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We successfully synthesized (p-Py-V)2[Cu(hfac)2], a verdazyl-based complex. Molecular orbital calculations
revealed that three antiferromagnetic (AF) exchange interactions form a spin- 1

2 lattice with coordination numbers
2 and 4. The magnetic susceptibility and specific heat exhibit contributions of AF correlations and a phase
transition to an AF ordered state at TN = 3.6 K. The magnetization curve exhibits an almost linear increase
in the low-field region for T > TN. Furthermore, we observe a nonlinear increase in the high-field region,
demonstrating the magnetic moment reduction caused by the strong quantum fluctuations. Through numerical
analysis, we reveal a hump structure of magnetic susceptibility and a 1/3 magnetization plateau that emerge
owing to the effective spin state. These results provide a model compound forming a spin- 1

2 mixed coordination
lattice and an understanding of its unique quantum properties attributed to strong quantum fluctuations.

DOI: 10.1103/PhysRevB.110.134414

I. INTRODUCTION

Quantum fluctuations in spin lattices are fundamental to
understanding quantum properties in condensed-matter sys-
tems. Honeycomb lattice composed of hexagonal plaquettes
exhibits a smaller coordination number (i.e., 3) than other
two-dimensional (2D) spin lattices. Accordingly, it yields
increased quantum fluctuations, as fewer neighboring spins
result in less stabilization of the spin configuration, allowing
for larger deviations and uncertainties in spin states, thus
placing it near the quantum critical limit. Although anti-
ferromagnetic (AF) honeycomb lattices exhibit an ordered
ground state with a bipartite structure, strong quantum fluc-
tuations reduce the magnetic moment per site. Therefore,
the ground state is vulnerable [1–4]. Modulations, such as
distortion [5–7], randomness [8], and anisotropy [9], in the
exchange interactions that form a honeycomb lattice can eas-
ily destroy the ordered state. This results in the formation
of exotic quantum states. The Kitaev model, which forms a
honeycomb lattice with bond-dependent anisotropic interac-
tions, has attracted considerable attention regarding quantum
spin liquid hosting fractionalized Majorana fermion excita-
tions [10,11]. If the coordination number of a honeycomb
lattice increases by one (i.e., 4) in a 2D system, it corresponds
to a square lattice. The discovery of high-temperature super-
conductors in layered cuprates has motivated studies of the AF
square lattice as the parent spin system. Although the ground
state is a bipartite structure similar to a honeycomb lattice,
the quantum fluctuations reduce the magnetic moment per site
and cause renormalization of the spin wave energy [12,13].
The mixed coordination lattice, characterized by coordination

numbers 2 and 4, is the focus of this study. Although this
lattice is composed of square and hexagonal plaquettes, the
coordination number of the hexagonal plaquettes is lower
than that of conventional lattices. Given the involvement of
two different topologies and the small coordination number,
unique quantum properties are expected to emerge due to the
effects of strong quantum fluctuations. However, there have
been no prior studies, either experimental or theoretical, on
the 2-4-coordinated lattice, making it a promising area for
discovering interesting phenomena.

Advanced spin-lattice designs can be generated from the
modulation of the molecular structures of organic radicals.
Utilizing the divers molecular structures of triphenyl verdazyl
radicals, we develop verdazyl-based quantum organic material
(V-QOM) and demonstrate the realization of unconventional
spin lattices yet to be realized in conventional inorganic mate-
rials [14–18]. Furthermore, we expand V-QOM by combining
it with 3d transition metals. This combination results in the
formation of spin lattices comprising intramolecular π -d cou-
pling and intermolecular π -π stacking [19–22]. Moreover, the
metal-radical coupling, magnetic anisotropy, and spin size in
these complexes are inherent to the metallic elements and
are involved in the formation of spin lattices. Because the
metal atoms in these complexes are coordinated to two rad-
ical ligands, each molecule contains three interacting spins,
providing effective coupling units for the formation of spin
lattices with a small coordination number of 2.

