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With the aid of Keldysh nonequilibrium Green’s functions, we investigate the quench dynamics in a
superconductor–quantum dot–superconductor (S-QD-S) Josephson junction during transient transport processes
going beyond the wide-band limit. We calculate the transient current when the bias is suddenly turned off/on.
We find that because of the distinct physical mechanisms that govern superconducting current in zero-bias and
nonzero-bias scenarios, the quench dynamics of the “turning-off” and “turning-on” transient processes exhibit
significant differences. When the bias is turned off, aided by quasiparticle bound states, electrons become trapped
in the energy gap and oscillate between the bound states ±εb. Consequently, the turning-off transient current
exhibits oscillations at a frequency of 2εb, which is dependent on φ. Because the bound states in a φ-driven
Josephson junction have an infinite lifetime, the turning-off transient current exhibits perpetual oscillations and
relaxes towards the steady state at an infinitely slow rate. In contrast, the turning-on transient current, which is
underpinned by multiple Andreev reflections, quickly settles into a steady alternating state at a frequency of 2V .
The infinite relaxation time of the turning-off transient current, in conjunction with the distinct quench dynamics
observed during both “turning-off” and “turning-on” operations, reveals the unique role of quasiparticle trapping
in superconducting transient transport processes.
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I. INTRODUCTION

The growing demand for smaller and faster quantum de-
vices has spurred extensive experimental [1] and theoretical
[2] research into quantum transport through mesoscopic junc-
tions over the past few decades. Taking the form of an
S-QD-S structure, where a normal quantum dot is sand-
wiched between two superconducting layers, the Josephson
junctions exemplifies an interacting open quantum system.
These junctions provide an ideal platform for a variety of
quantum devices, including superconducting quantum inter-
ference devices (SQUIDs) [3], Cooper pair splitters [4,5],
superconducting spin qubits [6–8], topological superconduct-
ing quantum bits [9,10], quasiparticle detectors [11], and
single-electron sources [12]. Within the superconducting gap,
single-electron excitations are prohibited. Instead, an electron
with energy above the Fermi level that enters the system can
only be reflected as a hole with energy below the Fermi level.
This phenomenon is known as Andreev reflection (AR) [13].
When a voltage bias is applied [14–16], multiple Andreev
reflections (MARs) enable a single electron to be scattered
out of the superconducting gap, as depicted in Fig. 1(a). This
results in an alternating current with a frequency of 2V , where
V is defined as the difference between the left VL and right VR

voltages. Conversely, in the absence of a voltage bias [17,18],
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AR remains confined within the superconducting gap. This
confinement results in single electrons becoming trapped in
the quantum dot, thereby facilitating the formation of Andreev
bound states (ABSs) [19,20], as shown in Fig. 1(b). These
ABSs support a direct supercurrent that is modulated by the
superconducting phase difference φ and exhibits a sin(φ)-like
behavior. In transient transport, a step-like bias connects two
distinct steady states: one driven by the superconducting phase
difference φ and the other by the voltage drop V . Given the
significant differences in the physical origins and mathemat-
ical representations of supercurrents between zero-bias and
nonzero-bias conditions, it is expected that the quench dynam-
ics of the transient processes will exhibit unique features that
distinguish them from those found in conventional systems.

Transient transport holds paramount importance, both in
fundamental research and practical applications [10,21–30].
Central to this field is the response speed, a critical pa-
rameter that quantifies the swiftness with which a device
achieves a steady state upon the sudden “turning-on/off” of a
bias. Transient transport has been extensively studied through
various theoretical approaches. These include nonequilib-
rium Green’s functions [21,22,24], iterative solutions to the
time-dependent Schrödinger equation [23,26], master equa-
tion [29], full counting statistics [27,28,31,32], and complex
absorbing potentials [33]. Additionally, researchers have em-
ployed the time-dependent numerical renormalization group
[34–36], continuous-time quantum Monte Carlo simulations
[37,38], time-dependent density-functional theory [39,40], the
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FIG. 1. (a) In the presence of voltage bias V = VL − VR, the
single electrons are scattered out of superconducting gap through
MARs. (b) When bias is closed, electrons are trapped in the quantum
dot, and oscillate between two bound states ±εb.

continuous unitary transformation technique [41,42], and self-
consistent perturbative theory [36,43]. These methods prove
to be highly effective for dealing with simple systems, such as
those suitable for the wide-band approximation and systems
capable of quantum tunneling. However, when it comes to
the S-QD-S Josephson junction, the wide-band limit becomes
inapplicable due to the influence of superconducting leads,
and in the zero-bias scenario, only bound states are present.
This poses a significant challenge to the existing methods.
Therefore, until now, no studies have been conducted on the
transient processes of S-QD-S Josephson junctions. Now, we
resort to a solution that can address bound states and extend
beyond the wide-band limit.

In this paper, by precisely solving the time-dependent
Dyson equation [21,24,25], we derive an accurate transient
current solution going beyond wide-band limit, which, in turn,
demands substantial computational resources. By analyzing
the mathematical properties of steady-state nonequilibrium
Green’s functions (NEGF), we significantly mitigate the sub-
stantial computational cost through analytical methods. To
solve the time-dependent Dyson equation, the Hamiltonian
of the nonequilibrium system can be decomposed into an un-
perturbed component and a time-dependent component. There
are two principal methods for this division. The first method
is known as the “partitioned approach” [44–47], where the
isolated quantum dot and leads constitute the unperturbed
part. The coupling between the central region and the leads
is adiabatically introduced at t = 0. While the “partitioned
approach” offers computational convenience, it is impractical
for transient transport due to the difficulty of instantaneously
controlling the coupling between the central region and
the leads. Therefore, we opt for an alternative scheme, the
“partition-free approach” [48]. In this approach, the central re-
gion is perpetually connected to the external leads, extending
back into the distant past. At t = 0, a time-dependent external
bias is introduced to the system. Subsequently, the unper-
turbed component is defined as the nonequilibrium steady
state in the remote future (t → ∞). The perturbation caused
by the time-dependent bias is then treated as an interaction,
which can be characterized by a time-dependent self-energy.

In this paper, transient transport is driven by a step-like bias
V (t ). We consider two distinct step-like biases: a downwards
and upwards step, with the bias being turned off/on at t = 0,
respectively, as depicted in Figs. 2(a) and 2(b). The “turn-
on/off” operation connects the transition between two steady
states: the remote past state and the final future state. After an
abrupt voltage change, the steady current, which originated in

(a)

(c) (d)

(b)

FIG. 2. (a), (b) Schematic diagram of downwards and upwards
step-like bias. (c), (d) ac and dc current in remote past (future) for
downwards (upwards) and upwards (downwards) case. Parameters:
dc bias V = 0.8, line width function � = 0.8.

the past state, evolves and gradually approaches the character-
istics of its final future state. Acknowledging the fundamental
irreversibility inherent in time, the “turn-on” process cannot
be considered a mere inversion of the “turn-off” process
[24,25]. In the case of the S-QD-S Josephson junction, the
transient process exhibits increased complexity and remark-
able characteristics. In the downwards case, when the voltage
bias is turned off, MARs from the remote steady state rapidly
diminish. Concurrently, ABSs with infinite lifetimes become
dominant. The step-like bias stimulates transitions between
two ABSs at ±εb. As a result, the “turning-off” transient cur-
rent oscillates at a frequency of 2|εb| and approaches its final
state asymptotically. In contrast, the “turning-on” transient
current, facilitated by MARs with their finite lifetimes, swiftly
achieves a steady alternating state with a characterized fre-
quency of 2V . The infinite relaxation time of the “turning-off”
transient current, in conjunction with the distinctly contrasting
quench dynamics observed during abrupt “turning-on” and
“turning-off” events, reveals the unique role of quasiparticle
trapping in superconducting transient transport processes. It
provides significant insights into the experimental identifi-
cation of intrinsic properties of quantum system, as well as
the observation of quasiparticle trapping phenomena within
junction materials.

