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Spin-Peierls instability of deconfined quantum critical points

David Hofmeier ,1,* Josef Willsher ,1,2,* Urban F. P. Seifert,3,4 and Johannes Knolle 1,2,5

1Technical University of Munich, TUM School of Natural Sciences, Physics Department, 85748 Garching, Germany
2Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany

3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93109, USA
4Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
5Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

(Received 26 June 2024; accepted 26 August 2024; published 13 September 2024)

Deconfined quantum critical points (DQCPs) are putative phase transitions beyond the Landau paradigm
with emergent fractionalized degrees of freedom. The original example of a DQCP is the spin- 1

2 quantum
antiferromagnet on the square lattice which features a second-order transition between valence bond solid (VBS)
and Néel order. The VBS order breaks a lattice symmetry, and the corresponding VBS order parameter may
couple to lattice distortion modes (phonons) at appropriate momenta. We investigate a field-theoretic description
of the DQCP in the presence of such a spin-lattice coupling. We show that treating phonons as classical lattice
distortions leads to a relevant monopole-phonon interaction inducing an instability towards a distorted lattice by
an analogous mechanism to the spin-Peierls instability in one dimension. Consequently, there is a breakdown of
the DQCP which generally becomes a strong first-order transition. Taking into account the full quantum nature of
the phonons, we argue that the continuous DQCP persists above a critical phonon frequency. Lastly, we comment
on the connection to general gapless, deconfined gauge theories.

DOI: 10.1103/PhysRevB.110.125130

I. INTRODUCTION

Deconfined quantum criticality (DQC) was originally pro-
posed [1–3] as a continuous transition on the square lattice
between two ordered states: an antiferromagnetic Néel state
and a valence bond solid (VBS). Such a non-fine-tuned con-
tinuous transition between two phases that break independent
distinct symmetries is forbidden in the Landau paradigm.
Instead, the scenario of DQC relies on the fractionalization
of constituent degrees of freedom into spinon excitations in-
teracting with emergent gauge fields which are deconfined
at the critical point. While initially studied in the context of
quantum magnets, several other systems have been proposed
to possibly exhibit DQC [4–9]. More generally, deconfined
quantum critical points (DQCPs) are understood as a pow-
erful tool to organize competing phases and their transitions
[10,11]. While significant progress has been made in identi-
fying low-energy field theories that may describe deconfined
quantum critical points and their dualities [12], evidence for
the realization in a microscopic system is still sought for:
(i) On the numerical side, several salient features of DQC
have been observed in simulations of microscopic models or
appropriate lattice-regularized field theories, but recent works
cast doubt on a scenario of a truly continuous transition and
instead point towards weakly first-order behavior, the origin of
which currently being under debate [13–20]. For the purpose
of the work at hand, we will nevertheless focus on a scenario
of a continuous DQCP, expecting that our results continue to
hold upon considering weakly first-order transitions. (ii) On

*These authors contributed equally to this work.

the experimental side, systems exhibiting (possibly) continu-
ous Néel-VBS transitions are scarce, with the exception of the
candidate material SrCu2(BO3)2 [21,22]. Although this mate-
rial shows signs of DQCP in a magnetic field, the behavior has
recently been shown to turn strongly first order when tuning
the lattice under hydrostatic pressure.

When connecting idealized microscopic models with
possible material realizations, experimental realities must
be taken into account. Disorder, defects, doping [23],
anisotropies [24], and spurious interlayer couplings (in quasi-
two-dimensional systems) [25] can have significant impact on
the stability and phenomenology of possibly exotic states. We
take this as a motivation to study the stability of the DQCP to
spin-lattice coupling.

The key result of the work at hand is that the coupling to
static lattice distortion modes renders the deconfined phase
transition to exhibit strongly first-order behavior, as illus-
trated in Fig. 1. This is in analogy to the Peierls instability,
previously discussed mostly for one-dimensional systems of
(possibly interacting) fermions or spins coupling to static lat-
tice distortions u. Considering an effective energy functional
for such a system, such an instability occurs for infinitesimally
small spin-lattice couplings g > 0 if the singular response
Eg ∼ (gu)χ with χ < 2 of the electronic or spin sector out-
competes the (usually) harmonic energy cost (proportional to
some lattice stiffness K) of undergoing a distortion, i.e., by
minimizing

E[u] = Ku2 − (gu)χ . (1)

The singular response Eg is strongly dimension dependent; a
half-filled band of free fermions undergoes the Peierls insta-
bility in one dimension but free Dirac fermions are stable in
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FIG. 1. Upper panel: proposed second-order DQCP transition
between competing Néel and VBS orders on the square lattice
(without lattice coupling g = 0). Lower panel: spin phonon coupling
shifts the transition and renders it first order. The deconfined critical
point becomes confined and gapped. Shown here is spin-phonon
coupling g = 0.3 (and lattice stiffness K = 1), with g = 0.1, 0.2 in
the background.

higher dimensions. Less is known about strongly interacting
systems in higher dimensions. Recently, some of us have
shown that the two-dimensional (2d) U(1) Dirac spin liquid
(DSL) features such a lattice instability [26]. Here, we go
beyond quantum critical phases to critical points and show
that these can also be unstable under a mechanism that resem-
bles the one-dimensional (1d) spin-Peierls instability of the
Luttinger liquid. This extends works which study the effect of
elastic couplings on general quantum critical points [27,28].
We further go beyond (classical) lattice distortions and con-
sider quantum mechanical phonons with finite frequency ω0.
In this case DQCPs may persist and we derive scaling laws for
a parameter regime of stable deconfined criticality.

There are two characteristic features of DQCPs that render
the study of couplings to lattice distortion modes a partic-
ularly worthwhile endeavor. First, emergent symmetries are
believed to be common at DQCPs. In the case of the Néel-
VBS transition (in 2+1 dimensions), this behavior is captured
by combining the antiferromagnetic Néel (nx, ny, nz ) and VBS
va = ηi〈�S · �Sa〉 order parameters into the vector ñ = (n, v),
the dynamics of which may be described by a nonlinear
sigma model (NLSM) supplemented by a topological Wess-
Zumino-Witten (WZW) term, which “intertwines” the order
parameters. At the critical point, the microscopic SU(2) ×
C4 [SU(2) spin and fourfold lattice rotation] symmetry is
enhanced to an emergent SO(5) symmetry [29]. It is thus
important to clarify the resilience of such emergent symmetry
upon including lattice distortion modes which primarily cou-
ple to fluctuating VBS order parameters.

