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Tunable viscous layers in Corbino geometry using density junctions
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In sufficiently clean materials where electron-electron interactions are strong compared to momentum-relaxing
scattering processes, electron transport resembles the flow of a viscous fluid. We study hydrodynamic elec-
tron transport across density interfaces (n-n junctions) in a 2DEG in the Corbino geometry. From numerical
simulations in COMSOL using realistic parameters, we show that we can produce tunable viscous layers at the
density interface by varying the density ratio of charge carriers. We quantitatively explain this observation with
simple analytic expressions together with boundary conditions at the interface. We also show signatures of these
viscous layers in the magnetoresistance. Breaking down viscous and Ohmic contributions, we find that when the
outer radial region of the Corbino has higher charge density compared to the inner region, the viscous layers at
the interface serve to suppress the magnetoresistance produced by momentum-relaxing scattering. Conversely,
the magnetoresistance is enhanced when the inner region has higher density than the outer. Our results add to
the repertoire of techniques for engineering viscous electron flows, which hold a promise for applications in
future electronic devices.
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I. INTRODUCTION

In lieu of the Drude flow in conventional conductors,
electrons flow like a viscous fluid when collisions among
them become the dominant scattering mechanism [1–4]. This
hydrodynamic regime has long remained elusive in experi-
ments due to want of fabrication of sufficiently clean materials
where electron-electron interactions are strong compared to
momentum-relaxing scattering. However, the advent of ul-
trahigh mobility 2D electron systems has bridged this gap.
Several effects of viscous electron flow like negative non-
local resistance [5,6], electron-hole drag [7], vorticity [8,9],
Poiseulle flow [10,11], superballistic conductance through
point contacts [12–14], and violation of Widemann-Franz law
[15–19] are predicted and have also been observed. With
a magnetic field, more unconventional effects like negative
magnetoresistance [20–25], Hall viscosity [26,27] and giant
anomalous photoresistivity [28–32] have been seen.

Two main geometries that have been used to study electron
transport at the mesoscopic scale are the Hall bar and the
Corbino ring. Unlike the Hall bar, the Corbino does not have
edges except for the source and drain terminals. This distinc-
tive feature makes it an attractive setup to study bulk states
in the quantum Hall regime, since quantum Hall transport
measurements in the more conventional Hall bar geometry
are dominated by contribution from edge currents. In addi-
tion, due to transverse Hall currents in a magnetic field, the
Corbino makes magnetoresistance a feasible probe to study

hydrodynamics [33–36]. For example, Ref. [33] derives a
quadratic-in-field magnetoresistance in a 2DEG Corbino ring
(e.g., in GaAs heterojunctions), and shows that an applied
electric field is expelled from the bulk of the sample in spite
of viscous dissipation. However, at low carrier densities, due
to nonvanishing temperature gradients this is no longer true
[37,38]. Reference [34] shows how viscosity affects magne-
toresistance in charge neutral graphene Corbino ring assuming
no-slip and no-stress leads. Reference [35] extends the study
to low-density and the high-density limiting cases and show
that although the simple expression of Ref. [33] is valid in
the high-doping Fermi liquid regime, additional contributions
appear near neutrality point. Thermoelectric coefficients cal-
culated in the ballistic limit [39] show signatures of transition
from quantum Hall transport to incoherent transport. Since
we are only concerned with the high charge density transport
regime, we use the formalism of Ref. [33].

The situation is very different in the Hall bar geometry,
where magnetoresistance is either very weak (for small fields)
or is complicated by several factors such as change in vis-
cosity [20,26], size of cyclotron orbit compared to channel
width [40,41], edge currents [42], etc. Moreover, the presence
of edges introduces an unknown boundary condition which ef-
fects the flow [43]. Recent efforts have been made to mitigate
this problem by making samples with perfect-slip boundaries.
This was done by inducing an electron channel in a GaAs
heterostructure by applying a bias from a top gate instead
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TABLE I. Value of parameters of 2DEG used for simulation of hydrodynamic flow. Parabolic dispersion ε = p2/(2m∗), with spin
degeneracy gs = 2 is assumed.

Parameter Description Value Parameter Description Value

n1 charge carrier density 2 × 1011 cm−2 m∗ effective electron mass 0.067me = 6.1 × 10−32 kg
B Applied magnetic field 20 mT lee e-e scattering length for n = n1 300 nm
μ mobility 2 × 106 cm2/(V s) lmr momentum-relaxing scattering length 14.8 µm
D1 Gurzhi length for n = n1 1.05 µm 2d width of interface 0.2D1 = 210 nm
r1 radius of inner contact 4D1 = 4.2 µm r2 radius of outer contact 15D1 = 15.8 µm

of chemical doping. There, viscous effects were artificially
re-introduced by modifying the geometry of the channel [22],
or by means of magnetic modulation [44–46]. The Corbino
geometry provides an alternative solution to the problem of
boundary conditions by completely eliminating boundaries
except for contacts at source and drain.

