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Exact and approximate fluxonium array modes
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We present an exact solution for the linearized junction array modes of the superconducting qubit fluxonium
in the absence of array disorder. This solution holds for arrays of any length and ground capacitance and for
both differential and grounded devices. Array mode energies are determined by roots of convex combinations
of Chebyshev polynomials, and their spatial profiles are modified plane waves. We also provide a simple,
approximate solution which estimates array mode properties over a wide range of circuit parameters and an
accompanying Mathematica file that implements both the exact and approximate solutions.
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I. INTRODUCTION

The Josephson junction is arguably the most important
building block of modern superconducting circuits. Large
arrays of junctions have found applications in quantum in-
formation processing, quantum metrology, quantum-limited
amplification, and many-body simulation [1–4]. In super-
conducting quantum computing, serially connected arrays of
junctions are used to create so-called superinductors, reac-
tive elements with impedances greater than the resistance
quantum [5,6]. Along with single junctions and capacitors,
superinductors compose the contemporary toolbox of circuit
elements from which superconducting qubits are constructed.
Superinductors are critical components of certain species of
qubits such as the fluxonium, cos 2φ, and zero-π [7–9].

While it is often sufficient to treat a junction-array-based
superconductor as a single linear inductor, it is important to
remember that the phase drop across each junction in the array
is fundamentally a separate degree of freedom. Noise coupled
to these degrees of freedom can lead to decoherence of a qubit
encoded in the circuit, for instance, via the Aharonov-Casher
effect [10–13]. Moreover, these internal degrees of freedom of
the superinductor are strongly coupled, forming higher-order
array modes of the circuit. When designing qubit circuits, one
typically wishes to keep the frequency of these array modes
much higher than the system temperature, such that they can
be safely neglected when considering the circuit dynamics.
However, accurately predicting the array mode frequencies
requires solving the full Hamiltonian of the circuit, including
the degrees of freedom associated with the many junctions of
the superinductor.
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In this paper, we focus on the array modes of fluxonium,
a superconducting qubit formed by shunting a single junc-
tion with a superinductor and a capacitor [7] [see Fig. 1(a)].
When constructing the superinductor from serially connected
junctions, it is typical to choose device parameters such that
a single dominant mode, the superinductance mode, corre-
sponding to a correlated fluctuation of phases across the entire
array, governs the low-energy behavior, while all other modes,
the so-called array modes, have higher energies and are thus
comparatively suppressed. The low-energy Hamiltonian for
the superinductance mode is simple compared with the full
Hamiltonian and is given by

H = −4EC∂2
ϕ − EJ cos(ϕ − ϕext ) + EL

2
ϕ2, (1)

where EC, EJ , EL are the effective capacitive, Josephson, and
inductive energies; and ϕext is related to the external flux
threading the loop through ϕext = 2π�ext/�0, where �0 =
h/2e is the superconducting flux quantum. While this Hamil-
tonian has been used to describe the dynamics of fluxonium
devices with great success [7,14,15], for a more complete
representation of the device physics, one must treat the phase
drop across each array junction as a separate degree of free-
dom [6,12,16–18]. These considerations become especially
important as EL shrinks (inductance grows) because the ar-
ray modes generally move to lower energy and thus become
progressively more relevant to the circuit dynamics.

Here, we present an analytic solution to the array modes
of the fluxonium model schematically depicted in Fig. 1(b).
Previous theoretical works have used various approximations
to examine the structure and noise properties of fluxonium ar-
ray modes [6,12,16–18]. Building off these works, we present
an analytic solution to array modes of the full fluxonium
Hamiltonian as well as a useful approximation scheme. This
exact solution also applies to the array modes of SNAILs [19].
In Sec. II, we define the model, tracking the effect of array
modes on the quantum Hamiltonian. In Sec. III, we derive
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FIG. 1. (a) Simplified fluxonium circuit diagram. (b) Full fluxo-
nium circuit diagram. Array junctions are assumed to have identical
capacitances and Josephson energies, Ca, Ea

J , while the smaller junc-
tion has different values Cb, Eb

J (to simplify the diagram, we include
any capacitance shunting the small junction in Cb). Similarly, the
array junctions are supposed to couple to ground through capaci-
tances Ca

g , while the smaller junction couples to ground capacitance
Cb

g (shown in purple). An external flux �ext threads the loop.

the exact array modes of a differential fluxonium device in
the presence of ground capacitances, then show how the array
modes of a grounded fluxonium device is contained in this
result. In Sec. IV, we present a simple approximation scheme
for array modes. In Sec. V, we present our conclusions.

II. FLUXONIUM

A diagram of fluxonium is shown in Fig. 1: It consists
of a single superconducting loop containing N + 1 junctions
threaded by an external flux �ext. Indicated in the figure, θ0

represents the gauge-invariant branch phase across the small
junction, while θ1, . . . , θN represent phases across the N array
junctions. The phases are constrained by the fluxoid quantiza-
tion condition to satisfy

∑N
m=0 θm + ϕext = 2πz, z ∈ Z, and

we employ this condition from the beginning to eliminate θ0

from all expressions.
In this paper, we consider differential, or floating, fluxo-

nium, where the overall voltage may fluctuate in time. This is
reflected by the presence of the τ variable in Fig. 1, which is a
reference node variable such that τ̇ �= 0. Grounded fluxonium
devices, on the other hand, have τ̇ = 0. Both grounded and
differential devices are being built today [14,20], and inter-
estingly, the array mode physics of a grounded fluxonium
circuit is contained in that of the differential one in the absence
of array disorder. While our analysis focuses on differential
fluxonium, we show at the end of the next section how the
grounded one can be obtained from the differential case.