Second, the DQCP has an equivalent description in terms
of a deconfined U(1) gauge theory. As argued by Senthil
et al. [1], the Néel order parameter field n can be written as
a composite object of fractionalized spinons which interact
with an emergent U(1) gauge field, captured in terms of a CP1

field theory. Formally, the gauge field is compact, rendering
instanton events possible, created by monopoles which insert
a 2π flux of the gauge field. In this language, VBS order
is obtained after the proliferation of said monopoles, which
may thus be identified with fluctuating VBS order parameters.
The key argument of Ref. [1], rendering deconfined quantum
criticality possible, consists in the fact that such monopoles
are forbidden to appear in the low-energy (IR) theory by sym-
metry. The lowest-order term allowed by lattice symmetries
corresponds to a quadrupled monopole which, however, is
irrelevant at the critical point. Crucially, these conclusions are
based on the symmetry quantum numbers of the monopole
operator and are thus lattice dependent [30], the key assump-
tion being that the underlying microscopic Hamiltonian of
the system respects the full symmetry of the square lattice.
Lattice distortions, which might be generated by the system
spontaneously (and are generally nonzero on the VBS side of
the transition) explicitly break these symmetries, calling the
underlying assumptions for deconfined criticality in question.

We approach these questions in a low-energy field-
theoretical framework, which allows for general statements
independent of putative microscopic realizations of DQCP. As
an example of the generality, we present throughout this work
a study of the proposed one-dimensional example of DQCP
in antiferromagnetic spin chains with anisotropy [31–34].
This makes especially clear the connection with the well-
understood Peierls instability of the Luttinger-liquid phase. In
2+1 dimensions, we primarily focus on the canonical example
of the Néel-VBS deconfined phase transition, where we show
that lattice distortion modes can couple to strongly relevant
monopole operators and thereby strongly impact the nature of
the phase transition.

The paper is structured as follows. In Sec. II, we reca-
pitulate theoretical descriptions of DQC. Then, in Sec. III
we show how a spin-lattice coupling naturally emerges in
a one-dimensional reincarnation of the DQCP. In Sec. IV,
we then turn to the 2d DQCP and argue for its instability
upon coupling to classical lattice distortion modes. In Sec. V
we show how quantizing the lattice excitations alleviates this
instability for weak couplings, and derive the critical scaling
relation between the spin-lattice coupling and the phonon
frequency below which the lattice remains stable. Finally, we
conclude by commenting on the connections to novel models
of DQCP, deconfined phases with fermions, and the recently
proposed Stiefel liquids [35].

II. DECONFINED QUANTUM CRITICALITY

An effective low-energy theory for quantum antiferromag-
nets (in d + 1 dimensions, D = d + 1) is the O(3) NLSM for
antiferromagnetic order-parameter fluctuations [36],

SO(3) = 1

2e2

∫ β

0
dτ

∫
dd x [v2(∇n)2 + (∂τ n)2] + Stop[n],

(2)
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where n(r) is the continuum field corresponding to the Néel
order parameter n j = η j〈S j〉, where η j = ±1 alternates on
neighboring sites j of the lattice (we set the spin-wave velocity
v = 1 in the following). Here, Stop[n] is a topological term that
follows from the Berry phase contribution of the spin path
integral [37,38]. Explicitly working on a lattice, it is given by

Stop[n] = i

2

∑
j

η j

∫
dτ

∫ 1

0
du[n j · (∂un j × ∂τ n j )] (3)

with n(τ ) smoothly extended to n(τ, u) such that
n(τ, u = 0) = (0, 0, 1)T and n(τ, u = 1) = n(τ ). As pointed
out in [1,39], the topological term is of vital importance;
because of it, the NLSM does not flow to a disordered phase
at strong coupling but rather, both in 1d and 2d, a VBS phase
is realized due to the proliferation of topological defects in n.

While the possibility of a direct continuous phase tran-
sition between Néel and VBS order follows from the O(3)
NLSM, the nature of the transition is difficult to access in
this framework, as it is fundamentally an expansion about the
Néel ordered phase. Instead, one may turn to field theories
where intertwined Néel and VBS order parameters are treated
on a more equal footing. This includes a “superspin” NLSM
with additional Wess-Zumino-Witten terms [40] and the non-
compact CP1 gauge theory that describes deconfined spinons
at the critical point [1], which we review below. Note that
dualities between several such theories are thought to exist
[12].

A. Deconfined quantum criticality in one dimension

An insightful analog to two-dimensional deconfined quan-
tum critical phenomena are one-dimensional models, which
have recently received renewed attention [31–34,41,42]. Here,
we will focus on the scenario of a transition between Néel
order along the ẑ axis and a VBS-ordered phase, where a
finite easy-axis anisotropy [reducing the spin rotation symme-
try SU(2) → U(1) × Z2] is required to stabilize long-range
magnetic order. Note that by “VBS” order in 1D, we refer to
a valence bond crystal state and not a (topologically ordered)
Haldane phase. To describe the transition itself, one may unify
the Néel vector n and VBS order parameter v j = η j〈S j · S j+1〉
into a four-component vector ñ = (n, v) whose dynamics
is governed by an O(4) NLSM supplemented by a Wess-
Zumino-Witten (WZW) term [16,40] as well as appropriate
anisotropies,

SDQCP
1 [ñ] = Skin

1 [ñ] +
∫

d2x s(n2 − v2) + 	
SO(4)
1 + Saniso.

(4)

Here, s is a tuning parameter for the transition between Néel
(s < 0) and VBS (s > 0), and we explicitly add the anisotropy
Saniso = αaniso

∫
d2x(n2

3 + v2) to stabilize the relevant ordered
phases to realize a DQCP. Finally,

Skin
d [ñ] = 1

2e2

∫
dd+1x(∇ñ)2, (5)

	
SO(d+3)
1 = 2π i

�d+3
ε j1... jd+3

∫
dd+1x

∫ 1

0
du ñ j1∂x1 ñ j2 . . . ∂uñ jd+3

(6)

TABLE I. The symmetry properties of the field φ under the
internal spin symmetries U(1)xy and Zz

2, as well as the external
lattice symmetries: translation Tx and bond inversion I as is similarly
obtained in bosonization works [25,48]. The order parameters are
defined n3 ∼ cos(2φ) and v ∼ sin(2φ). The transformation of the
staggered distortion field ui = (−1)iδu is written for comparison; it
is a singlet under internal spin-rotation symmetries.

