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Hall transport in organic semiconductors

Michel Panhans and Frank Ortmann
TUM School of Natural Sciences, Department of Chemistry, Technische Universität München, 85748 Garching b. München, Germany

(Received 13 July 2023; revised 7 August 2024; accepted 19 August 2024; published 3 September 2024)

We establish a universal theory to understand quasiparticle Hall effects and transverse charge-carrier transport
in organic semiconductors. The simulations are applied to organic crystals inspired by rubrene and cover multiple
transport regimes. This includes calculations of the intrinsic Hall conductivity in pristine crystals, which are
connected with a simple description of semiclassical electron transport that involves the concept of closed
electronic orbits in the band structure, which can be easily calculated in density functional theory. Furthermore,
this framework is employed to simulate temperature-dependent longitudinal and transverse mobilities in rubrene.
These simulations are compared to experimental findings, providing insights into these results by characterizing
the nonideality of the Hall effect due to the influence of vibrational disorder. We finally investigate the conditions
for the observation of Shubnikov–de Haas oscillations in the longitudinal resistivity and quantized Hall plateaus
in the transverse resistivity. A clear picture why this is not observed in rubrene is developed. These insights into
classical and quantum Hall effects and their intermediates in organic semiconductors establish a blueprint for
future explorations in similar systems.
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I. INTRODUCTION

Investigating electronic transport by Hall measurements
is of great interest for semiconductors and metals because
Hall transport provides deep insights into the quasiparticle
states, electron-transport mechanisms, and topological prop-
erties of band structures [1]. The universality and efficiency
of a theoretical description of Hall transport is indicated
by the seamless transition between quantum and classical
regimes and its applicability to challenging systems, re-
spectively. High-mobility organic semiconductors (OSCs) are
such systems, for which the classical Hall effect has been
reported in rubrene single-crystal organic field-effect transis-
tors (OFETs) [2]. Subsequent Hall measurements in rubrene
[3–10] at moderately low temperatures and several other
systems [9,11–15] have been performed to study the na-
ture of the charge carriers. A two-dimensional hole gas in
C8-DNBDT-NW was measured down to temperatures around
10 K [16], in which the Hall mobilities indicate the exis-
tence of band transport. However, so far, no signature of a
possible quantized Hall effect, like the integer quantum Hall
effect (IQHE) [17–19], has been observed. The interest in
the topological nature of these quantization phenomena, for
which cryogenic temperatures lead to a step profile in the Hall
resistance, opened a wide research field [17,19–22] but not
yet in OSCs, where even numerical schemes for a quantitative
description of Hall effects are only rarely reported in the
literature [23,24]. Considering the breadth of experimental
and theoretical developments of the Hall effect in various
scientific contexts, its universal understanding covering all
different facets including semiclassical band theories, Berry-
phase physics [17,25], Boltzmann-transport approaches [26],
transient theories involving carrier localization [27–29], and
carrier hopping [30–32], etc. has not been established and
seems out of reach.

In this work, we develop such a universal theory and
study the dc-Hall effect using an efficient time-domain rep-
resentation [33] for the electrical conductivity based on the
general Kubo formula [33,34]. Within this quantum mechan-
ical framework, we explicitly consider vibrational disorder
arising from the electron-phonon coupling (EPC) to low-
energy molecular vibrations. We study different Hall-transport
regimes in rubrene by varying the strength of the disorder.
While disorder can indeed vary in different experimental se-
tups, our main purpose here is to generate more insights by
this variation. First, we characterize the Hall conductivity
for the states derived from the HOMO (highest occupied
molecular orbital) of rubrene at vanishing disorder. By in-
cluding vibrational disorder, we additionally investigate the
temperature dependence of the Hall effect in bulk rubrene
crystals and compare our results to experimental data. It is
shown that, in the presence of vibrational disorder, different
transport states must contribute to longitudinal and transverse
charge transport in full agreement with experimental findings.
In the presence of weak disorder, in general the Hall conduc-
tivity can become quantized due to the formation of Landau
bands [35], which shows the topological nature of the Hall
effect owing to the intrinsic Berry curvature [20,25,36,37].
We determine the conditions under which Hall plateaus in the
transverse resistivity and Shubnikov–de Haas (SdH) oscilla-
tions in the channel resistivity can be observed and when they
break down.

II. THEORY

A. Hall-transport theory

We first introduce the essential ingredients of the developed
Hall-transport theory and the numerical methods employed,
which are necessary for both the conceptual understanding of
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Hall effects and for the practical evaluation of Hall responses
in OSCs. The theoretical basis is a time-domain approach to
study linear responses based on the Kubo formalism [33].
Within this framework, the electrical dc-conductivity tensor
σ of effective noninteracting quasiparticles reads

σαβ = e2

2V

∫ ∞

0
dt e− t

τ

∫ ∞

−∞
dE

[
−1

2

df (E )

dE

d2

dt2
D+

xαxβ
(E , t )

+ 1

h̄
f (E )

d

dt
D−

xαxβ
(E , t )

]
,

(1)

with the Fermi function f (E ) = (eβ(E−μ) + 1)−1, the (phe-
nomenological) relaxation time τ , and the correlation
functions

D+
xαxβ

(E , t ) = Tr(δ(E − Ĥ ){�x̂α (t ),�x̂β (t )}), (2)

D−
xαxβ

(E , t ) = −i Tr(δ(E − Ĥ )[�x̂α (t ),�x̂β (t )]), (3)

in which the square brackets and the curly brackets denote the
commutator and the anticommutator, respectively. The time
evolution of �x̂α (t ) = x̂α (t ) − x̂α (0) for the Cartesian direc-
tion α is driven by the Hamiltonian Ĥ , describing effectively
noninteracting quasiparticles (see Appendixes A and B for
the detailed derivation). The symmetric and the antisymmetric
parts of the conductivity tensor components σ

s(as)
αβ = [σαβ +

(−)σβα]/2 then read

σ s
αβ = − e2

4V

∫ ∞

0
dt e− t

τ

∫ ∞

−∞
dE

df (E )

dE

d2

dt2
D+

xαxβ
(E , t ), (4)

σ as
αβ = e2

2V h̄

∫ ∞

0
dt e− t

τ

∫ ∞

−∞
dE f (E )

d

dt
D−

xαxβ
(E , t ). (5)

The Hall conductivity is given by the antisymmetric part of
the tensor, i.e., σH = σ as

αβ . Due to the general Onsager-Casimir
relations [38–40] for the electrical conductivity σαβ (Bγ ) =
σβα (−Bγ ), only the antisymmetric part σ as

αβ describes a field-
induced Hall voltage VH = [VH(Bγ ) − VH(−Bγ )]/2, while the
symmetric part σ s

αβ is invariant under reversal of the magnetic
field. We numerically evaluate Eq. (1), using a linear-scaling
quantum-transport approach [41], the Lanczos algorithm, and
a Chebyshev expansion for the determination of the functions
D±

xαxβ
(E , t ). From the computed dc-conductivity tensor σ, we

obtain the resistivity tensor by inversion, ρ = σ−1.

B. Relation to other Hall-transport theories

In this theoretical section, we shortly discuss how the
present work includes other known Hall-transport approaches
used in the past such as the description of the Hall conduc-
tivity in terms of the Berry curvature [20]. From the present
approach starting from Eq. (1) (see Appendix D for details),
we obtain the Hall conductivity as

σH = ie2h̄

V

∑
mn

f (εn)

(
vα

nmvβ
mn − vβ

nmvα
mn

)
(εn − εm)2 + (

h̄
τ

)2 , (6)

with vα
nm being the matrix elements of the velocity operator

expanded in the quasiparticle eigenbasis of a proper quasipar-
ticle Hamiltonian with eigenenergies εn. In the limit τ → ∞,

the Hall conductivity is obtained from the thermally averaged
Berry curvature, which is the key property in the theory of the
IQHE.

For the symmetric part of the conductivity σ s
αβ , we obtain

from Eq. (1) (see Appendixes B and D) in the limit τ → ∞

σ s
αβ = βe2π h̄

2V

∑
mn

f (εn)[1 − f (εn)]δ(εn − εm)

× (
vα

nmvβ
mn + vβ

nmvα
mn

)
. (7)

For α = β, this symmetric part becomes equivalent to the
Kubo-Greenwood-type formula for longitudinal charge trans-
port [41,42].

In addition, we prove in Appendix E that Eq. (1) is also
equivalent to the Kubo-Bastin [43] formula and to the Kubo-
Bastin-Strěda formula [44], which establishes additional exact
relationships to other numerical schemes used to study charge
transport in (topological) condensed matter systems [45–47].
More specifically, the Kubo-Bastin formula [43] describes the
dc conductivity in the form

σαβ = e2

V

∫ ∞

−∞
dE f (E )Cαβ (E ), (8)

with the correlation function

Cαβ (E ) = ih̄ Tr

[
v̂αδ(E − Ĥ )v̂β

dĜ+(E )

dE
− H.c.