Experiments on the Corbino in graphene have directly
probed the existence of viscous layers localised at the input
and output terminals [47]. These layers are approximately
as wide as the “Gurzhi length” D, that is, the momentum
diffusion length arising from combination of momentum re-
laxing and momentum conserving e-e scattering, and defined
as D = √

lmrlee/2. Due to the high mobility of 2DESs with
respect to the metallic leads, and due to rough surfaces of
the leads over microscopic length scales, electron flow into
and out of the sample is almost always normal. In this paper,
we explore the possibility of a situation where the injected
velocity has a tunable tangential component, by considering
electron flow through two regions of different density (n-n
junction) in the Corbino geometry. Away from the boundaries,
viscous forces cease to operate and the electron transport
assumes Drude character. The Drude flow depends on the
charge density of carriers and is different on either side of
the junction. At a no-stress interface of two densities, the
tangential flow must be continuous, forcing the velocity to
reduce to a common value and leading to formation of viscous
layers. The strength of these layers is directly proportional to
the mismatch between the interface velocity and the Drude
velocity in the bulk. Therefore, by tuning the gate bias, we
can easily realize viscous layers of varying lengths.

Manipulating viscous electron flow at mesoscopic length
scales is an actively pursued endeavour. Recent works study-
ing hydrodynamic flows through different channel geometries
[48] find that effective channel width can change for different
geometries while the microscopic scattering parameters are
unaffected. Although boundary conditions are never perfectly
determined microscopically, a perfect no-slip boundary can be
realised over larger length scales by considering current flow-
ing through a series of constrictions [49]. Reference [43] show
that slip length at the boundaries can vary with temperature in
a nontrivial way, while other studies [50] demonstrate how
nonlinear hydrodynamic effects like Bernoulli effect, Eckart
streaming and Rayleigh streaming can be realised in special
scenarios. Our proposal of a gate-tunable viscous layer could
be used for easy electrical manipulation of thermal dissipation
at interfaces and adds to the growing repertoire of methods for
viscous flow engineering.

The plan of the paper is as follows. In Sec. II, we show
the emergence of distinct viscous layers at a density interface

from numerical simulation of compressible Stokes flow in
COMSOL. We next present an analytical explanation of this
result in Sec. III using simple expressions derived from the
more complicated exact solution. We show that we can piece-
wise model the flow and match them at the interface by using
simple interface conditions, which we derive in Sec. IV. Then,
in Sec. V, we show signatures of these viscous layers in
the magnetoresistance. We also decompose the Ohmic and
viscous contributions with analytic expressions. Finally, we
end with a summary of our findings in Sec. VI.

II. TUNABLE VISCOUS LAYERS AT DENSITY INTERFACE

In this section, we present results from numerical simu-
lation of hydrodynamic flow across a density gradient and
show that viscous layers can be induced at the interface of
different density regions. In the parameter window favoring
hydrodynamic regime of transport, the local conservation laws
of particle number and momentum which govern the electron
flow take the form of the equation of continuity and the Stokes
equation [22]

∇ · (nu) = 0, (1a)

ne(E + u × B) + ∇ · σ − m∗n

τ
u = 0, (1b)

where u is the macroscopic velocity of fluid elements, σ =
η[∇ ⊗ u + (∇ ⊗ u)T − (∇ · u)I] is the shear stress tensor.
We have neglected pressure gradients because, assuming the
“gradual channel approximation,” they result in a negligible
correction to the capacitance between the 2DEG and the gates,
and can be absorbed into the electric potential. The bulk
viscosity of electrons is considered negligible [22,51]. Equa-
tion (1) is supplemented by boundary conditions, which are
determined by the magnitude and direction of current flowing
in and out of the 2DEG at the inner and outer electrodes.

We also omitted the nonlinear convective derivative
(Navier term) u · ∇u on account of the very low Reynolds
number (<0.1) in the electron fluid. At temperatures when
hydrodynamic effects become prominent, thermal motion of
electrons become sufficiently strong that effects of Landau
quantization are negligible. Furthermore, the Hall viscosity
compares to the shear viscosity by a factor of 2ωcτee [20].
From values in Table I, this is ≈0.16, which we assume is
small and therefore, negligible.

For the case of homogeneous charge density and assuming
azimuthal symmetry, with the convention u = ur̂ + vφ̂, the
exact solution of (1) is given by [38,52]

u(r) = u1r1/r, (2a)

v(r) = c1I1(r/D) + c2K1(r/D) − ωcτu1r1/r, (2b)
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FIG. 1. (a) Schematic of the setup considered in this paper. [(b) and (c)] Colormap of tan θHall = v(r)/u(r) for uniform density (n2/n1 = 1),
and a density gradient n2/n1 = 2, obtained from a numerical simulation of the hydrodynamic equations (1) in COMSOL. The Hall angle is
expected to be approximately constant in the bulk where flow is Drude-like, and change towards the contacts due to drag forces acting on
the electrons due to viscous layers. A density gradient induces formation of additional viscous layers at the interface, sensitive to the density
gradient. (d) Radial profile [along a radial section of (c)] of tan θHall for various outer densities n2. The interface induces a change in Hall angle
in a region (shaded) approximately wide as the Gurzhi length D on either side. The jump in Hall angle at the interface also increases for a
higher density gradient.

where ωc = eB/m∗ is the cyclotron frequency, D = √
ντ is

the Gurzhi length, I1, K1 are first-order modified Bessel func-
tions, c1, c2 are constants determined by fitting to boundary
conditions, and u1 = u(r1) is the input radial velocity.