Symmetry φ n3 v δu

U xy
1 φ n3 v δu

Zz
2 −φ + π/2 −n3 v δu

Tx φ + π/2 −n3 −v −δu
I −φ n3 −v −δu
T −φ + π/2 −n3 v δu

are kinetic and topological WZW terms in d spatial di-
mensions. This final term is crucial for the physics of the
transition; in the AFM phase it recovers the O(3) NLSM’s
topological term (3), which in 1d can be rewritten as

Stop = i

4

∫
dx dτ n · (∂xn × ∂τ n) = iπQxτ (7)

in terms of the integer Pontryagin index Qx,τ ∈ Z. The topo-
logical angle π guarantees that the transition at s = 0 is
gapless [43,44]. Additionally, the WZW term is responsible
for topological defects in the VBS phase carrying a S = 1

2
degree of freedom, making them seeds for Néel order and
conversely causes the topological defects in the Néel-ordered
phase to transform nontrivially under lattice symmetries such
that their condensation leads to VBS order. This so-called
intertwinement of order parameters is a key underlying feature
of the DQCP [40,45–47].

Assuming a sufficiently strong easy-axis anisotropy, the
NLSM supervector ñ can be parametrized by a single angle
2φ and the effective action becomes

SSG =
∫

dx dτ

[
1

2πK
((∂xφ)2 + (∂τφ)2) + μ cos(4φ)

]
,

(8)

called the sine-Gordon model, where K is the Luttinger pa-
rameter. Such a theory can also be derived from appropriate
microscopic models via Abelian bosonization [37,48]. For
μ > 0, the model flows to a VBS ordered state, while for
μ < 0, it has Néel order. As discussed recently, the critical
line at μ = 0 for 1

8 < K < 1
2 can be understood as a line of de-

confined quantum critical points with emergent U(1) × U(1)
symmetry [31–33]. This will be our regime of interest. The
respective order parameters are given by n3 ∼ cos 2φ and v ∼
sin 2φ, both having scaling dimension K . The order param-
eters onset with power-law behavior n3, v ∼ |μ|β governed
by the exponent β = νμK , where ν−1

μ = 2 − 4K in 1d. The
transformation properties of φ and the order parameters under
internal spin rotations and the external lattice symmetries can
be found in Table I.

B. Deconfined quantum criticality in two dimensions

We now return to the (2+1)-dimensional case of putative
DQCP on the square lattice. Here, the analog of the NLSM
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TABLE II. Symmetry properties of the monopole operator �†

[25,51] and the phonon mode u under the elementary lattice symme-
tries of the square lattice. The transformation of the lattice distortion
field u = u1 + iu2 is written for comparison. We include the action
of spin rotation on the order parameters: the Néel order transforms
under the representation R ∈ SO(3), and the VBS order is a singlet,
i.e., the monopole is left invariant (this latter fact is also true with
possible anisotropy).

Symmetry n �† u∗

SU(2)spin Rabnb �† u∗

Tx −n −� −u
Ty −n � u

Rsite
π/2 n i�† iu∗

σx n � u
T −n � u

with a WZW term takes the form [40,46]

SDQCP
2 [ñ] = Skin

2 [ñ] +
∫

d3x s(n2 − v2) + 	
SO(5)
2 [ñ], (9)

where the three-component Néel order parameter n and
the two-component VBS order parameter va

j = η j〈S j ·
S j+r̂a〉 (a = x, y) have been combined into five-component
vector ñ. The 2d WZW term 	

SO(5)
2 reduces to the spin- 1

2
Berry phase in the case of a single Z4 vortex within the VBS
phase [45], again being the source of intertwinement in this
theory [40,45,46].

In the case of the two-dimensional DQCP, seminal works
[1,49] have argued that the transition may be described in
terms of fractionalized spinons z interacting with a U(1) gauge
field aμ within a CP1 model of the form

Lc =
2∑

α=1

|(∂μ − iaμ)zα|2 + r|z|2 + u(|z|2)2

+ λ4[�4 + (�†)4]. (10)

The relevant boson-mass parameter r tunes the transition and
we have additionally included possible anisotropies u which
preserve SU(2) spin symmetry. Here, the Néel order parame-
ter field is to be identified with a composite object of spinons
via the Hopf map n = z†σz, and �† is a U(1) monopole
insertion operator. From this mapping, it can be shown that
the total flux of the U(1) gauge field is related to the instanton
number of the Néel order parameter field [50], and hence
U(1) monopole insertions in the CP1 model correspond to
two-dimensional topological hedgehog defects in the NLSM.
In the absence of monopoles, the gauge field is non-compact
(NC) and the model is called the NCCP1 theory.

These monopoles transform with nontrivial phases under
the lattice symmetries [25,51]. The existence of the topolog-
ical term (3) means that hedgehogs of n located at different
sites contribute with a different phase factor. In the CP1 for-
mulation this has to be accounted for and the monopoles
�† will pick up nontrivial phases under lattice symmetries.
The precise symmetry properties are summarized in Table II,
and will be of importance when searching for appropriate
monopole-lattice couplings. Using the behavior of �† under
translation symmetry, we can also identify it with the VBS

order parameter

v1 ∼ Re � = �1 and v2 ∼ Im � = �2. (11)

Therefore, the lowest-order symmetry-allowed monopole
term is (�†)4. It has been established in exact diagonalization
that this 8π monopole is irrelevant at the transition [18,52],
meaning the Z4 lattice rotation symmetry is enhanced to U(1).
This SU(2) × U(1) symmetry may be further enhanced to
SO(5) by tuning s (or equivalently r in the NCCP1 model).
The DQCP correlation length exponent νs = 1/(3 − �s) =
1.38 and 2π -monopole scaling dimension �� ∼ 0.61 have
also been measured numerically [18], leading to an order-
parameter onset in 2d DQCP given by β = νs�� (as plotted
in the upper panel of Fig. 1).