In a previous study, we demonstrated the realization
of mixed coordination lattices using V-QOM. For (p-Py-
V-p-F)2[Ni(hfac)2] [23], we observed the formation of a
spin-( 1

2 , 1) 2-4-coordinated lattice. The magnetization curve
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displayed a 1/2 plateau, representing the full polarization of
spin-1, forming an effective AF chain. An effective spin- 1

2
ladder can explain the magnetic behavior after the 1/2 plateau.
In (p-Py-V-p-F)2[Co(hfac)2] [24], the 2-4-coordinated lattice
is composed of spin- 1

2 on the radical and fictitious spin- 1
2 on

the Co2+ ion with Ising-like exchange interactions originating
from the spin-orbit coupling of the Co2+ ion. Paramagnetic
behavior associated with the Co spins, and a 3/5 plateau
was observed, demonstrating a rung-singlet-like ground state
in the effective ladder composed of radical spins with fully
polarized Co spins. The peculiar behavior of the linear mag-
netization curve after the magnetization plateau indicates a
quantum phase transition from the gapped quantum state to
the 2D magnetic state. These results demonstrate that V-QOM
is effective for forming 2-4-coordinated lattices with vari-
ous topologies. Furthermore, the magnetic properties of the
2-4-coordinated lattices reflect strong quantum fluctuations,
resulting in unconventional quantum behavior.

In this study, we synthesized (p-Py-V)2[Cu(hfac)2] (p-Py-
V = 3-(4-pyridinyl)-1,5-diphenylverdazyl, hfac = 1,1,1,5,5,5-
hexafluoro-2,4-pentanedione), which is a verdazyl-Cu com-
plex. Molecular orbital (MO) calculations indicated that the
three types of exchange interactions form a spin- 1

2 2-4-
coordinated lattice. At TN = 3.6 K, the magnetic susceptibility
and specific heat exhibit a phase transition to an AF ordered
state. For T > TN, the magnetization curve exhibits an al-
most linear increase in the low-field region. Furthermore, a
nonlinear increase is observed in the high-field region, which
demonstrates a reduction of the magnetic moment caused by
the strong quantum fluctuations. Numerical analysis revealed
the quantum behavior attributed to the topology of a 2-4-
coordinated lattice.

II. EXPERIMENT

We synthesized p-Py-V via the conventional procedure
for producing the verdazyl radical [25]. A solution of
Cu(hfac)2·2H2O (429.9 mg, 0.90 mmol) in 2 ml ethanol and
10 ml of heptane was refluxed at 60 ◦C. A solution of p-Py-V
(282.0 mg, 0.90 mmol) in 5 ml of CH2Cl2 was slowly added
and stirred for 1 h. After the mixed solution was cooled to
room temperature, a dark-green crystalline solid of (p-Py-
V)2[Cu(hfac)2] was separated by filtration and washed with
heptane. Single crystals were obtained via recrystallization
from a mixed solvent of CH2Cl2 and methanol at 10 ◦C.

The x-ray intensity data were collected using a Rigaku
XtaLAB Synergy-S instrument. The crystal structures was de-
termined using a direct method using SIR2004 [26] and refined
using the SHELXL97 crystal structure refinement program [27].
Anisotropic and isotropic thermal parameters were employed
for nonhydrogen and hydrogen atoms, respectively, during the
structure refinement. The hydrogen atoms were positioned at
their calculated ideal positions. Magnetization measurements
were conducted using a commercial superconducting quan-
tum interference device (SQUID) magnetometer (MPMS,
Quantum Design). High-field magnetization in pulsed mag-
netic fields was measured using a non-destructive pulse
magnet at AHMF, Osaka University. Specific heat mea-
surements were performed using a commercial calorimeter
(PPMS, Quantum Design) employing a thermal relaxation

method. All the experiments utilized small, randomly oriented
single crystals.

