
PHYSICAL REVIEW B 110, 125410 (2024)

Tomography of near-field radiative heat exchange between mesoscopic
bodies immersed in a thermal bath
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A tomographic study of near-field radiative heat exchanges between a mesoscopic object and a substrate
immersed in a thermal bath is carried out within the theoretical framework of fluctuational electrodynamics.
By using the discrete-dipole-approximation method, we compute the power density distribution for radiative
exchanges and highlight the major role played by many-body interactions in these transfers. Additionally, we
emphasize the close relationship between power distribution and eigenmodes within the solid paving the way to
applications for hot-spot targeting at deep subwavelength scale by shape optimization.
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I. INTRODUCTION

Concentrating the heat emitted by a hot object placed
at close distance to a base material if of significant rele-
vance for practical uses such as nanophotolithography [1],
to engrave patterning nanometer-scale structures on mate-
rial surfaces, heat-assisted magnetic recording [2,3] for data
storage in hard-disk writing technology, or to make local
temperature measurements using the near-field scanning ther-
mal microscopy technique [4–8]. Indeed, at distances smaller
than the thermal wavelength λth = h̄c/kBT to the source, in
which kB is Boltzmann’s constant, the exchanged heat flux can
surpass the flux predicted by the famous Stefan-Boltzmann’s
law (blackbody limit [9]) by several orders of magnitude
[10–12] due to the contribution of evanescent photons which
are superimposed on the propagative ones. In all these ap-
plications, a small section of the solid substrate is heated
due to a super-Planckian heat flux to elevate its temperature
beyond its melting point or beyond the Curie temperature of
magnetic materials to demagnetize them locally. Therefore, to
understand the underlying physics which govern the interac-
tions of the electromagnetic field radiated by thermal emitters
with microscope tips is of crucial importance. Despite recent
progress in modeling these objects [13–19], challenges remain
in fully understanding this physics. Among the open questions
is the description of many-body mechanisms [20–22] which
drive interactions and heat exchanges between mesoscopic
objects and the field radiated by surrounding thermal emitters.

In the present work, we investigate this problem in detail
within the framework of the fluctuational-electrodynamics
theory [23]. We first introduce a theoretical model to an-
alyze the radiative heat exchanges among coupled dipoles,
a substrate, and the surrounding environment. We explore
how individual resonant modes, potential surface modes, and
collective modes contribute to these exchanges. Subsequently,
employing the discrete dipole approximation (DDA) method
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for thermal emitters [19,24], we compute the distribution of
the power density for radiative exchanges within a mesoscopic
object immersed in a thermal environment and positioned
above a substrate at various distances. Thus, we provide a
complete tomographic image of exchanges between each part
of the object and its surrounding environment. By examin-
ing these power exchanges and the internal power spectra
across the different regions within the solid, we reveal the
diverse mechanisms driving heat exchanges between a tip and
a substrate. Beyond the practical problem of near-field thermal
microscopy, we highlight the major role played by N-body
effects on the energy exchanges between a mesocopic object
and its surrounding environment. Additionally, we highlight
the close connection existing between the power distribution
within a solid and its eigenmodes thereby paving the way
towards shape optimization for hot spot targeting.

The article is structured as follows: In Sec. II we introduce
our DDA method which we apply to two coupled dipoles in
Sec. III, both in vacuum (Sec. III A) and above a substrate
(Sec. III B). Subsequently, in Sec. IV we discuss the tomog-
raphy of a two-dimensional (2D) disk spatially (Sec. IV A)
and spectrally (Sec. IV B). In the spectral analysis we also
investigate a ring configuration with and without substrate
(Sec. IV B 1), special particles on a ring (Sec. IV B 2), and
the spatial distribution for special frequencies (Sec. IV B 3).
Sec. V covers the tomography of a 3D geometry that mimics
thermal near-field microscopy experiments. In Sec. VI we end
up with our conclusion.

II. THEORETICAL FRAMEWORK

The system we consider is made of a collection of N spher-
ical particles of radii Rβ (β ∈ {1, . . . , N}) and positions rβ

placed in proximity to a substrate occupying the region z < 0.
Moreover, the particles are exposed to an environmental field,
which can be thought as coming from the external boundaries,
placed at large distance z > 0 from particles and substrate.
In the context of the dipolar approximation, we are going
to describe each particle as an electric dipolar moment pβ .
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Note that the dipole approximation is valid for radii of each
dipole that are much smaller than the thermal wavelength
and the edge-to-edge distance between this dipole and the
substrate d [25,26]. In practice, the latter condition refers to
2Rβ � d [27]. Another limiting factor for DDA is that it fails
to describe metals in the infrared regime due to the presence of
eddy currents [18] and it requires a considerably larger num-
ber of elementary dipoles if the material’s permittivity is high
[28]. From a numerical point of view, DDA becomes also less
effective for larger systems for which it is more suitable to use
alternative methods like the boundary element method [29].

To calculate the power dissipated into each particle in this
configuration, we first need to determine the electric field and
the electric dipole moments at each rβ . The electric field E at
any position r can be decomposed into a contribution of the
environmental field Eenv and the ones which are induced by
dipole moments pβ at the position rβ , yielding

E(r) = Eenv(r) + μ0ω
2

N∑
β=1

GE (r, rβ )pβ. (1)

Herein GE (r, rβ ) describes the electric Green’s function at
observation point r caused by an electric dipole moment at
source point rβ, ω represents the angular frequency and μ0

the vacuum permeability. Note that since we only take into
account polar materials like silicon carbide (SiC), we can
safely neglect the magnetic response of the system as it would
be necessary in the case of metals [30–34]. The electric dipole
moments pβ can be decomposed into a fluctuating part pβ,fl

and an induced one pβ,ind, the latter depending on the electric
field in Eq. (1) at position rβ , so that

pβ = pβ,fl + ε0αβE(rβ )

= pβ,fl + ε0αβEenv(rβ ) + k2
0αβ

N∑
γ=1

GE (rβ, rγ )pγ . (2)

In the last expression, ε0 denotes the vacuum permittivity,
k0 = ω/c the wave number in vacuum, c the velocity of light
in vacuum,

αβ = αCM,β

1 − i k3
0

6π
αCM,β

, (3)

αCM,β = 4πR3
β

εβ − 1

εβ + 2
, (4)

the dressed and the Clausius-Mosotti polarizabilities in the
weak form of the coupled dipole moments [21,35–38], respec-
tively and εβ the dielectric permittivity of particle β. In the
following, we will use SiC for both particles and substrate. Its
dielectric permittivity can be described by a Drude-Lorentz
model [39]

εβ (ω) = ε∞
ω2

LO − ω2 − iω	

ω2
TO − ω2 − iω	

(5)

with the following parameters: ε∞ = 6.7, ωLO =
1.827 × 1014 rad/s, ωTO = 1.495 × 1014 rad/s, and
	 = 0.9 × 1014 rad/s.