Comparing this with the nonviscous, simple Drude solution

vohm(r) = −ωcτu1
r1

r
, (3)

we can see that viscosity conspires with momentum-relaxing
scattering in the form of the Gurzhi length to affect the tan-
gential velocity v. A simple way to highlight this effect is to
calculate the local angle between the flow velocity and the
radial vector, known as the Hall angle: tan θHall = v(r)/u(r).
For Drude flow [Eq. (3)], this is constant, while viscous terms
in Eq. (2) cause deviations from it. At the source and drain,
where flow is approximately normal to the surface of the
leads, the Hall angle is zero, therefore, viscous layers develop
near these terminals to accelerate the tangential flow.

In our case, we consider a nonuniform density profile
n(r) varying over a relatively small length scale d � D at
an interface at r = r�. In a gated junction in GaAs quantum
wells, the density interface is expected to have a width d ≈
100 –150 nm. On solving the electrostatic potential due to the
gates, we find the density varies as

n(r) = n1 + n2

2
+ n2 − n1

2
tanh([r − r�]/d ), (4)

which interpolates between the two regions r < r� and r > r�

with densities n1, n2, respectively.
Given this density profile, we solve the hydrodynamic

equations (1) in the numerical solver COMSOL, supplemented
by no-slip conditions at the source and drain. We assume a
density gradient in Eq. (4) that smoothly connects the two
constant density regions over a characteristic length of d =
0.1D ≈ 100 nm. Such a density setup can be created by using
a dual gate architecture with top and bottom gates [53]. We
assume Fermi-liquid behavior of electrons with respect to
density, i.e., the e-e scattering rate goes as τ−1

ee ∝ 1/EF ∝
1/n. Also, given the high mobility of 2DEG, we assume the
momentum-relaxing scattering is limited by phonons and not
by disorder, therefore, τ is independent of n [22,54–56]. The
Gurzhi length then varies as D ∝ n. At hydrodynamic tem-

peratures lee ∼ n [22] or even stronger, therefore qualitatively
D ∼ n holds for a large range of parameters. We have as-
sumed an electron-electron scattering length lee = 300 nm at
n1 = 2 × 1011 cm−2, which corresponds to a temperature T =
20 K in 2DEG in GaAs/AlGaAs [22]. The Fermi tempera-
ture is TF = 83 K, and the Fermi wave number and velocity,
kF = (9 nm)−1, vF = 1.9 × 107 cm/s, assuming a parabolic
dispersion of the conduction band. A summary of the values
of parameters is given in Table I.

In Fig. 1, we plot the Hall angle profile for uniform density
and a finite density gradient n2 = 2n1. We clearly see a change
in the Hall angle near the density interface, indicating the
formation of viscous layers. We also show the radial profile
of tan θHall for different density gradients. We find that a
larger gradient causes a greater change in Hall angle, thereby
creating stronger viscous layers.

The appearance of viscous boundary layers has already
been shown in a graphene Corbino ring by mapping the
Hall angle profile using single-electron transistor imaging
[47]. Other techniques like nitrogen-vacancy center magne-
tometry have been used to map flow profiles of electrons in
mesoscopic systems [57]. In light of such developments, we
believe interface-induced viscous layers can also be observed
by imaging the flow profile in experiments.

III. ANALYTIC DERIVATION
OF TUNABLE VISCOUS LAYERS

The hydrodynamic equations (1) for homogeneous charge
density are solved by Eq. (2). This form, although known in
literature, is very nonintuitive. We show in Appendix A that it
can be approximated by the much simpler expression

v(r) = (ωcτu1 + v1)

√
r1

r
e−(r−r1 )/D − ωcτu1

r1

r

+ (ωcτu2 + v2)

√
r2

r
e−(r2−r)/D, r2 > r1 � D, (5)

where r1, r2 are the radii of the inner and outer contacts.
This shows that there are two viscous layers exponentially
localized over a length D at the inner and outer terminals
at r1, r2, and a Drude contribution which dominates in the
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FIG. 2. (a) Plot of tangential flow velocity as function of radial
distance from Eq. (6). Numerical simulation of Eq. (1) using COMSOL

with smooth density gradient as in Eq. (4) with d = 0.1D1 ∼ 100 nm
shows that the piecewise analytical solution with interface conditions
approximates the flow very well. Viscous layers approximately wide
as the Gurzhi length D act near the input, output terminals and at
the interface to match the bulk Ohmic velocity to flow at the bound-
aries. Tuning the density ratio changes the tangential velocity at the
interface, v�, which, in turn modulates the strength of viscous layers.
(b) Velocity at interface as function of density ratio, obtained using
analytic solution (6) and using boundary conditions (9), (10). v� can
be made to vary by a factor of 3 by varying n2/n1 over experimentally
feasible ranges. COMSOL simulation of the Stokes flow with smooth
interface gives identical values of v� and verifies that our interface
conditions are accurate.

bulk r1 + D � r � r2 − D. Surprisingly, if the injected veloc-
ity v1 matches the nonviscous Drude value vohm(r1) in (3),
Eq. (5) predicts that the viscous layers disappear completely.
As noted earlier, metal-2DEG interfaces are almost always
no-slip (v1, v2 ≈ 0), so this situation is never realized.