III. SPIN-LATTICE COUPLING IN ONE DIMENSION

A. Spin-lattice coupling

Before we turn to the most prominent example of DQC,
we focus on the 1d case [31–34]. Here, we make use of
low-energy field-theory arguments, largely following previ-
ous discussions in the context of one-dimensional Heisenberg
chains (without anisotropy) [53]. To this end, we note that a
static lattice distortion un can couple to spin bilinears via a
Hamiltonian of the form Hsp = g

2

∑
n unSn · Sn+1. As previ-

ously discussed in the context of one-dimensional Heisenberg
chains (without anisotropy) [53], at lowest energies only stag-
gered lattice distortions (i.e., with lattice momentum Q =
π ) are important. Writing un = (−1)nδu and bosonizing, the
distortion field can be seen to couple to the field φ in the
sine-Gordon action (8) via

Hsp ∼ h sin(2φ), (12)

where h = gδu. We emphasize a complementary symmetry-
based top-down construction of the spin-lattice coupling:
Equipped with the symmetry transformation behaviors of the
field φ in the sine-Gordon model in Table I we deduce that
the sin 2φ interaction, which is odd under translations Tx and
inversion I , has a symmetry-allowed coupling to a staggered
lattice distortion field h = gδu. Thus, the field theory for the
DQC upon coupling to lattice distortion modes becomes

Su = SSG +
∫

dx dτ λ sin(2φ), (13)

where we define the field-theory coupling λ ∼ h. The pertur-
bative renormalization group (RG) equations of this model
read as [54]

βK = −K2(λ2 + 4μ2), (14a)

βλ = (2 − K )λ + 2λμ K, (14b)

βμ = (2 − 4K )μ + 1

2
λ2K. (14c)

No real-valued fixed points for the full three-dimensional
RG flow are found. We note that this is in contrast to previous
works which predict a second-order Ising transition at finite λ

[54,55]. This apparent disparity stems from the fact that the
analyses in Refs. [54,55] did not account for the flow given
by Eq. (14a) of the Luttinger parameter K : assuming K to
be constant, we indeed find two new fixed points for (14b)

125130-4



SPIN-PEIERLS INSTABILITY OF DECONFINED … PHYSICAL REVIEW B 110, 125130 (2024)

and (14c). However, these fixed points do not persist in the
full three-dimensional RG flow. From Eqs. (14a)–(14c) we
conclude that the RG flow for any finite λ 	= 0 at the original
DQCP line ( 1

8 < K < 1
2 , μ = 0) is nonzero, implying the

absence of deconfined quantum criticality in the presence of a
finite lattice distortion.

B. Lattice instability

In the absence of spin-lattice couplings, the undistorted
lattice (i.e., h ≡ 0) minimizes the system’s elastic energy

Ecost = N (K/g2)h2, (15)

where K is the inherent stiffness of the lattice and N the
number of sites. A spontaneous distortion and thus instability
of the DQCP will only occur if the energy gain due to a
gap opening in the spin sector outcompetes the energy cost
associated with distorting the lattice. This energy gain scales
with the gap as

Egain ∼ N�2, (16)

and in higher dimensions this will generalize to
Egain ∼ N�d+1. How does the gap � scale with the distortion?
This follows from a straightforward RG argument (see, e.g.,
[48]). First, note that for |λ| � 1, the perturbative RG breaks
down and the size of the gap can simply be determined
by considering fluctuations δφ about the classical ground
state φ0 = π

4 . (Without loss of generality, we consider the
λ → −∞ ground state.) In this regime, it is justified to
expand, φ = φ0 + δφ, yielding

sin(2φ) = 1 − 2(δφ)2 + O[(δφ)4]. (17)

So, for |λ| � 1, the sin(2φ)-interaction simply generates a
mass term, resulting in a constant gap �0. With �0 corre-
sponding to the gap at λ(sc) ∼ 1, we use �(s) = e−sc�0 and
the RG flow of λ [Eq. (14b)] to obtain the scaling of the gap
as

� = �0λ
1/(2−K ). (18)

Within our approximation, the total energy of the system is
then composed of a (harmonic) energy cost of the distortion
and an energy gain due to the opening of the gap,

E = 1

N
(Ecost − Egain) = (K/g2)h2 − ch2/(2−K ), (19)

implying an instability towards a lattice distortion for K < 1.
The marginal case K = 1 recovers the Peierls instability of
free fermions, and K = 1

2 the spin-Peierls instability of the
pure Heisenberg chain.

Of interest for DQC is the region 1
8 < K < 1

2 ; here, the
lattice is always unstable towards this distortion at the original
DQCP μ = 0. The previous analysis implies an equilibrium
VBS order, a lattice distortion h0, and a corresponding gap
(g2/K )1/(2−2K ). From this, it follows that (i) deconfined crit-
icality is spoiled, i.e., the Néel-VBS transition becomes a
first-order transition, and (ii) the location of the critical point
is shifted. Tuning μ < 0 in the pure DQCP model opens up

an Néel gap which scales as μ1/(2−4K ); when the energy gain
due to this gap opening is equal to the aforementioned energy
gain, which drives the spin-Peierls gap at the original DQCP,
there will be a first-order transition. This direct VBS to Néel
order transition therefore occurs at the shifted value

μstatic = −(g2/K )(2−4K )/(2−2K ). (20)

We exclude the possibility that the shifted transition remains
deconfined since no sort of second-order Néel-VBS transition
can exist in 1d on a lattice without translational symmetry.
This effect can be elucidated by considering the 1d topological
term (7) in the presence of a finite distortion δu, Stop = iπ (1 +
δu/J )Qxτ , which can be seen by using the Haldane expansion
for the Heisenberg spin chain in the presence of an additional
staggered interaction induced by a lattice distortion, see also
[56].

IV. SPIN-LATTICE COUPLING IN TWO DIMENSIONS

A. Spin-lattice coupling

We observe that, just like in 1d, there exists an operator that
is relevant at the DQCP but disallowed in the field theory due
to its nontrivial behavior under lattice symmetries. The role of
sin(2φ) in 1d is taken over by the monopole operator �†. Its
transformation behavior has been obtained by explicitly trans-
forming the expression for the Berry phase in the presence of
a single monopole [25,39]. Table II summarizes its symmetry
properties. Again, we can now ask whether there exists a
lattice distortion that transforms the same way such that the
product of a monopole and a distortion would be symmetry
allowed. To find this, we recall the definition of the VBS order
parameters va(ri ) = ηi〈�Sri · �Sri+r̂a〉 where r̂a=1,2 = x̂, ŷ are the
lattice unit vectors.