Molecular orbital (MO) calculations were performed
using the UB3LYP method as broken-symmetry hybrid den-
sity functional theory calculations with the basis sets of
6-31G(d, p). All calculations were performed using the
GAUSSIAN09 software package. The convergence criterion was
set at 10−8 hartree. We employed a conventional evaluation
scheme to estimate the intermolecular exchange interactions
in the molecular pairs [28].

The quantum Monte Carlo (QMC) code is based on the
directed loop algorithm in the stochastic series expansion
representation [29]. The calculations were performed for N =
1200 under the periodic boundary condition, where N denotes
the system size. It was confirmed that there is no significant
size-dependent effect. All calculations were carried out us-
ing the ALPS application [30,31]. To avoid the difficulty of
calculations with site-dependent g values, we used a uniform
normalized g value. The calculated results were calibrated
using the average g value.

III. RESULTS

A. Crystal structure and spin model

The crystallographic parameters of (p-Py-V)2[Cu(hfac)2]
are listed in Table I. Figure 1(a) shows the molecular structure
of (p-Py-V)2[Cu(hfac)2]. In the molecule, the verdazyl radi-
cal, p-Py-V, and the Cu2+ ion have a spin value of 1/2. The
Cu2+ ion is coordinated with two p-Py-V ligands, creating
an octahedral coordination environment. The two radicals in
the molecule are equivalent regarding crystallography owing
to the presence of an inversion center at the position of the
Cu atom. Table II lists the bond lengths and angles of the Cu
atom. Regarding the spin density distribution in the radical,
MO calculations revealed that approximately 63% of the total
spin density is localized on the central ring consisting of four

TABLE I. Crystallographic data for (p-Py-V)2[Cu(hfac)2].

Formula C48H34CuF12N10O4

Crystal system Triclinic
Space group P1̄
Temperature (K) 100
a (Å) 9.6047(5)
b (Å) 9.9262(5)
c (Å) 13.2820(5)
α (degrees) 100.008(4)
β (degrees) 105.183(4)
γ (degrees) 103.823(4)
V (Å3) 1148.32(9)
Z 1
Dcalc (g cm−3) 1.600
Total reflections 2849
Reflection used 2611
Parameters refined 340
R [I > 2σ (I )] 0.0496
Rw [I > 2σ (I )] 0.1360
Goodness of fit 1.076
CCDC 2 373 893
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FIG. 1. (a) Molecular structure of (p-Py-V)2[Cu(hfac)2], which causes intramolecular exchange interaction JCu between radical and Cu
spins. The hydrogen atoms have been omitted for clarity. Molecular pairs associated with the exchange interactions of (b) JV1 and (c) JV2. The
dashed lines indicate N-N and C-C short contacts. (d) Crystal structure forming a square plaquette; each Cu(hfac)2 in the molecule is omitted
for clarity. (e) Crystal structure forming a hexagonal plaquette. The blue and brown nodes represent the spin- 1

2 of the radicals and Cu atoms,
respectively. The thick lines represent the exchange interactions, JV1, JV2, and JCu. (f) Spin- 1

2 2-4-coordinated lattice in (101̄) plane.

N atoms. Each phenyl ring directly attached to the central N
atom contributes approximately 12–18% of the spin density.
The pyridine ring accounts for less than 7% of the spin density.
In addition, the MO calculations indicate two primary AF
exchange interactions between the radicals with N-N and C-C
short contacts, as shown in Figs. 1(b) and 1(c). Their values
were evaluated to be JV1/kB = 24.6 K and JV2/kB = 3.8 K,
defined within the Heisenberg spin Hamiltonian, given by
H = Jn