]
, (9)

which depends on the one-particle Green’s function operator
Ĝ±(E ) = limη→0(E − Ĥ ± iη)−1. The equivalence of Eq. (1)
with the Kubo-Bastin and the Kubo-Bastin-Strěda formula is
obtained from the decomposition of the correlation function
Cαβ (E ) into symmetric and antisymmetric parts Cs(as)

αβ (E ) =
[Cαβ (E ) + (−)Cβα (E )]/2 yielding

Cs
αβ (E ) = π h̄

d

dE
Tr[δ(E − Ĥ )v̂αδ(E − Ĥ )v̂β], (10)

Cas
αβ (E ) = ih̄ Tr

[
δ(E − Ĥ )

(
v̂α

1

(E − Ĥ )2
v̂β − H.c.

)]
.

(11)

From this decomposition, we obtain the same result for
σ s

αβ and σH as derived from Eq. (1) and thus demonstrate
the equivalence to the Kubo-Bastin formula in Eq. (8) (see
Appendixes D and E for details). To compare Eq. (1) with the
Kubo-Bastin-Strěda formula, the Hall conductivity is decom-
posed into two terms σH = σ I

H + σ II
H , where σ II

H is given by

σ II
H = e2

2V

∫ ∞

−∞
dE f (E )Tr

[
d

dE
δ(E − Ĥ )(x̂α v̂β − x̂β v̂α )

]
,

(12)

which explicitly appears in the Strěda formula and has pre-
viously been used to explain the quantization of the Hall
conductivity [44]. This contribution to the Hall conductivity
is also relevant to explain the intrinsic Hall conductivity in
the disorder-free case (see below) and thus is, interestingly, at
the origin of the semiclassical version of the Hall conductivity
discussed in Sec. III A.
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FIG. 1. Hall effect in rubrene at vanishing disorder. (a) Hall setup for bulk crystals, where a homogeneous magnetic field is applied
perpendicular to the herringbone plane (αβ plane). (b) (Left panel) Band structure of the four HOMO bands. (Right panel) Energy-resolved
Hall conductivity σH at 0 K. The axes are flipped (σH ↔ EF) to compare both panels more easily. (c) Energy-resolved density nχ at 0 K.
The total charge-carrier concentration n (black) and the analytical result from Eq. (22) (dashed indigo line) are plotted for comparison. The
colored bar in the inset defines different regimes and their energy separation. (d) Contour plot of the Fermi surface at kγ = 0 for all four bands
at different energies. The contour lines are defined by energies of the colored bar in (c). Holelike, electronlike, and open-orbit domains are
indicated.

In addition to covering previous theories, Eq. (1) pro-
vides us with the full quantum-dynamical time evolution of
the involved transport correlation functions. This permits in-
vestigating any transport regime, which otherwise demands
conceptually different theories used previously. It also offers
detailed information on, e.g., the formation of topologi-
cal states on the time scale of localization and scattering
effects.

C. Effective quasiparticle Hamiltonian
and simulation geometry for rubrene

We study the Hall effect for a three-dimensional rubrene
crystal with lateral dimensions of 0.06 µm×0.8 µm×1.6 µm,
including around 108 coupled hole orbitals. We focus on the
HOMO-derived states as an example, as holes are the usual
carrier type in rubrene and similar OSCs. In this setup, the
α direction [see Fig. 1(a)] is aligned with the high-mobility
direction of the rubrene crystal, while the β direction is per-
pendicular to α and lies also inside the herringbone plane. The
lattice parameters of the crystal are given by a = 26.789 Å
(γ direction), b = 7.170 Å (α direction; see Fig. 1), and c =
14.211 Å (β direction) of an orthorhombic Bravais lattice and
are taken from the literature [48]. The four rubrene molecules
arrange in a herringbone structure in the αβ plane with the
center-of-mass coordinates A = (0, 0, 0), B = ( a

2 , 0, c
2 ), C =

(0, b
2 , c

2 ), and D = ( a
2 , b

2 , 0). A suitable tight-binding expres-
sion for the four bare electronic bands with a minimal number

of electronic transfer integrals reads

ε(k,±,±) = 2εAA+b cos(kαb) + 2εAA+2b cos(2kαb)

± 4εAC cos

(
kαb

2

)
cos

(
kβc

2

)

± 4εAB cos

(
kγ a

2

)
cos

(
kαb

2

)
, (13)

with the transfer integrals εi j taken from prior work [48].
To model hole transport in rubrene crystals, these parame-

ters enter a Hamiltonian of the form

Ĥ =
∑
i, j

e−iϕi j P̃[εi j + Vi j (T )]ĉ†
i ĉ j +

∑
i

Vii(T )ĉ†
i ĉi, (14)

which is derived from a Holstein-Peierls Hamiltonian.
Equation (14) includes, besides the above εi j between the
molecular orbitals, an effective description of the EPC, where
the matrix elements Vii(T ) and Vi j (T ) (see below) describe a
temperature-dependent vibrational disorder potential caused
by the coupling to low-energy vibrational modes. It also
includes a polaron renormalization factor P̃ caused by the cou-
pling to high-energy vibrational modes (see Refs. [29,49–51]
for details). The Peierls phase ϕi j [52] describes the interac-
tion of the holes with a homogeneous magnetic field and is
generically defined as [52]

ϕi j = e

h̄

∫ r j

ri

dr · A(r), (15)

125202-3



MICHEL PANHANS AND FRANK ORTMANN PHYSICAL REVIEW B 110, 125202 (2024)

with the vector potential A(r) = Bxβeα + B′xαeβ and the re-
sulting magnetic field B = Bγ eγ with the constant amplitude
Bγ = B − B′. The contributions to the model Hamiltonian that
arise from EPC are given by (see, e.g., Ref. [51])

Vi j (T ) =
∑

λ

h̄ωλgλ
i j

√
1 + 2nλ

(
φλ

i + φλ
j

2

)
, (16)

P̃ = e
− ∑

ξ

(gξ
ii )

2(1+2nξ )
. (17)

Here, φi are Gaussian random numbers describing the vi-
brational disorder of low-energy modes, which arises from
tracing out these degrees of freedom. h̄ωλ and h̄ωξ are the
vibrational mode energies of the low-energy and high-energy
modes, respectively. nλ = 1/(eβ h̄ωλ − 1) and nξ (defined ac-
cordingly) are their thermal occupations, while gλ

i j and gξ
i j are

the respective coupling constants to the electronic states. The
vibrational disorder is based on ab initio material parameters
taken from Ref. [48] and is a static Gaussian disorder, which
modifies the on-site energies εii and the transfer integrals εi j ∈
{εAA+b, εAA+2b, εAB, εAC} of the rubrene crystal. The mean
strength of the vibrational disorder Vi j (T ) is determined by
its standard deviation averaged over all HOMO states, which
is obtained from the EPC material parameters as

V 2
EPC(T ) =

∑
λ

(h̄ωλ)2(1 + 2nλ)

⎡
⎣(

gλ
ii

)2 + 1

2

∑
j �=i

gλ
i jg

λ
ji

⎤
⎦

= V 2
0 (T ) + V 2

AA+b(T ) + V 2
AA+2b(T )

+ 2V 2
AC(T ) + 2V 2

AB(T ), (18)

where the sum over j only runs over the next neighbors of i
with respect to the corresponding transfer integral. The sum
over λ only includes low-frequency modes below a mode
energy of 75 meV. The temperature dependence of the vi-
brational disorder potential is codetermined by the thermal
occupation nλ of mode λ.

In Table I (Appendix F), we summarize the energy pa-
rameters used in the effective polaron model in Eq. (14). We
note that the value for VAA+2b(T ) is set to zero since the
EPC constants gλ

AA+2b have not been considered in Ref. [48]
for the second-neighbor transfer integral εAA+2b. From
Table I, we see that the vibrational disorder is dominated by
the intramolecular contribution V0(T ) and has a total disorder
strength of V 300 K

EPC = 57.5 meV. The polaron renormalization
P̃ obtained from the remaining high-frequency modes is eval-
uated to P̃ = 0.72, which reduces the transfer integrals and
the intermolecular vibrational disorder.

Finally, the cyclotron energy close to the HOMO band edge
reads h̄ωcyc = h̄eBγ /mcyc with the inverse cyclotron mass

m−1
cyc = P̃bc

h̄2

√
εAC(2εAA+b + 8εAA+2b + εAC + εAB), (19)

which is derived from the pristine (but renormalized) HOMO
band structure in Eq. (13). The cyclotron energy near the
HOMO band edge amounts to 0.51 (5.1) meV for a magnetic
field strength of 6 T (60 T).