We highlight that the Green’s function appearing in Eq. (2)
and detailed in Appendixes A and B explicitly contains the
case β = γ due to the contribution of the substrate (index s),

whereas this contribution is neglected in the vacuum contribu-
tion (index 0), so that we can write for β, γ = 1, 2, . . . , N ,

GE (rβ, rγ ) =GE ,s(rβ, rβ )δβγ + [GE ,0(rβ, rγ )

+ GE ,s(rβ, rγ )](1 − δβγ ). (6)

Equation (2) can also be interpreted as one line of the block
matrix equation

p = pfl + ε0αEenv + k2
0αGE p (7)

in which we define the block vectors p = (p1, . . . , pN )T and
E = (E(r1), . . . , E(rN ))T containing the dipole moments and
electric fields, respectively, of each particle and the block
matrices α = diag(α1, . . . , αN ) and GE for which each block
matrix component obeys GE ,βγ = GE (rβ, rγ ). With that we
can recast Eq. (7) in the following way:

p = T−1pfl + ε0T
−1αCMEenv (8)

with

Tβγ = [
1 − k2

0αβGE ,s(rβrβ )
]
δβγ

− k2
0αβGE (rβ, rγ )(1 − δβγ ). (9)

In the same block-matrix notation, we can now rewrite Eq. (1)
for each dipole by inserting Eq. (8) as

E = [
1 + k2

0GET
−1α

]
Eenv + μ0ω

2GET
−1pfl. (10)

The power Pβ dissipated into a given dipole β = 1, 2, . . . , N
can be written as

Pβ = 1

π

∫ ∞

0
dω ω CpE ,β (11)

= Pβ,dip→dip + Pβ,back→dip + Pβ,sub→dip, (12)

and is proportional to the imaginary part of the coupled
dipole-field correlation function

CpE ,β =
∑

i=x,y,z

Im〈〈pβ,iE
∗
i (rβ )〉〉. (13)

Note that we introduced the Fourier transform f (t ) =
2Re[

∫ ∞
0

dω
2π

f (ω)e−iωt ]. The three contributions in Eq. (12)
correspond to the heat dissipated into each single dipole due
to heat transfer solely between the particles themselves, heat
dissipated into each dipole due to the background, and heat
dissipated into each dipole in presence of the substrate, re-
spectively. Following the method outlined in Ref. [21], each
contribution can be recast under the form

Pζ→dip,β =
∫ ∞

0

dω

2π
h̄ω Tβ,ζ→dip (14)

for ζ ∈ {dip, back, sub}, with the transmission coefficients

Tβ,dip→dip = 4
N∑

γ=1

∑
i, j=x,y,z

nγ β

χβ

|αβ |2 [T−1]βγ ,i j

× χγ [T−1†]γ β, ji, (15)

Tβ,back→dip = 4
N∑

γ ,δ=1

∑
i, j,l=x,y,z

nbβ
χβ

|αβ |2 [T−1]βγ ,i jαγ

× Cb,γ δ, jl α∗
δ [T−1†]δβ,li, (16)
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Tβ,sub→dip = 4
N∑

γ ,δ=1

∑
i, j,l=x,y,z

nsβ
χβ

|αβ |2 [T−1]βγ ,i j

× αγ Cs,γ δ, jl α∗
δ [T−1†]δβ,li, (17)

and introducing the Bose-Einstein occupation probabilities

nβγ = 1

e
h̄ω

kBTβ − 1
− 1

e
h̄ω

kBTγ − 1
, (18)

with the reduced Planck’s constant h̄, the Boltzmann constant
kB, the temperature Tγ of particle γ , and the temperatures Tb

and Ts of background and substrate, respectively. The remain-
ing correlation functions Cb/s,βγ ,i j = 〈〈Ei,b/s(rβ )E∗

j,b/s(rγ )〉〉
are [40,41]

Cb,βγ ,i j =
∫

d2k⊥
8π2

eik⊥(xβ−xγ )pr
e−ikz (zβ−zγ )

kz

×
∑

n=s,p

(a−
n,i + rpe2ikzzβ a+

n,i )(a
−
n, j + r∗

pe−2ikzzγ a+
n, j ),

(19)

and

Cs,βγ ,i j =
∫

d2k⊥
8π2

eik⊥(xβ−xγ )

×
∑

n=s,p

[
pr

eikz (zβ−zγ )

kz
a+

n,ia
+
n, j (1 − |rn|2)

+ 2ev
e−|kz |(zβ+zγ )

|kz| a+
n,ia

−
n, jIm(rn)

]
, (20)

where we have introduced the projectors on the propagative
and evanescent sections of the spectrum

pr = (k0 − k⊥), (21)

ev = (k⊥ − k0). (22)

For the correlation function of the dipole moments we have
used the fluctuation-dissipation theorem [21,40]

〈〈pβ,i,fl p∗
γ , j,fl〉〉 = h̄ε0(1 + 2nβ )χβδβγ δi j (23)

with

χβ = Im(αβ ) − k3
0

6π
|αβ |2. (24)

Note that this is a very general formula to describe the heat
flux dissipated into a collection of particles immersed in a
vacuum background and in the presence of a substrate. It also
allows to distinguish between the heat fluxes dissipated into
each dipole meaning that we are able to discuss the spatial
distribution of heat dissipated into each single dipole. In the
following we will consider 1D and 2D systems and restrict
ourselves to the simpler configuration of identical dipoles in
the thermal-equilibrium configuration T1 = · · · = TN = Tp, so
that Pdip→dip = 0 holds. At first, we will evaluate our formula
in the simplest scenario of two particles: This will allow
us to highlight some physical mechanisms that we will also
encounter for more particles. Later, we will discuss in detail
the case of a 2D disk and a 3D tip.