We denote the Lagrangian of a differential fluxonium
device by

L = T − U, (2)

where T, U are the kinetic and potential energies, respec-
tively. We consider a potential energy:

U = −Ea
J

N∑
m=1

cos(θm) − Eb
J cos

(
N∑

m=1

θm − ϕext

)
, (3)

and kinetic energy T = T0 + Tg, where

T0 = 1

2

(
h̄

2e

)2
⎡
⎣Ca

N∑
i=1

θ̇2
i + Cb

(
N∑

i=1

θ̇i

)2
⎤
⎦

Tg = 1

2

(
h̄

2e

)2

⎡
⎢⎣Ca

g

N−1∑
i=1

⎛
⎝τ̇ +

i∑
j=1

θ̇ j

⎞
⎠

2

+Cb
g τ̇ 2 + Cb

g

⎛
⎝τ̇ +

N∑
j=1

θ̇ j

⎞
⎠

2
⎤
⎥⎦. (4)

This system has been previously considered [16,17]. Here,
T0 represents the kinetic energy of the junctions themselves,
while Tg models capacitive coupling to ground [11,21–23].
The terms in Tg are represented by the purple capacitors in
Fig. 1. The first term of Tg, proportional to Ca

g , accounts for
ground capacitances along the array and is represented the
purple capacitors at the bottom of the figure. The two remain-
ing terms, proportional to Cb

g , account for ground couplings of
the small junction and are represented by the purple capacitors
at the top of the figure.

We emphasize that we are not considering the most gen-
eral model of fluxonium: We assume zero array disorder. We
make this assumption to obtain an analytic solution for array
modes. A more realistic model incorporating array disorder
was solved previously [12]. This solution is complementary
to ours, providing a semianalytic solution to a more general
case.

Our aim is to provide exact expressions for the array modes
of the model of fluxonium model defined by Eqs. (2)–(4).
These arise in the course of circuit quantization, a general
method for formulating quantum theories of circuits [22,24].
The method proceeds in two steps: First, the classical La-
grangian is transformed into a classical Hamiltonian through
a Legendre transformation, and second, the theory is quan-
tized by promoting all dynamical variables appearing in the
Hamiltonian to operators on a Hilbert space and by imposing
on conjugate variables the canonical commutation relations.

The first step, Legendre transforming from Lagrangian to
Hamiltonian, is complicated by the coupling between phase
variables in Eq. (4). To accomplish this transformation, we
proceed as follows [25]. We first rewrite the kinetic energy as

T = 1

2

(
h̄

2e

)2

ẋTMẋ, (5)

where x := (τ, θ1, . . . , θN ). The (N + 1) × (N + 1) matrix M

is equal to

M =
[

a bT

b C

]
, (6)

where a = 2Cb
g + (N − 1)Ca

g is a number, b is a vector
with components bm = Cb

g + Ca
g (N − m), (m = 1, . . . , N ),

and C = C1 + C2 + C3 is an N × N matrix. Here, (C1)i j =
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Caδi j , (C2)i j = Cb + Cb
g , and

C3 = Ca
g

⎡
⎢⎢⎢⎢⎣

N − 1 N − 2 . . . 1 0
N − 2 N − 2 . . . 1 0

...
...

. . .
...

1 1 . . . 1 0
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎦.

Since the potential energy Eq. (3) is independent of τ , its
conjugate momentum is conserved, and τ can be eliminated
from the Lagrangian entirely. Defining the total charge:

ntot = ∂L

∂τ̇
= 0, (7)

one finds τ̇ = −a−1bT θ̇ , where θ := (θ1, . . . , θN ). Using this
relation to eliminate τ̇ from the Lagrangian, one obtains

L = 1

2

(
h̄

2e

)2

θ̇TCθ̇ − U, (8)

where C = C + C4, C4 = −bbT /a. We have checked that C
is the same capacitance matrix as in Ref. [16] (using their
Eq. D3). Defining conjugate momenta pi = ∂L/∂θ̇i and per-
forming the Legendre transformation, one finally obtains the
classical Hamiltonian:

H = 1

2

(
2e

h̄

)2

pTC−1 p + U . (9)

Having computed the classical Hamiltonian, one may
quantize the theory. What results is a challenging quantum
many-body problem which we do not attempt to solve (many-
body calculations do exist, though, for example, the tensor
network calculations of Ref. [12]). Instead, we focus on ex-
actly computing the array modes and tracking their effect on
the quantum theory. To accomplish the latter, we express all
quantities in terms of the eigenvalues and normalized eigen-
vectors of C−1, which we denote as λm and vm, and solve for
in the following section.