Defining a general distortion field u(x) which shifts the
lattice sites ri → x = ri + u(x), we expand in a Fourier ba-
sis u(x) = ∑

Q ua
QeiQ·x, then we extract the two longitudinal

components

ua = Q̂a · uQa
, Qa = (π, 0), (0, π ). (21)

Assuming that the distortion field at wave vectors Q1, Q2 is
purely longitudinal, we can thus write in real space

u(x) =
(

ux(x)
uy(x)

)
=

(
1
0

)
eiπx1 u1 +

(
0
1

)
eiπx2 u2. (22)

We may combine these two contributions into a complex field
u∗ = u1 + iu2 as is done for the VBS order parameters to
form the monopole � ∼ v1 + iv2. We explicitly evaluate the
transformation properties of this field ua under transforma-
tions of the lattice ra → g(ra) = Mabrb + δa. The components
transform under the symmetry group of the lattice actively as
ua(x) → Mabub(g−1x); we summarize the results in Table II,
which shows that this field transforms identically to the VBS
monopoles. We conclude that the monopole-lattice coupling

Omp ∼ u �† + H.c. ∼ u1v1 + u2v2 (23)

is therefore symmetry allowed. This appears in the action
through the coupling Smp = −g

∫
d3xOmp(x). On the level

of the NLSM, the lattice couples linearly to the VBS order
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parameters

S2[ñ, h] = Skin
2 [ñ] +

∫
dDx [s(n2 − v2) − h · ñ] + 	

SO(5)
2 [ñ]

(24)

with h ∼ g(0, 0, 0, u1, u2)T . This explicitly breaks the emer-
gent SO(5) symmetry and will have the effect of pinning the
VBS components of the topological NLSM field ñ to the
lattice distortion field h. We expect this term to make the
transition tuned by s first order whenever h takes a nonzero
value.

B. Lattice instability

We are interested in understanding the gap induced by the
perturbation h when the NLSM of Eq. (24) is tuned to the
strong-coupling fixed point. In analogy with the result in 1d,
the gap scaling as a function of distortion is controlled by the
conformal data at this fixed point

�(h) ∼ |h|ν� (25)

with ν� = 1/(3 − ��) = 0.419 the correlation length ex-
ponent of the monopole operator [18]. We recall that the
distortion h in (24) is a (vector-valued) classical parameter
that represents a static, nonlocal distortion of the lattice (we
treat fluctuations of this field in the next section). Formally, the
free energy of the coupled system may be written as F (h) =
(K/g2)|h|2 − V −1 log

∫
Dñ e−S2[ñ,h]. The saddle-point behav-

ior of the lattice distortion field is determined by the respective
scaling of the energy cost of a distortion and the induced
energy gain. We tune s to the gapless DQCP with an emergent
SO(5) symmetry and, in a result analogous to 1d [in Eq. (19)],
we find the saddle-point behavior of the distortion field is
governed by the effective potential

E(h) = (K/g2)|h|2 − c|h|3ν� . (26)

Hence, we conclude that a finite spontaneous equilibrium
distortion h0 	= 0 is induced at the DQCP on the square lattice.
The condition for a lattice instability in 2d reads as 3ν� < 2
or �� < 3

2 , as is believed to be satisfied for the DQCP.
The shifted transition must be rendered first order by this

distortion since the coupling −h · ñ will always destroy the
critical point. That is to say that on an explicitly distorted lat-
tice, no DQCP can be present since both the strongly relevant
single and double monopole �†/(�†)2 become symmetry
allowed [57] (this is stronger than the case of nonstaggered
rectangular-lattice distortions where translational symmetry is
preserved [12,30,47]). As for 1d, we also see that the tran-
sition is shifted away from the original DQCP and into the
original Néel phase. The energies of the VBS and Néel phases
cross when the s-induced gap to VBS excitations in the Néel
phase becomes equal to the distortion-induced gap �(h0) in
the VBS phase. This produces a modified transition point

sstatic = −[g2/K](3−�s )/(3−2�� ). (27)

From the energy density (26), it would naively follow that
there are infinitely many degenerate distorted ground states.
It should be noted, however, that we have neglected so far

FIG. 2. Possible lattice distortions of the square lattice, depend-
ing on the microscopic constant c2. The ground state of the system
has the corresponding VBS order, i.e., pVBS for c2 < 2c1 and cVBS
for c2 > 2c1.

higher-order symmetry-allowed terms in the lattice potential.
Taking these into account, the energy density up to fourth
order reads as

E′(h) = E(h) + c1
(
h4

1 + h4
2

) + c2
(
h2

1h2
2

)
. (28)

To ensure stability, we must require c1 > 0 and c2 > −2c1.
The coefficient c1 reduces the unphysical U(1) symmetry to
a more physical Z4 symmetry and c2 ultimately determines
the type of distortion. For c2 > 2c1, the energy density is
minimized for a distortion in columnar direction (with either
h1,2 = 0) and for c2 < 2c1 the distortion is towards the plaque-
tte centers (with h1 = h2 = h). Accordingly, the system enters
a columnar VBS (cVBS) or plaquette VBS (pVBS) phase,
respectively. The value of c2 seems to be a microscopic prop-
erty (determined by both the lattice dynamics and induced by
spin interactions at the new strong-coupling fixed point) and
we are not aware of any methods for accessing this from our
top-down symmetry approach. To accurately specify the exact
distortion, one must most likely resort to numerical methods.
We summarize the different distortions in Fig. 2.

We briefly note that the energetic analysis provided by
(26) represents a “strong-coupling” approach to the coupled
spin-lattice system. This describes the system in the thermo-
dynamic limit at zero temperature which, in realizations of
DQCP, may only exist below some finite length scale. For
example, in numerical simulations the finite-system size L is
a relevant perturbation, or in experiments which necessarily
have a finite inverse temperature β ∼ T −1. A complemen-
tary “weak-coupling” calculation (of the related DSL) [26]
suggests that the instability sets in below a temperature
T 3−2��

SP ∼ g2/K .