The structure of the remainder of this paper is as follows:
Section II introduces the time-dependent Hamiltonian within
the mean-field BCS theory, represented in Nambu space,
and presents the general formulas and rigorous solutions for
the “turning-off” and “turning-on” transient currents JD(t )
and JU (t ). Section III contains the numerical results and in-
depth physical discussions. A concise summary is presented
in Sec. IV, complemented by additional technical details in
Appendices A and B.

II. HAMILTONIAN AND FORMULA

In this section, we introduce the microscopic model of the
S-QD-S Josephson junction and derive the analytical expres-
sions for the transient current that result from a sudden voltage
drop or lift.
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A. Time-dependent Hamiltonian

We examine a model Hamiltonian of an S-QD-S Josephson
junction, where a single-level quantum dot is connected to
distinct Fermi reservoirs through left and right superconduct-
ing leads. The Fermi levels of these electron reservoirs are
controlled by the respective voltages Vα , where α denotes
either the left (L) or right (R) lead. The voltages VL and VR

may be identical, resulting in a zero bias, or they may differ,
leading to a nonzero bias V . The Hamiltonian for the system
is generally expressed as

H (t ) =
∑

α

Hα (t ) + Hc(t ) + Ht .

This Hamiltonian is composed of the Hamiltonian for the
isolated central quantum dot Hc(t ), the Hamiltonians for the
two superconducting terminal leads Hα (t ) with α = L, R, and
the tunnel-coupled term Ht between central region and super-
conducting leads. In our analysis of transient transport, the
voltage Vα is considered time dependent, which consequently
renders the superconducting lead Hamiltonian Hα time depen-
dent as well. Owing to the long-range Coulomb interaction, it
is necessary to account for the internal potential U (t ) that is
influenced by Vα (t ) [49]. This consideration implies that the
central quantum dot Hamiltonian Hc also exhibits time depen-
dence. Furthermore, we adopt the “partition-free approach”,
under which the tunneling Hamiltonian Ht is treated as time
independent.

Then, the individual Hamiltonians are formally expressed
as follows:

Hα (t ) =
∑
kα,σ

εkα
(t )c†

kα,σ
ckα,σ

+
∑

k

�̃α (t )c†
−kα,↑c†

kα,↓ + �̃∗
α (t )ckα,↓c−kα,↑,

Hc(t ) =
∑

σ

εd (t )d†
σ dσ ,

Ht =
∑
kα,σ

tkα,σ c†
kα,σ

dσ + t∗
kα,σ d†

σ ckα,σ , (1)

where c†
kα,σ

and ckα,σ are the creation and annihilation
operators for electrons in the αth superconducting lead,
respectively, with σ denoting spin and k representing momen-
tum. The operators d†

σ and dσ are the creation and annihilation
operators for the quantum dot. The coefficient tkα,σ charac-
terizes the tunneling strength between the quantum dot and
the αth superconducting lead. Within the mean-field approx-
imation, the many-body interactions in the superconductor
are included within the pair potential. This approximation
results in a complex superconducting order parameter given
by �̃α = �αeiφα , where �α represents the modulus and φα

denotes the phase of the complex order parameter. Under
zero-voltage conditions, the single-electron energy ε0

kα,σ and
the superconducting order parameter �̃α are considered con-
stant. However, upon application of a time-dependent voltage
Vα (t ), the single-electron energy experiences a shift, described
by εkα,σ (t ) = ε0

kα,σ + eVα (t ) [50,51]. Concurrently, the super-
conducting order parameter evolves in response to the voltage
as �̃α (t ) = �̃αe− 2i

h̄

∫ t
0 eVα (τ )dτ [52]. The influence of Vα (t )

extends to the quantum dot, where the energy level ε0 is
altered according to εd (t ) = ε0 + U (t ). This shift is attributed
to the Coulomb interactions between the leads and the quan-
tum dot. The linear internal potential U (t ) is expressed as
U (t ) = −e

∑
α uαVα (t ), with uα being the characteristic po-

tentials that fulfill
∑

α uα = 1 to ensure gauge invariance of
the long-range Coulomb interaction [53]. The characteristic
potentials uα are defined as uα = �α/

∑
α �α , representing

the relative strength of the coupling between the quantum dot
and the superconducting leads, ensuring both simplicity and
physical plausibility.

To facilitate numerical calculations, we implement a uni-
tary transformation to the Hamiltonian (1),

P(t ) = exp

[ ∑
kα,σ

(
i
φα

2
+ i

e

h̄

∫ t

0
dτVα (τ )c†

kα,σ
ckα,σ

)]
,

where for notational simplicity, we henceforth set the elemen-
tary charge e and the reduced Planck constant h̄ to unity,
e = h̄ = 1. Under this transformation, the time dependence
of Hα (t ) and the superconducting phases φα are effectively
transferred to the coupling terms tkα,σ within the Hamiltonian
Ht . For convenience, and considering that the Fermi energy
of the lead is aligned with the superconductor condensate, we
set the Fermi energy to zero. Consequently, positive energy
states are associated with spin-up electrons, while negative
energy states correspond to spin-down holes. We introduce the
Nambu spinor field operators as follows [54]:

�kα
=

(
ckα,↑

c†
−kα,↓

)
, �d =

(
d↑
d†

↓

)
,

which allows us to express the transformed Hamiltonian H̃ (t )
in a compact 2 × 2 Nambu representation,

H̃α =
∑

k

�†
kα

(
ε0

kα
�α

�α −ε0
−kα

)
�kα

,

H̃c(t ) = �†
d

(
εd (t )

−εd (t )

)
�d ,

H̃t (t ) =
∑

kα

�†
kα

Tkα
(t )�d + H.c.,

where Tkα
(t ) = T0

kα
Wα (t ), and

T0
kα

=
(

tkα,↑eiφα/2 0

0 −t∗
kα,↓e−iφα/2

)
,

Wα (t ) =
(

ei
∫ t

0 dτVα (τ ) 0

0 e−i
∫ t

0 dτVα (τ )

)
.

The transient current in our system is driven by the
time-dependent voltage difference V (t ) = VL(t ) − VR(t ). For
simplicity, we set the right lead voltage VR(t ) to zero, which
implies WR(t ) = I, the identity matrix. Consequently, the
time-dependent bias reduces to V (t ) = VL(t ). In our calcula-
tions, we consider two types of voltage biases to simulate the
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voltage turning-off and turning-on processes,

V D
L (t ) =

{
V, t < 0,

0, t � 0,
and V U

L (t ) =
{

0, t < 0,

V, t � 0,

respectively. To ensures that the time-dependent history is
only included in the period before t = 0, we define a modified
time-dependent voltage ṼL(t ) that is zero for t > 0,

Ṽ (t ) = V θ (t ) =
{

V, t < 0,

0, t � 0,

and write V (t ) as V D
L (t ) = Ṽ (t ) and V U

L (t ) = V − Ṽ (t ). The
corresponding transformation matrices for the downwards and
upwards step-like biases are given by

WD
L (t ) = W̃(t ), WU

L (t ) = W̄(t )W̃†(t ),

where

W̄(t ) =
(

eiV t 0

0 e−iV t

)
, W̃(t ) =

(
ei

∫ t
0 dτṼ (τ ) 0

0 e−i
∫ t

0 dτṼ (τ )

)
.

B. Jin
α (t ) and Jout

α (t )

The current operator Ĵα is generally derived from the time
evolution of the particle number operator of the αth supercon-
ducting lead [50],

Ĵα = −dN̂α

dt
= i

[∑
k

�†
kα

σz�kα
, Ĥ

]
,

where the Pauli matrix σz is introduced to distinguish be-
tween electrons and holes within the framework of the Nambu
representation. Considering current conservation, the net con-
duction current is defined as J = 1

2 (JL − JR). We will now
proceed to derive Jα for α = L, R. Taking the expectation
value over the equilibrium quantum state, we obtain the su-
perconducting current

Jα (t ) = i
∑

k

〈
�†

kα
σzT

†
kα

�d
〉 − 〈

�†
dσzTkα

�kα

〉

=
∑

k

Tr
[
G<

d,kα
(t, t )σzTkα

(t )
] + H.c..