For flow through a density gradient, the continuity equa-
tion constrains the radial velocity as u(r) = n1r1u1/n(r)r. The
bulk Ohmic velocity vohm ∼ −ωcτu(r) is therefore discon-
tinuous at the interface, while the boundary condition (10)
derived in the next section states that the net tangential ve-
locity v must be continuous. Therefore viscous layers must
develop at the interface at r� to force v to a common value.
Moreover, the viscous dissipation in these layers is propor-
tional to the mismatch between the Drude velocity in the bulk
and the interface velocity. By tuning the density ratio, we
can tune this mismatch and thereby produce viscous layers
of varying strengths.

In Fig. 2, we plot the velocity profile as a function of the
radial distance r using the fit solution

v(r) = (ωcτu1 + v1)

√
r1

r
e−(r−r1 )/D1 − ωcτu(r)

+ vint(r) + (ωcτu2 + v2)

√
r2

r
e−(r2−r)/D2 , (6)

where the velocity near the interface (u� ≡ u(r� − d ) =
u1r1/r�)

vint(r) =
{

(ωcτu� + v�)
√ r�

r e−(r�−r)/D1 r < r�(
ωcτu�

n1
n2

+ v�

)√ r�

r e−(r−r� )/D2 r > r�

.

We support this result with a numerical simulation of
the Stokes flow in COMSOL. As it can be seen, our ap-
proximate solution bears excellent agreement with the exact
result. Moreover, from boundary condition (9), we can equate
the off-diagonal stress tensor σrφ at r� to get the common
velocity v�.

− v�

ωcτu�

= 1 + 2ρ� + 2ρ�n − n2

−3 + 2ρ� + 2ρ�n2 + 3n3 , (7)

where ρ� = r�/D1 and n = n2/n1. A plot of v� versus n is
also shown. Numerical simulation of the flow across a smooth
density gradient of width d � D produces very similar results
to the piecewise analytical solution matched with interface
conditions.

Thus we see that by changing the density ratio, we can tune
the velocity v� at the interface, by which we can control the
appearance of viscous layers. This also has implications in the
electric resistance, as we explore in Sec. V.

IV. BOUNDARY CONDITIONS OF FLOW AT INTERFACE

We derive the boundary conditions on which our previous
results are based. We consider a sharp interface between two
regions of densities n1 and n2. By sharp, it is implied that the
variation of density is over length d much smaller than the di-
mensions of the sample, but larger than the Fermi wavelength.
To derive boundary conditions, we integrate the equations of
flow (1a), (1b) over a patch with faces parallel to the interface.
Because of the φ symmetry of the system, this is the same as
integrating the equations from r� − d to r� + d , where 2d is
the thickness of the interface.

For the continuity equation,∫ r�+d

r�−d
dr ∂r (rnu) = 0.

The radial velocity is therefore discontinuous, as

(nu)
∣∣∣r�+d

r�−d
= 0. (8)

Integrating the tangential component of (1b),

− eB
∫ r�+d

r�−d
rdr nu +

∫ r�+d

r�−d
dr

∂r (r2σrφ )

r

− m�

τ

∫ r�+d

r�−d
rdr nv = 0.
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From the continuity equation, r nu = const, so, in the limit
of small d , the first term gives a vanishing contribution. Sim-
ilarly, assuming the tangential flow v does not diverge at the
interface, the third term contributes negligibly in limit of small
d . Therefore

0 ≈ 1

r�

∫ r�+d

r�−d
dr ∂r (r2σrφ ) = 1

r�

(r2σrφ )

∣∣∣∣
r�+d

r�−d

.

In other words, the off-diagonal stress tensor, σrφ , is continu-
ous at the interface:

σrφ

∣∣r�+d

r�−d = 0. (9)

Given σrφ = r∂r (v/r), this implies that the tangential flow
velocity v is also continuous.

v
∣∣r�+d

r�−d = 0. (10)

Multiplying the radial component of (1b) by u and
integrating,

− e
∫ r�+d

r�−d
rdr nu∂r + eB

∫ r�+d

r�−d
rdr nuv

+
∫ r�+d

r�−d
dr

u

r
∂r (r2σrr ) − m∗

τ

∫ r�+d

r�−d
rdr nu2 = 0, (11)

where  is the electric potential. Using the fact that rnu =
I/2πe = const across the interface, as before, we find that
the terms proportional to B, τ−1 have a vanishing contri-
bution in the limit of small d . The net condition reduces
to



∣∣∣∣
r�−d

r�+d

× I

2π
= (ruσrr )

∣∣∣∣
r�−d

r�+d

+
∫ r�+d

r�−d
r dr

σ 2
rr

η
, (12)

where integration by parts has been used for the right-hand
side. Given σrr = ηr∂r (u/r), we find

(ruσrr )

∣∣∣∣
r�−d

r�+d

=
(

I

2πe

)2 2

r2
�

(
η2

n2
2

− η1

n2
1

)
. (13)

Together with potential jump at the inner and outer
contacts, this covers viscous dissipation in the homoge-
neous regions. The remaining term in Eq. (12) is just
the viscous dissipation due to compressive flow at the in-
terface. Neglecting derivative of r compared to n at the
interface,∫ r�+d

r�−d
r dr

σ 2
rr

η
=

(
I

2πe

)2 ∫
dr r3η

(
d

dr

1

nr2

)2

≈
(

I

2πe

)2 ∫
η

n4r

(
dn

dr

)2

dr.