We begin by defining a diagonal matrix �mn = λmδmn and
an orthogonal matrix Vmn = (vm)n, so that C−1 = VT �V and
VTV = 1. Defining new canonically conjugate variables P =
Vp and � = Vθ , one has pTC−1 p = PT �P and

θm =
N∑

a=1

�aVam,

N∑
m=1

θm = �0

N∑
b=1

V0b +
N−1∑
μ=1

N∑
b=1

�μVμb. (10)

Promoting conjugate variables to operators satisfying
[�m, Pn] = ih̄δmn and defining

ϕ = �0

N∑
b=1

V0b,

N 1/2 =
N∑

b=1

V0b,

N 1/2
μ =

N∑
b=1

Vμb, (11)

one obtains the quantum Hamiltonian for fluxonium:

Ĥ = −4EC∂2
ϕ − 4

N−1∑
μ=1

Eμ∂2
μ

−Ea
J

N∑
m=1

cos

⎛
⎝ϕ

V0m

N 1/2
+

N−1∑
μ=1

�μVμm

⎞
⎠

−Eb
J cos

⎛
⎝ϕ − ϕext +

N−1∑
μ=1

�μN 1/2
μ

⎞
⎠, (12)

where EC = N e2λ0/2, Eμ = e2λμ/2, and ∂μ = ∂/∂�μ. Sim-
ilar expressions for the fluxonium Hamiltonain were found
previously [12].

At this point, no approximations have been made.
When ground capacitances are zero, however, the eigen-
system of C−1 simplifies. One finds that λ0 = 1/(Ca +
NCb) and λμ = 1/Ca for every μ; the eigenvector for
the superinductance mode is constant, with components
(v0)m = V0m = N−1/2, and within the degenerate subspace,
a basis of array modes can be chosen so that (vμ)m =
Vμm = (2/N )1/2cos[μπ/N (m − 1

2 )] [16]. Thus, N = N , and
Nμ = 0. This choice of array mode basis eliminates them
from the final line of Eq. (12), simplifying the problem. We
will show in the following section that ground capacitances
produce a nondegenerate array mode spectrum whose eigen-
vectors are eigenstates of parity. The odd parity modes satisfy
Nμ = 0; however, the even parity modes have Nμ �= 0. This
produces couplings between the superinductance and parity
even array modes. As reported in Ref. [12], these interac-
tions produce important corrections to the circuit Hamiltonian
which vary exponentially with mode impedances.

Since Ea
J � Ea

C , it is common to expand the array mode
cosines in Eq. (12) to second order:

−Ea
J

N∑
m=1

cos θm = −Ea
J N + Ea

J

2
θT θ + O

(
θ4

m

)
. (13)

Performing this expansion and rewriting the Eb
J cosine with

trigonometric identities, one obtains

Ĥ = −4EC∂2
ϕ − EJ cos(ϕ − ϕext ) + EL

2
ϕ2

+
N−1∑
μ=1

(
−4Eμ∂2

μ + Ea
J

2
�2

μ

)

−EJ cos(ϕ − ϕext )

⎡
⎣cos

⎛
⎝∑

μ

�μN 1/2
μ

⎞
⎠− 1

⎤
⎦

+EJ sin(ϕ − ϕext ) sin

⎛
⎝∑

μ

�μN 1/2
μ

⎞
⎠, (14)

where EJ = Eb
J , and EL = Ea

J /N . The first line is Eq. (1),
with the relations between EC, EJ , EL and microscopic param-
eters now obtained. The remaining terms in the Hamiltonian
describe array modes and intermode couplings [18].
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Examining the Hamiltonian, one can see how the param-
eters of fluxonium are renormalized through various effects.
For example, the inductive energy is given by EL = Ea

J /N ,
and only if the superinductance mode has a flat voltage profile
does N = N , producing the usual relationship EL = Ea

J /N .
In general, N � N , raising the inductive energy. The quartic
(and higher-order) couplings that we have dropped further
renormalize EL.

The renormalization of other couplings, such as EJ , can be
compactly expressed in terms of the plasma frequencies and
zero-point fluctuations:

h̄ωμ = (
8EμEa

J

)1/2 = (
4Ea

J e2λμ

)1/2
,

�μ,zpf =
(

2Eμ

Ea
J

)1/4

=
(

e2λμ

Ea
J

)1/4

. (15)

Assuming array modes occupy their ground state,

〈
cos

⎛
⎝∑

μ,b

�μVμb

⎞
⎠− 1

〉
� −1

2

∑
μ

Nμ�2
μ,zpf .

Thus, to leading order in fluctuations, EJ is renormalized as

EJ → EJ

⎛
⎝1 − 1

2

∑
μ

Nμ�2
μ,zpf

⎞
⎠. (16)

The eigensystem of C−1 is thus seen to affect many properties
of fluxonium: the charging energies of array modes, the renor-
malization of Hamiltonian couplings, as well as dispersive
couplings not discussed here [17]. The eigensystem has been
analytically solved in several limits. The case Cb = 0 was
solved in Ref. [6], where it was shown that the eigenvectors
of C−1 are plane waves, and analytic expressions for the
eigenvalues were found. The case Ca

g = Cb
g = 0 was solved

in Ref. [16], and later work included some effects of charge
noise [11]. Nonzero Cb and Ca

g ,Cb
g complicate the theory.

Leading-order interactions between the superinductance and
array modes were computed in Ref. [17]. Recent work has
developed a semianalytical solution for array modes which
holds in the presence of ground capacitances and disorder and
performs tensor network calculations of the resulting quantum
many-body system [12].

In this paper, we derive analytic formulas for the eigen-
system when Ca,Cb,Ca

g ,Cb
g �= 0. In addition to containing as

limiting cases the results of Refs. [6,16], our formulas are
useful for understanding physics that emerges from heavily
grounded or very long arrays, where the eigensystem of C−1

deviates from previous results substantially.