V. ADDING DYNAMICS

Moving beyond the adiabatic approximation of the lattice,
we will now develop a theory of dynamical optical phonons
coupled to the DQCP. This approach has the advantage that it
more accurately captures the physics of the lattice phonons
which generally can be expected to have a finite energy
ω0 > 0 at nonzero (lattice) momenta.
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A. Phonons in one dimension

From the static case, we know that the spins will couple
to phonons with momentum π at the edge of the Brillouin
zone. Hence, we now promote the Fourier component of the
displacement field with lattice momentum π to be dynamical,
which we henceforth for simplicity denote u(x, τ ). In a full
microscopic model, phonons are generally expected to be
dispersive with a velocity on the order of the lattice constant.
However, we are justified in neglecting this effect since our
field-theoretic treatment focuses on low energies and small
continuum momenta near π , where the phonon dispersion is
flat [48]. Then, the combined action of spins and phonons
reads as

S(ω0) = SSG +
∫

dx dτ

[
ρ

2

(|∂τ u|2 + ω2
0|u|2) + 2gu sin(2φ)

]

(29)

with the phonon mass density ρ = m/a and frequency ω0 ∼
ω(π ). Integrating out the quadratic displacement field gives

S(ω0) = SSG + g2
∫

dx dτ dτ ′Gω0 (τ − τ ′)

× {cos[2(φ + φ′)] − cos[2(φ − φ′)]} (30)

with the phonon propagator

Gω0 (τ − τ ′) = 1

2ρω0
e−ω0|τ−τ ′|. (31)

For notational brevity, we drop the space-time dependence
of φ whenever it is clear and define φ′ = φ(r, τ ′). A similar
action, without the cos(4φ) interaction in SSG, has previously
been derived in [53] to describe the spin-Peierls transition of
the SU(2)-symmetric Heisenberg model. Here, we analyze its
meaning in the context of DQC where the cos(4φ) interac-
tion is relevant. Let us begin by considering the two limits
ω0 → 0 and ω0 → ∞, called the adiabatic and antiadiabatic
limit, respectively [48]. The former is simply the static case
from above. There, we concluded that the deconfined quantum
critical transition gets replaced by a first-order transition.

Moving on to the antiadiabatic limit, we can use
the representation of the delta function (with appropriate
normalization)

ω0

2
e−ω0|τ−τ ′| ω0→∞−→ δ(τ − τ ′) (32)

to find that the dynamical phonons simply generate another
cos(4φ) interaction and we have

S(ω0 → ∞) =
∫

dx dτ

{
1

2πK
[(∂xφ)2 + (∂τφ)2]

+ μnew cos(4φ)

}
(33)

with a new coupling

μnew = μ + g2

ρω2
0

. (34)

This means that DQC persists and the critical line simply gets
shifted from μ = 0 to

μc = − g2

ρω2
0

. (35)

Clearly, the model shows qualitatively different behavior in
the two opposite limits and so we can expect some critical
frequency ωc where the transition changes between first order
to DQC. To find ωc, we assume ω0 
 1 such that most of
the weight of the propagator will still be concentrated around
τ = τ ′. We can then Taylor expand

cos{2[φ(τ ) + φ(τ ′)]} = cos[4φ(τ )] + irrel. (36)

up to terms irrelevant in the parameter range 1
4 < K < 1

2 . At
K = 1

4 , the next term in the Taylor expansion ∂τφ sin(4φ)
would become relevant. Due the linearization of the fermionic
dispersion in bosonization and, as a consequence, the in-
finitely filled Fermi sea, fluctuations of φ can in principle be
infinite. Therefore, in order to Taylor expand the difference,
we have to normal order first. Making use of the identity
[58,59]

cos(φ) =: cos(φ) : e− 1
2 〈φ2〉0 , (37)

where : cos(φ) : denotes the normal-ordered cosine and 〈·〉0

denotes the vacuum expectation value with respect to the free
part of (8), the expansion becomes

cos{2[φ(τ ) − φ(τ ′)]} = {1 − 2(τ − τ ′)2[∂τφ(τ )]2}
× e−2〈[φ(τ )−φ(τ ′ )]2〉0 . (38)

Such correlation functions have been determined in full gen-
erality [48]. In our case, we find

〈[φ(τ ) − φ(τ ′)]2〉0 = K log |τ − τ ′| (39)

such that the expansion reads as

cos{2[φ(τ ) − φ(τ ′)]}
= {1 − 2(τ − τ ′)2[∂τφ(τ )]2}|τ − τ ′|−2K

. (40)

Inserting this back into our original action (30), performing
the τ ′ integration, and rewriting the action back in sine-
Gordon form gives

S(ω0) =
∫

dx dτ

{
1

2πKnew
[γ (∂xφ)2 + γ −1(∂τφ)2]

+ μnew cos(4φ)

}
(41)

with new Luttinger parameter Knew = γ K and

γ =
(

2πKg2	(3 − 2K )

ρω4−2K
0

+ 1

)− 1
2

, (42)

where 	(x) is the Euler gamma function. Just like in the
original sine-Gordon model, this theory hosts a line of DQCPs
for μnew = 0 and 1

8 < Knew < 1
2 . The Taylor expansion itself

holds for 1
4 < K < 1

2 , as explained above. Both conditions can
be fulfilled simultaneously, at least for some values of K , if
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1
4 < γ < 2. The upper bound is trivially obeyed. For the lower
bound, we find the condition

ρω4−2K
0 >

2πK 	(3 − 2K )

15
g2 (43)

which has to hold for DQC to persist even in the presence of
phonons. Rewritten as a simple scaling relation, we find the
critical scaling

ω4−2K
c ∼ g2

c/ρ. (44)

One can confirm this result agrees with Sec. III when we
take the adiabatic limit ω → 0 for a fixed K , giving g2

c/K ∼
ω2−2K

0 → 0.