∑
〈i, j〉Si·S j , where

∑
〈i, j〉 denotes the sum over neigh-

boring spin pairs. The radical pairs associated with JV1 and JV2

are related by inversion symmetry and translational symmetry
along the b axis, respectively, forming a square plaquette,
as shown in Fig. 1(d). For the intramolecular case, the AF
exchange interaction between the spin on the radical and Cu
atom was evaluated to be JCu/kB = 41.1 K. Because MO cal-
culations tend to overestimate the intramolecular interactions
between verdazyl radicals and transition metals, we expected
the actual values of JCu to be approximately half of the MO
evaluation [20,32]. The spins coupled by JV2 and JCu yield
a hexagonal plaquette, as shown in Fig. 1(e). Therefore, the
overall connection through JV1, JV2, and JCu from a spin- 1

2

TABLE II. Bond distances (Å) and angles (◦) related to the Cu
atom for (p-Py-V)2[Cu(hfac)2].

Cu–N1 1.99 O1–Cu–O2 85.5
Cu–N2 1.99 O2–Cu–O3 94.5
Cu–O1 2.27 O3–Cu–O4 85.5
Cu–O2 2.05 O4–Cu–O1 94.5
Cu–O3 2.27 N1–Cu–O4 89.9
Cu–O4 2.05 O4–Cu–N2 90.2

N2–Cu–O2 89.9
O2–Cu–N1 90.2
N1–Cu–O3 88.7
O3–Cu–N2 91.3
N2–Cu–O1 88.7
O1–Cu–N1 91.3

2-4-coordinated lattice with two different spin sites, SV and
SCu, as depicted in Fig. 1(f). The molecular arrangement pat-
tern forming the spin lattice is equivalent to that in previous
work [23,24].

B. Magnetic and thermodynamic properties

Figure 2(a) shows the temperature dependence of the mag-
netic susceptibility χ at 0.1 T, indicating a broad peak at

FIG. 2. Temperature dependence of (a) magnetic susceptibility
(χ = M/H ) of (p-Py-V)2[Cu(hfac)2] at 0.1 T. The broken line rep-
resents the calculated results for the spin- 1

2 2-4-coordinated lattice
with α = JV1/JCu = 0.70 and β = JV2/JCu = 0.15. (b) Temperature
dependence of the specific heat Cp of (p-Py-V)2[Cu(hfac)2] at 0 T.
The arrows indicate the phase transition temperature TN. The broken
line shows the T 3 fit below TN. (c) Cp at various magnetic fields.
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FIG. 3. Magnetization curves of (p-Py-V)2[Cu(hfac)2] at
(a) 4.2 K and (b) 1.4 K in pulsed magnetic fields. The solid
lines with open circles represent the calculated results for the
spin- 1

2 2-4-coordinated lattice with α = JV1/JCu = 0.70 and
β = JV2/JCu = 0.15. The insets show the field derivative of the
magnetization curve. The arrow indicates a peak associated with the
spin-flop transition.

approximately 13 K. In addition, a discontinuous change
was observed at approximately TN = 3.6 K, which can be
attributed to a phase transition to a three-dimensional (3D)
ordered state owing to weak but finite interplane interactions.
The experimental result for the specific heat Cp at zero-
field exhibited a sharp peak at TN, demonstrating the phase
transition, as shown in Fig. 2(b). Below TN, Cp exhibits T 3

dependence, which indicates the contribution from the linear
magnon dispersions in the AF 3D ordered state [33,34]. The
lattice contribution of the specific heat given by Debye’s T 3

law for low-temperature regions has been confirmed to be
smaller, ∼0.01T 3, for verdazyl-based compounds [14–16],
and thus the observed temperature dependence is attributed
to the magnetic contributions in the low-temperature regions.
Applying magnetic fields induced a slight increase in TN, as
shown in Fig. 2(c). This field dependence of TN is predicted
for quasi-2D Heisenberg AF systems as a consequence of
field-enhanced effective easy-plane anisotropy [35,36]. In 2D
systems, quantum fluctuations are significant due to reduced
dimensionality, disrupting long-range magnetic order. An ex-
ternal magnetic field reduces these fluctuations by aligning
the spins, stabilizing the magnetic order and increasing TN.
This behavior has actually been observed in some model com-
pounds for the spin- 1

2 quasi-2D system [37,38]. Therefore,
the field dependence of the specific heat also evidences the
quasi-2D character of the present system.