III. EIGENSYSTEM OF C−1

In this section, we derive exact expressions for the eigen-
system of C−1. We do so in two steps: We find a simple
representation of C−1, then diagonalize it. Recall that

C = C1 + C2 + C3 + C4. (17)

It is beneficial to consider a partial sum of C, particularly the
inverse (C2 + C3 + C4)−1. It is straightforward to verify that

1

C2 + C3 + C4
= −�(ε, ε′)

Ca
g

, (18)

where

−�(ε, ε′) :=

⎡
⎢⎢⎢⎢⎣

1 + ε −1 −ε′
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−ε′ −1 1 + ε

⎤
⎥⎥⎥⎥⎦ (19)

is an N × N matrix, and

ε = Ca
g

Cb
g

Cb + Cb
g

2Cb + Cb
g

, and ε′ = Ca
g

Cb
g

Cb

2Cb + Cb
g

. (20)

We observe that (C2 + C3 + C4)−1 represents a discrete
Laplace operator. The (1,1), (N, N ), (1, N ), and (N, 1) en-
tries of the matrix encode boundary conditions satisfied by
the corresponding continuous function on the interval. These
boundary conditions will, in general, fix a linear combination
of the solution and its derivative at the left/right endpoints
(i.e., Robin-Robin boundary conditions). For example, when
ε = 1 and ε′ = 1, the matrix represents a one-dimensional
(1D) Laplace operator with periodic boundary conditions. It is
conceivable that non-nearest-neighbor couplings will lead to
inverse capacitance matrices of a similar form but with further
off-diagonal bands. We speculate that the methods presented
in this section, which rely primarily on the structure of banded
matrices, may be used to also solve these problems.

The eigensystem of C−1 can be derived by noting that if,
for some vector v and scalar λ,

1

C2 + C3 + C4
v = λv, (21)

then

1

C1 + C2 + C3 + C4
v = λ

1 + Caλ
v, (22)

which holds since C1 is a multiple of the identity operator.
Thus, is it enough to compute the spectrum of (C2 + C3 +
C4)−1, and hence −�(ε, ε′), to compute that of C−1. It is
important to note that, while 1/(C2 + C3 + C4) is sparse,
1/(C1 + C2 + C3 + C4) is dense, as can be seen by Taylor
expanding in C1 or numerically computing examples at small
N . Thus, this seemingly trivial step is quite important for the
analysis.

Before proceeding, we would like to point out that Eq. (18)
itself is useful. The capacitance matrix itself is dense, and
numerically computing its eigensystem becomes costly for
long arrays: Eq. (18) shows the eigensystem can be computed
from a sparse matrix.

We will now compute the eigensystem of −�(ε, ε′). We
will distinguish the eigenvalues of −�(ε, ε′) and C−1, writing
the former as � and the latter as λ. For every eigenvalue � of
−�(ε, ε′), the corresponding eigenvalue of C−1 is λ = (Ca +
Ca

g /�)−1. The eigenvectors of the two matrices are equal, and
we denote these as v.
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The eigensystem of −�(ε, ε′) can be derived by exploiting
reflection symmetry of the fluxonium circuit about its mid-
point, which is present since we are considering a differential
fluxonium circuit without array disorder. This symmetry is
manifested in the fact that −�(ε, ε′) commutes with

F :=

⎡
⎢⎣ 1

. .
.

1

⎤
⎥⎦, (23)

which implements the reflection. Since F2 = 1, the following
matrices are projection operators:

P± = 1

2
(1 ± F), (24)

which allows −�(ε, ε′) to be decomposed over subspaces as
follows:

−�(ε, ε′) =
∑
i=±

Pi{−�(ε, ε′)}Pi. (25)

We call the P+ subspace parity even and the P− subspace
parity odd (the voltage profiles of P+ and P− modes are,
respectively, odd and even). Each term on the right-hand-side
of Eq. (25) can be simplified:

P±{−�(ε, ε′)}P± = −�(ε±, 0)P±, (26)

where

ε+ := ε − ε′ = Ca
g

2Cb + Cb
g

,

ε− := ε + ε′ = Ca
g

Cb
g

. (27)

These expressions show that even modes depend on Cb, while
odd ones do not, which is expected because only even modes
drop in voltage across the small junction.

Denoting the eigenvectors of −�(ε, ε′) which are mem-
bers of the P+, P− subspaces as v+(�+), v−(�−), respectively,
Eq. (26) then implies

−�(ε, ε′)v±(�±) = −�(ε±, 0)v±(�±)

= �±v±(�±). (28)

Thus, it suffices to attain the eigensystems of the matrices
−�(ε±, 0). The characteristic polynomials of −�(ε±, 0) are
in fact doubly convex combinations in ε± (see Appendix A for
a derivation). The eigenvalues of −�(ε±, 0) are respectively
the roots of these two degree N polynomials:

P± = (1 − ε±)2[(2α± − 2)UN−1(α±)] + ε2
±[UN (α±)]

+2(1 − ε±)ε±
[
β−1

± T2N+1(β±)
]
, (29)

for α± := 1 − �±
2

, β± :=
(

1 − �±
4

)1/2

,

where Tk and Uk are the kth-order Chebyshev polynomials of
the first and second kind [26–28] (the T2N+1 term is a poly-
nomial in λ, even though the argument involves a square root,
see Appendix A). The mth component of the (nonnormalized)
eigenvector corresponding to eigenvalue �± can be expressed

as

[v±(�±)]m = ε±[Um−1(α±)]

+(1 − ε±)[β−1
± T2m−1(β±)], (30)

where m = 1, . . . , N . Equations (29) and (30) give a complete
description of eigenvalues/vectors of the inverse capacitance
matrix [by making use of Eqs. (22) and (18)]. The reader may
notice that the eigenvalues of the inverse capacitance matrix
above do not depend on external flux: This dependence comes
in when the eigenvalues are input into the Hamiltonian, which
does depend on flux, to compute energies and wave functions
of quantum states.

