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Peculiarities of the Landau level collapse in graphene ribbons
in crossed magnetic and in-plane electric fields
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Employing the low-energy effective theory alongside a combination of analytical and numerical techniques,
we explore the Landau level collapse phenomenon, uncovering previously undisclosed features. We consider
both finite-width graphene ribbons and semi-infinite geometries subjected to a perpendicular magnetic field and
an in-plane electric field, applied perpendicular to both zigzag and armchair edges. In the semi-infinite geometry
the hole (electron)-like Landau levels collapse as the ratio of electric and magnetic fields reaches the critical
value +(−)1. On the other hand, the energies of the electron (hole)-like levels remain distinct near the edge and
deeply within the bulk, approaching each other asymptotically for the same critical value. In the finite geometry,
we show that the electron (hole)-like levels become denser and merge, forming a band.
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I. INTRODUCTION

Rabi [1] was the one who solved the just-discovered Dirac
equation for a free electron in a homogeneous magnetic field
employing the symmetric gauge. Four months earlier, Fock
[2] calculated the energy levels of a nonrelativistic electron
subjected to both a magnetic field and a harmonic oscillator
potential. However, he did not explore the limit in the absence
of the potential, while the study of Rabi demonstrated the
quantization of energy for free electrons. Frenkel and Bron-
stein [3] found quantized levels in the magnetic field now
known as Landau levels independently of Landau himself [4].
In fact, the aim of a paper [3] was to investigate whether
the discrete set of energy levels of free electrons constituted
one of the paradoxes associated with the Dirac equation or
corresponded to the real physical phenomenon, which is not
yet observed experimentally.

However, the experimental exploration of relativistic-like
Landau levels, distinct from nonrelativistic counterparts, be-
came attainable almost 80 years later in condensed-matter
systems, thanks to the groundbreaking discovery of graphene
in 2005 [5,6].

Furthermore, the fact that graphene is a two-dimensional
material allows to access the regime when the confining po-
tential at the edges of graphene nanoribbons is atomically
sharp. The quantum Hall edge states in this case are defined
by boundary conditions of vanishing electron wave functions
at the crystal edges.

It is worth noting that conventional experiments con-
ducted on two-dimensional semiconductors primarily access
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the regime characterized by electrostatically reconstructed
edges. In this case, the system reduces its energy by reconfig-
uring the edge states into steps, which give rise to alternating
compressible and incompressible stripes [7]. Additionally, vi-
sualizing these edge states is difficult because they are buried
inside the semiconductors.

Graphene, therefore, offers an opportunity to investi-
gate the real-space structure of edge states using scanning
probe techniques [8,9], while avoiding their electrostatic re-
construction. Other techniques of visualization of charge
transport through Landau levels are also available [10–12].

Undoubtedly, the most captivating features arise from the
relativistic Landau levels, which lack counterparts in standard
electron systems. One notable phenomenon among them is
the Landau level collapse in Ref. [13] (see also Ref. [14]), and
subsequently observed experimentally in Refs. [15,16].

For the massive Dirac with the dispersion E (p) =
±

√
v2

F p2 + �2, where vF is the Fermi velocity, � is the gap,
the spectrum in the perpendicularly crossed magnetic H and
electric E fields reads [17]

En = E∗
n − h̄k

cE

H
,

E∗
n = ±(1 − β2)3/4

√
2nh̄v2

F eH

c
+ �2

(1 − β2)1/2
, (1)

where n = 0, 1, . . ., k is the in-plane wave vector along the
direction perpendicular to the electric field, β = v0/vF =
cE/(vF H ). Here and in what follows we assume that H > 0
and use CGS units.

As the dimensionless parameter β reaches its critical value,
|βc| = 1, the Landau level staircase merges into one level
[13,14]. This collapse of the Landau levels can be regarded
as a transition from the closed elliptic quasiparticle orbits
for |β| < 1 (|v0| < vF ) to open hyperbolic orbits for |β| > 1
(|v0| > vF ) [18].
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For � = 0, the spectrum Eqs. (1) reduces to the spectrum
obtained in [13,14]. The generalization for a finite � case was
done in Ref. [17] (see also recent studies [19,20]).

The validity of long wavelength approximation for β �= 0
was verified in Ref. [13] by performing numerical computa-
tions using the tight-binding model for graphene lattices of
a finite size with the zigzag edges. It is stated in Ref. [13]
that the Landau level collapse still occurs at the lower value
of βc � 0.9. However, a careful examination of the corre-
sponding figure from Ref. [13] reveals that this phenomenon
does not manifest as a collapse in the same manner as in the
case of an infinite system. Instead, it signifies an increase in
the level density. As the levels approach one another, their
finite width causes them to begin overlapping. In this context,
the Landau level collapse does occur on the ribbon; how-
ever, its interpretation differs from that of the infinite system
case.

Now we briefly overview the relevant literature. The evolu-
tion of edge states in the presence of an electric field was also
explored by numerical computations conducted on a finite
lattice in Refs. [21,22].

Besides the analytical studies of Landau levels in crossed
fields on an infinite plane [13,14], the levels have also been
explored for ribbons and semi-infinite geometries using the
low-energy model without an electric field [23–30].

To the best of our knowledge, the only analytic study of
Landau levels in crossed magnetic and electric fields applied
to ribbons was done in the recent paper of the authors [31].
A special attention was paid to the analytical analysis of
dispersionless surface modes localized at the zigzag edge.

The aim of this study is to complement the analysis pre-
sented in Ref. [31] by uncovering the undisclosed features of
Landau level collapse in half-planes and ribbons with zigzag
edges. Additionally, we broaden our investigation to include
ribbons and half-planes with armchair edges. We point out
that the very meaning of the Landau level collapse becomes
different in the restricted geometry.

The paper is organized as follows. In Sec. II, we intro-
duce a low-energy model for a graphene ribbon with zigzag
and armchair edges subject to crossed magnetic and electric
fields and represent the main equations in the unified form.
General solutions of these equations in terms of the parabolic
cylinder function are presented in Sec. III. The numerical
and supporting analytical results in the half-plane geometry
for the zigzag and armchair edges are described in Secs. IV
(the details of the calculation are provided in Appendixes A
and B) and VI, respectively. A property of the Landau level
collapse, viz. that some levels do not collapse at the edge
is considered in Secs. IV B and VI B. The critical regime,
|β| = 1, is addressed in Sec. V, where the main results of this
study are obtained. In Sec. VII the summary of the obtained
results is given. Moreover, the Supplemental Material (SM)
[32] presents additional calculations useful for comparison
with the results given in the main text.

II. MODEL

To determine eigenenergy E we consider the station-
ary Dirac equation, H�(r) = E�(r), with the Hamiltonian

describing low-energy excitations in graphene,

H = h̄vF (−α1iDx − α2iDy) + �α3 + V (r). (2)

Here the 4 × 4 α matrices αi = τ3 ⊗ σi and the Pauli ma-
trices τi, σi (as well as the 2 × 2 unit matrices τ0, σ0) act
on the valley (Kη with η = ±) and sublattice (A, B) in-
dices, respectively, of the four-component spinors �T =
(�T

+, �T
− ) = (ψAK+ , ψBK+ , ψBK− , ψAK− ). This representation

is derived from a tight-binding model for graphene (see, e.g.,
Ref. [33]) and thus allows for the formulation of appropriate
boundary conditions for armchair and zigzag edges in the
continuum model. We investigate both massless Dirac-Weyl
fermions in pristine graphene and massive Dirac fermions
with a mass (gap) parameterized as �.

The gap � considered in the present paper corresponds to
the time-reversal symmetry conserving gap �̃ in the notation
of [27–29] and is related to the carrier density imbalance
between the A and B sublattices. Recall that this gap can be
introduced in graphene when it is placed on top of hexago-
nal boron nitride (G/hBN) and the crystallographic axes of
graphene and hBN are aligned.

The orbital effect of a perpendicular magnetic field H =
∇ × A is included via the covariant spatial derivative Dj =
∂ j + (ie/h̄c)Aj with j = x, y and −e < 0, while the potential
V (r) corresponds to the static electric field eE = ∇V (r). The
Zeeman interaction is neglected in this paper, because of its
smallness for moderate values of magnetic field (see, e.g.,
Ref. [33]).

We consider the ribbons with the armchair and zigzag
edges as shown in Figs. 1(a) and 1(b), respectively. The
ribbons are subjected to a combination of crossed uniform
magnetic and electric fields. The magnetic field H is applied
perpendicular to the plane of the graphene ribbon along the
positive z axis, while the in-plane electric field E is applied
perpendicular to the ribbon edges.

As we will discuss below, only the boundary conditions
for the armchair edges (8) involve an admixture of the wave
functions from both Kη points, while Eq. (2) splits into a
pair of two independent Dirac equations for each Kη point,
Hη�η(r) = E�η(r) with the Hamiltonian

Hη = −ih̄vF η(σ1Dx + σ2Dy) + η�σ3 + V (r). (3)

One can see from Eq. (3) that having the solutions for K+
point, the corresponding solutions for K− can be obtained
by changing the signs of energy E and electric field in V (r).
Finally, one should take into account that for the spinor �− the
components of the spinor corresponding to A and B sublattices
are exchanged as compared to �+.