Here, the nonequilibrium integral G<
d,kα

(t, t ′) [17,52] is de-
fined in the 2 × 2 Nambu representation

G<
d,kα

(t, t ′) = i

(〈
c†

kα↑(t ′)d↑(t )
〉 〈

c−kα↓(t ′)d↑(t )
〉

〈
c†

kα↑(t ′)d†
↓(t )

〉 〈
c−kα↓(t ′)d†

↓(t )
〉
)

,

and defined on a two-branch contour that represents the sys-
tem’s evolution from t = −∞ to time t (the upper branch)
and then back from time t to −∞. It is necessary to express
G<

d,kα
(t, t ′), as defined on this contour, in terms of the Green’s

function of the scattering region G and the Green’s function
of the lead gkα

, both of which are defined on the real-time
axis. This is achieved by utilizing the Keldysh contour integral
technique and the Langreth theorem for analytic continuation.

With the aid of these nonequilibrium Keldysh Green’s
functions, the current Jα (t ) through the αth superconducting

lead to the quantum dot is given by [17,50–52,55,56]

Jα (t ) = 2 Re
∫ t

−∞
dt ′ Tr

{[
Gr (t, t ′)�<

α (t ′, t )

+ G<(t, t ′)�a
α (t ′, t )

]
σz

}
, (2)

where Gr,<(t, t ′) represent the retarded and lesser Green’s
functions of the scattering region, respectively, under the
influence of a time-dependent voltage. The self-energies
�<,a

α (t ′, t ) = ∑
kα

T†
kα

g<,a
kα

Tkα
are the lesser and advanced

self-energy contributed by the αth superconducting lead with
a time-dependent voltage Vα (t ). According to the definition of
Gr (t, t ′) and �a(t ′, t ), we have set the upper limit of the time
integration to t . From the tunneling Hamiltonian Tkα

(t ) =
T0

kα
Wα (t ), we deduce that

�γ
α (t ′, t ) = W†

α (t ′)�γ ,0
α (t ′ − t )Wα (t ), (3)

where �
γ ,0
α (t ′ − t ) is derived from the superconducting leads

with zero voltage. �
γ ,0
α is time-difference dependent and can

be expressed in the form of a Fourier integral

�γ ,0
α (t ′ − t ) =

∫
dε

2π
e−iε(t ′−t )�γ ,0

α (ε).

Equation (3) is then expressed as

�γ
α (t ′, t ) =

∫
dε

2π
e−iε(t ′−t )W†

α (t ′)�γ ,0
α (ε)Wα (t ),

where γ = a,<. For brevity, �
γ ,0
α (ε) is detailed in Ap-

pendix A. Introducing �̃
γ
α (t ′, t, ε) = W†

α (t ′)�γ ,0
α (ε)Wα (t ),

the current Jα (t ) in Eq. (2) is expressed as

Jα (t ) = 2 Re
∫

dε

2π

∫ t

−∞
dt ′ eiε(t−t ′ )Tr

[
Gr (t, t ′)�̃<

α (t ′, t, ε)σz

+ G<(t, t ′)�̃a
α (t ′, t, ε)σz

]
, (4)

where the first and second terms represent the current flowing
into the scattering region J in

α (t ) and the current flowing out
from the scattering region Jout

α (t ), respectively [51].
To present physics more effectively, we introduce time-

dependent spectral functions, that is defined as [21,22,24,51]

Aα (t, ε) =
∫ t

−∞
dt ′ eiε(t−t ′ )Gr (t, t ′)W†

α (t ′), (5)

and the incoming current becomes

J in
α (t ) = 2 Re

∫
dε

2π
Tr

[
Aα (t, ε)�<,0

α (ε)Wα (t )σz
]
. (6)

Beyond the wide-band limit, �r,0
α (ε) becomes energy de-

pendent, and Gr becomes a double-time Green’s function. To
calculate G< in Eq. (4), a time integral over a double-time
interval is required,

G<(t, t ′) =
∫

dt1dt2
∑

β

Gr (t, t1)�<
β (t1, t2)Ga(t2, t ′). (7)
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Then, the outgoing current is given by

Jout
α (t ) = 2 Re

∑
β

∫
dε

2π
Tr

[
Aβ (t, ε)�<,0

β (ε)

× Qβα (t, ε)Wα (t )σz
]
, (8)

where Qβα (t, ε) is defined as

Qβα (t, ε) =
∫

dE

2π
ei(E−ε)t

∫ t

−∞
dt ′ei(ε−E )t ′

A†
β (t ′, ε)W†

α (t ′)�a,0
α (E ). (9)

Equations (6) and (8) present our principal theoretical results.
Once the retarded Green’s function Gr (t, t ′) is determined,
the spectral function Aα (t, ε) and the correlation function
Qβα (t, ε) can be readily computed. Subsequently, the calcu-
lation of the incoming J in

α (t ) and outgoing Jout
α (t ) currents

is straightforward. For t < 0, the current is characterized
as a steady phase-biased direct current (dc) for the up-
wards step-like bias, or as a steady voltage-biased alternating
current (ac) for the downwards step-like bias, respectively.
These characteristics have been thoroughly researched, with
demonstrations provided exclusively in Appendices A and B.
Moving forward, our analysis focuses solely on the calcula-
tion of the current for t > 0, which accounts for the transient
response following the sudden change in bias.

C. Gr(t, t ′ ) and Aα(t, ε)

We proceed to solve the retarded Green’s function Gr (t, t ′)
using the Dyson equation, focusing on times t > 0. In our
approach, we utilize the “partition-free approach”, where the
isolated scattering region and superconducting leads are per-
petually connected, from t = −∞ to t = ∞. The variation
induced by the time-dependent bias Ṽ (t ) is treated as an in-
teraction that contributes to the Keldysh self-energy. To apply
the Dyson equation, we divide the Hamiltonian into two parts:
the unperturbed Hamiltonian, which can be exactly solved,
and the interaction term due to Ṽ (t ). The Green’s function of
the unperturbed system, symbolically represented as Ḡr (t, t ′),
represents the system’s behavior in its remote future, as t →
∞. It is presumed to be known, with comprehensive details
provided in Appendices A and B. The self-energy within the
Dyson equations, which we refer to as the time-dependent
self-energy, arises from the difference when the interaction
term Ṽ (t ) is included. This time-dependent self-energy in-
cludes two main components. One is derived from the induced
internal potential U(t ) = uLṼL(t )σz, and the other is due to
the change in the left superconducting self-energy when Ṽ (t )
is applied, expressed as ��r

L(t1, t2) = �r
L(t1, t2) − �̄r

L(t1, t2).
Here, �̄r

L(t1, t2) represents the superconducting self-energy of
the unperturbed system, i.e., Ṽ (t ) = 0.

Using these time-dependent self-energies, we formulate
the Dyson equation in the time domain,

Gr (t, t ′) = {
Ḡr + [ḠrUGr] + [[

Ḡr��r
LGr

]]}
(t, t ′). (10)

To avoid overly lengthy formulas, we have introduced sym-
bols, which are defined as follows:

[ḠUG](t, t ′) =
∫

dt1 Ḡ(t, t1)U(t1)G(t1, t ′),

[[Ḡ��G]](t, t ′) =
∫

dt1

∫
dt2 Ḡ(t, t1)��(t1, t2)G(t2, t ′).

