thus improving the accuracy of
the DMRG calculations. By enlarging the cluster to 14 × 12
while maintaining the aspect ratio of the cluster in the x and
y directions, the thermodynamic limit value can be obtained
with a single finite-size scaling analysis. Therefore, due to the
comparable precision and computational cost, our results are
very close to those obtained in Ref. [31]. The difference of
0.0002 is within the margin of error for size scaling.

For the S = 1/2 honeycomb-lattice case, there is some
variation in the values of mz

hon( 1
2 , 1.0) obtained from previ-

ous DMRG studies, including our result of 0.2764. Previous
studies have reported values of 0.2857 [36], 0.2720 [37],
and 0.2611 [38]. In Ref. [37], so-called XC cylinders were
used. To minimize finite-size effects, lattices of size 8 × 8,
10 × 10, and 12 × 12 were employed, with the magnetization
measured at the center of the cylinder, while applying a pin-
ning field at both edges. This method is similar to ours, with
comparable computational costs and an expectation of highly
accurate staggered magnetization estimates. However, due to
the limited data points (only three sizes), finite-size scaling
was not performed, although the size dependence appears to
be small.

In Refs. [36,38], different clusters were used; the former
employed an open cluster and the latter used a so-called
ZCL − 2L cylinder, but the method for determining magneti-
zation was the same. They obtained the thermodynamic limit
value of mz

hon( 1
2 , 1.0)2 via finite-size scaling of the static spin

structure factor at the (π , π ) mode and then took the square
root to find mz

hon( 1
2 , 1.0). Additionally, both studies used clus-

ters without fields at the system edges, which may lead to
higher computational costs for accurate DMRG calculations,
potentially limiting the cluster size. As a result, finite-size
scaling is not straightforward and the scaling error may be
amplified when taking the square root. This reasoning may
explain why our result is close to 0.2720 [37]. However, it
should be noted that Refs. [36–38] were designed to investi-
gate the magnetic properties of the J1 − J2 Heisenberg model
on a honeycomb lattice and were not necessarily optimized
for results at J2 = 0.

APPENDIX B: COMPARISON OF STAGGERED
MAGNETIZATION BETWEEN DMRG AND

SE RESULTS IN THE � = ∞ LIMIT

In the limit of � = ∞, the SE analysis approaches ex-
actness since quantum fluctuations disappear. To demonstrate
the accuracy of our DMRG method, we compare our results
with the SE ones for the staggered magnetization of the XXZ
Heisenberg model in spin-1/2 and spin-1 systems on square
and honeycomb lattices.

134418-9



KADOSAWA, NAKAMURA, OHTA, AND NISHIMOTO PHYSICAL REVIEW B 110, 134418 (2024)

FIG. 10. �-normalized spin gap for the S = 1/2 honeycomb-
lattice case obtained via DMRG and SE, plotted as a function of
�. Here, the SE results incorporating terms up to the nth order are
denoted as SEn. The Padé approximant applied to the SE10 results
is also shown.

For the square lattice, utilizing SE up to the sixth
order in 1/�, we express the staggered magnetiza-
tion for S = 1/2 systems as 2mz

sq( 1
2 ,�) = 1 + m2/�

2 +
m4/�

4 + m6/�
6. The coefficients are calculated to be m2 =

−2/9 = −0.222 222 . . . , m4 = −8/255 = −0.035 555 5 . . . ,
and m6 = −0.018 942 58 for S = 1/2 [24,26,34,42,43]. In the
case of S = 1 systems, staggered magnetization is similarly
formulated as mz

sq(1,�) = 1 + m2/�
2 + m4/�

4 + m6/�
6,

with coefficients m2 = −4/49 = −0.081 632 653 . . . , m4 =
−0.026 959 099, and m6 = −0.013 699 751 5 [25,26]. The
magnitude of the lowest-order term, i.e., m2, for S =
1/2 is approximately 2.7 times that for S = 1, implying
a significant difference in quantum fluctuations between

the two. Fitting our data for 0 � 1/� � 0.05, we obtain
m2 = −0.222 222 225, m4 = −0.035 554 273 6, and m6 =
−0.018 966 381 0 for S = 1/2, and m2 = −0.081 632 653,
m4 = −0.026 959 397, and m6 = −0.013 867 377 for S = 1.
These coefficients are in almost perfect agreement with the
SE results.