B. Phonons in two dimensions

Just like in 1d we may approximate the phonon dispersion
as flat about the points (π, 0) and (0, π ) and then integrate
out the phonons. This yields a retarded monopole-monopole
interaction on top of Lc in (10), of the form

S�� = −2g2
∫

dd+1x dd+1y
2∑

i=1

�i(x)G(x − y)�i(y), (45)

where we have written x = (τx, x) and y = (τy, y). The
phonon propagator is given by

G(x − y) = 1

2ρω0
e−ω0|τx−τy|δ(x − y). (46)

Again, we consider first the adiabatic (ω0 → 0) and antiadia-
batic (ω0 → ∞) limits separately. The adiabatic case has been
studied above. In the antiadiabatic case, we can make use of
the delta-function identity (32). Using the mapping between
monopoles and the VBS order parameter in the NLSM, this
coupling generates an additional anisotropy

LNLSM
2 [ñ] + s(n2 − v2) − 2g2

ρω2
0

(
v2

1 + v2
2

)
. (47)

At first, it might seem like this destroys the emergent symme-
try at the critical point s = 0. But observe that we can rewrite

s(n2 − v2) + 2g2

ρω2
0

(
v2

1 + v2
2

)

=
(

s + g2

ρω2
0

)
(n2 − v2) − g2

ρω2
0

(n2 + v2). (48)

From (n2 + v2) = 1, we find that in the antiadiabatic limit, the
transition is simply shifted by

sc = 0
ω0
0−→ sc = − g2

ρω2
0

, (49)

as in the 1d case. Now, let us turn to the case in-between
where the transition changes from first order to DQC. Observe
first that we can rescale the theory by xi = x′

i
ω0

to move all
dependence on ω0 into the coupling. The interaction now

reads as

Sφφ = g2

ρ0ω5−2��

∫
d2x dτ ′

xdτ ′
y

2∑
i=1

�i(τ
′
x )e−|τ ′

x−τ ′
y|�i(τ

′
y),

(50)

where from now on we suppress the space dependence of the
monopole. Now we can perform a formal expansion of the
monopole

�i(τ
′
y) = �i(τ

′
x ) + (τ ′

y − τ ′
x )∂τ ′

x
�i(τ

′
x )

+ 1
2 (τ ′

y − τ ′
x )2∂2

τ ′
x
�i(τ

′
x ) + O

(
τ ′3

x

)
(51)

and perform the τ ′
y integration to find

∼ 2g2

ρ0ω5−2��

∫
d2x′

∫
dτ ′

x

2∑
i=1

[
�2

i − (
∂τ ′

x
�i

)2
]
. (52)

The first term simply generates an anisotropy, just like in the
ω0 → ∞ limit. At first glance, the form of the anisotropy
is different than in (49). However, we have to keep in mind
that the coordinates in (52) have been rescaled. In order to
add this to the anisotropy in the NLSM, we must revert
back to the original coordinates resulting in the correct shift
(49). The second term simply modifies the kinetic term in
the NLSM description. We therefore believe that DQCP will
break down when this perturbative treatment breaks down and
higher orders in the Taylor expansion (51) have to be included;
this is 2g2/(ρω

5−2��

0 ) ∼ 1. This suggests a critical scaling
g2

c ∼ ρω5−2��
c . This scaling argument can be performed in

general dimension, revealing a critical

g2
c ∼ ρω3+d−2��

c ←→ g2
c ∼ Kω1+d−2��

c . (53)

This is consistent with the results obtained in 1d [where
sin(2φ) plays the role of �], and is also compatible with
an alternative CFT-based stability analysis of the d = 2 DSL
[26].

We summarize our results for the stability of the DQCP
in Fig. 3 for a range of frequencies ω. We simultaneously
take the adiabatic ω → 0 and antiadiabatic ω → ∞ limits
by keeping K = ρω2

0 constant. This choice to take ρ → 0
as ω0 → ∞ means that the shift of the transition (49) in
the antiadiabatic limit remains finite. We highlight that the
ω0-dependent shift in the new transition point implies that
a DQCP can be tuned by varying phonon frequency, as has
been seen in recent numerical work [60]. In these models,
increasing spin-phonon coupling or tuning parameters to push
the transition to lower frequencies should make the transition
strongly first order.

VI. APPLICATION TO OTHER SYSTEMS

While the existence of a true DQCP on the original square-
lattice model is still under debate [13–18], our results may be
expected to hold also for a scenario of a weakly first-order
regime and approximate criticality. Further, general underly-
ing principles and the field-theoretic formulation of our results
allow us to extend to several other closely related strongly
coupled gapless, deconfined gauge theories where conformal
symmetry may be present.

125130-8



SPIN-PEIERLS INSTABILITY OF DECONFINED … PHYSICAL REVIEW B 110, 125130 (2024)

FIG. 3. Nature of the Néel-VBS phase transition on the square
lattice as a function of phonon frequency ω0, withK = ρω2

0 constant.
For ω0 → ∞ (the antiadiabatic limit, top panel), the critical sc is
shifted but the transition remains second order. This DQCP persists
down to ωc, below which it becomes first order. For ω0 → 0 (the
adiabatic limit, bottom panel), the transition occurs at sstatic, given by
Eq. (27). Shown here is g = 0.3,K = 1, with a range of g = 0.0–1.0
shown in the background.

In a previous work by some of us [26], we have established
that U(1) DSL can exhibit spin-Peierls-type instabilities upon
coupling to lattice distortion modes, by exploiting a descrip-
tion of the low-energy field theory for the DSL (emergent
quantum electrodynamics in 2+1 dimensions) in terms of
a strongly coupled conformal field theory with an emergent
SU(4) symmetry. Note that it has been proposed that the
low-energy theory of spinons strongly interacting with an
emergent U(1) gauge field possesses an equivalent description
of a NLSM with a level-1 WZW term [61] (see Appendix A).

The U(1) DSL as a phase is intrinsically stable if there
are no relevant operators which transform as singlets under
the embedding of microscopic (UV) spin rotation and lattice
symmetries GUV ⊂ GIR [62,63]. Crucially, on the triangular
and kagome lattices, this embedding shows that there are
six monopole operators of the emergent gauge field, three of
which transform as VBS order parameters. The latter have
symmetry-allowed coupling to lattice distortion modes, and

their strong relevance (�� < 3
2 ) implies that the system ex-

hibits a spin-Peierls instability, in analogy to the instability
of the one-dimensional Luttinger-liquid phase of spin chains
[26].

The intrinsic stability of the U(1) DSL as a phase on
triangular and kagome lattices relies on the assumption that
(absent of perturbations) there are no relevant GUV-singlet op-
erators, as indicated by recent analytical and numerical results
[62–65]. In [61] it was shown that if a symmetry-allowed four-
fermion interaction term u(ψMψ )2 were relevant, it would
produce a DQCP on the triangular lattice which tunes between
120◦ Néel and VBS order. Following the general arguments in
our work, one can write a coupling of the VBS monopoles
to the lattice as −h · n where h = g(u1, u2, u3, 0, 0, 0) has
components given by three lattice distortions which are re-
lated by C3 rotation symmetry. Given the strong relevance
of monopoles, we hence expect the destruction of deconfined
criticality towards a strongly first-order transition. In the case
of dynamical phonons, the second-order transition is restored
above frequencies ωc ∼ [g2/K]1/(3−2�� ).