A. Armchair edge

An armchair edge is parallel to the y as shown in Fig. 1(a).
The in-plane electric field E is applied respectively in x direc-
tion, so the potential V (r) = eEx. In this case, it is convenient
to consider the magnetic field H in the following Landau
gauge (Ax, Ay) = (0, Hx), where H is the magnitude of a
constant magnetic field orthogonal to the graphene plane.

Accordingly, the differential equations in Eq. (2) do not
depend explicitly on the y coordinate. Therefore, the wave

125403-2



PECULIARITIES OF THE LANDAU LEVEL COLLAPSE IN … PHYSICAL REVIEW B 110, 125403 (2024)

FIG. 1. The lattice structure of a finite-width graphene ribbon
with (a) armchair and (b) zigzag edges.

functions are plane waves in the y direction,

ψAK± (r, k) = eiky

√
2π l

u±(x, k),

ψBK± (r, k) = eiky

√
2π l

v±(x, k), (4)

where l = √
h̄c/|eH | is the magnetic length. The wave vec-

tor k measures the displacement from Kη points. A specific
choice of the coordinate system in Ref. [33] defines K± =
±(2π/a), (2/3, 0), where a is the lattice constant. The max-
imum value of the wave vector k is constrained by the
boundaries of the first Brillouin zone.

Recall that the wave vector k determines the center of the
electron orbital along the x direction, given by xk = −kl2. For
a system with a ribbon of finite width W , such as 0 � x � W ,
the condition that the peak of the wave function lies within
the ribbon is met only for eigenstates with wave vectors
k in the finite range −W/l2 � k � 0. This phenomenon is
known as the position-wave vector duality in the Landau
gauge.

Substituting Eq. (4) in Eq. (2) we obtain the following
system of equations for K+ point

(
eEx−E+�

h̄vF
−i∂x − ik − i e

h̄c Hx

−i∂x + ik + i e
h̄c Hx eEx−E−�

h̄vF

)
ψ+ = 0, (5)

where the spinor ψT
+ = (u+, v+). One can see that the enve-

lope functions u+(x, k) and v+(x, k) [u−(x, k) and v−(x, k)]
depend only on a single dimensionless combination of the
variables, ξ = x/l + kl , so Eq. (5) acquires the form

(
βξ − ε + δ −i∂ξ − iξ

−i∂ξ + iξ βξ − ε − δ

)
ψ+ = 0. (6)

Here we introduced the notations for dimensionless quantities

β = cE

vF H
, ε = lE

h̄vF
+ βkl, δ = l�

h̄vF
. (7)

The important dimensionless parameter β in Eq. (7) describes
the strength of the electric field relative to the magnetic field.
In this paper, we restrict our analysis to the case where |β| � 1
and do not consider the pair creation regime.

To obtain the energy spectrum we need to supplement
the differential equations for the envelope functions u±(x, k)
and v±(x, k) functions with suitable boundary conditions.
Such conditions can be derived from the tight-binding model
[23,24,34,35]. Note that in the tight-binding calculation the
values of the total wave vector projected on the armchair
edge direction coincide for the different Kη valleys (see e.g.,
Ref. [30]). This leads to valley admixing by the boundary
condition

x = 0 : u+(kl ) + u−(kl ) = 0,

v+(kl ) + v−(kl ) = 0, (8a)

x = W : u+(W/l + kl ) + u−(W/l + kl ) = 0,

v+(W/l + kl ) + v−(W/l + kl ) = 0, (8b)

see Fig. 1. As we shall see in Sec. VI, this choice of boundary
conditions proves particularly convenient when transitioning
from the ribbon configuration to the semi-infinite, half-plane
geometry with W → ∞. To consider the symmetry properties
of the corresponding solutions, it is more convenient to choose
the ribbon centered at y = 0, i.e., −W/2 � x � W/2. This
case is briefly discussed in Sec. S3 within the SM [32] in
parallel to the consideration made for the zigzag edge case
in Sec. S2 within the SM [32].

B. Zigzag edge

A zigzag edge is parallel to the x direction as shown in
Fig. 1(b). The in-plane electric field E is applied in y direction,
so the potential V (r) = eEy. In this case, it is convenient to
consider the magnetic field H in the following Landau gauge,
(Ax, Ay) = (−Hy, 0).

Accordingly, the differential equations in Eq. (2) do not
depend explicitly on the x coordinate. Therefore, the wave
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functions are plane waves in the x direction,

ψAK± (r, k) = e−ikx

√
2π l

u±(y, k),

ψBK± (r, k) = e−ikx

√
2π l

v±(y, k). (9)

The center of the electron orbital along the y direction is
yk = −kl2. Since 0 � y � W , the wave vectors k are within
the range −W/l2 � k � 0. Note that the values of the total
wave vector for the different Kη valleys in the tight-binding
calculation fall in the different wave vectors domains, because
K+x �= K−x.

Substituting Eq. (9) in Eq. (3) we obtain the following
system of equations for K+ point:(

eEy−E+�

h̄vF
−∂y − k − e

h̄c Hy

∂y − k − e
h̄c Hy eEy−E−�

h̄vF

)
ψ+ = 0, (10)

where ψT
+ = (u+, v+). One can see that the envelope func-

tions u+(y, k) and v+(y, k) [u−(y, k) and v−(y, k)] depend
only on a single dimensionless combination of the variables,
ξ = y/l + kl . Finally, one can rewrite Eq. (10) in exactly the
same form as Eq. (6), but for the spinor ψ̃T

+ = (u+,−iv+) (see
Ref. [31]). The notation ψ̃ , together with the opposite sign
in exp(−ikx) as compared to [27–29], allows us to unify the
equations describing zigzag and armchair edges.

To obtain the energy spectrum we need to supplement
the differential equations for the envelope functions u±(y, k)
and v±(y, k) functions with suitable boundary conditions.
Such conditions can be derived from the tight-binding model
[23,24,34,35].

In the case of a graphene ribbon of a finite width in the y
direction, 0 � y � W , and with two zigzag edges parallel to
the x direction, the A and B components of wave functions
should vanish on the opposite edges,

y = 0 : u+(kl ) = u−(kl ) = 0, (11a)

y =: v+(W/l + kl ) = v−(W/l + kl ) = 0, (11b)

see Fig. 1. As for the armchair edges, this choice of bound-
ary conditions proves particularly convenient when transition
is carried out from the ribbon configuration to the semi-
infinite, half-plane geometry, with W → ∞. To consider the
symmetry properties of the corresponding solutions, it is
more convenient to choose the ribbon centered at y = 0, i.e.,
−W/2 � y � W/2. This case is studied in Sec. S2 within the
SM [32].

III. GENERAL SOLUTIONS

As mentioned in Introduction, the Dirac equation (3) for
the massless case, � = 0, and infinite plane was solved in
Refs. [13,14]. Here, we employ a different analytic approach
[31] to investigate a finite system. The main equation (6)
describing both zigzag and armchair cases can be rewritten
in the following form:

∂ξ χ̃+(ξ ) = (Ã + B̃ξ )χ̃+(ξ ), (12)

where the 2 × 2 ξ -independent matrices Ã, B̃ are, respectively,

Ã =
(

0 i(ε + δ)
i(ε − δ) 0

)
, B̃ =

(
1 −iβ

−iβ −1

)
, (13)

and the spinor χ̃+ is either ψ̃+ defined below Eq. (10) for the
zigzag edge case or ψ+ defined below Eq. (5) for the armchair
edge case.

While the problem involving the radial electric field [20],
which includes three matrices Â/ρ + B̂ + Ĉρ with ρ being the
radial variable, cannot be solved analytically, the present prob-
lem in the crossed uniform fields in the Cartesian coordinates
is exactly solvable by diagonalizing the matrix B̃, as discussed
in detail in [31]. Thus, here we proceed directly to the general
solution for the components of the spinor χ̃+,

χ̃+1(ζ ) = iC+1[γU (a − 1,
√

2ζ ) − κ+U (a,
√

2ζ )]

+ iC+2

[
γV (a − 1,

√
2ζ ) + κ+

a − 1/2
V (a,

√
2ζ )

]
,

(14)

χ̃+2(ζ ) = C+1[U (a − 1,
√

2ζ ) − γ κ+U (a,
√

2ζ )]

+ C+2

[
V (a − 1,

√
2ζ ) + γ κ+

a − 1/2
V (a,

√
2ζ )

]
.