Given that Ṽ (t > 0) = 0, it follows that U(t ) is zero for t > 0,
and �r

L(t1, t2) = �̄r
L(t1, t2) when t1, t2 ∈ [0, t]. Consequently,

in the Eq. (10), the time integrations are limited to the in-
tervals

∫
dt1 = ∫ 0

−∞ dt1 and
∫

dt1
∫

dt2 = ∫ 0
−∞ dt1

∫ t1
−∞ dt2 +∫ t

0 dt1
∫ 0
−∞ dt2, respectively. Substituting the Eq. (10) into

the expression for the spectral function (5), and correspond-
ing to the three terms of Gr (t, t ′), we express the spectral
function as

Aα (t > 0, ε) = A1,α + A2,α + A3,α, (11)

where

A1,α =
∫ t

−∞
dt ′ eiε(t−t ′ )Ḡr (t, t ′)Wα (t ′),

A2,α =
∫ 0

−∞
dt1 eiε(t−t1 )Ḡr (t, t1)U(t1)Aα (t1 < 0, ε),

A3,α =
(∫ 0

−∞
dt1

∫ t1

−∞
dt2 +

∫ t

0
dt1

∫ 0

−∞
dt2

)

× eiε(t−t2 )Ḡr (t, t1)��r
L(t1, t2)Aα (t2 < 0, ε).

On the right-hand side of the Eq. (11), Aα (ε, t < 0) is de-
terminable, as it is solely contingent upon Gr (t < 0, t ′ < 0),
which corresponds to the system’s Green’s function in its
distant past steady states as t → −∞. It should be noted
Gr (t < 0, t ′ < 0) is distinct from unperturbed Green’s func-
tion Ḡr (t, t ′), which describes the system’s behavior in its
distant future, as t → ∞.

For the downwards case, where VL(t ) = Ṽ (t ), we con-
sider the zero-biased nonequilibrium system as the unper-
turbed system. Accordingly, the internal potential matrix is
U(t < 0) = U = uLV σz, the unperturbed Green’s function is
Ḡr (t, t1) = Gr,0(t − t1), and the unperturbed superconducting
self-energy is �̄r

L(t1, t2) = �r,0
L (t1 − t2). Here, Gr,0(t − t1) and

�r,0
L (t1 − t2) represent the total Green’s function and self-

energy of the nonequilibrium system under zero bias (see
in Appendix A). For the upwards case, VL(t ) = V − Ṽ (t )
includes both a steady bias V and a time-dependent bias
Ṽ (t ). To eliminate future uncertainties, the time-dependent
perturbing term should be zero for t > 0, thus we categorize
V into the unperturbed part. This implies that the unper-
turbed system is the nonequilibrium system with a steady bias
V . Consequently, we can express the internal potential ma-
trix as U(t < 0) = −U = −uLV σz, the unperturbed Green’s
function as Ḡr (t, t ′) = Gr,V (t, t ′), and the unperturbed su-
perconducting self-energy as �̄r

L(t1, t2) = �r,V
L (t1, t2) for the

upwards case (see in Appendix B). Taking the Fourier
transform, the Green’s function and self-energy of the unper-
turbed system with zero bias in the downwards case can be
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formulated as

Gr,0(t1 − t2) =
∫

dε

2π
e−iε(t1−t2 )Gr,0(ε),

�r,0
β (t1 − t2) =

∫
dε

2π
e−iε(t1−t2 )�r,0

β (ε).

Similarly, for the upwards case with a steady bias V , the
Green’s function and self-energy of the unperturbed system
can be expressed as

Gr,V (t1, t2) =
∫

dε

2π

∑
l

e−ilωt1 e−iε(t1−t2 )Gr,V
l0 (ε),

�r,V
L (t1, t2) =

∫
dε

2π

∑
l

e−ilωt1 e−iε(t1−t2 )�r,V
L,l0(ε),

with ω = 2V . Here, Fl0(ε) = F(ε + lω, ε) represents the
Fourier coefficient of the double-time Green’s function and
double-time self-energy for a system with a periodic poten-
tial. Additionally, given that VR(t ) = 0, the self-energy for
the right lead is �r,0

R (t1 − t2) = ∫
dε
2π

e−iε(t1−t2 )�r,0
R (ε). For the

sake of brevity, all unperturbed Green’s functions Gr,0/V (ε)
and self-energies �

r,0/V
β (ε) are detailed in the Appendices A

and B. Utilizing these unperturbed functions, we can derive
Aα (t, ε) and subsequently Qβα (t, ε). In the subsequent sec-
tions, we will derive AD/U

α,σσ ′ (t, ε) and QD/U
βα,σσ ′ (t, ε) for the

downwards and upwards cases, respectively.

D. AD/U
β (t, ε) and QD/U

βα (t, ε)

For the sake of conciseness, we introduce the following
temporary variables:

	AD
β,σσ ′ (t, ε) = AD

β,σσ ′ (t, ε − σ ′Vβ ),

	QD
βα,σσ ′ (t, ε) = QD

βα,σσ ′ (t, ε − σVβ ),

	�a,0
α,l,σσ ′ (ε) = �a,0

α,l,σσ ′ (ε − σVα ),

where �a,0
l (ε) = �a,0(ε + lω) and σ, σ ′ = ±1 represent the

electron and hole matrix elements in Nambu space. As previ-
ously analyzed in Sec. II C, when t < 0, we have Gr (t, t ′) =
Gr,V (t, t ′) for the downwards case and Gr (t, t ′) = Gr,0(t − t ′)
for the upwards case. Employing the Fourier transform and
the residue theorem, we derive the following expressions from
Eqs. (5) and (9):

	AD
β (t < 0) =

∑
l

e−ilωt Gr,V
l0 (ε)W̄†

β (t ),

	QD
βα (t < 0) =

∑
l

eilωt W̄β (t )Ga,V
0l (ε)W̄†

α (t ) 	�a,0
α,l (ε),

AU
β (t < 0) = Gr,0(ε),

QU
βα (t < 0) = Ga,0(ε)�a,0

α (ε). (12)

It should be noted that the current is the result of an infinite
integral over ε of Aβ (ε) and Qβα (ε), thus permitting the
energy shift ε + σVβ .

Moving forward, we focus on Aβ (t > 0, ε) and Qβα (t >

0, ε). Substituting Eq. (10) into Eq. (11) and applying the
residue theorem, we obtain the spectral function for the

downwards case as follows:

	AD
β (t > 0) =

[
	AD

1 +
∑

l

( 	AD
2 + 	AD

3

)]
W̄†

β (t ), (13)

with

	AD
1 = 	Gr,0

β (ε)W̄β (t ) + ‖Gr,0(Z0 − Z1β
)‖,

	AD
2 = ‖Gr,0UZ0,l‖Gr,V

l0 (ε),

	AD
3 = ∥∥Gr,0

{[
�r,0

L (E ) − 	�r,0
L,l (ε)

]
Z1V ,l

+ [ 	�r,0
L,l (ε) · Z2V ,l − �r,0

L (E )Z0,l
]}∥∥Gr,V

l0 (ε).

Here, ‘·’ denotes the matrix element multiplication. For
brevity, we introduce additional temporary variables,

	Gr,0
β,σσ ′ (ε) = Gr,0

σσ ′ (ε − σ ′Vβ ),

	Ga,0
β,σσ ′ (ε) = Ga,0

σσ ′ (ε − σVβ, )

	�r,0
L,σσ ′ (ε) = �r,0

L,σσ ′ (ε − σ ′V ),

	�a,0
L,σσ ′ (ε) = �a,0

L,σσ ′ (ε − σV ),

notations for the integral,

‖GF‖(t, ε) =
∫

dE

2π
ei(ε−E )t G(E )F(E , ε),

and the abbreviation of N-dimensional array in Nambu space
ZN , which is defined as follows:

ZN,l = ZN (E , ε + lω),

Z0(E , ε) = −i(E − ε − i0+)−1,

Z1β
(E , ε) = −i(E − ε + σzVβ − i0+)−1,

Z1V (E , ε) = −i(E − ε + σzV − i0+)−1,

Z2V ,σσ ′ (E , ε) = −i(E − ε − (σ − σ ′)V − i0+)−1,

where σz is Pauli matrix. In Eq. (13), we have left out the
dummy index σi that just indicates summation in the matrix
multiplication. Finally, from Eqs. (13) and (9), we can express
	QD

βα (t > 0, ε) as

	QD
βα (t > 0, ε) = W̄β (t )