Figures 3(a) and 3(b) show the magnetization curves un-
der a pulsed magnetic field at 4.2 and 1.4 K, respectively.
At both temperatures, the magnetization curve is observed
up to saturation. Since the increase of TN becomes almost
unchanged with ∼3.8 K above 5 T, as shown in Fig. 2(c), the
experimental result at 4.2 K corresponds to the paramagnetic
behavior above TN. Based on the isotropic g value (2.0) of
organic radicals, a saturation value of 3.05 μB/f.u. suggests
an average g value of approximately 2.1 for the Cu spin. In the
low-field region at 4.2 K, the magnetization curve exhibited an
almost linear increase, as shown in the inset of Fig. 3(a). For
T < TN, the field derivative of the magnetization exhibited a
distinct peak at approximately 0.73 T, as shown in the inset
of Fig. 3(b). This indicates a spin-flop transition caused by
a minor magnetic anisotropy, which can be described by a
classical spin model in the ordered phase [38]. Meanwhile,
we observed a nonlinear increase with a concave shape in the
high-field region at both temperatures. In typical quantum spin
systems, quantum fluctuations are suppressed by applying
magnetic fields, resulting in a concave shape of the magne-
tization curve. Accordingly, the observed behavior suggests
that the nonlinear behavior in the high-field region reflects
the reduction of the magnetic moment caused by the strong
quantum fluctuations.

IV. ANALYSES AND DISCUSSION

Considering the results of the MO calculations, we
investigated the magnetic properties based on a spin- 1

2 2-
4-coordinated lattice composed of the AF interactions JV1,
JV2, and JCu. The magnetic susceptibility and magnetization
curve were calculated using the QMC method by considering
the parameters α = JV1/JCu and β = JV2/JCu. We note the
magnetic susceptibility with the broad peak above TN and the
magnetization curve with the low-field linear and high-field
nonlinear increases at 4.2 K as the intrinsic behaviors that
originate from correlations in the present spin model. Con-
sidering the parameter dependence, good agreement was
obtained between the experimental and calculated results
using α = 0.70 and β = 0.15 (JCu/kB = 21 K), as shown
in Figs. 2(a) and 3(a). The calculated result successfully
reproduced the characteristics of the magnetization curve, in-
cluding the peak position of dM/dH , as shown in the inset
of Fig. 3(a). Meanwhile, the calculated magnetization curve
at 1.4 K exhibited a 1/3 magnetization plateau, which dif-
fers from the experimental behavior shown in Fig. 3(b). This
qualitative difference is because the experimental results for
T < TN reflect the magnetic order. In the ordered phase, the
spin dynamics are described by the classical spins with con-
tinuous spin wave excitations, leading to the disappearance
of the energy gap that causes the magnetization plateau. Simi-
larly, the calculated magnetic susceptibility below TN deviated
significantly from the experimental result.

We examined the ground state of the spin- 1
2 2-4-

coordinated lattice. Because JCu is stronger than the other
interactions, the effective state of SV-SCu-SV trimer coupled
by JCu is expected to become dominant and form a re-
sultant spin of S = 1/2 as the temperature decreases. By
further lowering the temperature, JV1 and JV2 contribute to
the AF interactions between trimers, decreasing magnetic
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FIG. 4. Calculated magnetic susceptibilities for the spin- 1
2 2-4-

coordinated lattice (a) with the representative values of α with fixed
β = 0.15 and (b) with the representative values of β with fixed
α = 0.70. Calculated magnetization curves at 1.4 K for the spin- 1

2
2-4-coordinated lattice (c) with the representative values of α with
fixed β = 0.15 and (d) with the representative values of β with fixed
α = 0.70.