(15)

Here the solutions are written in terms of the parabolic
cylinder (Weber) functions U (a, x) and V (a, x), which depend
on the variable

ζ = (1 − β2)1/4ξ + βε

(1 − β2)3/4
(16)

with ξ = y/l + kl either ξ = x/l + kl for zigzag or armchair
edges. The integration constants C+1,+2 have the restored val-
ley index +, and the following notations are introduced:

γ = β

1 +
√

1 − β2
, κ± = δ

√
1 − β2 ± ε√

2(1 − β2)3/4
, (17)

a = 1 + 2κ−κ+
2

= 1

2
+ δ2(1 − β2) − ε2

2(1 − β2)3/2
. (18)

The centers of the electron orbital can be defined by the
condition ζ = 0, viz,

yk = −kl2 − βlε

1 − β2
. (19)

The particular relationship between yk and β arises from the
dependence of energy ε on β. Substituting the spectrum (1)
{see also Eq. (S4) in SM [32]}in the last equation one can see
that for an infinite system

yk = −kl2 − βlsgn (εn)
√

2n(1 − β2)1/2 + δ2

(1 − β2)1/2
. (20)

This illustrates that the electron and hole orbits become open
on the opposite sides as |β| → 1.

The derivation of the spectrum (1) for an infinite system,
which utilizes the specific asymptotic behavior of the Weber
parabolic cylinder functions, is included in Sec. S1 within
the SM [32] for completeness. We also included there in
Secs. S2 and S3 within the SM [32] the results for spectra of
the ribbons with the zigzag and armchair edges, respectively.
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The symmetry relations (S11) and (S15) (see the SM [32])
for the energy spectra of these ribbons are also provided. Our
numerical results support an observation made in Introduction
on the base of Ref. [13] and illustrate that the electron-like
levels seem to be denser near −kl ≈ W/l edge, while the
hole-like are denser for kl ≈ 0.

To study the level behavior by analytic methods, we sim-
plify the problem by considering the semi-infinite geometry in
Sec. IV. In particular, this enables us to investigate the specific
of the Landau level collapse in the restricted geometry.

IV. HALF-PLANE WITH THE ZIGZAG EDGE

On a half-plane, normalizable wave functions can be ex-
pressed solely in terms of the function U (a, x), which, as
mentioned above, decays exponentially as x → ∞. On the
other hand, the function V (a, z) grows exponentially in both
directions as x → ±∞ (see Refs. [31,32]). This enables one
to set C+2 = 0 in the solutions (14) and (15) the K+ valley.
However, unlike the case of an infinite plane, on a half-plane,
there is no restriction on the parameter a being a negative
half-integer.

The zigzag boundary condition (11b) at y = W → ∞ is
naturally fulfilled as a consequence of the asymptotic behavior
of U (a, x → ∞). The remaining boundary condition (11a)
at y = 0 leads to the requirement that the term with C+1 in
Eq. (14) must be zero. The latter condition results in the
following equation for the spectrum for the K+ valley:

γU (a − 1,
√

2ζ (0)) − κ+U (a,
√

2ζ (0)) = 0. (21)

Here ζ (0) = (1 − β2)1/4kl + βε(1 − β2)−3/4. Using the
asymptotics Eq. (S1) within the SM [32] one can verify that
Eq. (21) also follows from Eq. (S5) within the SM [32] for
the spectrum on the ribbon in the limit W → ∞.

Similarly, for the K− valley, the boundary condition (11a)
at y = 0 leads to the following equation:

U (a − 1,
√

2ζ (0)) + γ κ−U (a,
√

2ζ (0)) = 0. (22)

Equations (21) and (22) determine dimensionless energies
εα = εn(kl ) as functions of quantum numbers α ≡ (n, k). The
corresponding spectra are computed numerically and pre-
sented for the gapless and gapped cases in Figs. 2 and 3,
respectively. Notice that, unlike the figures within the SM
[32], we present the dimensionless energy ε(k) herein. In con-
trast to the energy E , this representation excludes the linear in
k part. This enables a clearer presentation of the results when
considering higher values of β. In particular, in Fig. 2(c),
it is observed that the hole-like levels converge more rapidly;
specifically, there are seven visible hole-like levels compared
to only six electron-like levels.

In contrast to Figs. S1 and S2 within the SM [32] where
we showed the K+ and K− valleys on separate panels, here
we superimpose both valleys on the same panel to allow a
direct comparison of the corresponding energy levels. This is
possible, because in the continuum model the wave vector k is
counted from K±x values. The negative values of k correspond
to the bulk, while the edge is at k = 0.

Since a half-plane geometry is considered, for a finite β

the energies ε(k) tend to the constant values in the bulk as

(a)

(b)

(c)

FIG. 2. The energy spectra ε(k) of the first few Landau levels
near the zigzag edge of a graphene half-plane for the gapless (δ = 0)
case. The solutions for the K+ and K− valleys are shown by the solid
(blue) and dashed (red) lines, respectively. (a) β = 0; (b) β = 0.25;
and (c) β = 0.5.

kl → −∞. The presence of the edge at y = W modifies this
behavior: the hole-like levels including the blue line (the K+
solution) that goes to zero for kl → −∞ would go downward,
while the electron-like levels go upward. Furthermore, the
degeneracy of the solutions for the K+ and K− valleys would
be lifted near the other edge as one can see in Figs. S1 and S2
(see the SM [32]).

The sole dispersive curve for kl → −∞, presented in
Figs. 2 and 3, corresponds to the dispersionless state observed
in the full spectrum lE (k)/(h̄vF ). Specifically, this is the
zero-energy lower branch of the K− valley spectrum in the
ribbon geometry. It describes the surface states mentioned in
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Sec. S2A (see the SM [32]). The second edge of the ribbon
supports a second dispersionless mode, which is absent in
a half-plane geometry. The surface state in the semi-infinite
geometry is briefly discussed in Sec. IV C. The analytical
consideration of the Landau level spectrum in zero electric
field was presented in [31] (see also [25]). Since for E = 0
the presented below expressions reduce to the corresponding
formulas from Ref. [31], we include them in Sec. S4 within
the SM [32] for a reference.

A. Landau levels in the bulk for β �= 0

It is possible to obtain the approximate analytic expressions
that generalize Eqs. (S17) and (S18) from the SM [32] in the
bulk, specifically for y0 = −kl2 � l or kl → −∞. The K+
valley solutions are

ε+,0 = −δ(1 − β2)
1
2 + γ (1 − β2)

3
4√

π
e−(1−β2 )

1
2 (kl )2

(23)

and

ε2
+,n − δ2(1 − β2) = 2n(1 − β2)

3
2

⎡
⎢⎣1 + 2n(kl )2n

√
πn!

γ (1 − β2)
2n+1

4√
2n(1 − β2)

1
2 + δ2 + δ

e−(1−β2 )
1
2 (kl )2

⎤
⎥⎦ (24)

with n = 1, 2, . . .. The corresponding solutions for K− valley are

ε−,0 = δ(1 − β2)
1
2 + (1 − β2)

3
4√

πγ
e−(1−β2 )

1
2 (kl )2

(25)

and

ε2
−,n − δ2(1 − β2) = 2n(1 − β2)

3
2

⎡
⎢⎣1 + 2n(kl )2n

√
πγ n!

(1 − β2)
2n+1

4√
2n(1 − β2)

1
2 + δ2 − δ

e−(1−β2 )
1
2 (kl )2

⎤
⎥⎦ (26)

with n = 1, 2, . . ..
Note that since β �= 0 in the derivation of the asymptotic

(23)–(26), we have taken into account the contribution of
another parabolic cylinder function in Eqs. (21) and (22)
as compared to the solution of Eqs. (S16) from the SM
[32]. Thus, Eqs. (24) and (23) are valid for any value of
β ∈ (−1, 1).

On the contrary, the contribution of γ κ−U (a,
√

2ζ (0)) in
Eq. (22) for the K− valley spectrum leads to cancellation

of a correction of the order ∼(y0/l )2n+1e−(1−β2 )
1
2 y2

0/l2
, and

hence, the correction of the lower order survives in Eq. (26),

∼γ −1(y0/l )2ne−(1−β2 )
1
2 y2

0/l2
. Therefore, in the case of the K−

valley, the limit β → 0 in Eq. (26) [and Eq. (25)] is not ap-
plicable, hence it is valid for values of β ∈ (−1,−ε] ∪ [ε, 1)
with ε > 0.

As can be seen from the Eqs. (24)–(26), the asymmetry
of the electron-like and hole-like Landau levels disappears in
the limit kl → −∞. However, closer to the edge (kl = 0),
the difference between the energy values ε(k) tends to 0 as
β approaches 1 for the hole-like levels. For the electron-like
levels, the difference tends to a constant value as demonstrated
in Figs. 2 and 3, it is also shown explicitly in Fig. 4 for the
energy spectra at kl = 0.

B. Landau levels and probability density for β �= 0

We begin by presenting in Fig. 4 numerical solutions of
Eqs. (21) and (22) for the energy spectra at the zigzag edge,
ε(kl = 0), and δ = 0. These solutions are depicted as func-
tions of −1 � β � 1 for the first few Landau levels. For
β = 0 the values of the energies agree with the lower lines
of Eqs. (S17) and (S18) from the SM [32]. One can see that

for the K+ valley the n = 0 level does not collapse, while for
the n �= 0 levels the electron-like solutions with ε > 0 merge
to one point and collapse only when β → −1. For β → 1
the level energies tend to the different values and thus the
electron-like levels do not collapse at the edge. On the con-
trary, the hole-like solutions with ε < 0 merge and collapse
for β → 1, while for β → −1 these levels do not collapse.
For the K− valley all n � 0 levels behave similarly to n �= 0
levels in the K+ valley. We verified that the spectra exhibit the
same behavior for finite values of δ.