The results derived from the proposed theoretical frame-
work in Sec. III below, which encompasses investigations of
three transport scenarios, illustrate distinct regimes of Hall

transport. These include semiclassical, quantum, topological,
and localization effects, all integrated within a single frame-
work. There, to illustrate the seamless transition between
these regimes, we vary the EPC-induced disorder strength
from zero to its full material-parameter-based values.

III. RESULTS

A. Intrinsic Hall conductivity

The first Hall-transport scenario is the intrinsic limit of
vanishing disorder, where we focus only on the Hall-transport
properties stemming from the HOMO-band structure. In this
first scenario, the coupling to low-energy vibrations, i.e., the
vibrational disorder, is neglected, while the coupling to high-
energy vibrations is included via a polaron renormalization
factor of P̃ = 0.72. We numerically evaluate the conductivity
tensor in the herringbone plane [αβ plane; see Fig. 1(a)]
and calculate the Hall conductivity σH at a magnetic field
strength of Bγ = 6 T, which is a typical modest value used
in experiments. In Fig. 1(b) (right panel), the energy-resolved
Hall conductivity (at 0 K for simplicity) is compared to the
pristine band structure of the four HOMO bands [left panel
in Fig. 1(b)] in rubrene bulk crystals. The results show an
intrinsic Hall effect in the absence of disorder, which we now
analyze in more detail.

We make two major observations. (i) The Hall conductiv-
ity is monotonically increasing from the top of the HOMO
band around EF = 250 meV. However, this trend persists only
down to a Fermi energy of around 100 meV. In this en-
ergy region, it shows a clear holelike behavior, where the
magnetic-field response agrees with the usual right-hand rule
[see Fig. 1(a)] as described by a fully classical model of
the Hall effect. At lower energy (EF � 100 meV), σH drops
rapidly to zero or turns even negative, which cannot be
explained by a reasonable classical model and requires a
quantum mechanical description. (ii) Despite the absence of
disorder in the present scenario, one cannot observe any quan-
tization effect in σH even at T = 0 K.

To understand these observations and the distinct energy
dependence of the Hall conductivity in Fig. 1(b), we analyze
it by relating σH to the total carrier concentration n to quantify
the number of hole states that contribute to the Hall effect.
We thus define the density nχ that is characteristic for σH

according to

enχ = σHBγ . (20)

nχ is compared to the total carrier concentration n in Fig. 1(c).
This shows that at low concentrations nχ agrees with n for
EF � 103 meV (or n � 0.28 holes per molecule). In addition,
we find that, for n � 0.28, enχ is also equal to the Hall
density enH, which implies nH = nχ = n and thus describes
an ideal Drude-like Hall effect (nH = n) of the holes with
a Hall resistance of ρH = σ−1

H . At lower Fermi energy, nχ

decreases rapidly (between 80 meV � EF � 100 meV) and
almost vanishes for even lower energies. Since we do not ob-
serve any quantization effects in σH and ρH, we conclude that
the obtained energy dependence of the Hall conductivity is
an intrinsic property of the pristine band structure and should
coincide with a semiclassical electron-transport theory [53].

Motivated by these numerical findings and going beyond
the specific rubrene crystals, we have derived a simple and
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general analytic expression for the intrinsic Hall conductivity
from the full quantum description in Eq. (1). In absence of
disorder and for a purely two-dimensional system (taken for
simplicity), the intrinsic Hall conductivity yields the semiclas-
sical expression

σ sc
H = eN

BγV

∫ ∞

−∞
dE f (E )

d

dE

Ae(E ) − Ah(E )

�BZ
. (21)

This result involves the area difference Ae(E ) − Ah(E ) en-
closed by all semiclassical quasiparticle orbits (both electron-
and holelike) at energy E in the Brillouin zone (BZ). σ sc

H
furthermore depends on the total number of electronic states
N , the chemical potential μ, while �BZ is the BZ volume (see
Appendix C for details of this derivation). For the particular
case of rubrene, the Hall conductivity at zero temperature can
further be approximated from Eq. (21) as

σH = e

Bγ

{n[1 − �(EF − Eh)] − ne�(EF − Ee)}, (22)

with the Heaviside step function �(E ). The energies Eh ≈
103 meV and Ee ≈ −202 meV are introduced as the criti-
cal energies that separate energy domains where the Fermi
surface describes closed holelike and electronlike orbits.
Figure 1(d) illustrates these orbits as contours for kγ = 0.
Equation (22) describes the fact that for a Fermi energy of
EF > Eh an ideal holelike Hall effect is observed, i.e., σH =
en/Bγ , and for EF < Ee an ideal electronlike Hall effect, i.e.,
σH = −ene/Bγ (with the electron concentration ne = 1 − n),
is observed. For Ee < EF < Eh the Hall conductivity vanishes.
This is because the orbits are open in full agreement with the
numerical results of enχ in Fig. 1(c). The closure of the orbits
with changing energy can be seen in Fig. 1(d).

At this point we should emphasize the quality of these
findings. Within the full quantum-mechanical treatment of σH

(including the possible topological nature of the Hall conduc-
tivity) we have shown here that, in the absence of quantization
phenomena and under conditions of sufficiently low disorder,
the intrinsic Hall conductivity can be effectively explained.
This explanation relies exclusively on analyzing the semiclas-
sical orbits within the pristine band structure of the specified
material (at zero magnetic field). This picture also captures
transitions between ideal and nonideal Hall effects. Moreover,
we find that the absence of quantization of the Hall conductiv-
ity is due to the relatively small energy spacing of the Landau
bands at moderate fields of Bγ = 6 T. The level spacing is
competing with the band dispersion along the direction of
the magnetic field, which is larger in the present case. This
establishes the conditions under which such semiclassical re-
sponses may arise. We finally note that Eq. (21) can also be
derived by assuming a priori a semiclassical regime of the
Hall effect [54,55]. It is closely related to the presence of
Lifshitz transitions [56] in the pristine band structure de-
scribing changes in the topology of the Fermi surface when
changing the Fermi energy. Thus we find this regime to be a
part of the present and more general Kubo approach.

B. Temperature-dependent Hall effect in bulk rubrene crystals

We continue our analysis of the Hall effect in rubrene
by studying its temperature dependence at a magnetic-field

strength of 6 T. In addition to Sec. III A, we now include the
vibrational disorder based on our molecular parameters for
the EPC in rubrene. To characterize the present Hall-transport
regime, we calculate the Hall mobility μH, the channel mobil-
ity μ, and the Hall density enH, which can be measured in Hall
probes. More explicitly, these quantities are obtained from the
resistivity components, yielding

μH = ραα

Bγ ρH
, μ = 1

enραα

, enH = Bγ

ρH
, (23)

where ραα = ρ is the resistivity along the high-mobility di-
rection and ρH is the Hall resistance along the β direction
[see Fig. 1(a) for comparison]. The resistivities ραα and ρH

are obtained from inversion of the full dc-conductivity tensor
obtained from Eq. (1).

To get detailed insights into this Hall-transport regime, we
analyze the dependencies of μH and μ on the relaxation time
τ and on the carrier concentration n. In Fig. 2(a), we plot
the Hall mobility as a function of τ , which turns out to be
almost constant for τ � 50 fs and varies only slightly with
temperature. On the other hand, the channel mobility μ in
Fig. 2(c) has a stronger dependence on τ and decays at larger
times. Note that large τ can be associated to weaker external
relaxation effects. This decay with τ is a consequence of the
vibrational disorder entering the Hamiltonian in Eq. (14) and
leading to carrier localization, due to multiple scattering, at
time scales of around 100 fs to 200 fs in agreement with the
time scale of transient localization [27,29] in the absence of
magnetic fields. This dependence suggests that the transport
states contributing to the channel mobility become localized
for intermediate times τ and only the more extended transport
states survive at larger times. In stark contrast, these local-
ization effects for μ are not found in μH. This means that
vibrational disorder has a smaller effect on those transport
states that respond to the magnetic field by deflection, which is
in full agreement with experimental findings [2] (see below).

Furthermore, we show in Figs. 2(b) and 2(d) that the
mobilities for a fixed value of τ do not vary significantly
with the carrier concentration n at least for n � 10−2 that are
achievable experimentally. That is, the transport characteris-
tics are quite homogeneous at the top of the HOMO band and
therefore should not depend much on the gate voltage.