FIG. 1. Sketch of two particles with temperature Tp = 298 K and
radius R = 19 nm separated by a center-to-center distance l = 3R
made of SiC at distance d = 200 nm above a SiC substrate at temper-
ature Ts = 323 K immersed in a vacuum background at temperature
Tb = 293 K.

III. TWO PARTICLES

In order to validate our model and to get some first physical
insight, let us start with the configuration of two particles
in free space and above a substrate, shown in Fig. 1. For
the materials, we choose SiC for both the particles and the
substrate, and we fix the temperatures at Tp = 298 K for both
particles, Ts = 323 K for the substrate, and Tb = 293 K for
the background. The particles are at edge-to-edge distance
d = 200 nm from the substrate and l = 3R lateral distance to
each other for an identical radius of R = 19 nm, ensuring the
validity of the dipole approximation.

From a very fundamental point of view, this situation can
be compared to two harmonic oscillators of identical mass m
coupled by a spring of stiffness κ , both bound to a wall with
identical springs of stiffness K . This system is described by
the system of differential equations

mẍ1/2 = −(K + κ )x1/2 + κx2/1 (25)

in which x1/2 are the displacements of particle 1 and 2 and ẍ1/2

their second time derivatives. Rewriting this in matrix notation
while making the ansatz x1/2(t ) = c1/2eiωt yields

(
mω2 − K − κ κ

κ mω2 − K − κ

)(
c1

c2

)
=

(
0
0

)
. (26)

To fulfill this equation by setting the matrix determinant to
zero, one obtains two resonance frequencies, namely ω1 =√

K
m and ω2 =

√
2κ+K

m . The eigenvector x1 = (1, 1)t corre-
sponding to ω1 describes both oscillators moving in the same
direction and x1 = (−1, 1)t corresponding to ω2 describes
both oscillators moving in opposite directions. While it is not
straighforward to translate these quantities directly to the case
of two nanoparticles described as dipoles, mainly because in
the electromagnetic scenario we also have to take into account
the different polarizations, we can conclude from this simple
consideration that we should also find these two fundamental
resonances in the spectrum of the two particles.

To show where we can find these resonances regarding
our system of two dipoles, let us go back to Eqs. (1) and
(2) and recast them only considering the induced dipole
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moments, neglecting in other words Eenv and pfl. In block
matrix notation, one gets

0 = Mp, (27)

M = 1 − k2
0αGE . (28)

This equation demands det(M) = 0 in the nontrivial case.
The roots of this determinant will define the resonance
frequencies of the system.

A. In vacuum

We start by discussing the reference scenario of two par-
ticles in vacuum, i.e., in the absence of a substrate. In order
to correctly describe the situation of an environmental field
coming from both sides of the system (z < 0 and z > 0)
we can take the limit in which the substrate is placed far
away from the system of particles and it is replaced by an
ideal blackbody. This amounts to neglect the evanescent con-
tribution appearing in Eq. (20) and set ri = 0. Under these
assumptions the two correlation functions defined in Eqs. (19)
and (20) are identical, as well as the heat flux from both sides
towards the particles (Pback→dip = Psub→dip). Then, Eqs. (16)
and (17) give the same result for β = 1, 2 and become

Tβ,back/sub→dip = πk2
0nbpχp(T‖ + 2T⊥), (29)

using the transmission coefficients

T‖/⊥ =
[
1 + k4

0 |α|2|GE ,‖/⊥|2] k0
6π

+ 2k2
0Re[αGE ,‖/⊥]Cb,12,‖/⊥∣∣1 − k4

0α
2G2

E ,‖/⊥
∣∣2 ,

(30)

with

GE ,‖ = eik0l

2π l

1 − ik0l

k2
0 l2

, (31)

GE ,⊥ = eik0l

4π l

k2
0 l2 + ik0l − 1

k2
0 l2

, (32)

and

Cb,11/22,i j = k0

6π
δi j, (33)

Cb,12/21,‖ = sin(k0l ) − k0l cos(k0l )

2πk2
0 l3

, (34)

Cb,12/21,⊥ = k0l cos(k0l ) − (1 − (k0l )2 sin(k0l ))

4πk2
0 l3

. (35)

This already shows that due to the symmetry of the system
the two transversal directions (⊥) contribute identically to the
overall result while the longitudinal direction (‖) is different.

In Fig. 2 we show the spectrum of the power absorbed
by both dipoles according to Eq. (29). There, we also depict
the logarithm of the inverse of the determinant of the matrix
defined in Eq. (28) but recast into

det(M) = det(M⊥)2det(M‖), (36)

with

det(M⊥/‖) = 1 − k2
0αGE ,⊥/‖. (37)

FIG. 2. Spectral heat transfer between the two particles and the
background (blue) shown with the determinant of matrices M⊥/‖
(red/magenta) highlighting the resonance peaks for the transversal
and longitudinal polarizations by the black dashed lines at ω1 =
1.75 × 1014 rad/s and ω2 = 1.759 × 1014 rad/s.

Note that the polarizability α is now a scalar because we
consider identical particles. Both factors 1 − k2

0αGE ,‖/⊥ will
exhibit two roots analogously to the model of two coupled
harmonic oscillators. Obviously, the two transversal directions
provide the same resonances, as mathematically described by
the square. The resonances are shown in Fig. 2 by the peaks of
the inverse of the determinant. One can clearly see that there
are four peaks, as expected, of which only two contribute to
the overall spectrum, namely the lower resonance frequency
of the longitudinal modes and the higher one of the transversal
modes. That is because only these “bright” modes contribute
a dipole moment since they describe opposite movements as
explained in the previous section [42,43]. The “dark” modes
describe translations of both dipoles in the same direction, not
providing a dipole moment to the overall system and thus not
coupling to the electromagnetic field.

B. Above a substrate

In the presence of a substrate, the calculations become
more involved because the reflected part of the Green’s func-
tion in Eq. (A4) has to be considered as well. Additionally,
the correlation functions also contain such a contribution tak-
ing the substrate into account. Both the reflected part of the
Green’s function and the two correlation functions are given
for this configuration in Eqs. (B1)–(B27).