The observed behavior can be explained qualitatively using
Eq. (19) for the centers of the electron orbital. Indeed, the
Landau level collapse occurs when the corresponding center
of electron or hole orbit remains in the bulk (y > 0), while
yk → ∞. The behavior of the levels on the opposite edge is
interchanged when compared to the edge considered in this
section, because in this case the bulk is for y < 0.

A further understanding of electron’s behavior can be
reached by directly addressing the wave functions and the
corresponding probability density

ρ (α)
η,n (y) = � (α)†

η,n (r, k)� (α)
η,n (r, k). (27)

where � (α)
η,n (r, k) is the normalized wave function of the states,

characterized by the discrete quantum numbers (η, n, α) and
wave vector k, explicitly written in Appendix A. Here n is the
Landau level index and α = e, h is the electon-like (ε > 0) or
hole-like (ε < 0) levels.

The corresponding probability density distributions for the
states close to zero energy as a function of a distance y from
the half-plane edge are plotted in Figs. 5–8 for K± valleys:
kl = 0 (close to the edge) in Figs. 5 and 6, and kl = −5 (in the
bulk) in Figs. 7 and 8, respectively. Note that according to the
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(a)

(b)

(c)

FIG. 3. The energy spectra ε(k) of the first few Landau levels
near the zigzag edge of graphene for the gapped (δ = 0.2) case. The
panels (a), (b), and (c) are for the same values of β as in Fig. 2.

discussion presented in Sec. V B, for the ε < 0 case, instead of
β = 1 we took a smaller value β = 0.99 to have normalizable
solutions. The results shown support the above statement
for the orbit centers. Indeed, the maximal probability density
of the noncollapsing electron-like levels remain near the edge,
while the wave functions of the collapsing hole-like levels
move into the bulk as the value of β, 0 � β � 1 increases.
To remove the degeneracy of the lowest n = 0 Landau level
in Figs. 7 and 8, the gap δ = 10−7 is taken. The number of
panels for K+ point in Figs. 5 and 7 is smaller than for K−
point in Figs. 6 and 8, reflecting the fact that the n = 0 level in
Figs. 2 and 3 has only one branch in the spectrum for the K+
valley and two branches for the K− valley, respectively. For
the n = 1 level, the motion of the maxima of the probability

(a)

(b)

FIG. 4. The energy spectra ε(kl = 0) at the zigzag edge vs elec-
tric field in terms of β = cE/(vF H ) for δ = 0 for first few Landau
levels. The dashed lines correspond to the energies given by Eq. (30):
(a) For K+ valley, (b) For K− valley.

density with the increase of positive β is similar in both
cases, kl = 0 and kl = −5. For the n = 0 level, the bulk-like
electron states (ε > 0) at K± valleys eventually widen, while
the dispersionless edge state with ε < 0 [Fig. 8(c)] does not
move (see further discussion in Sec. IV C).

Landau levels at the edges for β �= 0

Now we proceed to the discussion of the analytical results
obtained for Eqs. (21) and (22) in the limit kl → 0. Find-
ing a straightforward generalization of solutions (S17) and
(S18) from the SM [32] near the edges, specifically when
y0 � l or kl → 0, proves to be challenging. Nevertheless, it is
possible to consider analytically two limiting cases: |β| � 1
and |β| → 1. The details of the derivation are described in
Appendix B, where we obtain that for |β| � 1 the solutions
for the K± valleys read, respectively,

ε+,0 = −δ + 1√
π

β + o(β ),

ε+,n = ±
√

4n + δ2

[
1 + �

(
n + 1

2

)
�(n)

2

π (4n + δ2)

×
(

1

δ ± √
4n + δ2

± 2
√

4n + δ2

)
β + o(β )

]
, (28)
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(a)

(b)

(c)

FIG. 5. The probability densities for K+ valley, kl = 0,

δ = 0, and five different values of β = 0, 0.25, 0.5, 0.75, 1 (see
the remark concerning β = 1 in the main text). (a) n = 1, ε > 0;
(b) n = 0, ε > 0; and (c) n = 1, ε < 0.

with n = 1, 2, . . ., and

ε−,n = ±
√

2(2n + 1) + δ2

[
1 − �

(
n + 3

2

)
�(n + 1)

× 2

π (2(2n + 1) + δ2)

(
1

δ ±
√

2(2n + 1) + δ2

∓2
√

2(2n + 1) + δ2

)
β + o(β )

]
(29)

with n = 0, 1, . . ..
The details of the derivation for the limit |β| → 1 are

also described in Appendix B. For the sake of simplicity,
we consider only the gapless case, δ = 0, when Eqs. (21)
and (22) possess the following symmetry: ε(β ) = −ε(−β ).

(a)

(b)

(c)

(d)

FIG. 6. The probability densities for K− valley, kl = 0,

δ = 0, and five different values of β = 0, 0.25, 0.5, 0.75, 1 (see
the remark concerning β = 1 in the main text). (a) n = 1, ε > 0;
(b) n = 0, ε > 0; (c) n = 0, ε < 0; and (d) n = 1, ε < 0.

Then it is convenient to consider only the electron-like levels,
while the properties of the hole-like levels follow from the
symmetry. We found that for β → 1 the electron-like levels
do not collapse at the edge, kl = 0, and their energies tend to
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(a)

(b)

(e)

FIG. 7. The probability densities for K+ valley,
kl = −5, δ = 10−7, and five different values of β. (a) n = 1, ε > 0;
(b) n = 0, ε > 0; and (c) n = 1, ε < 0.

the following values:

ε±,n =
√

2κ
3±,n, n = 0, 1 . . . . (30)

Here κ±,n are the roots of the equations f±(x) = 0, where the
functions

f±(x) = Ai′(−x2) ± xAi(−x2) (31)

are expressed in terms of the Airy function Ai(z) and its
derivative. One can see that for x > 0 they have infinite sets of
zeros κ±,n, n = 0, 1, 2, . . . The energies given by Eq. (30) for
the K± valleys are shown in Figs. 4(a) and 4(b), respectively,
confirming the consistency between calculations done for the
original equations for the spectra and their β → 1 limit.

For large n one can use the expansions (B13) reducing
equations for the spectrum to the trigonometric ones [see
Appendix B, Eqs. (B14) and (B17)] and obtain the following

(a)

(b)

(c)

(d)

FIG. 8. The probability densities for K− valley,
kl = −5, δ = 10−7, and five different values of β. (a) n = 1, ε > 0;
(b) n = 0, ε > 0; (c) n = 0, ε < 0; and (d) n = 1, ε < 0.

approximate expressions:

⎧⎨
⎩

ε
app
+,n = √

3πn, n = 1, 2 . . . ,

ε
app
−,n =

√
3π
(
n + 1

2

)
, n = 0, 1, . . .

(32)
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As discussed in Appendix B there is a rather good agreement
with the results obtained solving numerically the full equa-
tion involving Airy function.

On the other hand, we obtained (see Appendix B) that in
the limit β → −1 the electron-like levels collapse at the edge,
kl = 0, and their energies are the{

ε+,n = ν2n(1 − β2)3/4, n = 1, 2 . . . ,

ε−,n = ν2n+1(1 − β2)3/4, n = 0, 1, . . . ,
(33)

where ν2n and ν2n+1 are the roots of the equation f (ν) = 0
with the function f (ν) given by Eq. (B18). Note that the
collapse point with ε = 0 and β = −1 does not belong to the
spectra, because the original equations in this case do not have
a nontrivial solution (see Sec. V). The lowest, n = 0, Landau
level for the K+ valley should be considered separately, since
it does not collapse at the edge for any value of β. We obtain
for δ = 0 the following approximate expression:

ε+,0 = 1√
π

β + o(β ). (34)

One may observe an analogy with the specifics of the Lan-
dau level collapse in a field configuration involving a constant
in-plane radial electric field [20]. Although an infinite system,
rather than a restricted geometry, was considered in [20],
the electron- and hole-like Landau levels collapse differently
depending on the direction of the electric field and the angular
momentum quantum number.

Finally, we note that the analysis done for the edge, kl = 0,
can also be extended for finite values kl .

C. Surface mode in a finite electric field

The dispersionless surface states are localized at the bound-
aries [23,24,35,36], and, along with the n = 0 Landau level,
constitute the degenerate states. The electric field lifts the
degeneracy of the n = 0 Landau level and the dispersionless
state. Indeed, in Figs. 2(b) and 2(c) one observes the splitting
of the two red (dashed) curves for the K− valley that merge to
zero energy in Fig. 2(a) as kl → −∞. The upper curve corre-
sponds to the dispersing n = 0 level, while the lower curve is
related to the dispersionless surface state. Indeed, as one can
see in Fig. 8(b) for ε > 0 the probability density characterizes
the bulk-like state. On the other hand, the probability density
for ε < 0 in Fig. 8(c) is localized at the edge and corresponds
to the dispersionless state. It does not change with the increase
of β, while the bulk-like state widens. (See also Ref. [25],
where the separate components of the spinors are plotted.)
As one can see, in the case of the ribbon {see Figs. S1(c)
and S1(d) within the SM [32]}in the K+ valley this state
evolves into the dispersing lowest n = 0 Landau level whose
energy decreases as kl → −∞. In a half-plane geometry the
corresponding blue curve increases linearly as kl → −∞.