[
	QD

0 + 	QD
1 +

∑
l

( 	QD
2 + 	QD

3

)]
,

(14)

with

	QD
0 =

∑
l

∥∥Ga,V
0l (ε)Z†

1α,l�
a,0

∥∥ − ∥∥Z†
1β

	Ga,0
β (ε)�a,0

∥∥,

	QD
1 = W̄†

β (t )
⌈ 	Ga,0�a,0

α

⌉
β

+ ∥∥(
Z†

0 − Z†
1β

)
Ga,0

⌊
�a,0

α

⌋∥∥,

	QD
2 = Ga,V

0l (ε)
∥∥Z†

0,l UGa,0
⌊
�a,0

α

⌋∥∥,

	QD
3 = Ga,V

0l (ε)
∥∥{

Z†
1V ,l

[
�a,0

L (E ) − 	�a,0
L,l (ε)

]
+ [ 	�a,0

L,l (ε) · Z†
2V ,l − �a,0

L (E )Z†
0,l

]}
Ga,0

⌊
�a,0

α

⌋∥∥,

where⌈ 	Ga,0�a,0
α

⌉
β,σσ ′ =

∑
σ1

Ga,0
σσ1

(ε − σVβ )�a,0
α,σ1σ ′ (ε − σVβ ),
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and integral abbreviation,

‖F�‖(t, ε) =
∫

dE

2π
e−i(ε−E )t F(E , ε)�(E ),

‖FG���‖(t, ε) =
∫

dE

2π
e−i(ε−E )t F(E , ε)G(E )���(t, E ),

⌊
�a,0

α

⌋
(t, E ) =

∫
dε′

2π
(1 − ei(ε′−E )t )Z†

0(ε′, E )�a,0
α (ε′).

For the upwards case, we introduce new temporary
variables,

	Gr,V
β,l0,σσ ′ (ε) = Gr,V

l0,σσ ′ (ε + σ ′Vβ ),

	Ga,V
β,0l,σσ ′ (ε) = Ga,V

0l,σσ ′ (ε + σVβ ),

	�r,0
L,σσ ′ (E ) = �r,0

L,σσ ′ (E − σV ),

	�a,0
L,σσ ′ (E ) = �a,0

L,σσ ′ (E − σ ′V ),

and

Z1α
(ε′, E ) = −i(ε′ − E + σzVα − i0+)−1,

Z1β
(E , ε) = −i(E − ε − σzVβ − i0+)−1,

Z1V (E , ε) = −i(E − ε − σzV − i0+)−1,

Z2βα,σσ ′ (E , ε) = −i(E − ε − σVβ + σ ′Vα − i0+)−1.

Then the spectral function for upwards case is written as

AU
β (t > 0, ε) =

∑
l

e−ilωt
(
AU

1 + AU
2 + AU

3

)
, (15)

with

AU
1 = 	Gr,V

β,l0(ε)W̄†
β (t ) + ∥∥Gr,V

l0

(
Z0 − Z1β

)∥∥,

AU
2 = −∥∥Gr,V

l0 UZ0

∥∥Gr,0(ε),

AU
3 = ∥∥Gr,V

l0

{
Z1V

[ 	�r,0
L (E ) − �r,0

L (ε)
]

+ [
Z0�

r,0
L (ε) − Z2V · 	�r,0

L (E )
]}∥∥Gr,0(ε).

From Eq. (15) and (9), we can write

QU
βα (t > 0, ε) = QU

0 +
∑

l

eilωt
(
QU

1 + QU
2 + QU

3

)
, (16)

with

QU
0 = ‖Ga,0(ε)Z†

0�
a,0‖ −

∑
l

∥∥Z†
2βα

· 	Ga,V
β,0l (ε)�a,0

∥∥,

QU
1 = W̄β

⌈ 	Ga,V
0l W̄†

α
	�a,0

α,l

⌉
β,σσ ′ +

∥∥(Z†
0 − Z†

1β
)Ga,V

0l

⌊
�a,0

α

⌋∥∥,

QU
2 = −Ga,0(ε)

∥∥Z†
0UGa,V

0l

⌊
�a,0

α

⌋∥∥,

QU
3 = Ga,0(ε)

∥∥{[ 	�a,0
L (E ) − �a,0

L (ε)
]
Z†

1V

+ [
Z†

0�
a,0
L (ε) − Z†

2V
· 	�a,0

L (E )
]}

Ga,V
0l

⌊
�a,0

α

⌋∥∥,

where⌈ 	Ga,V
0l W̄†

α (t ) 	�a,0
α,l

⌉
β,σσ ′ =

∑
σ1

Ga,V
β,0l,σσ1

(ε + σVβ )W̄†
α,σ1

(t )

× �a,0
α,l,σ1σ ′ (ε + σVβ − σ1Vα ),

and the integral abbreviation,

‖F�‖(t, ε) =
∫

dE

2π
e−i(ε−E )t F(E , ε)�(E ),

‖FG���‖(t, ε) =
∫

dE

2π
e−i(ε−E )t F(E , ε)G(E )���(t, E ),

��a,0
α � =

∫
dε′

2π
[W̄†

α (t ) − ei(ε′−E−lω)t ]Z†
1α,l (ε

′, E )

× �a,0
α (ε′).

E. The limits of t = 0 and t → ∞
We examine two limits: the initial current at t = 0 and

the asymptotic current as t → ∞. Physically, the asymp-
totic current JD/U (t → ∞) for the downwards (upwards) case
is equivalent to the initial current JU/D(t < 0) for the up-
wards (downwards) case. Mathematically, these initial and
asymptotic currents can be directly computed from the stan-
dard phase/voltage-biased nonequilibrium Green’s function,
namely the unperturbed Green’s function Gr,0/V , as depicted
in Eq. (12). We will now demonstrate that the limits of the
general expression, Eqs. (13)–(16), are consistent with unper-
turbed results. At the moment of t = 0, the term ei(ε−E )t does
not diverge in the upper half-plane of E . This allows us to
execute the integration over energy E in Eqs. (13) and (15)
by enclosing a contour in the upper half-plane, where a single
residue is present at the energy pole of ZN . Consequently, we
obtain the following results:

	AD
β (t = 0) = Gr,0 +

∑
l

[
Gr,0UGr,V

+ Gr,0
(
�r,V

L − �r,0
L

)
Gr,V

]
l0

=
∑

l

Gr,V
l0 (ε),

AU
β (t = 0) =

∑
l

[
Gr,V − Gr,V UGr,0

− Gr,V
(
�r,V

L − �r,0
L

)
Gr,0

]
l0

= Gr,0(ε). (17)

For the expression of Qβα , ��a,0
α � = 0, the second term of Q0

and the first term of Q1 cancel out with each other. Similar to
	AD

β (t = 0) and AU
β (t = 0), Qβα simplifies to

	QD
βα (t = 0) =

∑
l

Ga,V
0l (ε) 	�a,0

α,l (ε),

QU
βα (t = 0) = Ga,0(ε)�a,0

α (ε). (18)

It is found that Eqs. (17) and (18) are identical to the ex-
pressions (12) with t fixed at zero, that is derived from the
unperturbed Green’s function.

As t → ∞, invoking the Riemann-Lebesgue lemma [57],
the Fourier integral over E tends to zero. This is because there
are always poles located in the lower half of the complex
plane, which leads to the integral

∫
dE
2π

e−iEt Gr (E ) . . . van-
ishing as t approaches infinity. With this consideration, the
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asymptotic expressions for the spectral functions become

AD
β (t → ∞) = Gr,0(ε),

	AU
β (t → ∞) =

∑
l

e−ilωt Gr,V
l0 (ε)W̄†

β (t ). (19)

According to the Riemann-Lebesgue lemma, the Fourier in-
tegrals

∫
dE
2π

eiEt�a(E ) . . . or
∫

dE
2π

eiEt Ga(E ) . . . also vanish.
Consequently, Q0, the second term of Q1, Q2, and Q3 are all
equal to zero. Thus, the Qβα terms simplify to

QD
βα (t → ∞) = Ga,0(ε)�a,0

α (ε),

	QU
βα (t → ∞) =

∑
l

eilωt W̄β (t )Ga,V
0l (ε)W̄†

α (t ) 	�a,0
α,l (ε). (20)

Comparing these results with Eq. (12), it is evident
that AD/U (t → ∞) = AU/D(t < 0) and QD/U (t → ∞) =
QU/D(t < 0). This implies that the asymptotic current
JD/U (t → ∞) for the downwards (upwards) case is equivalent
to the initial current JU/D(t < 0) for the upwards (downwards)
case.