Finally, in the limit d → 0, we can approximate(
dn

dr

)2

=
(

�n

2d

)2

sech4

(
r − r�

d

)
≈ (�n)2

3d
δ(r − r�).

(14)

Using this in the integral for viscous dissipation, the total
potential drop at the interface is

−�int

I
= η2

π (n2e)2r2
�

− η1

π (n1e)2r2
�

+ η�

π (n�e)2

1

6r�d

(
�n

n�

)2

, (15)

where �n = n2 − n1 is the difference in densities, n� = (n1 +
n2)/2 is the density in the middle of the junction, and η� =
m∗n� × vF (n�)lee(n�)/4 is the corresponding shear viscosity.

Equations (8), (9), (10), and (15) are the required boundary
conditions of the problem.

V. SIGNATURE OF VISCOUS
LAYERS IN MAGNETORESISTANCE

In Fig. 3, we plot the magnetoresistance �R = R(B) −
R(0) versus n2/n1, calculated numerically for a high
mobility μ = 2 × 106cm2/(V s) and a low mobility μ =
2000 cm2/(V s) Corbino ring. Assuming a ultrahigh mobil-
ity sample where momentum-relaxing scattering is due to
phonons only, the mobility should be close to our assumed
high mobility value at T ≈ 20 K [22]. It must be noted that
in the Corbino, voltage applied divided by current yields
the inverse of magnetoconductance, which is not equal to
the magnetoresistance as the conductivity tensor in a mag-
netic field is nondiagonal. However, in the following, we
use inverse magnetoconductance and magnetoresistance inter-
changeably for convenience.

For nonviscous flow, described by the Drude equation, the
resistance for the density junction is simply

�Rohm = (ωcτ )2 RDru
1

2π

[
ln

(
r�

r1

)
+ n1

n2
ln

(
r2

r�

)]
, (16)

where the Drude resistivity RDru
1 = m∗/n1e2τ = 15.3 � for

values of parameters in Table I. When scaled by (ωcτ )2RDru
1 (=

244�), the magnetoresistance versus n2/n1 for samples with
different mobility should collapse onto a single curve. This
is clearly reflected in the result for the low mobility sim-
ulation in Fig. 3. However, we find that the presence of
viscous layers serve to suppress this magnetoresistance. This
is counter intuitive, given that viscous dissipation increases,
but by decelerating the velocity at the interface, the viscous
layers reduce the Ohmic dissipation as well.

To describe this analytically, we start with the power dissi-
pation for hydrodynamic flow:

I�bulk +
∮

u · σ · dS = 1

τ

∫
m∗nu2dV +

∫
σ2

2η
dV.

(17)

The first term on the left is the rate of work done by the
electric potential to drive the current, while the second term is
the rate of work done against the boundary stress. The energy
provided by these terms are dissipated by Ohmic and viscous
forces, described by the terms on the right-hand side. The
importance of boundary stress is apparent if we consider the
particular case of pure radial flow with no Ohmic dissipation
[33]. It can be shown that in this case, the potential drop
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FIG. 3. (a) Scaled magnetoresistance [R(B) − R(0)]/(RDru
1 ω2

cτ
2) with density ratio. The circles are numerical simulation values from

COMSOL, obtained by calculating the potential difference between inner and outer electrodes. The red solid line is an analytical plot of sum
of viscous and Ohmic dissipation [see Eq. (17)]. For nonviscous flow, scaled magnetoresistance for different mobilities collapse onto a single
curve [the Ohmic limit, Eq. (16)]. For high-mobility sample, viscous layers at the terminals and at interface suppress magnetoresistance (red
curve). x axis is set to log scale to give equal emphasis to the cases n2 > n1 and n2 < n1. (b) Resistance due to viscous dissipation, calculated
from COMSOL and from analytic solution (6) (expression in Table II). Because viscosity is proportional to density, viscous dissipation goes up
with n2/n1. At very high n2, velocity gradient in the bulk is low, resulting in a decrease in viscous resistance. The opposite happens for very
low n2. (c) Resistance due to Ohmic dissipation. In the bulk, the magnitude of current density, |J| ∼ J in(1 + ω2

cτ
2) is approximately constant,

so the Ohmic resistance per unit area Rohm = J2/μne goes down monotonically with n2.

�bulk = 0, whereas power dissipation by viscous forces is
finite. The only way the dissipated power can be compensated
is by the boundary term on the left-hand side. Here, we expand
this to a broader framework involving the effect of tangential
velocity (caused by magnetic field) and effect of disorder.

When B = 0, the flow is radial and the viscous and Ohmic
dissipation are decoupled in the electric resistance. By solving
the Stokes equation, we find

R(0) = Rvis(0) + Rohm(0),

Rvis(0) = η1

π (n1e)2

1

r2
1

− η2

π (n2e)2

1

r2
2

+ Rvis,int,

Rohm(0) = RDru
1

2π
ln

r�

r1
+ RDru

2

2π
ln

r2

r�

. (18)