Comparing Figs. S1(c) and S1(d) and 2(b) and 2(c), it is
easy to see the dispersionless mode emerges from a delicate
cancelation with the ε term that should show the same depen-
dence on kl . (Recall that the total energy lE/(h̄vF ) = ε − βkl
and that in Figs. 2 and 3 the value ε is plotted, while in [31]
the value E is presented in the corresponding figures, see also
the discussion in the beginning of Sec. IV.) The cancellation

of these terms even in the presence of an electric field was
proven analytically in [31] by employing the Darwin’s ex-
pansion of the parabolic cylinder functions of large order and
argument [37].

V. ZIGZAG RIBBON AND HALF-PLANE
IN THE CRITICAL REGIME, β = ±1

At the end of Sec. IV B (see also Appendix B) we analyzed
the spectrum in the limit β → ±1 employing the asymptotic
expansion of the parabolic cylinder function in terms of Airy
functions. One can also derive rather simple equations for the
spectrum for all values of kl in the critical regime by exam-
ining the system of equations (12) directly for the β = ±1
case. Then the matrix Ã is given by Eq. (13) and the matrix B̃
reduces to

B̃ =
(

1 −i sgn(β )

−i sgn(β ) −1

)
. (35)

As mentioned in Sec. III the system is solved by making
the transformation χ̃+(ξ ) = Pχ (ξ ), which diagonalizes the
matrix B̃. For |β| = 1 the matrix B̃ becomes non-diagnosable,
but choosing the matrix

P =
(

1 i

i 1

)
(36)

we obtain from Eq. (12) the system

∂ξχ (ξ ) = (A + Bξ )χ (ξ ) (37)

where

A = P−1ÃP =
(−δ iε

iε δ

)
, (38)

and B|β=± = P−1B̃|β=±P with

B
∣∣
β=+1 =

(
0 0

−2i 0

)
, B

∣∣
β=−1 =

(
0 2i

0 0

)
. (39)

Hence, we obtain the following systems of equations:{
∂ξχ1 = iεχ2 − δχ1,

∂ξχ2 = iεχ1 + δχ2 − 2iξχ1
for β = +1, (40)

{
∂ξχ1 = iεχ2 − δχ1 + 2iξχ2,

∂ξχ2 = iεχ1 + δχ2
for β = −1. (41)

Expressing the component χ2 via χ1 for β = +1 and χ1 via χ2

for β = −1 we arrive at the following systems of equations:{
χ ′′

1 (ξ ) = [2εξ − (ε2 − δ2)]χ1(ξ ),

χ2(ξ ) = 1
iε (∂ξχ1(ξ ) + δχ1(ξ ))

for β = +1,

(42){
χ1(ξ ) = 1

iε (∂ξχ2(ξ ) − δχ2(ξ ))

χ ′′
2 (ξ ) = [−2εξ − (ε2 − δ2)]χ2(ξ )

for β = −1.

(43)

It is easy to see that for β = ±1 the solutions for χ1,2 can be
written in terms of Airy functions.
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Thus, for example, for β = +1 one has

χ1(ξ ) = C+1Ai

(
δ2 − ε2 + 2εξ

(4ε2)1/3

)
+ C+2Bi

(
δ2 − ε2 + 2εξ

(4ε2)1/3

)

χ2(ξ ) = −C+1
i

ε

[
δ Ai

(
δ2 − ε2 + 2εξ

(4ε2)1/3

)
+ 2ε

(4ε2)1/3
Ai′
(

δ2 − ε2 + 2εξ

(4ε2)1/3

)]

− C+2
i

ε

[
δ Bi

(
δ2 − ε2 + 2εξ

(4ε2)1/3

)
+ 2ε

(4ε2)1/3
Bi′
(

δ2 − ε2 + 2εξ

(4ε2)1/3

)]
.

(44)

Similarly, one obtains the solution for β = −1. Then one can derive the expressions for the spinors χ̃+ = (u+,−iv+)T for
β = ±1 and using the prescriptions described below Eq. (3) {see also above Eqs. (S7) and (S8) within the SM [32]}write down
the corresponding spinors for K− point.

A. Equations for the spectrum on the ribbon

All four solutions for K± points and β = ±1 have to satisfy the zigzag boundary conditions (11) leading to linear systems
of two equations for the constants C+1,C+2 and C−1,C−2. Equating the system determinants to zero, one obtains the following
transcendental secular equations:
(i) for K+ point and β = +1

(δ + ε)Ai
(

δ2−ε2+2εkl
(4ε2 )1/3

)
+ 2ε

(4ε2 )1/3 Ai′
(

δ2−ε2+2εkl
(4ε2 )1/3

)
(δ + ε)Bi

(
δ2−ε2+2εkl

(4ε2 )1/3

)
+ 2ε

(4ε2 )1/3 Bi′
(

δ2−ε2+2εkl
(4ε2 )1/3

) =
(δ − ε)Ai

(
δ2−ε2+2ε(W/l+kl )

(4ε2 )1/3

)
+ 2ε

(4ε2 )1/3 Ai′
(

δ2−ε2+2ε(W/l+kl )
(4ε2 )1/3

)
(δ − ε)Bi

(
δ2−ε2+2ε(W/l+kl )

(4ε2 )1/3

)
+ 2ε

(4ε2 )1/3 Bi′
(

δ2−ε2+2ε(W/l+kl )
(4ε2 )1/3

) , (45)

(ii) K+ point and β = −1

(δ − ε)Ai
(

δ2−ε2−2εkl
(4ε2 )1/3

)
− 2ε

(4ε2 )1/3 Ai′
(

δ2−ε2−2εkl
(4ε2 )1/3

)
(δ − ε)Bi

(
δ2−ε2−2εkl

(4ε2 )1/3

)
− 2ε

(4ε2 )1/3 Bi′
(

δ2−ε2−2εkl
(4ε2 )1/3

) =
(δ + ε)Ai

(
δ2−ε2−2ε(W/l+kl )

(4ε2 )1/3

)
− 2ε

(4ε2 )1/3 Ai′
(

δ2−ε2−2ε(W/l+kl )
(4ε2 )1/3

)
(δ + ε)Bi

(
δ2−ε2−2ε(W/l+kl )

(4ε2 )1/3

)
− 2ε

(4ε2 )1/3 Bi′
(

δ2−ε2−2ε(W/l+kl )
(4ε2 )1/3

) , (46)

(iii) for K− point and β = +1

(δ − ε)Ai
(

δ2−ε2+2εkl
(4ε2 )1/3

)
+ 2ε

(4ε2 )1/3 Ai′
(

δ2−ε2+2εkl
(4ε2 )1/3

)
(δ − ε)Bi

(
δ2−ε2+2εkl

(4ε2 )1/3

)
+ 2ε

(4ε2 )1/3 Bi′
(

δ2−ε2+2εkl
(4ε2 )1/3

) =
(δ + ε)Ai

(
δ2−ε2+2ε(W/l+kl )

(4ε2 )1/3

)
+ 2ε

(4ε2 )1/3 Ai′
(

δ2−ε2+2ε(W/l+kl )
(4ε2 )1/3

)
(δ + ε)Bi

(
δ2−ε2+2ε(W/l+kl )

(4ε2 )1/3

)
+ 2ε

(4ε2 )1/3 Bi′
(

δ2−ε2+2ε(W/l+kl )
(4ε2 )1/3

) , (47)

(iv) for K− point and β = −1

(δ + ε)Ai
(

δ2−ε2−2εkl
(4ε2 )1/3

)
− 2ε

(4ε2 )1/3 Ai′
(

δ2−ε2−2εkl
(4ε2 )1/3

)
(δ + ε)Bi

(
δ2−ε2−2εkl

(4ε2 )1/3

)
− 2ε

(4ε2 )1/3 Bi′
(

δ2−ε2−2εkl
(4ε2 )1/3

) =
(δ − ε)Ai

(
δ2−ε2−2ε(W/l+kl )

(4ε2 )1/3

)
− 2ε

(4ε2 )1/3 Ai′
(

δ2−ε2−2ε(W/l+kl )
(4ε2 )1/3

)
(δ − ε)Bi

(
δ2−ε2−2ε(W/l+kl )

(4ε2 )1/3

)
− 2ε

(4ε2 )1/3 Bi′
(

δ2−ε2−2ε(W/l+kl )
(4ε2 )1/3

) . (48)

B. Spectrum on the half-plane

The semi-infinite geometry case corresponds to the limit
W → ∞. Consequently, Eqs. (45), (46), (47), and (48) are
greatly simplified and for δ = 0 reduce to Eqs. (49), (50), (51),
and (52). Specifically, the last equations follow from utilizing
the exponentially divergent asymptotic of Bi(x) as x → +∞
[see Eqs. (9.7.7) and (9.7.8) of [38]], when the right hand sides
of Eqs. (45) for ε > 0, (46) for ε < 0, (47) for ε > 0, and (48)
for ε < 0 tend to 0.