Doing the same analysis as in the previous section with
respect to the determinant of matrix M in Eq. (28), but this
time with respect to the xz components of the reflected part
of the Green’s function, we do not have a longitudinal mode
as before for two particles in vacuum but a coupling between
the longitudinal mode and the transversal one in x direction
giving rise to a hybridized mode and yielding the following
product of two determinants

det(M) = det(Mtrans)det(Mmix), (38)

with

det(Mtrans) = (
1 − k2

0αGid
E ,s,⊥

)2 − k2
0α

(
Gdif

E ,s,y + GE ,⊥
)2

,

(39)
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FIG. 3. Spectral heat transfer between the two particles and the
substrate (dark blue) or the background (light blue) shown with
the determinant of matrices M⊥/mix (red/magenta) highlighting the
resonance peaks for the transversal and mixed polarizations by
the black and red dashed lines at ω1 = 1.75 × 1014 rad/s, ω2 =
1.759 × 1014 rad/s, and ωSPhP = 1.787 × 1014 rad/s.

and

det(Mmix) = [
α2k4

0G2
E ,s,mix − (

1 − αk2
0

(
Gdif

E ,s,x + GE ,‖
))

× (
1 + αk2

0

(
Gdif

E ,s,z − GE ,⊥
))]

× [
α2k4

0G2
E ,s,mix − (

1 − αk2
0

(
Gdif

E ,s,z + GE ,⊥
))

× (
1 + αk2

0

(
Gdif

E ,s,x − GE ,‖
))]

. (40)

Due to the coupling, the determinant of Mmix has now four
roots.

The results for the heat exchange between the two particles
and the background as well as with the substrate are shown
in Fig. 3. Note that, due to our choice of temperatures, the
spectral power between particles and background is negative.
Therefore, we show −Pback→dip instead. The spectrum for the
heat flux between the particles and the background (light blue)
looks the same as in Fig. 2 apart from an overall amplification.
The spectral peaks for this contribution are at the same posi-
tions as for the case without substrate and can also be found
in the heat flux between the particles and the substrate (dark
blue). As shown by the inverse determinants, these resonance
frequencies correspond to two roots of the determinant. The
fact of not seeing all of them through a contribution to the
spectral flux can be attributed to the existence of dark and
bright modes as in the case without substrate.

In addition to these two peaks for both spectral heat fluxes,
there is also a third peak in the spectral heat flux between the
dipoles and the substrate. It corresponds to the well known
resonance frequency of the surface phonon polariton (SPhP)
of SiC at ωSPhP = 1.787 × 1014 rad/s at which the parallel po-
larized reflection coefficient in Eq. (A8) has a maximum due
to εsub(ωSPhP) ≈ −1. Since this mode characterizes a strong
coupling between substrate and particles, it can only be found
in the heat flux between the dipoles and the substrate and not
in the one with the background. Note that both determinants
also exhibit a root at ωSPhP due to the inclusion of the reflected
part of the Green’s function.

Translating these validations for two particles to the up-
coming case of a 2D disk, there will be resonances stemming
from the eigenmodes of the disk itself which coincide with

FIG. 4. Sketch of a 2D disk with radius R = 500 nm at temper-
ature Tp = 298 K at distance d = 200 nm above a SiC substrate
at temperature Ts = 323 K immersed in a vacuum background at
temperature Tb = 293 K. All N = 583 particles have a radius of
r = 19 nm and are made of SiC.

the case without substrate. In the spectral heat flux between
the particles and the substrate there will be a peak at ωSPhP

which will dominate for the near field due to its evanescent
character.

IV. 2D DISK

After studying the very idealized system made of two point
particles, we now move to a more realistic scenario of an
extended system. To this aim, we consider in this section a 2D
disk of radius R = 500 nm as depicted in Fig. 4. In this first
application we limit ourselves to a 2D geometry for several
reasons. First, this allows to fill it with small dipolar particles
while keeping the computational time reasonable. Also, the
study of what happens within the transition from a partially
filled disk (a ring) to a full disk is more feasible. Finally,
the connection between spatial power distribution obtained
within our model and field modes existing in the system can
be studied more easily, since the representation of field modes
is much easier in a 2D system. A 3D geometry mimicking the
tip-substrate geometry employed in several experiments will
be presented in Sec. V.

In the following simulations, the parameters for back-
ground and substrate remain the same as before. The particles
are identical in temperature Tp = 298 K, radius r = 19 nm,
and both particles and substrate are made of SiC. In or-
der to fill a disk of given radius R as densely as possible
with nanoparticles we consider a close-packing arrangement
and keep only the nanoparticles which are fully inside the
surface of the disk. Using this approach, a disk completely
filled with particles corresponds to N = 583 particles. The
radius r in with respect to radius R is chosen such that
Nr2/R2 = 0.84. For comparison, this ratio is Nr2/R2 = 0.9
for r = 3 nm and N = 24 895 so that the chosen radius of
r = 19 nm already represents a disk whose surface area is
almost completely filled by dipoles and, therefore, provides
a reasonable approximation of the disk geometry in the spirit
of DDA.
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FIG. 5. −Pback→dip (a) and Psub→dip (b) for different numbers of
layers starting with one ring on the outside and adding more towards
the inside until we obtain a full disk.

In Fig. 5 we show on the total power

Pζ→dip =
N∑

β=1

Pβ,ζ→dip, (41)

for ζ ∈ {back, sub} absorbed by the system of N dipoles
and show both contributions −Pback→dip and Psub→dip while
varying the distance between the disk and the substrate for
different amounts of layers starting with only a ring of parti-
cles on the outside of the disk in Fig. 4 and adding more rings
towards the inside until we end up with the full disk. One
can clearly see that Psub→dip dominates in the near field and
up to distances d < 6 µm. This distance also coincides with
the coherence length of the SPhP mode of the SiC substrate
which is the dominating coupling mechanism in the near field
between substrate and particles. On the contrary, in the far-
field regime Pback→dip becomes more important, resulting in
a sign flip for the total received flux. Let us also stress that
because of the nonmonotonic behavior of Pback→dip, due to
interference between the radiation directly emitted away from
substrate and particles and the one reflected at the substrate,
this nonmonotony will be imprinted on the overall result in the
far field as a signature of this contribution because Psub→dip

is decaying exponentially. Pback→dip also increases for larger
distances showing an attenuation effect due to coupling to
the substrate. Note that this increase for Pback→dip in absolute
values will asymptotically reach the blackbody limit for even
larger distances. Additionally, we want to stress that although
all curves share indeed a the same qualitative behavior, the
ratio between them does not coincide with the ratio of the
number of particles involved in each configuration.