Before continuing, we address an important detail. Each
of the polynomials P+ and P− has N roots: Together, they
have 2N , which is double the number of eigenvalues. To
obtain the N eigenvalues of −�(ε, ε′), one computes all 2N
roots, plugs them into the eigenvector formula in Eq. (30),
and keeps only eigenvalues which produce eigenvectors with
the correct symmetry. The N roots of P+ are to be plugged
into the v+(�+) formula, and only those eigenvalues which
produce even vectors are kept. Similarly, the N roots of P−
are plugged into v−(�−), and only those eigenvalues which
produce odd vectors are kept. This procedure results in N
eigenvalues/vectors, and these constitute the eigensystem of
−�(ε, ε′).

With the correct roots obtained, there is an alternative,
simpler formula for the eigenvectors. Defining a vector-valued
function ṽ(x) with components:

[ṽ(x)]m = cos

[
(2m − 1)arcsin

√
x

4

]
, (31)

for m = 1, . . . , N , then a nonnormalized eigenvector corre-
sponding to even/odd eigenvalue �± is

P±ṽ(�±). (32)

The eigenvectors are thus seen to be even and odd superpo-
sitions of plane waves. With these expressions, one can show
that, for even modes,

Nμ =
8 sin

(
N csc−1

√
4
�+

)2
/�+

N + csc
(

2 csc−1
√

4
�+

)
sin
(

2N csc−1
√

4
�+

) , (33)

for the μth even eigenvalue �+ (including the zeroth eigen-
value), and Nμ = 0 for all odd modes. It is useful to expand
Nμ when ground capacitances are small. In this case, ε+ ≈ 0,
and the characteristic polynomial P+ ≈ (2α+ − 2)UN−1(α+).
The roots of this polynomial are 0, 4 sin2(μπ/2N ), for μ =
1, . . . , N − 1, whose positions will be perturbed by ground
capacitances to 0 + δ0, 4 sin2(μπ/2N ) + δμ. One finds

N = N + δ2
0

720
(−4N + 5N3 − N5) + O

(
δ3

0

)
,

Nμ = δ2
μ

N

32
csc

(μπ

2N

)4
sec

(μπ

2N

)2
+ O

(
δ3
μ

)
, (34)

for even modes, while for odd modes, Nμ always vanishes.
We now provide a numerical demonstration of our for-

mulas in Fig. 2. Motivated by an experiment reaching
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FIG. 2. Two lowest array mode eigenvectors of an N = 33 000
array with capacitances of Eq. (35). The vertical axis is dimen-
sionless and is proportional to the voltage profile across the array.
Opaque/transparent curves include/neglect ground capacitance re-
spectively. Dotted black lines result from numerically diagonalizing
the inverse capacitance matrix.

N = 33 000 [29], we consider a very long N = 33 000 array,
where ground effects are large, with capacitances:(

Ca,Cb,Ca
g ,Cb

g

) = (19.37, 5.23, 0.01, 3.87) [fF], (35)

taken from Appendix F of Ref. [16] (we convert the reported
charging energies to capacitances via EC = e2/2C). We solve
for the lowest two modes of C−1 using our exact result and
compare against exact diagonalization. The dotted black lines
in the figure are obtained by numerically diagonalizing the
inverse capacitance matrix, and their agreement with the red
and gray curves, obtained from Eq. (30), demonstrates our for-
mulas are correct. The transparent curves are the approximate
eigenvectors of Ref. [16], obtained by dropping ground ca-
pacitances (i.e., setting C3 = C4 = 0). The difference between
transparent and opaque curves indicates that ground capaci-
tances substantially modify mode profiles in long arrays.

We conclude this section by showing how the preceding
results apply to grounded (rather than differential) fluxonium
devices. Consider a grounded fluxonium device with N array
junctions, Lagrangain given by Eqs. (2)–(4), and capaci-
tances Ca,Cb,Ca

g ,Cb
g . Then all that changes in the derivation

of the quantum Hamiltonian of this circuit is that τ̇ = 0
from the outset. The effect of this change is to eliminate C4

from the capacitance matrix, so that C = C1 + C2 + C3. The
eigensystem of this new capacitance matrix can be solved with
similar methods to the differential case. One finds that

1

C2 + C3
= 1

Ca
g

⎡
⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1 + δ

⎤
⎥⎥⎥⎥⎦

:= −�(δ)

Ca
g

, (36)

where δ = Ca
g /(Cb + Cb

g ) and where we have defined a new
N × N matrix −�(δ).

The eigensystem of Eq. (36) can be obtained by noticing
that it is embedded in that of a differential device with 2N
array junctions and small junction capacitance Cb/2. In this
case,

−�(ε+, 0)P+ = 1

2

[−F�(δ)F −F�(δ)
−�(δ)F −�(δ)

]
, (37)

where it is understood that the matrix on the left-hand side
is 2N × 2N and the blocks on the left are N × N . The even
eigenvectors of the 2N-sized system can be written as v2N =
[FvN vN ], and one can show that −�(ε+, 0)P+v2N =
λv2N implies −�(δ)vN = λvN . Thus, the eigenvectors of the
grounded system with N array junctions and small junction
capacitance Cb are the first half of the eigenvectors of the
differential system with 2N array junctions and small junction
capacitance Cb/2, and the eigenvalues between the two cases
are the same.