The hole-like solutions, ε < 0, for β = +1 and electron-
like, ε > 0, for β = −1 in Eqs. (45), (46), (47), and (48)
cannot be simply considered in the limit W → ∞. They cor-
respond to the case of the large negative argument of Ai(−x)
[see Eq. (B13)] and Bi(−x) {see Eq. (9.7.11) of [38]}, where
the Airy functions have oscillatory behavior. Thus to analyze
the W → ∞ limit, one may return to the solutions (44).
Considering, for example, the case β = +1, one can see that

for ε � 0 the boundary condition (11b) for ε < 0 can only
be satisfied by the trivial solution C+1 = C+2 = 0. The wave
functions with all energies ε < 0 vanish and corresponding
states disappear from the Hilbert space. The case ε = 0 for
β = ±1 is treated by returning to the original system (12).
One can check that the normalizable solutions are absent in
the semi-infinite geometry. This agrees with Ref. [39].

The resulting equations for the spectra on the half-plane for
� = 0 are the following:
(i) for K+ point, β = +1, and ε > 0

Ai

(−ε2 + 2εkl

(4ε2)1/3

)
+
(

2

ε2

)1/3

Ai′
(−ε2 + 2εkl

(4ε2)1/3

)
= 0, (49)

(ii) for K+ point, β = −1, and ε < 0

Ai

(−ε2 − 2εkl

(4ε2)1/3

)
+
(

2

ε2

)1/3

Ai′
(−ε2 − 2εkl

(4ε2)1/3

)
= 0, (50)
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(a)

(b)

FIG. 9. The energy spectra ε(k) in the critical regime, β = 1,
near the zigzag edge of graphene’s half-plane for the gapless, δ = 0
case. (a) For K+ valley, (b) For K− valley.

(iii) for K− point, β = +1, and ε > 0

Ai

(−ε2 + 2εkl

(4ε2)1/3

)
−
(

2

ε2

)1/3

Ai′
(−ε2 + 2εkl

(4ε2)1/3

)
= 0, (51)

(iv) for K− point, β = +1, and ε < 0

Ai

(−ε2 − 2εkl

(4ε2)1/3

)
−
(

2

ε2

)1/3

Ai′
(−ε2 − 2εkl

(4ε2)1/3

)
= 0. (52)

In Fig. 9 we present numerical solutions of Eqs. (49) and
(51) for ε(kl ) > 0, which describe electron-like levels in the
critical regime. The hole-like solutions that were present for
β < 1 and collapsing towards the ε = 0 level in the β → 1
limit are absent because there are no normalizable solutions
of the original system in the β = ±1 cases. It is shown in
Ref. [39] that the critical solutions, β = ±1, are not bound
states.

One can easily see that Eqs. (49) and (51) for kl = 0
reduce to Eqs. (B12) and (B16), respectively. Accordingly,
the energies of the Landau levels at the edge in Fig. 4 (for
β = +1) and Fig. 9 (for kl = 0) are in agreement and tend to
the values given by Eqs. (30) and (32). As discussed in the
previous section, these electron-like levels do not collapse at
the edge, but now we may also follow their behavior in the
bulk. One can see in Fig. 9 that these levels become denser
and approach each other asymptotically as kl → −∞. This
conclusion is confirmed by studying analytically Eqs. (49)

and (51) in the limit −kl = L/l for L � l with L being the
distance from the edge. The derivation follows the approach
to Eq. (32) and relies on the asymptotic expressions given by
Eq. (B13). It gives that the distance between the levels in the
bulk is ∼l3/L3 for L � l. This implies that there is no Landau
level collapse of the electron-like states in the semi-infinite
geometry for β = 1. This conclusion is, however, correct
in the formal mathematical sense. The presence of disorder
inevitably causes the broadening of Landau levels and, ac-
cordingly, the levels of a finite width would anyway merge.

C. Specific of the Landau level collapse on the zigzag ribbon

The investigation of the energy levels on the ribbon was
done either on the lattice fully numerically [13,21,22] or by
solving transcendental equation as in Secs. S2 and S3 within
the SM [32]. Although it allows to observe that the levels in
certain regions of the ribbon become denser than in others,
one cannot conclusively demonstrate that they collapse in a
manner akin to what occurs in the case of an infinite system
[see Eq. (1)]. In this respect, the analysis of the level behavior
in the half-plane geometry in Secs. IV and VI is more con-
vincing because it allows one to distinguish the level behavior
in the |β| → 1 limit.

Indeed, we have discovered that in the case of edges with
bulk states situated on the left side, as the limit β → 1 is
approached, the hole-like levels collapse across the entire
semi-plane. However, the point of the collapse, ε = 0 and
β = 1, does not belong to the bound state spectrum. Con-
versely, the electron-like levels do not collapse at all. Their
energies near the edge tend to the different values and deep
within the bulk, when −kl = L/l � 1, the levels approach
each other asymptotically with the distance between them
∼l3/L3.

Now we discuss the level behavior in the ribbon geometry.
The critical regime, β = 1, is shown in Fig. 10 for a ribbon
of width W = 5l , which is chosen to be smaller than for the
rest of the figures for a better level resolution. First of all
we observe that there is no Landau level collapse on the
zigzag ribbons. While the hole-like levels were collapsing in
the semi-infinite geometry, now they only become denser near
the kl = 0 edge.

This result can be qualitatively explained as follows: as
observed earlier, in the semi-infinite geometry, the collapse
of Landau levels happens when the center of the hole orbit
remains in the bulk [y > 0, see Eq. (19)]. For β = 1 this is
possible for hole-like states, but not for the electron-like ones.
The presence of the other edge does not allow the hole orbit
to remain inside the ribbon. We also note the interchange of
electron- and hole-like levels at the opposite edge, as expected
based on symmetry arguments.

To extend the analysis of Sec. V B of the level behavior in
the bulk to the case of the ribbon, we consider Eqs. (45)–(48)
from Sec. V. We obtain that for β = 1 the distance between
electron-like levels near −kl = W/l edge is O(l3/W 3) for
W � l . This confirms our statement that there is no Landau
level collapse on the ribbons in a sense that all levels do
not collapse to the lowest one. This conclusion is, however,
correct only mathematically, because if the ribbon is wide
enough the Landau levels of a finite width would anyway
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(b)

(a)

FIG. 10. The energy spectra ε(k) in the critical regime, β = 1,
of the zigzag ribbon of width W = 5l for the gapless, δ = 0 case
obtained by the numerical Eqs. (45) and (47). (a) For K+ valley,
(b) For K− valley.

merge. On the other hand, we obtained that the correction to
the non-collapsing solutions (30) is O(e−4

√
2|ε|/3(W 3/l3 ) ).

VI. HALF-PLANE WITH THE ARMCHAIR EDGE

As was discussed in Sec. II A, the armchair boundary
conditions (8) admix the solutions for K± valleys. Thus in
addition to the solution (14) and (15) for K+ valley one needs
the corresponding solutions (S7) and (S8) from the SM [32]
for K− valley. The equation (S13) for the spectrum of the
armchair ribbon undergoes significant simplification in the
case of semi-infinite geometry, where W → ∞. As discussed
in Sec. IV for the half-plane with the zigzag edge, one may set
C+2 = C−2 = 0.

Now, the boundary conditions (8b) at x = W → ∞ are au-
tomatically satisfied as a result of the asymptotic of U (a, x →
∞). The remaining boundary conditions (8a) at x = 0 result
in the following system of equations:

C+1[γU (a − 1,
√

2ζ (0)) − κ+U (a,
√

2ζ (0))]

+ C−1[U ((a − 1,
√

2ζ (0)) + γ κ−U (a,
√

2ζ (0))] = 0,

C+1[U (a − 1,
√

2ζ (0)) − γ κ+U (a,
√

2ζ (0))]

+ C−1[γU (a − 1,
√

2ζ (0)) + κ−U (a,
√

2ζ (0))] = 0.

(53)

(a)

(b)

(c)

FIG. 11. The energy spectra ε(k) of the first few Landau levels
near the armchair edge of graphene for the gapless (δ = 0) case.
(a) β = 0; (b) β = 0.25; and (c) β = 0.5. The solid (blue) and the
dashed (red) lines are solely used for a better resolution of the
degenerate in the bulk solutions.

The requirement for the system (53) to possess non-
trivial solution results in the following equation for the
spectrum:

U 2(a − 1,
√

2ζ (0)) + (a − 1
2

)
U 2(a,

√
2ζ (0)) = 0. (54)

It determines dimensionless energies εα = εn(kl ) as functions
of quantum numbers α ≡ n, k of a half-plane with the arm-
chair edge.