From a numerical point of view it is also interesting to note
that Psub→dip converges faster towards the result of the full
disk, which happens already for nine layers, than Pback→dip

for which 11 layers are required, which corresponds to all
particles but the seven at the center of the disk. Especially
in the near field in which Psub→dip dominates, one could re-
duce the computation time by taking less layers into account.
Nevertheless, we will see later that this does not hold for a
qualitative discussion because the different configurations will
have strikingly different spatial power distributions.

A. Spatial power distribution

Now, we want to turn to the spatial distribution of the
heat fluxes. Again, we will look at the evolution of a ring of
particles towards the full disk to see whether certain particles
or regions are more important than others. The parameters
are as before. We consider three different distances between
the (layered) disk and the substrate to cover the near field
(d = 200 nm), the far field (d = 10 µm), and the intermedi-
ate regime (d = 1 µm). Here we restrict ourselves to three
figures for the setup of only one outer ring, a crown of four
layers, and the full disk [44].

Let us start with the description of panels (d)–(f) of
Figs. 6–8, corresponding to the heat flux between particles
and substrate. In all configurations one can clearly see for
d = 200 nm that the particles close to substrate (bottom) ex-
perience the largest flux from the substrate. This is clearly
a signature of the SPhP mode due to the strong coupling in
this near-field regime. For larger distances d this signature
vanishes and we are left with bright spots in the middle. This
is reminiscent of configurational modes of each disk layout
in accordance to our findings for two particles in Sec. III,
and suggests that here we are indeed observing an indirect
evidence of eigenmodes of the ring, crown, and disk, respec-
tively. Interestingly, we can also find bright spots at the bottom
if we stay below four layers in the intermediate regime. The
bright spot at the bottom, then, smears out towards the middle
and center. This is clearly a many-body effect due to more
particles that can couple with each other and distribute the
incoming heat flux from the substrate for more particle layers.
For less layers the closest particles still obtain more heat due
to evanescent waves like frustrated modes in this intermediate
regime. Due to poorer coupling, especially in the case of a
single layer where there are only two nearest neighbors for
each particle, the bottom part still obtains much more power
than the upper part. Nevertheless, the eigenmode signature
dominating in the far field can be already seen for configu-
rations with less than four layers. This already represents a
competition between the SPhP mode and the configurational
eigenmodes of the system.

Panels (a)–(c) of Figs. 6–8, corresponding to the heat flux
between particles and background, are also worth discussing
because it shows counter-intuitive behavior. First, the upper
part of the ring, crown, and disk emits more heat in the near-
field regime for each configuration. For less layers this is more
strictly bound to the very top and smears out again for more
layers until we find brighter spots in the middle and center
but still the upper part emits more power than the lower part.
This shows that the substrate attenuates heat transfer towards
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FIG. 6. Spatial power distribution for one layer. [(a)–(c)] Heat flux between particles and background. [(d)–(f)] Heat flux between particles
and substrate. The columns correspond to three different distances given above the upper panel. For better reference in Sec. IV B 2 we already
highlight the particles of concern for later spectral analysis by P1-P4.

the background due to coupling which is stronger for particles
closer to the substrate. Interestingly, this brighter upper part is
even more pronounced for the intermediate regime in all con-
figurations. In the far field we expect again the eigenmodes to
dominate the spectrum to whom we ascribe the spatial distri-
bution of Pback→dip for each configuration. In the intermediate
regime we would have expected something between near and
far field meaning that the upper part is still more pronounced
but also a stronger signature of the eigenmodes. This could,

for example, hint towards the influence of frustrated modes.
As another interesting feature, we find in the far field that the
lower part for configurations with less than four layers is more
pronounced than the upper region.

We stress the presence of the bright spots at the center
which always occur apart from the cases of only a few lay-
ers and from Psub→dip in the near field. This is, as we will
show later in more detail, related to the eigenmodes of the
configuration which is even an important feature if we only

FIG. 7. Spatial power distribution for four layers.

125410-7



HERZ, MESSINA, AND BEN-ABDALLAH PHYSICAL REVIEW B 110, 125410 (2024)

FIG. 8. Spatial power distribution for the full disk.

remove the central particle of the full disk. Additionally, it is
important to stress the exception for configurations with only
a small number of layers. For less than four layers there are
many striking differences. To show the mechanisms behind
this spatial power distribution, we will now analyze these
configurations spectrally.

B. Spectral analysis of the dissipated power

As we did before for the two-particle case, we will now
discuss the spectra for different configurations: a ring (N = 84
particles, one layer), a crown (N = 318, four layers), and the
full disk (N = 583). The spectra are shown in Fig. 9. In the
left column, panels (a), (c), and (e) show the spectral heat flux
between particles and background Pback→dip and panels (b),
(d), and (f) in the right column the one between the particles
and the substrate Psub→dip. Everything is shown for the three
regimes: near field, far field, and intermediate regime. For
Pback→dip we find either two [Figs. 9(a) and 9(e)] or three
[Fig. 9(c)] major resonance peaks which are highlighted in
Fig. 9 by the arrows. We can also find the same resonances in
Psub→dip together with an additional peak at ωSPhP (red dashed
line) which surpasses the other ones in the near field. Since we
can see in each panel in Fig. 9 that this peak dominates in the
near field and vanishes in the far field, this proves the strong
influence of the coupling between the dipoles of each con-
figuration and the SPhP mode of the substrate. As expected,
the eigenmodes of the configuration dominates in the far field
for Psub→dip and the overall spectral amplitude goes down as
shown in Fig. 5. In the case of Pback→dip, the spectrum behaves
vice versa regarding that distance dependence as explained
in the previous section due to a decreasing attenuation due
to coupling with the substrate. Interestingly, the peak at the
largest frequency is always more pronounced for the inter-
mediate regime compared to the other two regimes. We also
relate this to our observation that the intermediate regime has

a different spatial distribution for Pback→dip. For completeness,
we also show by the black dashed line the resonance fre-
quency of a single spherical SiC particle at which εSiC = −2
holds. It is clear that this frequency does not play a significant
role in the overall spectrum.