For the honeycomb lattice, by employing expansions up
to the fourth order in 1/�, the staggered magnetization for
both spin-1/2 and S = 1 systems can be expressed as mz(S =
1/2) = 0.5 − m2/�

2 + m4/�
4 + o(1/�6). The coefficients

are found to be m2 = −3/16 = −0.1975, m4 = 31/768 =
0.040 364 583 3 . . . for S = 1/2 and m2 = −3/25 = −0.12,
m4 = −17 977/54 000 = −0.332 907 4 . . . for S = 1 [35].
Fitting our data for 0 � 1/� � 0.02, we obtain m2 =
−0.187 499 964, m4 = 0.039 452 368 2 for S = 1/2 and m2 =
−0.120 000 004, m4 = −0.033 243 009 9 for S = 1. These
values are in good agreement with those from SE.

APPENDIX C: COMPARISON OF SPIN GAP BETWEEN
DMRG AND SE RESULTS IN THE � = ∞ LIMIT

We conduct a similar analysis of the spin gap in the limit
of � = ∞ as we did for the staggered magnetization in
Appendix B.

For the square lattice, the SE up to the second or-
der in 1/� formulates εsq(S,�) = 2 + m2/�

2 + O(1/�4),
where m2 equals −5/3 = 1.666 666 6 · · · for S = 1/2 and
−50/21 = 2.380 952 3 · · · for S = 1. Our data fitting for
0 � 1/� � 0.02 yields m2 = −1.668 031 35 for S = 1/2 and
m2 = −2.379 968 04 for S = 1, in close agreement with these
SE coefficients, demonstrating the validity of our method.

For the honeycomb lattice, the SE up to the second
order in 1/� is expressed as εhon(S,�) = 2 + m2/�

2 +
O(1/�4), where the coefficients are determined to be m2 =
−15/8 = 1.875 for S = 1/2 and m2 = −39/20 = 1.95 for

TABLE IV. Extrapolated values of staggered magnetization, spin gap, and their ratio defined by Eq. (5) to the thermodynamic limit as a
function of � for the S = 1/2 square-lattice XXZ Heisenberg model obtained by our DMRG calculations.

S = 1/2 S = 1

� εsq

(
1
2 , �

)
mz

sq

(
1
2 , �

)
rsq

(
1
2 , �

)
εsq(1, �) mz

sq(1,�) rsq(1, �)

1.00 −0.00170 0.30651 −0.00139 0.00684 0.80170 0.00213
1.05 0.46158 0.36402 0.30191 1.11193 0.87667 0.30199
1.10 0.68102 0.38422 0.40284 1.62512 0.89616 0.41214
1.15 0.87217 0.39752 0.47696 2.04938 0.91139 0.48883
1.20 1.04607 0.40789 0.53429 2.42961 0.92172 0.54915
1.30 1.36273 0.42488 0.61679 3.09541 0.93763 0.63487
1.40 1.65602 0.43681 0.67699 3.69616 0.94862 0.69578
1.50 1.93344 0.44593 0.72262 4.25626 0.95670 0.74149
1.60 2.19954 0.45312 0.75847 4.78831 0.96291 0.77699
1.70 2.45781 0.45891 0.78761 5.29980 0.96780 0.80532
1.80 2.70835 0.46366 0.81128 5.79559 0.97174 0.82836
1.90 2.95351 0.46761 0.83108 6.27901 0.97497 0.84740
2.00 3.19416 0.47094 0.84781 6.75247 0.97765 0.86335
2.50 4.34959 0.48173 0.90292 9.02033 0.98619 0.91467
3.00 5.45464 0.48742 0.93257 11.19124 0.99058 0.94148
3.50 6.53058 0.49081 0.95042 13.31055 0.99315 0.95731
4.00 7.58805 0.49298 0.96200 15.39881 0.99479 0.96747
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TABLE V. Extrapolated values of staggered magnetization, spin gap, and their ratio defined by Eq. (5) to the thermodynamic limit as a
function of � for the S = 1/2 honeycomb-lattice XXZ Heisenberg model obtained by our DMRG calculations.