The corresponding spectra are computed numerically and
presented for the gapless and gapped cases in Figs. 11 and
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(a)

(b)

(c)

FIG. 12. The energy spectra ε(k) of the first few Landau levels
near the armchair edge of graphene for the gapped (δ = 0.2) case.
The panels (a), (b), and (c) are for the same values of β as in
Fig. 11.

12, respectively, where the dimensionless energy ε(k) is
plotted. Let us recapitulate the main specific features of these
solutions. Since a half-plane geometry is considered, for a
finite β the energies ε(k) tend to constant values in the bulk
as kl → −∞. The levels, whose degeneracy was lifted by
the edge become degenerate in the bulk. The armchair edge
does not support the dispersionless mode. However, one of the
solutions when approaching the edge shows a nonmonotonous
behavior of the energy. This leads to a change in the sign of
the drift velocity [26,30].

(a)

(b)

FIG. 13. The energy spectra ε(kl = 0) at the armchair edge ver-
sus electric field in terms of β = cE/(vF H ) for δ = 0 for first few
Landau levels. (a) The dashed lines correspond to the energies given
by the upper line of Eq. (55). (b) The dashed lines correspond to the
energies given by the lower line of Eq. (55).

A. Zero electric field limit

In the absence of electric field, β = 0, Eq. (54) preserves
its form, but with a = [1 + δ2 − ε2]/2 and ζ (0) = kl , which
agrees with the equation studied in Refs. [27,28]. The corre-
sponding numerical solutions shown in Figs. 2(a) and 3(a) are
in agreement with the results presented in Refs. [23,24,27,28].

B. Finite electric field

As in Sec. IV B, we show in Fig. 13 numerical solutions
of Eq. (54) for the energy spectra at the armchair edge,
ε(kl = 0), and δ = 0. These solutions are depicted as func-
tions of −1 � β � 1 for the first few Landau levels. We
emphasize that for the armchair edge the solutions for K±
valleys are not separable and the panels (a) and (b) are solely
used for a better readability. One can see that the behavior
of the level energies at the edge is rather similar to the case
of the zigzag edge. The electron-like levels collapse only for
β → −1, while for β → 1 the levels do not collapse and
their energies tend to the different values. On the contrary, the
hole-like solutions merge and collapse for β → 1, while for
β → −1 these levels do not collapse.

Similar to the zigzag edge case, it is possible to consider
analytically Eq. (54) at the edge, kl = 0. The spectrum in the
β → 1 limit reads

εn =

⎧⎪⎨
⎪⎩
√

2κ
3
1,n,√

2κ
3
2,n,

n = 0, 1, . . . , (55)
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where κ1,n and κ2,n are the roots of the equations
Ai(−x2) = 0 and Ai′(−x2) = 0, respectively. These values of
the energies corresponding to the upper and lower lines of
Eq. (55) are shown in Figs. 13(a) and 13(b), respectively, con-
firming a good agreement between the original equation for
the spectrum and its β → 1 limit. Finally, we obtain the fol-
lowing approximation for the solution (55):

εapp
n =

⎧⎪⎨
⎪⎩
√

3π
(
n − 1

4

)
, n = 1, 2 . . . ,√

3π
(
n + 1

4

)
, n = 0, 1, . . . ,

(56)

which shows a good agreement with the results obtained
by numerically solving the full equation involving the Airy
function.

Although the complexity of the corresponding equa-
tions makes it impossible to analyze the level behavior for
the armchair ribbon as was done for the zigzag ribbon, the
present results indicate that there is no Landau level collapse
in armchair ribbons.

VII. SUMMARY

To conclude our main results can be summarized as
follows:

(i) The Landau level collapse in the restricted geometry
occurs not in the same fashion as in the infinite geometry
where it appears as a sharp transition.

(ii) In the semi-infinite geometry the hole (electron)-like
Landau levels collapse as the ratio of electric and magnetic
fields, β = cE/vF H , reaches the critical value +(−)1. On the
other hand, the energies of the electron (hole)-like levels near
the edge remain different and are given by Eqs. (32) and (56)
for the zigzag and armchair edges, respectively. The same
levels deeply within the bulk, for −kl = L/l � 1, approach
each other asymptotically.

(iii) There is no Landau level collapse on the ribbons,
because in contrast to the semi-infinite geometry the orbit
center cannot go to infinity. Instead, the electron (hole)-like
levels become denser. The absence of collapse is, however,

valid in a mathematical sense, because if the ribbon is wide
enough the Landau levels of a finite width would anyway
merge forming a band.

(iv) We derived the transcendental equations describing
the Landau level behavior in the crossed magnetic and in-
plane electric fields on the zigzag and armchair ribbons
(see the SM [32]) with the edges at kl = 0 and kl = −W/l
and in the semi-infinite geometry, W → ∞ [Eqs. (21), (22),
and (54)]. These equations are analyzed analytically and
numerically.

(v) In particular, the simplified equations (45)–(48) in
terms of the Airy functions describing the critical regime are
obtained.

The obtained behavior of the Landau level collapse on the
ribbons represents a particular example of describing systems
of a finite size. As mentioned in the Introduction, the Landau-
level collapse was already observed experimentally [15,16].
It would be useful to test the specific predictions made in the
present study.
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APPENDIX A: WAVE FUNCTIONS
FOR SEMI-INFINITE SYSTEM

In deriving Eqs. (21) and (22) for the spectra we already
obtained from the general expressions for the wave functions
�T

+ = (ψAK+ , ψBK+ ) given by Eqs. (14) and (15), and �T
− =

(ψBK− , ψAK− ) given by Eqs. (S7) and (S8) (see the SM [32]),
respectively. In the half-plane geometry they reduce to the
following ones

�+(r, k) = e−ikx

√
2π l

(
iC+1[γU (a − 1,

√
2ζ ) − κ+U (a,

√
2ζ )]

C+1[U (a − 1,
√

2ζ ) − γ κ+U (a,
√

2ζ )]

)
, (A1)

and

�−(r, k) = e−ikx

√
2π l

(
C−1[γU (a − 1,

√
2ζ ) + κ−U (a,

√
2ζ )]

iC−1[U (a − 1,
√

2ζ ) + γ κ−U (a,
√

2ζ )]

)
. (A2)

Then the normalization condition for a given valley Kη is defined as follows:

∫ +∞

−∞
dx
∫ +∞

0
dy� (α)†

η,n (r, k)� (α)
η′,n′ (r, k′) = δ

(
k − k′)δηη′δnn′ (A3)
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where n is the Landau level index, α = e, h is the electon-like (ε > 0) or hole-like (ε < 0) levels. Hence, the normalization
constants C±1 for the wave functions (A1) and (A2) are

|C±1|−2 = 2

1 +
√

1 − β2

∫ +∞

0
dξ{[U (a − 1,

√
2ζ )]2 ∓ 2βκ±U (a − 1,

√
2ζ )U (a,

√
2ζ ) + [κ±U (a,

√
2ζ )]2}. (A4)

Accordingly, this enables us to consider the squared modulus of the wave function � (α)
η,n (r, k) as defined by Eq. (27).

APPENDIX B: ANALYTICAL STUDY OF THE SPECTRUM FOR SEMI-INFINITE SYSTEM WITH ZIGZAG EDGE, kl = 0

For small values of β, Eqs. (21) and (22) can be solved by expanding the parabolic cylinder function U (a, z) in the argument
z {see Eq. (19.3.5) in Ref. [37]}. In this case, we have

√
2ζ (0)|kl=0 =

√
2

βε

(1 − β2)3/4
=

√
2βε(0) + o(β ), (B1)

and

κ−κ+ = δ2(1 − β2) − ε2

2(1 − β2)3/2

= 1

2
(δ2 − (ε(0) )2) − ε(0)ε(1)β + o(β ), (B2)

where ε =∑∞
s=0 ε(s)βs, ε = ε(kl = 0).

Then expanding the solutions for the K+ valley in the vicinity the β = 0 solutions, ε
(0)
+,0 = −δ and (ε(0)

+,n)2 − δ2 = 4n with
n = 1, 2, . . . {see Eq. (S17) in the SM [32]}we obtain the following set of equations for ε(1):

β

�
(

1
2

) = ε
(1)
+,0β, (B3)

β + 2βε
(0)
+,n

(
δ + ε

(0)
+,n

)
�
(

1
2 − n

) = (δ + ε
(0)
+,n

)
(−1)n−1�(n)

(
−1

2
ε

(0)
+,nε

(1)
+,nβ

)
(B4)

Hence, we arrive at Eq. (28).
Similarly, for the K− valley expanding in the vicinity of the solutions for β = 0: ε2

−,n − δ2 = 2(2n + 1) with n = 0, 1, . . .