1. Spectrum of a ring with and without substrate

In Fig. 10 we show the same as in Figs. 9(a) and 9(b) for
d = 200 nm in comparison with the case without substrate.
Let us first of all stress that we can identify all resonances
with roots of the determinant in Eq. (28). However, since we

FIG. 9. Spectral heat flux between the particles and the back-
ground (left, turned positive) and the substrate (right) for three
different distances to the substrate. [(a) and (b)] One layer. [(c) and
(d)] Four layers. [(e) and (f)] Full disk. Additionally, we show the
frequencies corresponding to εSiC = −1 (red dashed) and εSiC = −2
(black dashed). All parameters as before.
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FIG. 10. Comparison of the spectral heat fluxes between parti-
cles and background (blue) and substrate (red) with the case without
substrate (black). The distance between the ring and the substrate is
fixed to d = 200 nm. All other parameters as before.

have 84 particles for this configuration, we could in principle
have 232 different roots in the determinant so that it is not
easy to connect each root to one resonance but rather clusters
of roots. Comparing all three graphs, one can also clearly see
that, apart from the peak highlighted by the red dashed line, all
resonances stem from the eigenmodes of the ring since they
also appear in the case without substrate. At the red dashed

line the SPhP mode has a strong influence on the spectral heat
flux between dipoles and substrates.

Interestingly, Pback→dip differs significantly from the case
without substrate at the peak at ω = 1.777 × 1014 rad/s. We
conclude, therefore, that the substrate can enhance this reso-
nance which we also showed in Fig. 9(a) while noticing that
this enhancement is particularly important in the intermediate
regime of d = 1 µm. To go further into details we will now
focus on different particles on the ring for further spectral
analysis.

2. Special particles on a ring

For the ring configuration we compare the spectra of four
particles that are highlighted in red in the legend of Fig. 11.
We compare three different distances, one for each regime,
for Pback/sub→dip [Figs. 11(a), 11(c) and 11(e)/11(b), 11(d),
and 11(f)]. As a reference, we also put the spectrum for the
sum over all particles of the disk in red. The four particles
correspond to the one at the top (P1), two ones that are close
to the middle (P2 and P3), and one at the very bottom close to
the substrate (P4), as already depicted in Fig. 6.

For Psub→dip, the red dashed line highlights ωSPhP. At this
frequency we clearly observe a strong resonance for the par-
ticle close to the substrate (P4) followed by the one in the

FIG. 11. Comparison of the spectral heat fluxes between certain particles (see legend and Fig. 6) and background [(a), (c), and (e)] and
substrate [(b), (d), and (f)] for different particles (blue) and the sum of all particles on the ring divided by 15 (red). ωSPhP is highlighted by the
red dashed line at the bottom. All parameters as before.
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FIG. 12. Spatial distribution of the spectral heat fluxes between particles and background [(a)–(c)] and substrate [(d)–(f)] for different
frequencies indicated above the upper panel for the ring configuration (one layer). The distance between the ring and the substrate is fixed to
d = 200 nm. The frequencies are the ones highlighted in Fig. 9. All other parameters as before.

middle that is closer to the substrate (P3) in the near-field
in Fig. 11(b). The difference in amplitude is getting less
for larger distances and seems to vanish in the far field,
which is not surprising in the context of the SPhP mode
coupling between substrate and particles. The resonance at
ω1r = 1.683 × 1014 rad/s seems to favor the particles closer
to the center. For larger distances this favoring is even more
obvious. This explains why we see these particles as bright
spots in Fig. 6 in the far field.

For Pback→dip we do not observe many differences in the
far field; all graphs almost overlap. In the intermediate regime
and in the near field, however, the top particles exhibits the
strongest resonance at ω1r and remains dominating up until
close to ω2r which is where the middle particles become more
important. Note that at this frequency for the intermediate
regime d = 1 µm, the difference between the centered par-
ticles (P2 and P3) and the top particle (P1) increases which
coincides with the inversion of graphs for different distances
in Figs. 9(a), 9(c) and 9(e) at this frequency. Finally, we will
show the influence of the configurational modes and the SPhP
mode spatially.

3. Spatial distribution for special frequencies

Let us finally look at the spatial distribution of the heat
fluxes Pback/sub→dip for different frequencies corresponding to
the major peaks highlighted in Fig. 9 for the cases of the ring
(N = 84 particles, one layer, Fig. 12), a crown (N = 318, four
layers, Fig. 13), and the full disk (N = 583, Fig. 14). The
calculations for all figures are performed for d = 200 nm.

For the ring we see the largest heat flux Pback→dip at ω1r

at the top particle which is due to the eigenmodes of the

ring being less attenuated there. For the other two frequencies
we observe the eigenmode signature attenuated for particles
closer to the substrate and also the top particles as described in
the previous section. For ωSPhP and ω2r the heat flux Psub→dip is
the most pronounced at the bottom particle due to strong cou-
pling due to the SPhP mode and evanescent modes in general.
At ω1r we re-encounter the eigenmode signature enhanced for
particles closer to the substrate.

For the cases of a crown in Fig. 13 and a disk in Fig. 14
we observe a similar behavior. The SPhP mode has a clear
signature by enhancing the Psub→dip for the bottom particles.
For the other frequencies we always find the signature of
an eigenmode that is enhanced for the bottom particles due
to evanescent waves. For Pback→dip we also clearly see the
eigenmodes of the system but attenuated at the bottom part
due to coupling with the substrate. Especially for the full disk
the different spatial distribution for each eigenmode is well
visible. The only exception is the case of ω1d for the full disk
where we see brighter spots closer to the substrate.

Conclusively, this shows the “competition” between the
eigenmodes of the configuration and the coupling with sub-
strate which either enhances the heat flux especially at the
SPhP mode or attenuates it for the heat flux between particles
and background.