S = 1/2 S = 1

� εhon

(
1
2 , �

)
mz

hon

(
1
2 , �

)
rhon

(
1
2 , �

)
εhon(1, �) mz

hon(1, �) rhon(1, �)

1.00 −0.01917 0.27637 −0.02312 −0.01448 0.75925 −0.00636
1.05 0.30264 0.31882 0.30135 0.77160 0.82632 0.29644
1.10 0.43473 0.34256 0.38456 1.14549 0.85580 0.40561
1.15 0.55835 0.35957 0.45010 1.46041 0.87559 0.48345
1.20 0.67549 0.37295 0.50312 1.73880 0.89047 0.54241
1.30 0.89595 0.39335 0.58403 2.24251 0.91197 0.63051
1.40 1.10423 0.40856 0.64351 2.69467 0.92701 0.69210
1.50 1.30397 0.42045 0.68919 3.11703 0.93819 0.73831
1.60 1.49774 0.43004 0.72558 3.51818 0.94683 0.77412
1.70 1.68690 0.43792 0.75531 3.90403 0.95368 0.80267
1.80 1.87243 0.44451 0.78007 4.27815 0.95924 0.82592
1.90 2.05486 0.45008 0.80097 4.64300 0.96381 0.84514
2.00 2.23472 0.45484 0.81887 5.00033 0.96764 0.86126
2.50 3.10562 0.47085 0.87944 6.71114 0.97988 0.91319
3.00 3.94431 0.47960 0.91379 8.34704 0.98624 0.94039
3.50 4.76235 0.48494 0.93529 9.94248 0.98997 0.95649
4.00 5.56612 0.48843 0.94967 11.51335 0.99237 0.96683

S = 1 [35]. Fitting our DMRG data within the range 0 �
1/� � 0.02 yields coefficients m2 = −1.852 848 25 for S =
1/2 and m2 = 1.949 925 36 for S = 1. These findings are in
remarkable concordance with the established SE coefficients,
further affirming the reliability of our DMRG computational
approach.

APPENDIX D: SERIES EXPANSION FOR SPIN GAP
IN THE S = 1/2 HONEYCOMB-LATTICE

XXZ HEISENBERG MODEL

Around the classical limit, perturbative expansion up to the
10th order in 1/� for the S = 1/2 honeycomb-lattice XXZ
Heisenberg model yields the spin gap as

εhon

(
1

2
,�

)
= 3

2
− 15

8�2
+ 2.304 687 5

�4
− 7.051 025 390 62

�6

+ 26.376 685 634 7

�8
− 111.596 182 008

�10
.

(D1)

We denote the results obtained by considering terms up to the
nth order as SEn and plot them as a function of � in Fig. 10,
alongside a comparison with our DMRG results. As indicated
by Eq. (D1), the inclusion of higher-order terms introduces
significant oscillations near � = 1 due to the increasing co-
efficients of these terms. Consequently, within the region
� � 2, there is a noticeable deviation from the DMRG results.
To approximate the DMRG findings even more closely, it is
anticipated that a considerably higher order of terms must be
accounted for, suggesting that the impact of quantum fluctua-
tions on spin excitations is significant in this Néel phase.

APPENDIX E: DMRG DATA FOR STAGGERED
MAGNETIZATION AND SPIN GAP

For additional context, we present the values of staggered
magnetization and spin gap obtained via the DMRG method
at the thermodynamic limit for various values of �. Tables IV
and V detail these quantities for the square and honeycomb
lattices, respectively. Moreover, the values of the ratio of
staggered magnetization to the spin gap, as plotted in Fig. 9
of the main text, are also provided for reference.
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