This same conclusion can be reached from symmetry argu-
ments [14,20]. The even modes of a differential device with
2N array junctions have zero voltage at the midpoint of the
circuit. Rewriting the small junction capacitor as two equal
capacitors in series and noting the reflection symmetry about
the midpoint shows that, from the point of view of the even
modes, the first N junctions of the circuit is indistinguishable
from a grounded device.

IV. APPROXIMATION SCHEME

The formulas of Eqs. (29) and (30) for the eigensystem
of C−1 are exact. However, it may be useful to work with
approximate eigensystems with simple expressions requiring
no root finding for speed and intuition. We presently provide
such a scheme.

The approximate eigenvalues of C−1 are

λ0 =
[
Ca + Ca

g

�0

]−1

λeven
μ =

[
Ca + Ca

g

�even
μ

]−1

λodd
μ =

[
Ca + Ca

g

�odd
μ

]−1

, (38)

where

�0 =
[(

N2

12
− N

4
+ 1

6

)
+ NCb

Ca
g

+ N

2

Cb
g

Ca
g

]−1

�even
μ = 4 sin2

(μπ

2N

)
+ 4

N
cos2

(μπ

2N

) Ca
g

2Cb + Cb
g

�odd
μ = 4 sin2

(μπ

2N

)
+ 4

N
cos2

(μπ

2N

)Ca
g

Cb
g

, (39)
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and the approximate eigenvectors of C−1 are

v0 = P+ṽ(�0)

veven
μ = P+ṽ

(
�even

μ

)
vodd

μ = P−ṽ
(
�even

μ

)
, (40)

where μ = 1, . . . , N − 1. The N ,Nμ corresponding to these
approximate eigenvectors can be obtained by substituting
�0, �

even
μ into Eq. (33) or approximated by Eq. (34). For the

odd modes, Nμ = 0.
We arrive at this approximation scheme in the following

way. First, the approximate eigenvectors are simply the ex-
act eigenvectors of −�(ε, ε′) (and therefore C−1) evaluated
at approximate eigenvalues. This choice retains the correct
symmetry and wavelike profile of the exact solution but uses
an approximate wave number. To estimate the eigenvalues of
C−1, we leverage the eigenvectors of Ref. [16], namely:

(v0)m = N−1/2

(vμ)m =
√

2

N
cos

[
πμ

N

(
m − 1

2

)]
, (41)

which can be shown to be the limit of the exact eigenvectors as
ground capacitances go to zero. We then separate two cases:
the lowest eigenvalue and the rest of them. For the latter, we
compute

v†
μ

[
−�(ε, ε, ε′, N )

Ca
g

]
vμ, (42)

which is an estimate of the μth eigenvalue of (C2 + C3 +
C4)−1. We then use Eq. (22) to relate this eigenvalue esti-
mate to one for the full C−1. Depending whether vμ is an
even or odd mode, either ε+ = Ca

g /(2Cb + Cb
g ) or ε− = Ca

g /Cb
g

appears in the calculation, and this produces the different
dependencies in Eq. (39). The dependence/independence of
even/odd vectors on Cb is expected from symmetry, and it is
a strength of our scheme this feature is captured. Furthermore,
since ground capacitances are typically much smaller than
junction capacitances, ε+ << ε−, and one therefore expects
better estimates for the even modes than the odd.

Repeating the above procedure with v0, one obtains (Ca +
NCb + Cb

g N/2)−1 as an estimate of the lowest eigenvalue of
C−1. A tighter bound can be obtained, however, by observing
that the lowest eigenvalue of C−1 is equal to the inverse of
the highest eigenvalue of C. Thus, the lowest eigenvalue of
C−1 is bounded from above by λ0 := (v†

0Cv0)−1, which is
equal to the expression in Eq. (38). Since λ0 < (Ca + NCb +
Cb

g N/2)−1, it is a tighter bound, and we use it. Previous work
arrived at this same estimate [16]. Finally, we have shown that
solving for the roots of the exact solution Eq. (29) to first order
in ε± yields the same approximate eigenvalues as the present
method.

We now give an example to illustrate the utility of the ap-
proximation scheme. For the rest of this section, we consider
systems with variable N but with capacitances fixed to those
listed in Eq. (35), which we reproduce here:(

Ca,Cb,Ca
g ,Cb

g

) = (19.37, 5.23, 0.01, 3.87) [fF]. (43)

In Fig. 3(a), we plot the fractional error of the first even parity
array mode λ2 for N � 400, where fractional error is defined
as 100 × |(λexact − λapprox)/λexact|. The estimate is quite good,
with <1% error by N = 400. In the figure, we also compare
with perturbation theory, which approximates the full inverse
capacitance matrix by the first few terms in the geometric
series:

1

C1 + C2 + Cg
=

∞∑
k=0

(−1)k 1

C1 + C2

[
Cg

1

C1 + C2

]k

,

where Cg = C3 + C4 [16,17]. In the figure LO and N2LO
mean to cut off the infinite sum at k = 0, 2, respectively. At
leading order, the superinductance mode eigenvalue equals
1/(Ca + NCb), while the array mode eigenvalues are degen-
erate with eigenvalue 1/Ca. We skip NLO (k = 1) because
the series exhibits an alternating behavior which renders the
NLO estimate quite poor. Figure 3(a) shows our approxima-
tion scheme is more accurate than perturbation theory. Since
our approximation scheme requires only a function call rather
than matrix multiplications, it is also cheaper.