The first term in Rvis(0) is due to the potential drop at the
inner lead, the second term is from the outer lead and Rvis,int

is due to the potential difference at the interface, determined
by Eq. (15). This energy is dissipated by viscous forces
in the regions of homogeneous charge density and due to
compressive flow at the interface. For parameters in Table I
and n2 = 3n1, we find the boundary resistance at the inner
and outer leads is 0.24 � while the resistance arising due

to potential jump at the interface is 1.76 �, i.e., the total
viscous resistance is Rvis(0) = 2.0 �. On the other hand, the
zero-field Ohmic dissipation Rohm(0) is 2.6 �. This conforms
well with numerical values of viscous and Ohmic dissipation
[in Eq. (17)] from our COMSOL simulation (2.3 and 2.6�,

respectively).
A magnetic field couples the viscous and Ohmic

dissipation in the electric potential and writing an analytical
expression for resistance becomes difficult. However, based
on our simplified solution (6), we can still derive approximate
analytic expressions, as summarised in Table II. We find that
the magnetic field contribution is proportional to (ωcτ )2 = 16
and is therefore larger than the zero-field resistance (7.15 �

for viscous and 19.2 � for Ohmic dissipation, from COMSOL).
From our simplified expressions, we can quantitatively break
up the power dissipation into spatially localized channels.
From inner to outer, they are: (i) boundary resistance at the
inner lead due to viscous stresses acting on radial flow, (ii)
resistance from viscous layer located ∼D1 from the inner
lead, arising due to tangential velocity, (iii) potential drop in
bulk, primarily due to Ohmic scattering, (iv) resistance from
viscous layers near the density interface, due to tangential
velocity, (v) viscous dissipation due to radial compressive

TABLE II. Magnetoresistance due to bulk Ohmic flow and due to viscous layers, using approximate solution (6). If ṽi = − v(ri )
u(ri )ωcτ

, i =
1, 2 for the inner and outer contacts, respectively, and ṽ�± = − v�

u(r�±d )ωcτ
, then α1 = (ṽ1 − 1)(1 + 3D1

2r1
), α2 = (ṽ2 − 1)(1 − 3D2

2r2
), α�∓ = (ṽ�∓ −

1)(1 ± 3D1
2r�

), βi = 1
2 (ṽi − 1) + 2(ṽi − 1)2, i = 1, 2, �±. ṽ1, ṽ2 = 0 in our simulations, ṽ� is given by Eq. (7). The expression for I1 is given in

Eq. (B1) in the Appendix.

�R(B) Viscous Ohmic

bulk (ωcτ )2 × Rvis(0) (ωcτ )2 × Rohm(0)

bdy layer

η1(ωcτ )2

π (n1e)2

[
I1 + α2

�−
4r�D1

+ 2α�−
r2
�

]
+ η2 (ωcτ )2

π (n2e)2

[( α2
�+

4r�
+ α2

2
4r2

)
1

D2
+ 2α�+

r2
�

+ 2α2
r2
2

]
(ωcτ )2

2π
× [

RDru
1 D1

(
β1
r1

+ β∗−
r∗

)
+RDru

2 D2

(
β∗+
r∗ + β2

r2

)]
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FIG. 4. Viscous, Ohmic and total contribution to magnetoresis-
tance due to viscous layers at interface, obtained from analytic
expressions in Table II. Negative values indicate that the viscous
layers decrease magnetoresistance arising from momentum relax-
ing scattering. Because viscosity is proportional to density, viscous
dissipation increases with n2 near n2/n1 = 1. For high densities,
velocity gradients in the viscous layers become small, therefore,
viscous dissipation decreases. The opposite is true for very small
n2/n1. Also because the viscous layers decelerate the flow more at
the interface when n2/n1 is large, the Ohmic dissipation, which is
proportional to n|u|2, decreases. For n2/n1 < 1, the opposite should
be true, however, at very low n2/n1, the decrease in n becomes the
overriding factor in Ohmic dissipation, and the Ohmic contribution
starts to fall.

flow at the interface, (vi) bulk resistance due to Ohmic
scattering in the outer region, followed by the outer viscous
layer and the boundary resistance at the outer lead.

Our expressions in Table II allows us to separately calcu-
late the contributions to the total resistance from the different
viscous layers, something that would not be possible from
either a global measurement or a numerical simulation which
probes the total voltage drop and current across the entire
device. In Fig. 4, we plot the dissipation from the expressions
in Table II. We find that for n2 > n1, the net contribution from
the interface viscous layers is negative, while for n2 < n1, it
is positive. A heuristic explanation can be given as follows.
Because viscosity is proportional to density, near n2/n1 = 1,
viscous dissipation at interface layers increases with n2. For
very high densities, however, the velocity gradients in these
layers is small, resulting in decrease in dissipation. The con-
verse happens when n2 < n1. On the other hand, the Ohmic
dissipation, which goes as n|u|2, drops with increasing den-
sity because the velocity of charge carriers decreases. For
n2/n1 < 1, the increase in |u| due to decrease in n saturates,
and the Ohmic dissipation starts to decrease due to decrease in
n2. The Ohmic contribution dominates over the viscous one,
therefore, the net contribution to magnetoresistance from the
viscous layers is negative when n2/n1 > 1 and positive when
n2/n1 < 1.

VI. SUMMARY

We have studied hydrodynamic electron flow across den-
sity junctions in the Corbino geometry. Starting from the
Stokes and continuity equations, we have derived boundary

conditions of flow across the interface. Using these conditions,
we have shown that we can make tunable viscous layers at the
interface by varying the density ratio of the junction. We have
also calculated the viscous and Ohmic dissipations by these
viscous layers and we have found opposing behavior when
electrons flow from regions of lower or higher density to the
other.