To finally compare our results, characterized by a distinct
time and concentration dependence, to experimental data, for
which this information is not directly available, one needs to
fix certain values for τ and n. For the carrier concentration,
we use n = 2.5 × 10−4 holes per molecule, which is similar
to the experimental value of roughly 1010 cm−2 and which
has already been used to calculate the mobilities shown in
Figs. 2(a) and 2(c). To fix the relaxation time τ , we match the
numerically calculated value of the ratio μ/μH ≡ nH/n with
the experimental ratio μexpt/μ

expt
H ≡ nexpt

H /nexpt of Ref. [2]
[cf. Fig. 3(d)]. This is possible because of the consistency
of experimental and theoretical results. More specifically, we
find in Fig. 3(a) that nH/n also decays over time at fixed n
and is almost constant in the entire HOMO band at fixed τ

[see Fig. 3(b)]. Therefore, equating the mobility ratios yields
the relaxation times as indicated by circles in Fig. 3(a). We
find that the resulting transport time scales, ranging from
50 fs at 300 K to 250 fs at 180 K, are consistent with the
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FIG. 2. Temperature-dependent Hall transport in bulk rubrene crystals at 6 T. (a), (c) Time dependence of the Hall mobility and the channel
mobility for temperatures between 140 K and 300 K in steps of 20 K. (b), (d) Concentration dependence of the Hall mobility and channel
mobility for fixed τ of 50 fs, 150 fs, and 250 fs at 300 K. In (a) and (c), the carrier concentration is fixed to n = 2.5×10−4 holes per molecule.

transport time scale within transient localization theory [27].
In contrast to transient localization theory, in which τ is re-
lated to characteristic time scales of low-energy vibrations,
the value of τ is here determined from the comparison of the
experimental and the theoretical Hall density, fixing τ as a
free parameter. We emphasize that this is not a contradiction
to transient localization theory since the present values of τ

are smaller than the typical time scale of low-energy vibration
modes, which is the upper limit of the time scale where the
vibrational-disorder model is a valid treatment of the EPC.

Based on the fixed values for n and τ , we calculate the
temperature-dependent mobilities shown in Fig. 3(c). For
comparison, Fig. 3(d) shows the experimental Hall measure-
ment carried out by Podzorov et al. [2] on vacuum-gated
rubrene single-crystal OFETs. Both theoretical and experi-
mental results agree in that Hall and channel mobilities are
equal at room temperature but differ at lower temperatures
according to μH > μ. This indicates the formation of lo-
calized carriers due to vibrational disorder at low T . We
note that the temperature dependence of the channel mo-
bility μ in Fig. 3(c) especially its downturn towards lower
temperatures [with dμ(T )/dT > 0] is a direct consequence
of the treatment of the EPC as vibrational disorder within
the transient localization approach. Given that the validity
of transient localization is limited to transport time scales
of up to a few hundred femtoseconds and may not extend
to the lowest temperatures, we there also consider different
predicted mobility behaviors. For instance, in diagrammatic

Monte Carlo–based approaches without an assumed relax-
ation time, it was suggested that an activated temperature
dependence [dμ(T )/dT > 0] at low temperatures only oc-
curs at elevated EPC values [57,58]. This suggests a possible
limitation of transient localization theory, at least for studied
models that involve a single high-frequency vibration mode
and a single charge carrier in a one-dimensional model crystal.
However, a more detailed comparison is clearly beyond the
scope of this work. In general, the theoretical results are in
good qualitative agreement to experimental mobility values;
still we note that also static disorder caused, e.g., by surface
disorder or impurities might lead to a mobility downturn due
to carrier localization.

We note that the difference between the channel and Hall
mobilities has been explained previously with a phenomeno-
logical model put forward by Yi et al. [7]. In this model, the
difference is attributed to the presence of two distinct types
of charge carriers: bandlike carriers and hopping carriers, the
latter of which do not respond to the magnetic field. Different
to this minimal semiclassical model, in our approach all types
of transport states and all of their potential coherent interfer-
ences are naturally included. An attempt was made to apply
such phenomenological models for illustration, but the results
were not satisfactory, which might be due to the absence
of clearly distinct types of carriers or the effect of multiple
scattering and localization. Instead, the understanding of the
Hall transport in rubrene can be enhanced by analyzing the
density nχ = σHBγ defined in Eq. (20) and connect the present
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FIG. 3. Temperature-dependent Hall transport in bulk rubrene crystals at 6 T. (a) Time dependence of the Hall density for temperatures
between 140 K and 300 K in steps of 20 K. (b) Concentration dependence of the Hall density for fixed τ of 50 fs, 150 fs, and 250 fs at
300 K. In (a) the orange circles indicate the experimental reference values obtained in Ref. [2]. The gray dashed lines in (a) and (b) indicate
the equality between the carrier density and the Hall density n = nH. (c) Theoretical Hall and channel mobilities. (d) Experimental Hall and
channel mobilities taken from Ref. [2].

Hall-transport regime to the intrinsic disorder-free case dis-
cussed above (Sec. III A). Specifically, for nχ we find similar
dependencies on the carrier concentration n and on τ with
its decay over time (cf. Fig. 4). For a fixed value of τ , the
ratio nχ/n changes only weakly in the entire HOMO band,
which is similar to μH, μ, and nH/n. This result indicates
that the number of states that respond to the magnetic field
also increases uniformly with n for carrier concentrations up
to 10−1. The difference to the intrinsic case discussed earlier,

however, is very pronounced and eventually quite insightful.
While the Hall density nH, both in the disorder-free and in the
disordered case, is of the order of the carrier concentration
nH ≈ n (see above), the density nχ is now five orders of
magnitude smaller than n. This behavior is totally different
to the pristine case, where we found nχ ≈ n for n � 0.28
holes per molecule, which we attributed to the distribution of
holelike, electronlike, and open orbits in the HOMO band of
rubrene [see discussion of Fig. 1(c)]. In stark contrast here, the

FIG. 4. Time and concentration dependence of nχ . (a) Time dependence of the density nχ for temperatures between 140 K and 300 K in
steps of 20 K. (b) Concentration dependence of the density nχ for fixed τ of 50 fs, 150 fs, and 250 fs at 300 K.
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FIG. 5. IQHE in a rubrene monolayer at 60 T for reduced disorder strengths. (a),(c),(e) Hall density nH and nχ as a function of the
charge-carrier concentration for disorder strengths of 2.9 meV, 17.4 meV, and 23.0 meV. The carrier concentration n (solid black line) is also
plotted for comparison. (b),(d),(f) Resistivity components ρ and ρH as a function of the total charge-carrier concentration for disorder strengths
of 2.9 meV, 17.4 meV, and 23.0 meV. The dashed horizontal lines are the universal plateau heights of the IQHE regime.

vibrational disorder leads to a breakdown of this semiclassical
orbital picture since nχ/n ≈ 10−5 is much smaller.

Moreover, this behavior indicates the breakdown of any
semiclassical transport picture as a consequence of multiple
scattering at the vibrational disorder. Still, even in this regime,
we find an ideal Hall effect (n = nH) at around room tempera-
ture and only moderate nonideality factors of about 0.5 when
reducing temperature below 200 K. This ideal Hall effect
in the transient localization regime is therefore distinguished
from the semiclassical one in the intrinsic regime.

From these results we conclude that the presence of vibra-
tional disorder (or disorder in general) has three significant
effects. (i) The decay of μ as well as nH/n and nχ/n with the
relaxation time τ , indicating the presence of localized states,
which do not spread after having reached their typical local-
ization length. This reduces the absolute value of nχ yielding

a net value of orders of magnitudes smaller than in the pristine
case. (ii) The difference between longitudinal and transverse
response in the presence of disorder leads to nonidealities with
nH < n. (iii) Sufficiently large disorder can further lead to the
intermixing, i.e., the hybridization of energetically separated
holelike, electronlike, and open-orbit energy domains, which
can also lead to a breakdown of the ideal Hall effect with a
different characteristic.

Notwithstanding the detailed analysis of the present Hall-
transport regime, no indication of possible quantization effects
in the transport characteristics were found. Beyond the
straightforward observation that the temperatures considered
in Sec. III B are generally too high and magnetic fields possi-
bly too low to observe quantization effects, there are primarily
other reasons for their absence, prevailing even at sufficiently
low T and high Bγ . Fortunately, the proposed theory facilitates
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exploration of the transport regime, where the IQHE could
emerge in organic semiconductors, and we wish to illustrate
the conditions for the case of rubrene in the following section.