susceptibility. If smaller values of α and β, i.e., weaker contri-
butions from JV1 and JV2, are assumed, the temperature where
the AF correlations between trimers work effectively becomes
lower. Therefore, the onset of significant decrease shifts to
the lower temperature region, leading to a hump structure of
magnetic susceptibility below the broad peak temperature, as
shown in Figs. 4(a) and 4(b). By applying a magnetic field,
the effective spin- 1

2 state of the trimer becomes polarized
along the field direction. Since a classical paramagnetic-like
behavior describes the field-polarization process of weakly
coupled spins, the linearity of the magnetization curve in
the low-field region is enhanced as α and/or β decrease, as
shown in Figs. 4(c) and 4(d). The subsequent 1/3 magne-
tization plateau corresponded to the full polarization of the
effective spin- 1

2 state of the trimer. The increase above the
plateau phase toward saturation was considered to be asso-
ciated with a change of the spin state of the trimer. This
quantum description is expected to become more appropriate
as the interactions between the trimers weaken. The calculated
results indeed demonstrated the expansion of the quantum
plateau region with decreasing α and β, as shown in Figs. 4(c)
and 4(d).

Finally, we discussed the differences regarding the mech-
anisms of magnetization plateau by comparison with the
spin-( 1

2 , 1) Heisenberg 2-4-coordinated lattice in (p-Py-
V-p-F)2[Ni(hfac)2] [23]. The AF interaction between 2-
and 4-coordinated sites corresponds to JNi for (p-Py-V-
p-F)2[Ni(hfac)2]. The 1/2 magnetization plateau in (p-Py-V-

p-F)2[Ni(hfac)2] is formed by the singlet dimer through JV1

and the full polarization of spin-1. Because JV1 is sufficiently
large compared to the other AF interactions (JNi/JV1 = 0.22
and JV2/JV1 = 0.17), the JV1 singlet dimer is stabilized with a
large excitation energy gap, leading to the pronounced plateau
width. For the present spin- 1

2 2-4-coordinated lattice, the 1/3
magnetization plateau corresponds to the full polarization of
the spin- 1

2 state of the trimer formed by JCu. The width of the
plateau is considered to correspond mainly to an excitation
energy gap between the effective spin- 1

2 and - 3
2 states of the

trimer, resulting in strong α and β dependences, as shown in
Figs. 4(c) and 4(d). The difference in magnitude between JCu

and JV1 (α = 0.70) is relatively small, leading to the relatively
narrow plateau width in the present spin- 1

2 2-4-coordinated
lattice.

V. SUMMARY

In this study, a verdazyl-based complex, (p-Py-
V)2[Cu(hfac)2], was synthesized. MO calculations revealed
that the three types of AF interactions formed a spin- 1

2
2-4-coordinated lattice. The experimental results for the
specific heat Cp exhibited a sharp peak at TN = 3.6 K, showing
a phase transition to an ordered state owing to weak but finite
interplane interactions. We observed an entire magnetization
curve up to saturation. For T > TN, the magnetization curve
exhibited an almost linear increase in the low-field region,
originating from the correlations in the 2-4-coordinated
lattice. Furthermore, we observed a nonlinear increase in
the high-field region, which demonstrated the reduction
of the magnetic moment caused by the strong quantum
fluctuations. We investigated the magnetic properties using
the QMC method, and the magnetic susceptibility and
magnetization curve for T > TN were explained well by the
2-4-coordinated lattice. We revealed that a hump structure
of magnetic susceptibility is significantly related to the
effective trimer state and the AF interactions between the
trimers. Furthermore, the calculated magnetization curve
exhibited a 1/3 magnetization plateau, which was not
observed experimentally. This behavior was attributed to
the full polarization of the effective spin- 1

2 state of trimer.
These results provide insight into unique quantum properties
attributed to strong quantum fluctuations in the spin- 1

2
2-4-coordinated lattice. This study proposed a spin model
with a mixed topology and will stimulate further research
to understand unique quantum phenomena reflecting lattice
topology.
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