{see Eq. (S18) within the SM [32]}we obtain the following set of equations for ε(1):

2βε
(0)
−,n

(
δ2 − (ε(0)

−,n

)2)− β
(
δ − ε

(0)
−,n

)
4�
(

1
2 − n

) = (−1)n�(n + 1)

(
−1

2
ε

(0)
−,nε

(1)
−,nβ

)
(B5)

and finally arrive at Eq. (29).
Let us consider electronic levels with ε > 0 and δ = 0 in the limit β → 1. We rewrite the arguments of the parabolic cylinder

functions that enter Eqs. (21) and (22) as follows:

U (a,
√

2ζ (0)|kl=0)

U (a − 1,
√

2ζ (0)|kl=0)

⎫⎬
⎭ = U

(
−λ

2
− ν2

2
,
√

2βν

)
= U

(
−μ2

λ

2
,
√

2βλμλ

)
, (B6)

where the following notations were introduced ν = ε(1 − β2)−3/4, μλ = ν

√
1 + λ

ν2 and βλ = β(1 + λ
ν2 )−

1
2 with λ = ∓1.

According to Ref. [38], Eq. (12.10.35) {see also Eq. (3.1) in [40]} for a = −μ2/2 < 0,−2
√−a <

√
2μβ < ∞ and for large

positive real values of μ one can use the asymptotic expansion of the parabolic cylinder function in terms of Airy functions Ai(x)
that for β ∈ [−1 + ε,∞) converges uniformly,

U

(
−1

2
μ2,

√
2βμ

)
= 2π

1
2 μ

1
3 g(μ)φ(ζ )

[
Ai(μ

4
3 ζ )Aμ(ζ ) + Ai′(μ

4
3 ζ )

μ
8
3

Bμ(ζ )

]
, (B7)

where

ζ = −
(

3

2
η

) 2
3

, η = 1

2
arccos(β ) − 1

2
β
√

1 − β2, g(μ) ∼ 2− 1
4 μ2− 1

4 e− 1
4 μ2

μ
1
2 μ2− 1

2

( ∞∑
s=0

gs

μ2s

)−1

,

φ(ζ ) =
( −ζ

1 − β2

) 1
4

, Aμ(ζ ) ∼
∞∑

s=0

as(ζ )

μ4s
, Bμ(ζ ) ∼

∞∑
s=0

bs(ζ )

μ4s

(B8)
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and the coefficients as(ζ ), bs(ζ ), and gs are given in Eqs. (3.9) and (2.8), respectively, from Ref. [40]. Taking the leading term
of the expansion we obtain

U
(− 1

2μ2
+,

√
2β+μ+

)
U
(− 1

2μ2−,
√

2β−μ−
) = g(μ+)

g(μ−)

μ
1
3+φ(ζ+)Ai(μ

4
3+ζ+)

μ
1
3−φ(ζ−)Ai(μ

4
3−ζ−)

∼
β→1

ν√
2

Ai
(−( ε2

2

) 2
3
(
1 +

√
2
√

1−β

ε2

))
Ai
(−( ε2

2

) 2
3
(
1 −

√
2
√

1−β

ε2

)) . (B9)

Here ζ±(η±) and η± are given by η(β±) with η(β ) defined by Eq. (B8) and we used the following limiting expressions necessary
to calculate the ratio (B9):

μ
1
3+g(μ+)

μ
1
3−g(μ−)

∼
ν→+∞

ν√
2

(
1 − 1

6ν2
+ O

(
1

ν4

))
, η ∼

β→1

2
√

2

3
(1 − β )3/2 + O((1 − β )5/2),

φ(ζ+)

φ(ζ−)
∼

β→1
1 − 1

10ν2
+ O

(
1

ν4

)
, μ2

ληλ ∼
β→1

ν2η + λ

√
1 − β√

2
+ O((1 − β )3/2),

−μ
4
3
λ ζλ =

(
3

2

) 2
3 (

μ2
ληλ

) 2
3 ∼

β→1

(
ε2

2

) 2
3
(

1 + λ

√
2
√

1 − β

ε2
+ O((1 − β )3/2)

)
. (B10)

Since γ ∼
β→1

(1 − √
2
√

1 − β + (1 − β ) + O((1 − β )3/2)), substituting the ratio (B9) in Eq. (21) for the spectrum in K+ valley

we obtain

U
(− 1

2μ2
+,

√
2β+μ+

)
U
(− 1

2μ2−,
√

2β−μ−
) − ν√

2γ
∼

β→1
− ν√

2

⎡
⎣Ai′

(−( ε2

2

) 2
3
)

Ai
(−( ε2

2

) 2
3
)
(

ε2

2

) 2
3 2

ε2

√
2
√

1 − β +
√

2
√

1 − β

⎤
⎦ = 0. (B11)

Hence, the spectrum for K+ valley is characterized by the zeros of the following equation:

Ai′
(

−
(

ε2

2

) 2
3
)

+
(

ε2

2

) 1
3

Ai

(
−
(

ε2

2

) 2
3
)

= 0. (B12)

It is convenient to define in Eq. (31) the function f+ and express the spectrum for the K+ valley via its zeros κ+,n. Then the full
spectrum, which includes also K− valley [see Eq. (B16) below] is represented by Eq. (30).

Furthermore, under the assumption that the energies εn are large, which is certainly valid for large n, Airy function and its
derivative in Eq. (31) can be expanded as follows {see Eqs. (9.7.9) and (9.7.10) from [38]}:

Ai(−x) ∼ 1√
πx

1
4

sin

(
2

3
x3/2 + π

4

)
, Ai′(−x) ∼ − x

1
4√
π

cos

(
2

3
x3/2 + π

4

)
, x → ∞. (B13)

Then the equation f+( − (ε2/2)2/3) = 0 for the spectrum reduces to the trigonometric one

− cos

(
ε2

3
+ π

4

)
+ sin

(
ε2

3
+ π

4

)
= 0, (B14)

which has the following set of the solutions ε
app
+,n = √

3πn with n = 0, 1, . . .. This set of approximate solutions also contains the
zero-energy solution, ε

app
+,0 = 0, while the full equation with the Airy function has the lowest-energy solution ε+,0 = 0.58315.

Nevertheless, starting from n = 1 the approximate solutions of the trigonometric equation (B14) and the full equation with the
Airy function demonstrate an excellent agreement: ε

app
+,1 = 3.06998, ε+,1 = 3.06965 and ε

app
+,2 = 4.34161 and ε+,2 = 4.34119.

Thus it is enough to omit the n = 0 solution of Eq. (B14) for the K+ valley. Accordingly, we included in the upper line of
Eq. (32) only the solutions with n = 1, 2, . . . .

Similarly, for the K− valley we substitute the ratio (B9) in Eq. (22) and obtain the following equation:

U
(− 1

2μ2
+,

√
2β+μ+

)
U
(− 1

2μ2−,
√

2β−μ−
) − ν√

2
γ ∼

β→1
− ν√

2

⎡
⎣Ai′

(−( ε2

2

) 2
3
)

Ai
(−( ε2

2

) 2
3
)
(

ε2

2

) 2
3 2

ε2

√
2
√

1 − β −
√

2
√

1 − β

⎤
⎦ = 0, (B15)

the spectrum for K− valley is characterized by the zeros of the following equation:

Ai′
(

−
(

ε2

2

) 2
3
)

−
(

ε2

2

) 1
3

Ai

(
−
(

ε2

2

) 2
3
)

= 0. (B16)

Accordingly, the spectrum for the K− valley is expressed via the zeros κ−,n of the function f− defined by Eq. (31).
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Again using the large negative argument expansion (B13)
applicable for the large energies εn, one can simplify equa-
tion for the spectrum f−(−(ε2/2)2/3) = 0 to the trigonometric
one

− cos

(
ε2

3
+ π

4

)
− sin

(
ε2

3
+ π

4

)
= 0. (B17)

Equation (B17) has the following set of the solutions ε
app
−,n =√

3π (n + 1/2) with n = 0, 1, . . . The comparison of the
approximate solutions given by this set and the full equation
with Airy function demonstrates a rather good agreement
starting from the n = 0 level: ε

app
−,0 = 2.1708, ε−,0 = 2.15569

and ε
app
−,1 = 3.75994, ε−,1 = 3.75805. Thus the whole set start-

ing from n = 0 can be used in the lower line of Eq. (32).
One can check that there are no collapsing solutions ε ∼
(1 − β2)3/4 in the β → 1 case.

To analyze Eqs. (21) and (22) in the limit β → −1 for
the electronic levels it is necessary to choose the large

positive μ expansion (3.16) of U (− 1
2μ2,−√

2βμ) instead of
employed above Eq. (B7), which converges uniformly β ∈
[−1 + ε,∞). Then one can prove that the only electronic
solutions in the limit β → −1 are collapsing, specifically,
ε ∼ (1 − β2)3/4.

Introducing ν defined below Eq. (B6), one can rewrite
Eqs. (21) and (22) for δ = 0 and β = −1 in the form
f (ν) = 0, where

f (ν) = U
(− 1

2 − 1
2ν2,−√

2ν
)

U
(

1
2 − 1

2ν2,−√
2ν
) + ν√

2
. (B18)

One can check that for ν > 0 this equation has an infinite set
of zeros νn,

ε

(1 − β2)3/4
= νn. (B19)

The values ν2n with n = 1, 2, . . . correspond to the K+ valley
and ν2n+1 with n = 0, 1, . . . correspond to the K− valley,
respectively. Thus we arrive at Eq. (33).
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