C. IQHE in rubrene monolayers with disorder

We finally study the conditions for the emergence of the
IQHE in rubrene monolayers with herringbone geometry in
the presence of weak disorder. This scenario is suggested
by transistor geometries where Hall transport occurs at the
crystal surface in contact with the gate dielectric, leading to
an ultrathin transport channel. For instance hexagonal boron
nitride may be used as a dielectric layer to generate large-area
crystal domains [10]. For the observation of the IQHE, a cer-
tain amount of disorder is needed to generate localized states
near the edges of the Landau bands, leading to a vanishing
channel resistance ρ and a quantized Hall resistance ρH of
ρH = h/(e2ν) with ν being an integer [17]. To model single
herringbone planes of rubrene, we simply disregard the small
electronic coupling perpendicular to the herringbone plane.
Furthermore, we set the temperature to 0 K and increase Bγ

to 60 T to prepare suitable IQHE conditions, which can be
realized in high-magnetic field labs [59]. Vibrational disorder
is known to exist in rubrene at room temperature and we
determine its value to V 300 K

EPC = 57.5 meV (cf. Appendix F).
Taking this as a reference value, we study different strengths
of reduced disorder (relative to V 300 K

EPC ) in the following.
Figure 5 compiles the calculated enH, enχ , and the resistivities
ρ (α direction) and ρH. We start in Figs. 5(a) and 5(b)
discussing very small disorder strengths of 2.9 meV, which
is below the spacing of the Landau-band centers (≈ 5 meV).
This value indeed leads to resistivity quantization in Fig. 5(b).
Figure 5(a) shows that the Hall density nH equals nχ at those
carrier concentrations at which the Hall plateaus appear in ρH,
while ρ vanishes in Fig. 5(b). The plateaus appear exactly with
the quantized values of h/(e2ν), which is the famous IQHE.
The regions of vanishing channel resistance ρ are accompa-
nied by pronounced SdH oscillations, indicating the presence
of localized states.

The certainly stronger disorder in experiments can obscure
this quantization of ρH under the chosen conditions for tem-
perature and magnetic field. Therefore, assessing the stability
of the IQHE against a stronger disorder is critical. When the
disorder strength is increased to 30% of V 300 K

EPC (17.4 meV),
the previously distinct plateaus get smeared out [Fig. 5(d)],
which coincides with the vanishing of the step structure of nH

plotted in Fig. 5(c). The density nχ only shows oscillations
with varying carrier concentration indicating the pronounced
intermixing of Landau bands due to the larger disorder. De-
spite the absence of clean Hall plateaus, we still observe clean
SdH oscillations in ρ in Fig. 5(d). Further increasing the disor-
der to 40% of V 300 K

EPC (23.0 meV) leads to a breakdown of the
IQHE. Even the SdH oscillations, which are generally more
resilient to stronger disorder, begin to diminish [see Fig. 5(f)].
Synchronously, the Hall density in Fig. 5(e) starts deviating
from the charge-carrier density (nH < n), indicating that the
Hall effect becomes nonideal. We explain this by the reduced
localization length of transport states and the intermixing of
Landau bands with different Chern numbers [60–62] caused
by the increasing amount of disorder. The intermixing of the
Landau bands is a consequence of the finite bandwidth of

the HOMO of rubrene leading to a complex superposition
of different transport contributions. This reasoning for the
transport regime of the IQHE is fully consistent with our
interpretation of the Hall-transport regime for bulk crystals in
Sec. III B. More explicitly, we conclude that the intermixing of
Landau bands with different Chern numbers is similar to the
intermixing of holelike, electronlike, and open-orbit energy
domains as described above. We conclude that the intermixing
of Landau bands and the intermixing of the three types of
orbits is particularly important for OSCs since their typical
electronic bandwidths remain usually below several hundreds
of meV and must include both Landau bands with different
Chern numbers as well as electronlike and holelike energy
domains in the band structure in full agreement with the
results for rubrene (cf. Figs. 1, 4, and 5).

IV. SUMMARY AND CONCLUSION

In summary, this theoretical framework allows covering a
variety of transport regimes, the concept of closed quasiparti-
cle orbits in the BZ, temperature-dependent Hall transport in
the presence of vibrational disorder, and topological quantum
effects such as the IQHE. The regimes have been character-
ized by distinctive relationships between different densities
and distinct mobility responses. The approach allows rational-
izing in detail available experimental data and can be readily
applied to the wide class of organic semiconducting materials.
This will also support the interpretation of Hall measurements
in the future and we hope to inspire further research in this
direction.
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APPENDIX A: DERIVATION OF THE dc CONDUCTIVITY

In this Appendix and in Appendix B, we derive Eq. (1)
of the main text based on an efficient time-domain approach
of the Kubo formalism [33]. For this purpose, we need to
consider the general Kubo formula for the dc conductivity
σαβ based on the linear response of the electric current density
Jα = Tr(ρ̂ĵα ) to a constant electric field Eβ [34],

σαβ = e2

V

∫ ∞

0
dt fvαxβ

(t ), (A1)

with the linear-response function fvαxβ
(t ). We may express

fvαxβ
(t ) in terms of spatial displacement operators �x̂α (t ) =

x̂α (t ) − x̂α (0) as derived previously [33]:

fvαxβ
(t ) = 1

2h̄

d

dt

[
tan

(
β h̄

2

d

dt

)
D+

xαxβ
(t ) + D−

xαxβ
(t )

]
, (A2)

where the displacement-operator anticommutator function
(DAF) is defined as

D+
xαxβ

(t ) = Tr(ρ̂0{�x̂α (t ),�x̂β (t )}) (A3)
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and the displacement-operator commutator function (DCF) is
defined as

D−
xαxβ

(t ) = −i Tr(ρ̂0[�x̂α (t ),�x̂β (t )]). (A4)

The square brackets and the curly brackets denote the com-
mutator and the anticommutator of the spatial displacements,
respectively. The time evolution of the involved operators is
governed by the Hamiltonian Ĥ , while for the thermal av-
erage the grand-canonical equilibrium density operator ρ̂0 =
e−β(Ĥ−μN̂ )/Tr(e−β(Ĥ−μN̂ ) ) is used. We note that the initial
values of the DAF and the DCF vanish, i.e., D±

xαxβ
(0) = 0.

As a first step of the derivation of Eq. (1), we prove that
Eqs. (A1) to (A4) can be written as

σαβ = e2

2V
lim

t→∞

[
β

2

d

dt
D+

xαxβ
(t ) + 1

h̄
D−

xαxβ
(t )

]
. (A5)

Towards this end, the second term in Eq. (A5) is readily
obtained via time integration,

e2

2h̄V

∫ ∞

0
dt

d

dt
D−

xαxβ
(t ) = e2

2h̄V
lim

t→∞D−
xαxβ

(t ). (A6)

The first term of Eq. (1) is derived from the first term in
Eq. (A2) and requires more steps. It can be identified with
the time-symmetric part of the linear response function

f ts
vαxβ

(t ) = 1

2h̄
tan

(
β h̄

2

d

dt

)
d

dt
D+

xαxβ
(t ). (A7)

Next, we use that the second derivative of the DAF with
respect to t can be expressed with the time-symmetric part
of the current-current correlation function

Svαvβ
(t ) = 1

2 Tr(ρ̂0{v̂β (0), v̂α (t )}) (A8)

according to

S ts
vαvβ

(t ) = 1

4

d2

dt2
D+

xαxβ
(t ). (A9)

Its substitution into Eq. (A7) yields

f ts
vαxβ

(t ) = β
tan

(
β h̄
2

d
dt

)
β h̄
2

d
dt

S ts
vαvβ

(t ). (A10)

As a next step, we express S ts
vαvβ

(t ) by its Fourier transform
and obtain

f ts
vαxβ

(t ) = β
tan

(
β h̄
2

d
dt

)
β h̄
2

d
dt

(
1

2π

∫ ∞

−∞
dω eiωtS ts

vαvβ
(ω)

)
, (A11)

which can be simplified by applying the differential operator
onto the exponential function, yielding

f ts
vαxβ

(t ) = β

2π

∫ ∞

−∞
dω eiωt tanh

(
β h̄ω

2

)
β h̄ω

2

S ts
vαvβ

(ω). (A12)

Calculating the time integral results in∫ ∞

0
dt f ts

vαxβ
(t ) = β

2π

∫ ∞

−∞
dω

(
πδ(ω) + i

ω

)

× tanh
(

β h̄ω

2

)
β h̄ω

2

S ts
vαvβ

(ω). (A13)

Since the function S ts
vαvβ

(t ) is real and time symmetric, its
Fourier transform S ts

vαvβ
(ω) is ω symmetric. Due to this sym-

metry, the second term on the right-hand side of Eq. (A13)
vanishes because an odd function is integrated over a sym-
metric interval. Consequently, we remain with the first term
given by∫ ∞

0
dt f ts

vαxβ
(t ) = β

2
S ts

vαvβ
(ω = 0)

= β

∫ ∞

0
dtS ts

vαvβ
(t )

= β

4

∫ ∞

0
dt

d2

dt2
D+

xαxβ
(t ). (A14)

This identity can be integrated over time yielding the desired
form of the first term of Eq. (A5):

β

4

∫ ∞

0
dt

d2

dt2
D+

xαxβ
(t ) = β

4
lim

t→∞
d

dt
D+

xαxβ
(t ), (A15)

because also the time derivative of D+
xαxβ

(t ) vanishes at zero
time. We thus have shown that the dc limit of the electrical
conductivity is given by Eq. (A5) in its general form.