V. TIP GEOMETRY

The two previous sections showed the influence of the
main physical mechanism involved in the heat transfers be-
tween substrate, dipoles, and background in increasingly more
complex geometries. In this section, we want to apply our
theoretical framework to a more practical geometry which
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FIG. 13. As in Fig. 12 but for a crown configuration (four layers).

is often used in thermal near-field microscopy. For a wide
variety of near-field experiments, a sharp tip, e.g., provided
by the cantilever of an atomic force microscope, is brought in
the vicinity of a sample surface to scan it and either measure
the heat transfer between sample and tip [4,5] or the thermal
radiation scattered by the tip [6–8]. From a theoretical point
of view, it is interesting to know how accurate the modeling of
the geometrical shape of the tip has to be to take into account
all particles that are most involved in the heat transfer. Is
it, for instance, sufficient to approximate the tip by a single

dipole corresponding to the tip apex because only the front
part is important due to surface modes which dominate the
near field? We will now use a tiplike geometry approximated
by SiC dipoles at distance d = 100 nm above a SiC substrate.
The tip is modeled by a cone of hight H = 1 µm and an
opening angle of α = 30◦ which is filled by N = 526 particles
of a radius of r = 45 nm. This is shown in Fig. 15. For the
temperature assignment we chose the same ordering as for the
disk such that the particles constituting the tip have a uniform
temperature distribution of Tp = 298 K. The background is

FIG. 14. As in Fig. 12 but for the full disk.
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FIG. 15. Tip modeled by a cone of hight H = 1 µm and opening
angle α = 30◦ filled by N = 526 particles of radius R = 45 nm.

held at Tb = 293 K and the substrate at Ts = 323 K. Dipoles
and substrate are made of SiC.

In Fig. 16 we show the tomography of the tip in Fig. 15
corresponding to the y-z plane at x = 0. Both contributions
Pback/sub→dip show that the front part is the most important for
the heat transfer. On the other hand, Fig. 16(b) reveals that
it is not the front most particle obtaining the most heat from
the substrate due to the surface mode at ωSPhP but the second
closest one. This is in contrast to the case of only two particles
vertically aligned over a substrate surface for which the closest
particle obtains the most thermal radiation which we show in
the inset for identical particles and temperatures compared to
the tip model. This highlights the importance of the other sur-
rounding particles constituting the tip whose complex N-body
interactions with the front particles have a high impact on
the power distribution. The physical mechanisms behind this
feature have been explained in the previous sections which
have now to be translated to 3D, namely the surface mode and
the eigenmodes of the tip geometry.

In Fig. 16(a) we also show the heat flux between the back-
ground and the dipoles. There, the front part is most important
for the heat transfer as well but noticeably the outer particles
also emit more heat than the particles at the center. This,
again, reflects a mix of the attenuation by the substrate and the
influence of the eigenmodes. Due to the attenuation, also the

FIG. 16. Tomography over the y-z plane of the tip in Fig. 15
made of SiC at d = 100 nm above a SiC substrate for the same
temperature assignment as for the disk with a uniform temperature
distribution for the particles constituting the tip. We show the heat
transfer between background and dipoles (a) and between substrate
and dipoles (b) compared to two vertically aligned particles of the
same size and temperature in the insets.

more removed particle for a corresponding vertically aligned
two-particle chain emits more heat towards the background.
Hence, in contrast to Psub→dip, for the tip Pback→dip reflects the
usual findings of a particle chain. However, both contributions
show that an approximation of the front-most part of the tip
by a single dipole would lack the influence of the surround-
ing particles which have an even higher impact on the heat
transfer.

Note that the dissipated power density, to some extend, can
be related to the local density of states (LDOS). Experiments
with a probing tip, which we geometrically approximated
by dipoles in this section, that directly measure the spatial
distribution of the LDOS could benefit from this method,
like it was recently done but for another range of frequencies
[45,46]. In plasmonic systems the LDOS can be measured by
electron-energy-loss spectroscopy [47] which cannot be trans-
lated to polar systems. However, the local change of the LDOS
could be characterized by measuring spontaneous emission
of quantum dots [48] and the decay rates of molecules [49]
placed next to the probing tip or on the probing tip itself.

VI. CONCLUSION

By performing a tomographic analysis of radiative heat
transfers between an object, a substrate, and its thermal en-
vironment, we have demonstrated the crucial role played by
many-body interactions in near-field regime and highlighted
the intimate connection which exists between power distribu-
tion and eigenmodes within a solid. Our study sheds light on
the fundamental mechanisms driving heat exchanges between
mesoscopic objects and their surrounding environment. Our
study paves the way to a rational design of local hot spots at a
deep subwavelength scale by exploiting shape optimization of
solids which will require a coupling between the DDA method
and conduction within each solid. This could lead to important
implications in the fields of nanoscale thermal management,
heat-assisted data recording, and nanoscale thermal imaging.
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APPENDIX A: GENERAL GREEN’S FUNCTIONS
AND CORRELATION FUNCTIONS

As mentioned in Sec. II, the Green’s function for each
particle consists of a vacuum part and a reflected part due to
the presence of the substrate [50]. In Eq. (6) this is described
more explicitly. Throughout this work, we use the vacuum
Green’s function

GE ,0(r, r′)

= eik0ρ

4πρ

[
k2

0ρ
2 + ik0ρ − 1

k2
0ρ

2
1 − k2

0ρ
2 + 3ik0ρ − 3

k2
0ρ

2
ρ̂ ⊗ ρ̂

]

(A1)
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with

ρ̂ = r − r′

|r − r′| , (A2)

ρ = |r − r′|. (A3)

For the reflected contribution, we employ the following
expression:

GE ,s(r, r′) =
∫

d2k⊥
(2π )2

eik⊥·(x−x′ ) ieikz (z+z′ )

2kz

∑
n=s,p

ria+
i ⊗ a−

i

(A4)

with the polarization unit vectors

a±
s = 1

k⊥
(−ky, kx, 0)t , (A5)

a±
p = 1

k⊥k0
(±kxkz,±kykz,−k2

⊥)t , (A6)

and the Fresnel amplitude reflection coefficients

rs = kz − kz,sub

kz + kz,sub
, (A7)

rp = εsubkz − kz,sub

εsubkz + kz,sub
. (A8)

Therein, we used the definitions

k⊥ = (kx, ky )t , (A9)

x = (x, y)t , (A10)

d2k⊥ = dkxdky, (A11)

kz =
√

k2
0 − k2

⊥, (A12)

kz,sub =
√

εsubk2
0 − k2

⊥. (A13)

APPENDIX B: GREEN’S FUNCTION AND CORRELATION
FUNCTIONS FOR TWO PARTICLES

ABOVE A SUBSTRATE

The reflected part of the Green’s function in Eq. (A4)
simplifies for two particles as in Fig. 1 to