We have based our analysis on experimentally tested val-
ues of viscosity and momentum relaxation mean free path at
T/TF ∼ 0.25 in a 2DEG with parabolic dispersion, as well
as a realistic system size. It is interesting to note that a novel
“super-Fermi liquid” regime is predicted at T/TF � 0.16 due
to long-lived odd angular modes of the electron distribution
function [58,59]. The theory predicts a linear-in-temperature
dependence of conductivity, and an anomalous scaling of
local conductivity with characteristic length scale of action
of viscous forces [60]. The super-FL theory should be most
distinct at low T when the deviation of the decay of long-lived
modes of the distribution function from standard Fermi-liquid
behavior is most apparent. At hydrodynamic temperatures
considered here (T/TF � 0.25), such effects are expected to
be mitigated. Hence we conclude that the standard hydrody-
namic theory used in this paper suffices to explain our results.

Nevertheless, it would be an interesting idea to explore the
effects of the new regime on viscous layers at lower tempera-
tures. The effects of magnetic field and density modulation in
the super FL regime is currently an open question and will be
the subject of future research.

Density modulation in Corbino using top gates have been
achieved in experiments [53]. Although Ref. [53] studies
the ballistic regime, we can smoothly switch from it to the
hydrodynamic regime using temperature as a tuning param-
eter. This presents the interesting problem of addressing the
transport characteristics at this crossover. Study of thermal
transport due to viscous layers is another possible avenue
of investigation, especially for sample near charge neutral-
ity [34,35]. Additionally, one could thread a magnetic flux
through the Corbino like in the quantum Hall setup, as in
Ref. [36]. Therefore our results presented in this paper open
up possibilities for exploring novel transport phenomena in
the Corbino geometry, and in general in the field of viscous
electronic engineering.
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APPENDIX A: DERIVATION OF APPROXIMATE
SOLUTION OF STOKES FLOW

The exact solution of Stokes equation (1b) is given by (2).
Here, we derive the simplified form (5). Assuming r1, r2 � D,
we approximate the Bessel functions appearing in the solution
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by their asymptotic forms. K1 is a decreasing function, hence
its contribution towards the outer boundary is small, i.e.,

v|r→r2 ≈ c1I1(r/D) + vohm(r) ≈ c1
er/D

√
2πr/D

+ vohm(r).

Fitting this to the output flow at r2,

v|r→r2 ≈ (ωcτu2 + v2)

√
r2

r
e−(r2−r)/D − ωcτ

u2r2

r
.

We find that viscous correction to the Ohmic flow predom-
inates in a region of width ≈ D from the outer boundary.

Similarly, because I1 is an increasing function of r, and
given that inner and outer boundaries are largely separated, we
expect the relative contribution of I1 towards inner boundary
is small.

v|r→r1 ≈ c2K1(r/D) + vohm(r) ≈ c2

√
πD

2r
e−r/D + vohm(r).

Fitting to input flow at r1:

v|r→r1 ≈ (ωcτu1 + v1)

√
r1

r
e−(r−r1 )/D − ωcτ

u1r1

r
.

Stitching these together in (2), we get the required
expression.

Although the above approximations hold for D � r1, a
similar approach can be made for r1 � D (r2 large). This
situation, seemingly impractical, is now a possibility with
the fabrication of ultraclean semiconductor heterojunctions. In
recent experiments, mobilities as high as 50 × 106 cm2/(V s)
have been reached [61], for which the Gurzhi length is of the
order of 10 µm. To simplify the Stokes solution, we assume a
hypothetical interface at r� = r1 + D and divide the solution
into two regions. The outer region, similar to before, has the
form

vout ≈ (ωcτu� + v�)

√
r�

r
e−(r−r� )/D − ωcτ

u1r1

r

+ (ωcτu2 + v2)

√
r2

r
e−(r2−r)/D. (A1)

For the inner region r1 < r < r�, we make small-
argument expansion of the Bessel functions in the exact
solution (2):

vin = A
r

r1
+ A′ r1

r
+ A′ r1

2
r ln

r

r1
+ O(r2/D2),

where coefficients A, A′ have been suitably defined to impose
boundary conditions. Matching the flow at the input terminal,

vin = (v1 − A)
r1

r
+ A

r

r1
+ r1

2D2
(v1 − A + ωcτu1)r ln

r

r1
.

(A2)

The remaining unknown A can be determined numeri-
cally by imposing continuity of vorticity at r�. The complete
solution (A1), (A2) is plotted in Fig. 5 for the hypo-
thetical case of different injected tangential velocities. The

0.1 1 10
0

0.05

0.1

0.15

0.2

0 0.1 0.2

FIG. 5. Approximate solution of Stokes flow (circles) for differ-
ent injected velocities when r1 � D. Solid lines represent the exact
solution

approximate analytic solution is also compared with the exact
solution (2).

APPENDIX B: DERIVATION OF MAGNETORESISTANCE
EXPRESSIONS IN TABLE II

1. Ohmic dissipation

From the power budget equation (17), the Ohmic power
dissipation is

Pohm = 2πm∗τ−1
∫

rn(u2 + v2)dr.