We proceed by introducing a finite relaxation time τ and
rewrite Eq. (A5) as

σαβ = lim
τ→∞ σαβ (τ ), (A16)

with

σαβ (τ ) = e2

2V

∫ ∞

0
dt e− t

τ

[
β

2

d2

dt2
D+

xαxβ
(t ) + 1

h̄

d

dt
D−

xαxβ
(t )

]
,

(A17)

which we evaluate explicitly for noninteracting quasiparticles
in Apppendix B to obtain Eq. (1).

APPENDIX B: DERIVATION OF THE dc CONDUCTIVITY
FOR INDEPENDENT QUASIPARTICLES

To obtain Eq. (1) of the main text, we assume quasi-non-
interacting (fermionic) quasiparticles, which applies if the
Hamiltonian of the system has the common form

Ĥ =
∑

k

εk ĉ†
k ĉk, (B1)

with the eigenenergies εk and the fermionic creation and anni-
hilation operators ĉ†

k and ĉk . Based on this assumption, we can
further simplify the many-body thermal averages in the DAF
and the DCF by applying Wick’s theorem [63]. In general, we
can write the electric dipole operator in terms of the fermionic
eigenmodes as

ex̂α = e
∑

kl

xα
kl ĉ

†
k ĉl . (B2)

The corresponding displacement operator is then simply eval-
uated as

�x̂α (t ) =
∑

kl

(e
it
h̄ (εk−εl ) − 1)xα

kl ĉ
†
k ĉl =

∑
kl

�xα
kl (t )ĉ†

k ĉl .

(B3)
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For the DAF, we thus find

D+
xαxβ

(t ) =
∫ ∞

−∞
dE

∫ ∞

−∞
dE ′ f (E ′)[1 − f (E )]Tr[δ(E − Ĥ )�x̂α (t )δ(E ′ − Ĥ )�x̂β (t ) + H.c.], (B4)

where we have introduced the spectral projection operator δ(E − Ĥ ) and the completeness relation 1 = ∫ ∞
−∞ dE δ(E − Ĥ ) with

respect to the one-particle spectrum of the Hamiltonian. For the second derivative of the DAF, we obtain

d2

dt2
D+

xαxβ
(t ) = 2

∫ ∞

−∞
dE

∫ ∞

−∞
dE ′ f (E ′)[1 − f (E )] cos

(
t (E − E ′)

h̄

)

× Tr[δ(E − Ĥ )v̂α (0)δ(E ′ − Ĥ )v̂β (0) + H.c.]. (B5)

From this relation, we find∫ ∞

0
dt e− t

τ
d2

dt2
D+

xαxβ
(t ) = 2h̄π

∫ ∞

−∞
dE

∫ ∞

−∞
dE ′ f (E ′)[1 − f (E )]

1

π

h̄
τ

h̄2

τ 2 + (E − E ′)2

× Tr[δ(E − Ĥ )v̂α (0)δ(E ′ − Ĥ )v̂β (0) + H.c.]. (B6)

In this expression, we see that the energy integrals include a convolution with the Dirac series δτ (E − E ′) = h̄/(πτ )/[h̄2/τ 2 +
(E − E ′)2], which corresponds to a match in the one-particle energies E = E ′ in the limit τ → ∞. For the one-particle DAF,
which is introduced in Eq. (2), we obtain∫ ∞

0
dt e− t

τ
d2

dt2
D+

xαxβ
(E , t ) = 2π h̄

∫ ∞

−∞
dE ′δτ (E − E ′)Tr[δ(E − Ĥ )v̂α (0)δ(E ′ − Ĥ )v̂β (0) + H.c.]. (B7)

Therefore, using Eqs. (B6) and (B7), we find

β

∫ ∞

0
dt e− t

τ
d2

dt2
D+

xαxβ
(t ) = −

∫ ∞

0
dt e− t

τ

∫ ∞

−∞
dE

df (E )

dE

d2

dt2
D+

xαxβ
(E , t )

+
∫ ∞

0
dt

∫ ∞

−∞
dE

∫ ∞

−∞
dE ′O(δτ (E − E ′)[ f (E ) − f (E ′)]). (B8)

The above relation includes the expression used for the calculation of the symmetric part of the electrical conductivity tensor
in Eq. (1). The residual term in Eq. (B8) vanishes for degenerate states, i.e., for E = E ′ and for h̄/τ 
 E − E ′, i.e., if external
relaxation mechanisms are considered small against the energy differences (as usually considered). Thus we approximate the
full DAF with the one-particle DAF as

β

∫ ∞

0
dt e− t

τ
d2

dt2
D+

xαxβ
(t ) ≈ −

∫ ∞

0
dt e− t

τ

∫ ∞

−∞
dE

df (E )

dE

d2

dt2
D+

xαxβ
(E , t ) (B9)

for any given relaxation time τ . In the limit τ → ∞, we find the identity

β lim
t→∞

d

dt
D+

xαxβ
(t ) = − lim

τ→∞

∫ ∞

0
dt e− t

τ

∫ ∞

−∞
dE

df (E )

dE

d2

dt2
D+

xαxβ
(E , t ) = −

∫ ∞

−∞
dE

df (E )

dE
lim

t→∞
d

dt
D+

xαxβ
(E , t ). (B10)

The DCF can be evaluated equivalently to Eq. (B5):

D−
xαxβ

(t ) =
∫ ∞

−∞
dE f (E )D−

xαxβ
(E , t ), (B11)

where D−
xαxβ

(E , t ) is the one-particle DCF given in Eq. (3). Collecting the two expressions in Eqs. (B10) and (B11) yields

σαβ = lim
τ→∞ σαβ (τ ), (B12)

with

σαβ (τ ) = e2

2V

∫ ∞

0
dt e− t

τ

∫ ∞

−∞
dE

[
−1

2

df (E )

dE

d2

dt2
D+

xαxβ
(E , t ) + 1

h̄
f (E )

d

dt
D−

xαxβ
(E , t )

]
, (B13)

which is Eq. (1).
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APPENDIX C: INTRINSIC HALL CONDUCTIVITY
AND ORBITING PICTURE

In this section, we evaluate the intrinsic Hall conductivity
in the absence of disorder and connect it to semiclassical
expressions from semiclassical band theory. As a first step, we
write the quasiparticle Hamiltonian without external potential
but coupled to the operator for the vector potential Â,

Ĥ = Ĥ (p̂ − qÂ). (C1)

Here, we consider a homogeneous magnetic field B = ∇ × A,
which we may realize using the symmetric gauge for the
operator of the vector potential Â = 1

2 B × x̂. We now set
the magnetic field to B = Bγ eγ , where eγ is perpendicu-
lar to the transport directions eα and eβ yielding the vector
potential Â = (−Bγ x̂β/2, Bγ x̂α/2, 0). We now introduce the
kinetic momenta π̂±

α = p̂α ± qÂα and π̂±
β = p̂β ± qÂβ . This

transformation can be used to express both the position and
canonical momentum operators with π̂±

α/β according to

x̂α = 1

qBγ

(π̂+
β − π̂−

β ), p̂α = 1

2
(π̂+

β + π̂−
β ),

x̂β = 1

qBγ

(π̂−
α − π̂+

α ), p̂β = 1

2
(π̂+

α + π̂−
α ). (C2)

This turns out to be convenient since the Hamiltonian then
solely depends on the kinetic momenta π̂−

α and π̂−
β . The ki-

netic momentum operators satisfy the commutation relations

[π̂−
α , π̂−

β ] = [π̂+
β , π̂+

α ] = ih̄qBγ ,

[π̂−
α , π̂+

α ] = [π̂−
β , π̂+

β ] = [π̂−
α , π̂+

β ] = [π̂−
β , π̂+

α ] = 0. (C3)

We now evaluate the Heisenberg equation of motion for the
kinetic momentum operators:

˙̂π+
α (t ) = 0, ˙̂π−

α (t ) = qBγ

∂Ĥ

∂π̂−
β

(t ),

˙̂π+
β (t ) = 0, ˙̂π−

β (t ) = −qBγ

∂Ĥ

∂π̂−
α

(t ), (C4)

and find a simple relation between the time derivatives of the
position and the kinetic momentum operators