From the current Eqs. (6) and (8), and the lesser Green’s
function (7), we deduce the asymptotic current driven by a
downwards step-like bias, expressed as

JD
α,in(t → ∞) =

∫
dε

2π
Gr,0(ε)�<,0

α (ε),

JD
α,out (t → ∞) =

∫
dε

2π
G<,0(ε)�a,0

α (ε), (21)

where

G<,0(ε) =
∑

β

Gr,0(ε)�<,0
β (ε)Ga,0(ε).

Utilizing the expressions of the biased unperturbed Green’s
function (B1) and self-energy (B2) and (B3), we obtain the
asymptotic current for the upwards case

JU
α,in(t → ∞) =

∑
lδ

e−i(l−δ)ωt
∫

dε

2π
Gr,V

l0 (ε)�<,V
α,0δ (ε),

JU
α,out (t → ∞) =

∑
ll ′δδ′,β

e−i(l−l ′−δ−δ′ )ωt
∫

dε

2π

× Gr,V
l0 �<,V

β,0δGa,V
δ,l ′+δ

�a,V
α,l ′+δ,l ′+δ+δ′ . (22)

Here, the integration variable ε and the summation targets l, l ′
can be optionally shifted, allowing Eq. (22) to be rewritten as

JU
α,in(t → ∞) =

∑
lδ

ei(l+δ)ωt
∫

dε

2π
Gr,V

0l (ε)�<,V
α,l,l+δ

(ε),

JU
α,out (t → ∞) =

∑
lδ

ei(l+δ)ωt
∫

dε

2π
G<,V

0l (ε)�a,V
α,l,l+δ

(ε),

(23)

with

G<,V
0l (ε) =

∑
l ′,δ′,β

Gr,V
0l ′ (ε)�<,V

β,l ′,l ′+δ′ (ε)Ga,V
l ′+δ′,l (ε).

(a)

(b)

FIG. 3. Time dependence of transient current JD(t ) driven by
different downwards step-like biases V = 0.4 (a) and V = 0.8 (b).
Different lines correspond to different superconducting phase dif-
ferences φ. The other parameter: � = 0.8. The initial time t = 0
is shifted by δt = φ/ω to show the current oscillation. The initial
current with different φ forms the ac current before bias is closed, as
shown by red lines.

Here, �
γ ,V
β,l,l+δ

(ε) = �
γ ,V
β,0δ (ε + lω) with γ = a,< and ω =

2V . δ = 0 for the diagonal elements �
γ ,V
β,↑↑ and �

γ ,V
β,↓↓ of

the Nambu matrix, and δ = ±1 for the nondiagonal el-
ements �

γ ,V
β,↓↑ and �

γ ,V
β,↑↓. The double energy self-energy

�
γ ,V
β,σσ ′,0δ (ε) = �

γ ,0
β,σσ ′[ε + δωβ − σ ′Vβ] with ωβ = 2Vβ is an-

other expression of Eq. (B2), where σ, σ ′ = ±1 denotes the
electron spin in the Nambu representation.

Now, it is evident that Eqs. (21) and (23) are precisely
the dc current expressions in the case of zero bias and
the ac current expressions in the case of nonzero bias,
respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

In our numerical calculations, we set the quantum dot en-
ergy level εd = 0, �L = �R = �, ensuring both simplicity and
physical plausibility. The superconducting gap �̃L = �̃Reiφ

Here, φ = φL − φR signifies the phase difference between the
two leads. �L = �R = � = 1 is set as the energy unit.

A. Turning-off transient current

We begin our analysis with the quench dynamics associ-
ated with the turning-off process. In Figs. 3(a) and 3(b), we
illustrate the transient current JD induced by a downwards
step-like bias with strengths V = 0.4 and 0.8, respectively.
This transient process serves as a transition between the initial
ac current, which is present with a finite bias V , and the
final dc current when the bias is zero. When the electrons
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are injected within the superconducting gap, the supercurrent
is determined by the superconducting phase difference φ.
For the initial ac current, the bias V not only modifies the
energy of the Cooper pairs but also impacts the phase of
the complex superconducting order parameter �̃α . Under the
influence of V , the phase difference φ becomes periodically
time dependent, expressed as φ̃ = φ + 2V t , wherein φ can
be considered the initial phase of the alternating current. To
clearly demonstrate the alternating current, the beginning time
is adjusted by δt = φ/ω. Consequently, the current at the
adjusted beginning time for various φ values establishes the
initial ac current driven by the dc bias V , as depicted by the
red lines in Fig. 3. Over the range from φ = 0 to 1.5π , we
display three-quarters of a cycle.

Upon examination, the initial current, indicated by the red
line in Fig. 3(b), is found to be identical to the steady ac
current shown in Fig. 2(c). After a long relaxation period, the
transient current ultimately reaches its final dc state. For ease
of comparison, we have marked the red stars in Fig. 2(d). A
comparison between Fig. 3(b) and Fig. 2(d) reveals that the
asymptotic current, derived from the general expression of the
transient current, matches the steady theoretical dc current.
After the bias is turned off, electrons are unable to tunnel out
of the Josephson junction through MARs. Instead, they are
trapped within the quantum dot and oscillate between ABSs.
This behavior results in the transient current oscillating nearly
indefinitely. Due to the presence of these bound states, the
relaxation time of the turning-off transient process is con-
siderably lengthy. In addition to the initial and asymptotic
currents, the transient current in Fig. 3 exhibits the following
characteristics: (1) The transient current oscillates with time,
with the oscillation frequency ν varying for different super-
conducting phases φ. From φ = 0 to φ = π , ν decreases
monotonically. (2) The oscillation frequency ν is nearly
identical for φ = 0.5π and φ = 1.5π . (3) Upon comparing
Figs. 3(a) and 3(b), it is evident that the oscillation frequency
ν is independent of the bias V , yet the amplitude of the oscil-
lation is influenced by the bias V . (4) The transient current
oscillates nearly indefinitely, with a relaxation time τ that
far exceeds 200 × 2π/�, which is significantly longer than
that observed in conventional quantum transport. It should
be noted that to illustrate the extended relaxation time, an
exponential time scale is employed for t > 8 × 2π/�.

To understand how the oscillation frequency is affected
by the superconducting phase φ, we present a plot of ABSs
versus φ for various coupling strengths � in Fig. 4. The energy
levels of the ABSs are obtained analytically from the singu-
lar points of the Green’s function Gr/a,0 (see Appendix A).
Within the gap region, there exist a pair of bound states with
energies ±εb. Electrons within the quantum dot oscillate be-
tween these two bound states, and the oscillation frequency
of the current in Fig. 3 is solely determined by the energy
level difference �εb, irrespective of the external bias V . From
Fig. 4, it can be observed that as the coupling strength �

increases, the energy level εb gradually approaches the edge
of the superconducting gap, i.e., εb → ±�. In the calculations
for Fig. 3, � = 0.8 is selected (represented by the dash-dotted
lines in Fig. 4). Over the range from φ = 0 to φ = 2π , ±εb

monotonically decreases (increases) through zero. At φ = π ,
±εb = 0, and there is minimal oscillation when φ = π . The

FIG. 4. Andreev bound states energies εb vs superconducting
phase difference φ for different �.

level spacing between the bound states �εb decreases as φ

changes from 0 to π , exhibiting symmetry with respect to φ =
π . Consequently, the oscillation frequency decreases from
φ = 0 to φ = π and is nearly equivalent for φ and 2π − φ,
as depicted in Fig. 3. From the Fig. 3, we can speculate once
the bias is turned off, electrons cannot be scattered out of the
quantum dot through conventional quantum tunneling; they
can only remain within the quantum dot and oscillate be-
tween the two bound states within the superconducting gap, as
shown in Fig. 1(b). Theoretically, the transient current would
continue to oscillate indefinitely and never reach a final state,
given the infinite lifetime of the bound states. However, in
our calculations, we have introduced an infinitesimally small
imaginary part into the incoming energy to prevent calculation
divergence. This results in an extremely long, rather than
infinite relaxation time.