In Fig. 3(b), we compare λ0, λ1, λ2, λ3 to the exact result
for N � 1, 000. The estimates are seen to have at worst a
∼14% error; this occurs for the first odd parity mode which
has an anomalously large error. All other modes are extremely
well estimated, with <2% error by N = 1000. On average, the
error of the odd modes is larger than the error for the even
modes. This can be traced back to the fact that the correction
to the free Laplacian eigenvalue for odd modes is proportional
to Ca

g /Cb
g , while the correction for even modes is propor-

tional to Ca
g /(2Cb + Cb

g ), which is much smaller. Figure 3(c)
compares first four exact and approximate eigenvectors at
N = 1000. The parity and wavelike nature of eigenvectors are
baked into the approximation scheme, with only the estimated
wave number slightly incorrect. In Fig. 3(d), we fix N = 1000
and plot the spectrum of C−1. The low modes have the highest
error; however, as indicated by the inset, the entire spectrum
is well approximated.

We conclude this section by noting that, while this ap-
proximation scheme is quite accurate, it does not capture the
correct asymptotic behavior of eigenvalues at large N and
will become inaccurate at large enough arrays. Computing
eigenvalues for array lengths up to N = 250 000, we find
strong evidence that the asymptotic scaling of eigenvalues is
N−2, a feature noted previously [30]. While our superinduc-
tance mode estimate scales as N−2, the array mode estimates
scale as N−1. On very large arrays, we suggest the following
alternative estimate, which has the correct asymptotic scaling:

(
v†

μCvμ

)−1 =
{

Ca + Ca
g

4
sin−2

(πμ

2N

)

− [1 − (−1)μ]2Ca
g

2

2Cb
g + (N − 1)Ca

g

cot2
(

πμ

2N

)
csc2

(
πμ

2N

)
8N

}−1

.

(44)

V. CONCLUSIONS

In this paper, we presented an exact solution for the ar-
ray modes of fluxonium in the absence of array disorder.
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FIG. 3. Approximation scheme performance. (a) Fractional error of λ2 in different approximation schemes. Our scheme is labeled
“approx,” while LO and N2LO indicate leading- and next-to-next-to-leading-order perturbation theory. The inset shows the logarithm of
the fractional error of the approximation scheme. (b) Fractional error of our approximation scheme for the lowest four eigenvalues of C−1 as
a function of the number of array junctions N . (c) Exact and approximate eigenvectors of four lowest modes at N = 1000. The vertical axis
is dimensionless. Colored lines are the approximate eigenvectors, while the dotted black lines are the exact eigenvectors. (d) Fractional error
of eigenvalues at N = 1000 in our approximation scheme. The horizontal axis indexes eigenvalues. Points show the lowest eigenvalues, while
the inset shows the whole spectrum.

Array mode energies and spatial profiles are determined by
the eigenvalues and eigenvectors of the inverse capacitance
matrix, which we have explicitly solved for. The eigenvalues
are the roots of a doubly convex combination of Chebyshev
polynomials, while the eigenvectors are plane waves. These
results extend known formulas for the array mode spectrum
in the absence of ground capacitances [16].

In the course of developing this solution, it was shown that
the inverse capacitance matrix is related to a discrete Laplace
operator with Robin-Robin boundary conditions. This inter-
mediate result has practical utility because it shows that, while
the capacitance matrix itself is dense, its spectrum can be
computed from a sparse matrix.

Reflection symmetry of the circuit about its midpoint is
essential in our analysis: It organizes array modes into even
and odd parity subspaces and simplifies the mathematical

steps required to find the eigensystem. The even array modes
were seen to couple to the superinductance mode through the
small junction with a magnitude controlled by the array mode
normalizations Nμ. These couplings produce corrections to
the circuit Hamiltonian which vary exponentially with the
mode impedances [12], and to assist in their quantification, we
have provided both exact and approximate expressions for the
normalizations. We then related our results for a differential
device to a grounded one, showing that the array modes of a
grounded device of length N with small junction capacitance
Cb are equal to the first half of the even modes of a length 2N
floating fluxonium with small junction capacitance Cb/2.

We provided a simple approximation scheme for the
eigensystem of the inverse capacitance matrix requiring no
Chebyshev polynomials. Eigenvalues are approximated by
simple analytic expressions, while eigenvectors are plane
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waves. For arrays <1000 junctions long, all eigenvalues ex-
cept the first odd array mode are estimated to better than 2%.
The eigenvector approximation scheme involves substituting
into the exact formula an approximate wave number, which
approximate eigenvectors well. Our scheme outperforms per-
turbation theory in both speed and accuracy.