˙̂π−
α (t ) = qBγ v̂β (t ), (C5)

˙̂π−
β (t ) = −qBγ v̂α (t ). (C6)

To evaluate the Hall conductivity σH for this case, we
decompose it into two terms

σH = σ I
H + σ II

H , (C7)

with

σ I
H = e2

2V

∫ ∞

−∞
dE f (E )Tr[δ(E − Ĥ )(v̂α[ReĜ(E ), x̂β ]

− v̂β[ReĜ(E ), x̂α])], (C8)

σ II
H = e2

2V

∫ ∞

−∞
dE f (E )Tr

[
d

dE
δ(E − Ĥ )(x̂α v̂β − x̂β v̂α )

]
,

(C9)

where ReĜ(E ) = (E − Ĥ )−1 is the real part of the Green’s
function. This decomposition of σH is derived in detail in
Appendixes D and E. We first calculate the second term of
the Hall conductivity σ II

H by using the equations of motion for
the kinetic momenta,

Tr[δ(E − Ĥ )(v̂α x̂β − v̂β x̂α )]

= 1

e2B2
γ

Tr[δ(E − Ĥ )( ˙̂π−
α π̂−

β − ˙̂π−
β π̂−

α )], (C10)

where we have used that the operators π̂+
α and π̂+

β commute
with the Hamiltonian. We note that the expectation value only
depends on the conjugate operators π̂−

α and π̂−
β .

To obtain the semiclassical result for the Hall conductivity,
we now substitute the quantum mechanical trace with the
integral over the phase space

Tr[δ(E − Ĥ )(. . .)] → 1

(2π h̄)2

∫
dxαdxβd pαd pβ

× δ(E − ε(π−
α , π−

β ))(. . .), (C11)

which we can substitute with the integral over the kinetic
momenta using the coordinate transformation in Eq. (C2):

1

(2π h̄)2

∫
dxαdxβd pαd pβ δ(E − ε(π−

α , π−
β ))(. . .)

= 1

(2π h̄eBγ )2

∫
dπ+

α dπ+
β dπ−

α dπ−
β

× δ(E − ε(π−
α , π−

β ))(. . .). (C12)

Since the total number of states is given by

N =
∫ ∞

−∞
dE Tr(δ(E − Ĥ ))

→ 1

(2π h̄eBγ )2

∫
dπ+

α dπ+
β dπ−

α dπ−
β , (C13)

we obtain its semiclassical result as

N = �2

(2π h̄eBγ )2
, (C14)

with � being the phase-space volume of the kinetic momenta:

� =
∫

dπ+
α dπ+

β =
∫

dπ−
α dπ−

β . (C15)

The expectation value entering the Hall conductivity then
reads

Tr[δ(E − Ĥ )( ˙̂π−
α π̂−

β − ˙̂π−
β π̂−

α )]

= N

�

∫
dπ−

α dπ−
β δ(E − ε(π−

α , π−
β ))(π̇−

α π−
β − π̇−

β π−
α ),

(C16)

where the integration over the kinetic momenta π+
α and π+

β

amounts to the phase-space volume � since the integrand is
independent of these coordinates for the present model. We
now may substitute the integral over the phase space of kinetic
momenta with the integral along all quasiparticle orbits of
constant energy (which represents the Fermi surface in the
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case of a 2D system):

N

�

∫
dπ−

α dπ−
β δ(E − ε(π−

α , π−
β ))(π̇−

α π−
β − π̇−

β π−
α )

= N

�

∫
orbits

dπ
1

|∇πε(π−
α , π−

β )| (π̇−
α π−

β − π̇−
β π−

α ). (C17)

Using the equations of motion to substitute |∇πε(π−
α , π−

β )| =
|π̇|/eBγ , we obtain

N

�

∫
orbits

dπ
1

|∇πε(π−
α , π−

β )| (π̇−
α π−

β − π̇−
β π−

α )

= N

�

∫
orbits

dπ
eBγ

|π̇| [π̇−
α π−

β − π̇−
β π−

α ]

= NeBγ

�

(∫
orbits

dπ × π

)
γ

. (C18)

The γ component of the integral
∫

orbits dπ × π is related to the
area Ae(E ) − Ah(E ) enclosed by all semiclassical orbits with
energy E via(∫

orbits
dπ × π

)
γ

= 2[Ae(E ) − Ah(E )] (C19)

leading to

Tr[δ(E − Ĥ )( ˙̂π−
α π̂−

β − ˙̂π−
β π̂−

α )] = 2NeBγ

Ae(E ) − Ah(E )

�
.

(C20)

We now see that the expectation value is proportional to the
difference of the areas Ae(E ) − Ah(E ) covered by electronlike
and holelike states in the phase space, which are enclosed by
all quasiparticle orbits with energy E . Thus we obtain the Hall
conductivity σ II

H as

σ II
H = eN

BγV

∫ ∞

−∞
dE f (E )

d

dE

Ae(E ) − Ah(E )

�
. (C21)

In the same way, the remaining term σ I
H can be obtained using

Tr[δ(E − Ĥ )([x̂β, v̂αReĜ(E )] − [x̂α, v̂βReĜ(E )])]

= 1

e2B2
γ

Tr[δ(E − Ĥ )( ˙̂π−
α [π̂−

β , ReĜ(E )] + H.c.)]. (C22)

The semiclassical result of this expectation value is obtained
by substituting the commutator under the trace with the
Poisson bracket:

[. . . , . . .] → ih̄qBγ {. . . , . . .}. (C23)

We find

1

e2B2
γ

Tr[δ(E − Ĥ )( ˙̂π−
α [π̂−

β , ReĜ(E )] + H.c.)]

= − iqh̄N

e�

∫
orbits

dπ · ∇πReG(E )

= 0, (C24)

because the real part of the Green’s function at energy E is
constant along all quasiparticle orbits. Therefore, we obtain

σ I
H = 0, (C25)

which means that σ I
H vanishes identically in the semiclassical

limit. We thus obtain for the total intrinsic Hall conductivity
as given in Eq. (21)

σ sc
H = σ II

H = eN

BγV

∫ ∞

−∞
dE f (E )

d

dE

Ae(E ) − Ah(E )

�BZ
, (C26)

where we have substituted the phase-space volume � with
the volume of the Brillouin zone in the reciprocal space
via � = h̄2�BZ and redefined Ae(E ) − Ah(E ) with the area
enclosed by the quasiparticle orbits in the reciprocal space.
Based on the numerical results for the Hall conductivity, we
may approximate the Hall conductivity solely in terms of the
specific distribution of closed and open orbits associated with
electron- and holelike behavior. We have found the following
intuitive expression for the Hall conductivity (at zero temper-
ature):

σH(EF) ≈− e

Bγ

{ne�(EF − Ee) − (1 − ne)[1 − �(EF − Eh)]},
(C27)

which agrees with Eq. (22) if we set the carrier density of the
holes to n = nh = 1 − ne. The energies Ee and Eh correspond
to the critical energies, up to which closed electronlike and
holelike orbits appear at the Fermi energy EF.

We now connect these general findings to the results for
the intrinsic Hall conductivity of rubrene in Figs. 1(b) to
1(d). The energy dependence of σH in Fig. 1(b) [or Fig. 1(c)
for enχ ] can be explained if we consider only the holelike
orbits with a Fermi energy larger than 103 meV (and for
zero temperature). In this case, all quasiparticle orbits are
closed and the area difference Ae(EF) − Ah(EF) is equal to the
area covered by the occupied hole states in the BZ Aocc(EF),
which is related to the carrier concentration n = Nocc(EF)/V
by n/N = Aocc(EF)/�BZ with the number of occupied states
Nocc(EF). Then, from Eq. (C26) we immediately get σH =
qN/(BγV )Aocc(EF)/�BZ = en/Bγ . This ideal behavior is per-
fectly satisfied in Figs. 1(b) and 1(c) for Fermi energies above
103 meV, i.e., the holelike states. If the Fermi energy lies
between these values, the orbits are open in the BZ and the
Hall conductivity becomes zero in qualitative agreement with
the numerical result of Figs. 1(b) and 1(c). Then for Fermi
energies below −202 meV a very small domain of electron-
like orbits manifesting as a small negative peak in Figs. 1(b)
and 1(c) is observed in full agreement with the pristine band
structure of rubrene.

We note that Eq. (C27) [i.e., Eq. (22)] is only an ap-
proximate realization of Eq. (C26) [i.e., Eq. (21)] and may
further depend on the details of the band structure in, e.g.,
three-dimensional bulk systems and if more complex band
structures are considered, which may include multiple elec-
tronlike, holelike, and open-orbit domains.