B. Quasiparticle trapping in turning-off quench dynamics

As discussed in the preceding section, the infinite relax-
ation time is attributed to the ABSs. During these prolonged
relaxation processes, the “turning-off” operation introduces a
new periodic oscillation, as depicted in Fig. 3. The oscilla-
tion period is determined by the bound states εb, which is
distinct from the ac current oscillation driven by a dc bias.
This implies that the bound states εb influence the exponential
oscillation components. In the absence of Gr/a,V with a finite
bias, electrons cannot be scattered out of the Josephson junc-
tion through multiple Andreev reflections (MARs). Instead,
they are trapped. We can identify characteristic terms ÃD

β and
Q̃D

βα that include only Gr/a,0 and lack Gr/a,V . From Eqs. (13)
and (14), we derive

ÃD
β,σσ ′ (t, ε) = Gr,0

σσ ′ (ε) +
∫

dE

2π

ei(ε−E )t Gr,0
σσ ′ (E )

i(E − ε − σ ′Vβ − i0+)
,

Q̃D
βα,σ ′σ (t, ε) = [

Ga,0(ε)�a,0
α (ε)

]
σ ′σ

+
∫

dE

2π

e−i(ε−E )t
[
Ga,0(E )�a,0

α (E )
]
σ ′σ

−i(E − ε − σ ′Vβ + i0+)
.
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By combining the expression for Gr/a,0 Eq. (A1) and ap-
plying the residue theorem, we can solve the integral in the
aforementioned equation. Subsequently, we obtain

ÃD
β,σσ ′ = Gr,0

σσ ′ (ε) +
∑
±

ei(ε∓εb)t P∗,r
σσ ′ (±εb)

∓2εb(±εb − ε − σ ′Vβ − i0+)
,

Q̃D
βα,σ ′σ = [

Ga,0(ε)�a,0
α (ε)

]
σ ′σ

−
∑
±

e−i(ε∓εb)t
[
P∗,a(±εb)�a,0

α (±εb)
]
σ ′σ

±2εb(±εb − ε − σ ′Vβ + i0+)
.

Based on ÃD
β and Q̃D

βα , we can extract the oscillating part of
the current from J̃α (t ) = J̃ in

α (t ) + J̃out
α (t ), where

J̃ in
α (t ) = 2 Re

∫
dε

2π
Tr

[
ÃD

α (ε, t )�<,0
α (ε)σz

]
,

J̃out
α (t ) = 2 Re

∑
β

∫
dε

2π
Tr

[
ÃD

β (t, ε)�<,0
β (ε)Q̃D

βα (t, ε)σz
]
.

Substituting Ãβ and Q̃βα and applying the residue theorem,
we derive the oscillating part of the current,

J̃D
α,σ (t ) = 2 Re

∑
β,σ ′σ ′′,±

ei(∓2εb)t

4ε2
b

P∗,r
σσ ′ (±εb)

[
�<,0

β,σ ′σ ′′ (±εb)

i(±2εb + σ ′′Vβ − i0+)
− �<,0

β,σ ′σ ′′ (∓εb)

i(±2εb − σ ′Vβ − i0+)

][
P∗,a(∓ε0)�a,0

α (∓ε0)σz
]
σ ′′σ . (24)

In the derivation of the primary oscillating term from the
equation above, we have omitted the time-dependent integral∫

dεeiεt . . .. This simplification is justified as the contributions
from different phases cancel each other out, leading to a net
effect of zero on the long-term behavior. Additionally, we
have disregarded the residue at the imaginary axis stemming
from the Fermi distribution function. Since these residues are
imaginary numbers, their contributions to the current decay
exponentially with time, and thus, they do not influence the
steady-state behavior and can be safely neglected. In Eq. (24),
�<,0 is considered infinitesimally small because the lifetime
of the bound states ±εb is effectively infinite. When V �
2|εb|, we encounter a situation that leads to an indeterminate
form of 0

0 , which corresponds to the maximum amplitude of
the current oscillation.

In Fig. 5, the transient current JD is plotted over time for
different phase differences φ. The amplitude of the driving
bias is set as V (φ) = 2|εb(φ)|, which is dependent on φ,
ensuring that the amplitudes of oscillation are maximal for
the various φ values. The maximum values are approximately

FIG. 5. Time dependence of transient current JD(t ) when V =
2|εb| for different superconducting phase differences φ. The other
parameters: � = 0.8.

equal for φ and 2π − φ due to the relationship −εb(φ) =
εb(2π − φ), as shown in Fig. 4. However, these values are
distinct for different φ (represented by the three black lines or
three red lines). With φ increasing from 0 to π , |εb| decreases
monotonically, while the final steady current JD(t → ∞)
increases monotonically. As φ approaches π (for example,
φ = π ± 0.1π ), ±εb is very small, and the oscillating terms
are progressively merged by the nonequilibrium tunneling
processes, as indicated by the dotted lines in Fig. 5.

When φ → π , |εb| diminishes to zero, but JD(t → ∞)
undergoes a sudden reversal from a maximum to a minimum,
as depicted in Fig. 2(d). This phase transition is responsible
for the nonequilibrium fractional Josephson effect [58]. Con-
sequently, the transient current becomes singular at φ = π . In
Fig. 6, the transient current is plotted for V (φ) = 2|εb(φ)| and
φ = π ± 0.01π . The current behavior is markedly different
from that observed in Fig. 5, underscoring the singularity of
the bound state at φ = π . When V deviates from 2|εb(φ)|,
the oscillation amplitude is significantly reduced, and the
persistent oscillation induced by the bound states gradually
diminishes. This also explains the discrepancy in the oscilla-
tion amplitudes observed in Figs. 3(a) and 3(b).

FIG. 6. Transient current near the critical point where φ = π .
The other parameters are the same as in Fig. 5.
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(a)

(b)

FIG. 7. Time dependence of transient current JU (t ) driven by up-
wards step-like bias for different superconducting phase differences
φ. (a) V = � = 0.8. (b) V = � = 1.6. In order to remove the phase
shift φ of ac Josephson current, the time of t = 0 is shift to φ/ω (the
red stars).

C. Turning-on transient current

In contrast, we present the “turning-on” transient current
in this section. Upon the activation of the bias V at t = 0,
the turning-on transient current JU is triggered. In Fig. 7, we
depict the temporal evolution of JU (t ) for different supercon-
ducting phase differences φ. Before t = 0, the absence of bias
sustains a steady dc Josephson current. Following t = 0, the
dc current relaxes and ultimately achieves a new steady state,
which is the ac Josephson current. Under the application of the
dc bias V , the complex superconducting order parameter �̃α is
transformed to �̃αe−2iVαt . Consequently, the superconducting
phase difference φ evolves to become time dependent in a
periodic manner, expressed as φ̃ = φ + 2V t . This results in
a phase shift in the transient current JU . To eliminate the
phase shift of the ac Josephson current, we have adjusted the
initial time from t = 0 to φ/ω in Fig. 7. By aligning all the
repositioned initial currents, we are able to trace the trajectory
of the DC Josephson current, which is illustrated in Fig. 2(d).