First, let us consider homogeneous charge density. The
radial component is simply u = u1r1/r, hence, the corre-
sponding contribution to Pohm is

Pohm,r = I2 RDru

2π
ln

r2

r1
,

where the total current I = 2πr1neu1 and RDru = m∗/ne2τ .
From approximate solution (5), we can split the tangential

velocity into a bulk Ohmic contribution and a boundary con-
tribution as

v = vohm + vbdy,

where vbdy ∝ e−(r−r1 )/D near r1 and vbdy ∝ e−(r2−r)/D near r2.
From this, the tangential flow contribution to Pohm is

Pohm,t = 2πm∗n

τ

{∫
r(vohm)2dr

+
∫

r[2vohmvbdy + (vbdy )2]dr

}
.

The first term, which is an Ohmic contribution and comes
from the bulk, is

Pohm,t

∣∣∣∣
bulk

= I2(ωcτ )2 RDru

2π
ln

r2

r1

= (ωcτ )2Pohm,r = (ωcτ )2Pohm

∣∣∣∣
B=0

.
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The remaining contribution, coming from the viscous bound-
ary layers, is

Pohm,t

∣∣∣∣
inner bdy

× τ

2πm∗n

= −2ωcτu1r1(v1 + ωcτu1)
∫ ∞

r1

e−(r−r1 )/Ddr

+ r1(v1 + ωcτu1)2
∫ ∞

r1

e−2(r−r1 )/Ddr

= (ωcτu1)2r1D

{
2(ṽ1 − 1) + 1

2
(ṽ1 − 1)2

}

with the notation ṽ1 = −v1/ωcτu1. An exactly similar calcu-
lation gives

Pohm,t

∣∣∣∣
outer bdy

× τ

2πm∗n

= (ωcτu2)2r2D

{
2(ṽ2 − 1) + 1

2
(ṽ2 − 1)2

}

with u2 = u(r2) = u1r1/r2, and ṽ2 = −v2/ωcτu2.
The generalization to a system with two different densities

is straightforward: the power dissipated is the sum of the
dissipations from each of the uniform density regions. The
result is given in Table II.

2. Viscous dissipation

Pvis = 2π

∫
σ2

2η
r dr.

Under azimuthal symmetry, σrr = −σφφ = ηr∂r (u/r), while
σrφ = σφr = ηr∂r (v/r). The viscous dissipation due to radial
flow

Pvis,r = 2π

η

∫
σ 2

rrr dr = I2 η

π (ne)2

(
1

r2
1

− 1

r2
2

)
.

This is the same as power supplied due to boundary stresses
in the clean limit, when the electric field driving the current
disappears [33]. The magnetic field correction, and also the
contribution from disorder, comes from the azimuthal flow, as

Pvis,t = 2π

η

∫
σ 2

rφr dr

= 2πη

{∫ r2

r1

r3

[
∂r

(
vohm

r

)]2

dr

+
∫ r2

r1

r3

[
2∂r

(
vohm

r

)
∂r

(
vbdy

r

)

+ ∂r

(
vbdy

r

)2
⎤
⎦dr

}
.

Like for Ohmic dissipation, the first term is proportional to the
zero B field (bulk) resistance

Pvis,t |bulk = (ωcτ )2Pvis,r .

The contribution from the boundary layers comes from the
second term. At the inner boundary layer,

Pvis,t

∣∣∣∣
inner bdy

= I2 η(ωcτ )2

π (ne)2

{∫ ∞

r1

F1(r)e−(r−r1 )/Ddr

+
∫ ∞

r1

F2(r)e−2(r−r1 )/Ddr

}
,

F1(r) = 4

r1/2
1 r3/2

(ṽ1 − 1)

(
1 + 3D

2r

)
,

F2(r) = 1

r1
(ṽ1 − 1)2

(
1 + 3D

2r

)2

with ṽ1 = −v1/ωcτu1 as before. If r1 � D, F1, F2 are slowly
varying with r compared to the exponential, hence, we may
set their values as fixed at r1.

Pvis,t

∣∣∣∣
inner bdy

= I2 η

π (ne)2

{
2α1

r2
1

+ α2
1

4r1D

}

α1 = (ṽ1 − 1)

(
1 + 3D

2r1

)
.

A very similar expression holds at r2:

Pvis,t

∣∣∣∣
outer bdy

= I2 η(ωcτ )2

π (ne)2

{
2α2

r2
2

+ α2
2

4r2D

}

α2 = (ṽ2 − 1)

(
−1 + 3D

2r1

)
.

The dissipation due to two density regions is the sum of
dissipation from each region; however, for our choice of pa-
rameters r1 = 4D, the assumption r1/D � 1 is not valid and
naively using the above expression gives inaccurate estimates
near r1. In this case, we directly integrate the full expression
keeping the generic form of F1(r), F2(r). The result can be
expressed in terms of the exponential integral function:

Pvis,t

∣∣∣∣
inner bdy

= I2 η(ωcτ )2

π (ne)2 I1,

I1 =
{

2(ṽ1 − 1)

r2
1

+ (ṽ1 − 1)2

4r1D

(
1 + 3D

2r1

)
+ λ

}
,

λ = 3

4r2
1

(ṽ1 − 1)2

(
1 + r1

D
e2r1/DEi

[
−2r1

D

])
,

Ei[z] = −
∫ ∞

−z
dt e−t/t . (B1)
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