APPENDIX D: EQUILIBRIUM VALUE
OF dc-CONDUCTIVITY TENSOR

To prove the semiclassical expression for the Hall conduc-
tivity in Eq. (21) of the main text, we need to determine the
equilibrium value of the dc conductivity based on Eq. (1) for
τ → ∞. After this derivation and in Appendix E, we connect
the present time-domain approach with known forms of the
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dc conductivity derived within the Kubo formalism such as
the Kubo-Bastin formula [43] and the Berry curvature that
enters the TKNN formula [20,36]. Hence we evaluate the time
integral in the symmetric part of the conductivity tensor σ s

αβ

in Eq. (4). In the energy eigenbasis, we find for σ s
αβ

σ s
αβ = β e2π h̄

2V

∑
mn

f (εn)[1 − f (εn)]δ(εn − εm)

× (
vα

nmvβ
mn + vβ

nmvα
mn

)
, (D1)

where we write the matrix elements vα
mn = vα

mn(0) as a short-
hand notation. This expression is the equilibrium value for
the symmetric part of the conductivity and generalizes the
Kubo-Greenwood formula for longitudinal charge transport
[41,42], which can be seen by using the completeness relation
1 = ∫ ∞

−∞ dE δ(E − Ĥ ):

σ s
αβ = β e2π h̄

V

∫ ∞

−∞
dE f (E )[1 − f (E )]

× Tr(δ(E − Ĥ )v̂αδ(E − Ĥ )v̂β ). (D2)

The evaluation of the time integral in the Hall conductivity
for independent particles [see Eq. (5)] results in the following
expression:

σH = −e2

V

∑
mn

f (εn)

εn − εm

(
vα

nmxβ
mn − vβ

nmxα
mn

)
, (D3)

where we have used the matrix elements of the veloc-
ity operator vα

nm = i(εn − εm)xα
nm/h̄. Furthermore, we may

alternatively derive the Hall conductivity by using the follow-
ing identity:

d2

dt2
D−

xαxβ
(t ) = −2h̄ fvαvβ

(0) − D−
vαvβ

(t )

= −2i
∑
mn

f (εn)
(
vα

nmvβ
mn − vβ

nmvα
mn

)

× cos

(
t (εn − εm)

h̄

)
, (D4)

where fvαvβ
(0) is the linear response function of the velocity

operators at zero time [33]. We then find for the Hall conduc-
tivity

σH = i e2h̄

V

∑
mn

f (εn)

(
vα

nmvβ
mn − vβ

nmvα
mn

)
(εn − εm)2 + (

h̄
τ

)2 . (D5)

The equilibrium value for the Hall conductivity for τ → ∞ is
hence obtained as

σH = ie2h̄

V

∑
mn

f (εn)

(
vα

nmvβ
mn − vβ

nmvα
mn

)
(εn − εm)2

, (D6)

which describes the thermally averaged Berry curvature
[20,36]. Using the spectral-projection operator, we obtain the
Hall conductivity as

σH = i e2h̄

V

∫ ∞

−∞
dE f (E )Tr

×
[
δ(E − Ĥ )

(
v̂α

1

(E − Ĥ )2
v̂β − H.c.

)]
. (D7)

Thus the equilibrium value of the dc conductivity can equiva-
lently be written as

σαβ = −e2π h̄

V

∫ ∞

−∞
dE

df (E )

dE
Tr(δ(E − Ĥ )v̂αδ(E − Ĥ )v̂β )

+ σH, (D8)

which we derived directly from Eq. (1).

APPENDIX E: RELATION OF THE dc CONDUCTIVITY
TO THE KUBO-BASTIN FORMULA

In this Appendix, we show the equivalence of the dc con-
ductivity used in this work with the Kubo-Bastin formula
[43] based on the equilibrium values of the symmetric and
the antisymmetric parts of the dc conductivity derived in
Appendix D. We start with the symmetric part of the conduc-
tivity and discuss its relation to the Kubo-Bastin formula. For
this purpose, we introduce the Green’s functions

Ĝ±(E ) = lim
η→0

1

E − Ĥ ± iη
= lim

τ→∞
1

E − Ĥ ± ih̄
τ

, (E1)

where the real and the imaginary parts are given by

ReĜ(E ) = 1

E − Ĥ
= lim

τ→∞
E − Ĥ

(E − Ĥ )2 + (
h̄
τ

)2 , (E2)

ImĜ(E ) = −πδ(E − Ĥ ) = − lim
τ→∞

h̄
τ

(E − Ĥ )2 + (
h̄
τ

)2 .

(E3)

The Kubo-Bastin formula for the Hall conductivity reads [43]

σ Bastin
αβ = e2

V

∫ ∞

−∞
dE f (E )Cαβ (E ), (E4)

with f (E ) being the Fermi function and Cαβ (E ) being the
correlation function

Cαβ (E ) = ih̄ Tr

[
v̂αδ(E − Ĥ )v̂β

dĜ+(E )

dE
− H.c.

]
. (E5)

To prove the equivalence to the present version of the dc
conductivity based on Eq. (1), we may decompose Cαβ (E ) as
follows:

Cαβ (E ) = Cs
αβ (E ) + Cas

αβ (E ), (E6)

with Cs(as)
αβ (E ) = [Cαβ (E ) + (−)Cβα (E )]/2 yielding

Cs
αβ (E ) = π h̄

d

dE
Tr[δ(E − Ĥ )v̂αδ(E − Ĥ )v̂β], (E7)

Cas
αβ (E ) = ih̄ Tr

[
δ(E − Ĥ )

(
v̂α

1

(E − Ĥ )2
v̂β − H.c.

)]
,

(E8)

which can be proven straightforwardly. Consequently, we find
for the dc conductivity

σ Bastin
αβ = e2π h̄

V

∫ ∞

−∞
dE f (E )

d

dE

× Tr[δ(E − Ĥ )v̂αδ(E − Ĥ )v̂β] + σH, (E9)
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where the Hall conductivity is obtained from the antisymmet-
ric term Cas

αβ (E ) in the Kubo-Bastin formula. Using integration
by parts for the energy integral involving Cs

αβ (E ) in the
Kubo-Bastin formula, we readily obtain the equilibrium value
of the dc conductivity of Eq. (D8),

σ Bastin
αβ = σ s

αβ + σH

= σαβ, (E10)

which is equivalent to Eq. (1) in the limit τ → ∞. We fur-
thermore can split the antisymmetric term Cas

αβ into two terms
yielding

Cas
αβ = −1

2
Tr

[
d

dE
δ(E − Ĥ )(v̂α x̂β − v̂β x̂α )

]

+ Tr[δ(E − Ĥ )(v̂α[ReĜ(E ), x̂β ] + H.c.)]. (E11)

Hence the Hall conductivity is decomposed into

σH = σ I
H + σ II

H , (E12)

with

σ I
H = e2

2V

∫ ∞

−∞
dE f (E )Tr[δ(E − Ĥ )

× (v̂α[ReĜ(E ), x̂β ] + H.c.)], (E13)

σ II
H = e2

2V

∫ ∞

−∞
dE f (E )Tr

[
d

dE
δ(E − Ĥ )(x̂α v̂β − x̂β v̂α )

]
.

(E14)

We note that σ II
H also appears in the Středa formula [44]. The

above decomposition of the Hall conductivity can be used to
prove Eq. (21) (see Appendix C), i.e., the semiclassical result
for the Hall conductivity.

APPENDIX F: MATERIAL PARAMETERS
OF THE EFFECTIVE POLARON MODEL

WITH VIBRATIONAL DISORDER

In Table I, we summarize the material parameters for the
electronic coupling and the vibrational disorder (at 140 K
and at 300 K) entering the effective polaron Hamiltonian in
Eq. (14) of the main text.

TABLE I. Summary of material parameters used in the effective
polaron Hamiltonian in Eq. (14). The values for the vibrational
disorder are shown for the highest and for the lowest temperatures
that have been investigated throughout this study. The molecular
parameters for the electronic transfer integrals and the vibrational
disorder are based on an ab initio study of the electron-phonon
coupling in rubrene [48].

Material parameter Value (meV)

On-site energy 0.0
εAA+b 134.0

εAA+2b −10.7

εAC 28.6

εAB 4.1

V 300 K
0 52.1

V 300 K
AA+b 20.9

V 300 K
AA+2b 0.0

V 300 K
AC 8.7

V 300 K
AB 0.9

V 140 K
0 48.2

V 140 K
AA+b 15.1

V 140 K
AA+2b 0.0

V 140 K
AC 6.3

V 140 K
AB 0.6
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