Here, we focus on only a small aspect of the physics of
fluxonium. It will be interesting to explore the consequences
of our formulas on large arrays. It will also be interesting to
explore applications of our method to other qubits containing
superinductances such as 0 − π . The challenge in this case
would be the presence of a second superinductor and cou-
plings between their respective array modes.
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APPENDIX A: CHARACTERISTIC POLYNOMIAL
DERIVATION

In this Appendix, we derive the characteristic polynomial
of the N × N matrix:

−�(ε, 0) =

⎡
⎢⎢⎢⎢⎣

1 + ε −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1 + ε

⎤
⎥⎥⎥⎥⎦, (A1)

for general ε, N . We do this by considering an auxiliary ma-
trix:

−�(ε) :=

⎡
⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1 + ε

⎤
⎥⎥⎥⎥⎦, (A2)

explaining at the end how to extend the result to Eq. (A1).
Denote this characteristic polynomial by

P(λ, ε) := det[−�(ε) − λ1]. (A3)

The recurrence relation for the determinant of a tridiagonal
matrix [31,32] gives

P(λ, ε) = (1 + ε − λ)pN−1 − pN−2, (A4)

where pi is the determinant of an i × i matrix:

pi = det

⎡
⎢⎢⎢⎢⎣

1 − λ −1
−1 2 − λ −1

. . .
. . .

. . .

−1 2 − λ −1
−1 2 − λ

⎤
⎥⎥⎥⎥⎦. (A5)

Each pi is a difference of Chebyshev polynomials of the
second kind [27]:

pi = Ui−1(α) − Ui−2(α), for α = 1 − λ

2
. (A6)

The characteristic polynomial thus reads

P(λ, ε) = (1 + ε − λ)[UN−1(α) − UN−2(α)]

−[UN−2(α) − UN−3(α)]. (A7)

The next steps are as follows: Rearrange the terms of Eq. (A7)
to extract a term proportional to (1 − ε) and a second term
proportional to ε. Both of these terms will contain sums
of Ui(α) − Ui−1(α), where i = N − 1, N − 2. We proceed to
eliminate all instances of UN−3(α) via the recurrence relation
(DLMF, sec. 18.9 [26]):

UN−3(α) = 2α UN−2(α) − UN−1(α). (A8)

The Chebyshev polynomial of the first kind Tk is then in-
troduced using a combination of the two formulas (eq. 3
of sec. 10.11, p. 184 [33], DLMF, sec. 3.11.7 [26], and
Refs. [27,28]):

Tn(x) = Un(x) − x Un−1(x),

Tn+1(x) = 2x Tn(x) − Tn−1(x). (A9)

In the previous expression for P(λ, ε), the following substitu-
tion is made:

(2α − 2)UN−1(α) + {UN−1(α) − UN−2(α)} = 1

β
T2N+1(β ),

(A10)

where β = √
1 − λ/4. This yields the characteristic polyno-

mial in Eq. (29), which in the current special case reads

P = [(2α − 2)UN−1(α)](1 − ε) + [β−1T2N+1(β )]ε. (A11)

The same steps can be followed for the characteristic polyno-
mial of −�(ε, 0), which yields

P = (1 − ε)2[(2α − 2)UN−1(α)] + ε2[UN (α)]

+2(1 − ε)ε[β−1T2N+1(β )]. (A12)

APPENDIX B: EIGENVECTOR DERIVATION

In this Appendix, we derive the eigenvectors of −�(ε, 0),
i.e., Eq. (30), reproduced here:

[v(λ)]m = ε[Um−1(α)] + (1 − ε)[β−1T2m−1(β )]. (B1)
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In this expression, λ is a fixed eigenvalue determined as a root
of the characteristic polynomial in Eq. (29), and α = 1 − λ/2,
β = √

1 − λ/4, as before. The derivation relies on the fact that
the components [v(λ)]m satisfy the same iteration scheme as
subdeterminants of −�(ε, 0).

More precisely, the recurrence relation for [v(λ)]m is found
by unpacking the matrix eigenvalue problem and is particu-
larly simple since −�(ε, 0) is tridiagonal:

[v(λ)]2 = (1 + ε − λ)[v(λ)]1

[v(λ)]k = (2 − λ)[v(λ)]k−1 − [v(λ)]k−2,

2 < k < N

(1 + ε − λ)[v(λ)]N = [v(λ)]N−1. (B2)

We may assume, without loss of generality, that v1 = 1 since
the state can be normalized arbitrarily without changing the
eigenvalue equation. In addition to this, we may define

[v(λ)]N+1 ≡ 0. (B3)

The scheme in Eqs. (B2) and (B3) is in fact identical to the
recurrence relation for subdeterminants of [−�(ε) − λ]. That
is, the values:

detk[−�(ε) − λ], k = 0, 1, . . . , N, (B4)

corresponding to the determinant of the k × k matrix formed
from the first k rows/columns of [−�(ε) − λ]. For any matrix
M, we define det0[M] = 0, and since λ is an eigenvalue, it
follows that

detN [−�(ε, 0) − λ] = 0.

The recurrence relation for determinants of tridiagonal matri-
ces [34] can then be used to show that the scheme Eq. (B2)
also holds for detk[−�(ε) − λ]; in fact,

[v(λ)]k = detk−1[−�(ε) − λ], k = 2, . . . , N.

It can be shown that these subdeterminants in Eq. (B4) have
already been derived in Eq. (A11), so we have derived the
formula for the eigenvectors.

We include in the Supplemental Material a Mathematica
notebook [35]. This notebook implements the exact solution,
checks many of the detailed intermediate steps of the proof,
and provides simple implementations of the approximate so-
lutions. This code is not optimized in any way: our desire is
simply to provide a starting point for anyone who wishes to
use these results.
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