GE ,s(r1/2, r1/2) = Gid
E ,s,⊥(x̂ ⊗ x̂ + ŷ ⊗ ŷ) + Gid

E ,s,zẑ ⊗ ẑ

(B1)

with

Gid
E ,s,⊥ = i

∫ ∞

0

dk⊥k⊥
8πkz

e2ikz (d+R)

[
rs − rp

k2
z

k2
0

]
, (B2)

Gid
E ,s,z = i

∫ ∞

0

dk⊥k3
⊥

4πk2
0kz

e2ikz (d+R)rp, (B3)

if both spacial arguments of the Green’s function are identical
and to

GE ,s(r1/2, r2/1) = Gdif
E ,s,x x̂ ⊗ x̂ + Gdif

E ,s,yŷ ⊗ ŷ + Gdif
E ,s,z ẑ ⊗ ẑ

± GE ,s,mix[x̂ ⊗ ẑ − ẑ ⊗ x̂], (B4)

with

Gdif
E ,s,x/y = i

∫ ∞

0

dk⊥k⊥
8πkz

e2ikz (d+R)[rs(J0(k⊥l ) ± J2(k⊥l ))

− rp
k2

z

k2
0

(J0(k⊥l ) ∓ J2(k⊥l ))

]
, (B5)

as well as

Gdif
E ,s,z = i

∫ ∞

0

dk⊥k3
⊥

4πk2
0kz

e2ikz (d+R)rpJ0(k⊥l ), (B6)

GE ,s,mix =
∫ ∞

0

dk⊥k2
⊥

4πk2
0

e2ikz (d+R)rpJ1(k⊥l ), (B7)

otherwise. For the correlation function of the background
fields, we obtain

Cb,11/22 = C id
b,⊥(x̂ ⊗ x̂ + ŷ ⊗ ŷ) + C id

b,zẑ ⊗ ẑ (B8)

with

Cid
b,⊥ =

∫ k0

0

dk⊥k⊥
8πkz

[
R+

s (k⊥, d ) + R−
p (k⊥, d )

k2
z

k2
0

]
, (B9)

Cid
b,z =

∫ k0

0

dk⊥k3
⊥

4πkzk2
0

R+
p (k⊥, d ), (B10)

in the case of identical particles and

Cb,12/21 = Cdif
b,xx̂ ⊗ x̂ + C12/21

b,y ŷ ⊗ ŷ + Cdif
b,z ẑ ⊗ ẑ

+ C12/21
b,xz x̂ ⊗ ẑ + C12/21

b,zx ẑ ⊗ x̂, (B11)

with

Cdif
b,x/y =

∫ k0

0

dk⊥k⊥
8πkz

[
R+

s (k⊥, d )[J0(k⊥l ) ± J2(k⊥l )]

+ R−
p (k⊥, d )

k2
z

k2
0

[J0(k⊥l ) ∓ J2(k⊥l )]

]
, (B12)

Cdif
b,z =

∫ k0

0

dk⊥k3
⊥

4πkzk2
0

R+
p (k⊥, d )J0(k⊥l ), (B13)

as well as

C12/21
b,xz = ±i

∫ k0

0

dk⊥k2
⊥

4πk2
0

R̃−
p (k⊥, d )J1(k⊥l ), (B14)

C12/21
b,zx = ±i

∫ k0

0

dk⊥k2
⊥

4πk2
0

R̃+
p (k⊥, d )J1(k⊥l ), (B15)

if one considers different particles. Here we introduced

R±
i (k⊥, d ) = 1 + |ri|2 ± 2Re(e2ikz (d+R)ri ), (B16)

R̃±
i (k⊥, d ) = 1 − |ri|2 ± 2iIm(2eikz (d+R)ri ). (B17)

In the same way we obtain for the correlation function of the
substrate fields

Cs,11/22 = C id
s,⊥(x̂ ⊗ x̂ + ŷ ⊗ ŷ) + C id

s,zẑ ⊗ ẑ, (B18)
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with

Cid
s,⊥ =

∫ k0

0

dk⊥k⊥
8πkz

[
1 − |rs|2 + k2

z

k2
0

(1 − |rp|2)

]

+
∫ ∞

k0

dk⊥k⊥
4π |kz| e−2|kz |(d+R)

[
Im(rs) + |kz|2

k2
0

Im(rp)

]

(B19)

and

Cid
s,z =

∫ k0

0

dk⊥k3
⊥

4πkzk2
0

(1 − |rp|2) +
∫ ∞

k0

dk⊥k3
⊥

2π |kz|k2
0

e−2|kz |d Im(rp)

(B20)

for the case of two identical particles and

Cs,12/21 = Cdif
s,x x̂ ⊗ x̂ + Cdif

s,y ŷ ⊗ ŷ + Cdif
s,z ẑ ⊗ ẑ

+ C12/21
s,xz x̂ ⊗ ẑ + C12/21

s,zx ẑ ⊗ x̂, (B21)

with

Cdif
s,x/y =

∫ k0

0

dk⊥k⊥
8πkz

[	+J0(k⊥l ) ± 	−J2(k⊥l )]

+
∫ ∞

k0

dk⊥k⊥
4π |kz| e−2|kz |(d+R)[�+J0(k⊥l ) ± �−J2(k⊥l )]

(B22)

Cdif
s,z =

∫ k0

0

dk⊥k3
⊥

4πkzk2
0

(1 − |rp|2)J0(k⊥l )

+
∫ ∞

k0

dk⊥k3
⊥

2π |kz|k2
0

e−2|kz |(d+R)Im(rp)J0(k⊥l ), (B23)

and

C12/21
s,xz = ∓i

∫ k0

0

dk⊥k2
⊥

4πk2
0

(1 − |rp|2)J1(k⊥l )

±
∫ ∞

k0

dk⊥k2
⊥

2πk2
0

e−2|kz |(d+R)Im(rp)J1(k⊥l ), (B24)

C12/21
s,zx = ∓i

∫ k0

0

dk⊥k2
⊥

4πk2
0

(1 − |rp|2)J1(k⊥l )

∓
∫ ∞

k0

dk⊥k2
⊥

2πk2
0

e−2|kz |(d+R)Im(rp)J1(k⊥l ), (B25)

in the case of two different particles. Here we introduced

	± = 1 − |rs|2 ± k2
z

k2
0

(1 − |rp|2), (B26)

�± = Im(rs) ± |kz|2
k2

0

Im(rp). (B27)
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