In Figs. 7(a) and 7(b), we select different biases V and
different coupling strengths �. For ease of comparison, the
initial dc current is marked by the red stars in Fig. 7. Since
the initial time has been repositioned to φ/ω, the red stars
clearly illustrate the entire period of phase dependence of the
dc Josephson current. The initial current varies for different
�, but all exhibit the same phase dependence f (sin φ). When
the bias is turned on, the single electrons are successfully
scattered out of the superconducting gap with the aid of MARs
rather than being trapped by bound states. As a result, the

transient current rapidly stabilizes to the steady ac Joseph-
son current. With the phase shift accommodated, the steady
ac Josephson current for different φ now coincide precisely.
Here, the current exhibits periodic oscillations with a period
of T = π/V , as the bias V induces an effective periodic phase
φ̃ = φ + 2V t . It is worth mentioning that periodic oscillations
are observed in both the turning-on transient current JU and
the turning-off transient current JD, yet they are fundamen-
tally distinct. Indeed, as shown in Fig. 3, the oscillation period
of JD is dependent on the superconducting phase difference φ

and is entirely independent of the bias V , whereas the oscilla-
tion period of JU is determined by V . In the absence of bound
states, the turning-on transient process is a conventional quan-
tum transport phenomenon. Generally, the relaxation time
τ ∼ 2π/� that is dependent on the coupling strength �. From
Fig. 7, we can estimate the relaxation time τ � 8π/�. This
stands in stark contrast to the turning-off transient current JD,
where the relaxation time τ is significantly greater, by two
orders of magnitude.

IV. CONCLUSIONS

In this paper, we use the Keldysh nonequilibrium Green’s
functions to explore the transient behaviors of Josephson junc-
tions beyond the wide-band limit. We specifically analyze the
“turning-off” and “turning-on” transients, which are driven
by downwards and upwards step-like biases, respectively.
Due to the distinct physical mechanisms that govern super-
conducting current in zero-bias and nonzero-bias scenarios,
the quench dynamics of the “turning-on” and “turning-off”
transient processes exhibit significant differences from each
other. For the former case, aided by quasiparticle bound states
within superconducting gap, the electrons are trapped and
oscillate between ±εb. Consequently, the “turning-off” tran-
sient current oscillates at a frequency of 2|εb| and approaches
the final direct current (dc) state very slowly. The relaxation
time is infinitely long, two orders of magnitude greater than
2π/�. In contrast, the oscillating “turning-on” transient cur-
rent, aided by MARs, rapidly reaches the steady alternating
state with a finite relaxation time τ that is approximately
2π/�, roughly equivalent to the relaxation time of the non-
Josephson system. The infinite relaxation time associated with
the “turning-off” transient current enables the experimental
observation of quasiparticle trapping within the junction ma-
terials. Furthermore, the distinct quench dynamics observed
during sudden “turning-on” and “turning-off” events are in-
strumental in detecting the intrinsic properties of quantum
dots experimentally.
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APPENDIX A: UNPERTURBED GREEN’S FUNCTION
Gr/a,0 WITH ZERO BIAS

We have made the assumption that the hopping elements
tk,α are independent of the momentum k within a broad range
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of energies surrounding the Fermi level. Additionally, the
density of states of the leads, denoted as ρα , is taken to
be approximately constant within this energy range. Conse-
quently, the normal line width function �α = 2πρα|tα|2 is
considered energy independent. The term �α is commonly
utilized to describe the coupling strength or the tunneling rate
between the quantum dot (QD) and the superconducting leads.
For simplicity, without loss of physical accuracy, we also set
�L = �R = �.

In the absence of a bias, the retarded Green’s function
Gr/a,0 is a function of the time difference t − t ′ and can be
expressed as follows:

Gr/a,0(t − t ′) =
∫

dε

2π
e−iε(t−t ′ )Gr/a,0(ε),

Gr/a,0(ε) =
[
ε ± i0+ − H0 −

∑
α

�r/a,0
α (ε)

]−1

.

Here, H0 = (εd

−εd
) represents the Hamiltonian of the iso-

lated quantum dot. The retarded self-energy is given by

�r,0
α (ε) = i

2

−ν�√
ε2 − �2

(
ε −�̃∗

α

−�̃α ε.

)
.

In this expression, ν = 1 for ε > −� and ν = −1 other-
wise. �̃ = �eiφα denotes the complex superconducting order
parameter. The advanced self-energy is �a,0

α (ε) = [�r,0
α (ε)]†.

The lesser self-energy is defined as

�<,0
α (ε) = fα (ε)

(
�a,0

α (ε) − �r,0
α (ε)

)
.

When |ε| < �, Gr/a,0(ε) possesses a pair of poles, which cor-
respond to the levels of two bound states ±εb. Consequently,
Gr/a,0(ε) can also be expressed as

Gr/a,0(ε) = P∗(ε)

(ε ± i0+ − εb)(ε ± i0+ + εb)
, (A1)

where P∗ is the adjoint matrix of P, and P = [Gr/a,0]−1, ±εb

are the roots of the determinant |P(ε)|.

APPENDIX B: UNPERTURBED GREEN’S FUNCTION
Gr,V WITH STEADY BIAS V

When bias V is applied, the energy of both the quasiparticle
and the Cooper pair is influenced. Consequently, the complex
superconducting order parameter �̃α is modified to �̃αe−2iVαt .
The phase difference φ = φL − φR between the two supercon-
ducting leads becomes periodically time dependent, expressed
as φ̃ = φ + 2V t . The period T is determined by the relation
2π = 2V T . The Green’s function thus becomes a periodic
function, which can be formulated as Gr,V (t, t ′) = Gr,V (t +
T, t ′ + T ). It can be expanded using the following double-
time Fourier transformation:

Gr,V (t, t ′) =
∑

l

e−ilωt
∫

dε

2π
e−iε(t−t ′ )Gr,V (ε + lω, ε).

For notational simplicity, we introduce the abbreviation
Fmn(ε) = F(ε + mω, ε + nω) to represent the double-energy
Green’s function or self-energy function. Here, m and n can
be considered as discrete matrix elements in the energy space.
Employing the Dyson equation, we can express the Green’s
function as [16]

Gr,V
mn (ε) = δmngr

m +
∑
α,l

gr
m�r,V

α,ml G
r,V
ln

= δmngr
m +

∑
α,l

Gr,V
ml �r,V

α,lngr
n. (B1)

Here, gr
m = gr (ε + mω) with gr (ε) = [ε + i0+ − H0]−1 is

the Green’s function of the isolated quantum dot. We
also introduce the abbreviation Fm(ε) = F(ε + mω) to rep-
resent the single-energy Green’s function or self-energy
function.

Given that VL = V and VR = 0, the self-energy of the right
superconducting lead �r,V

R equals �r,0
R . The biased self-energy

of the left superconducting lead �r,V
L is a tridiagonal matrix in

the energy space, with elements

�r,V
L,mn(ε) = �r,0

L,m(εV ) · Bmn, (B2)

with

Bmn =
(

δm,n δm,n+1

δm,n−1 δm,n

)
,

�r,0
L,m(εV ) =

[
�r,0

L,m,11(ε − V ) �r,0
L,m,12(ε − V )

�r,0
L,m,21(ε + V ) �r,0

L,m,22(ε + V )

]
,

or

�r,V
L,mn(ε) = Bmn · �r,0

L,n(εV ), (B3)

with

Bmn =
(

δm,n δm−1,n

δm+1,n δm,n

)
,

�r
L,n(εV ) =

[
�r,0

L,n,11(ε − V ) �r,0
L,n,12(ε + V )

�r,0
L,n,21(ε − V ) �r,0

L,n,22(ε + V )

]
.

Here, “·” denotes matrix element multiplication. By substitut-
ing the tridiagonal self-energy into the Eq. (B1), we obtain the
Nambu elements

Gr,V
σσ =

[
R−1

σ −
∑
α,β

�r,V
α,σ σ̄ Rσ̄�r,V

β,σ̄σ

]−1

,

Gr,V
σ σ̄ =

∑
α

Gr,V
σ �r,V

α,σ σ̄ Rσ̄ =
∑

α

Rσ�r,V
α,σ σ̄ Gr,V

σ̄ , (B4)

with Rσ = [(gr
σσ )−1 − ∑

α �r,V
α,σσ ]−1. Here, σ and σ̄ represent

matrix elements in the spin space, with σ̄ being the com-
plementary set of σ . The matrix element of Rσ gradually
diminishes with increasing size, allowing us to truncate the
infinite matrix to a finite size and numerically solve for Gr,V .
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