More recently, it has been argued that QED3 provides an
effective theory for “unnecessary” quantum critical points
and the surrounding critical regime [66], by starting with the
observation that the U(1) DSL on the square lattice admits
a GUV-singlet relevant monopole deformation �2. Tuning its
coupling λ therefore can be understood as a DQCP-like con-
trol parameter. Crucially, in the scenario at hand, the nature
of the resulting phase is argued to be independent of λ, and
therefore λ = λc may be a critical point within the same phase.
In addition to this singlet monopole, the U(1) DSL on the
square lattice admits three monopole operators transforming
as Néel order parameters as well as two monopole operators
that transform as VBS order parameters. Depending on the
sign of an additional dangerously irrelevant coupling (similar
to the DQCP anisotropy parameter), the unnecessary critical
point can lie within the Néel or VBS order phases.

Adding spin-lattice couplings, the VBS monopole can be
expected to couple to the distortion modes u1,2, which are
precisely those also discussed in Eq. (22). By the arguments
in the work at hand (and in Ref. [26]), the strong relevance
of monopoles [65] leads us to expect that the system spon-
taneously generates a lattice distortion in the adiabatic limit
(i.e., classical lattice distortion modes). The impact on the
unnecessary critical point depends on the surrounding phases:
(i) In the case of the VBS-VBS critical point, it is plausible
that the transition will be generically removed; instead of the
VBS gap going to zero with a power law β = ν���, it will
have a finite minimum on the order of �0 ∼ (g2/K )1/(3−2�� ).
(ii) For the Néel-Néel critical point, we hypothesize that
the second-order transition would split into two first-order
Néel-VBS transitions. There would be an island of VBS or-
der within the Néel phase, induced by the interaction of the
lattice with strongly relevant monopoles. This intermediate
VBS order would exist for |λ| < [g2/K](3−�� )/(3−2�� ). In the
antiadiabatic limit ρ → ∞, we deduce that the unnecessary
DQCP is preserved, which holds at finite ω0 above to a critical
frequency ωc ∼ [g2/K]1/(3−2�� ) (see Appendix B).

The aforementioned 2d models fall into the recently
proposed class of Stiefel liquids [35]. This work described
the DQCP and U(1) DSL as the N = 5 and 6 realizations
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of a series of critical models with an emergent SO(N )
symmetry and critical behavior controlled by a WZW NLSM.
These phases are disordered critical states which may arise
between competing VBS and (increasingly complex forms
of) antiferromagnetic orders. These therefore generalize the
intertwinement originally proposed in 1d spin chains and
the DQCP [40]. In the case of the proposed non-Lagrangian
N = 7 Stiefel liquid, an analysis which relies on anomaly
matching proposes that the four-component VBS order
parameters proximate to the disordered phase transform on
the triangular lattice with momenta K + M. We identify the
relevant perturbation −h · ñ to appropriate commensurate
lattice distortion modes h = g(0, 0, 0, u1, u2, u3, u4). Given
that the SO(7)-vector perturbation ñ is potentially highly
relevant [67], this could indicate a spin-Peierls instability for
this phase too. Our results may be understood as a natural
obstacle to the intertwinement of VBS and antiferromagnetic
orders in such a way. Any Stiefel liquids which exist between
such competing orders could thus be unstable (in the adiabatic
limit) to VBS ordering.

VII. CONCLUSION

In this paper, we have outlined conditions regarding the
stability of the DQCP under coupling to lattice degrees
of freedom. The instability occurs for infinitesimal cou-
plings when considering static distortions, while finite phonon
frequencies protect the system up to some nonzero criti-
cal spin-lattice coupling. Hence, gapless systems that admit
strongly relevant instantons which precipitate VBS order may
be susceptible to a spin-Peierls distortion upon coupling to
the lattice, in particular also in higher-dimensional systems
(in addition to the familiar one-dimensional examples). For
the DQCP to remain stable, the spin-lattice coupling must be
smaller than some critical value that depends on the phonon
frequency. The scaling relations obtained here are consistent
with the ones obtained for the U(1) DSL in [26]. Although,
of course, the exact microscopic instability is lattice and even
model dependent.

From a field-theoretical point of view, this possible in-
stability relies on the existence of a strongly relevant but
lattice symmetry-breaking operator which can couple to an
appropriate lattice distortion mode. Both for the DQCP and
the DSL, these operators are the monopoles of the corre-
sponding gauge theory, but our formalism indicates that this
mechanism holds more generally if (i) the system (in the
absence of a distortion) is gapless and (ii) the energy gain
due to the gap opening stemming from the distortion cou-
pling to the lattice-symmetry breaking operator O scales with
χ = d+1

d+1−�O
< 2 , where �O is the scaling dimension of O

and d is the spatial dimension [see Eq. (1) in the Introduc-
tion]. Such a lattice symmetry-breaking operator often exists
in quantum magnets as a (fluctuating) VBS order parameter.
Our field-theoretic arguments primarily rely on UV symmetry
quantum numbers as well as minimal assumptions concerning
the structure of the IR critical theory of the states in ques-
tion. It is interesting to verify our predictions in numerical
simulations of microscopic models. Recent numerical DMRG
and Gutzwiller-projected variational Monte Carlo simulations
indicate a strong propensity of the gapless U(1) DSL to

undergo a spin-Peierls instability on the triangular [26] and
kagome lattices [68], respectively. Similar results hold for the
honeycomb lattice [69].

Quantum Monte Carlo simulations of lattice models for
DQCP in 2d are notoriously hard due to the existence of a
sign problem. Remarkably, it has recently been pointed out
that a sign-problem-free formulation of the Su-Schrieffer-
Heeger-Hubbard model realizes an effective unconstrained Z2

gauge theory, with quantum Monte Carlo simulations pro-
viding evidence for a direct continuous Néel-VBS transition
[60,70]. Upon tuning a control parameter in the lattice model
which effectively maps onto a ratio of phonon frequency and
spin-lattice coupling, the continuous transition can be tuned
to become strongly first order. It will be highly desirable to
quantitatively extract the shift of the location of the DQCP
as well as the regime of stable criticality as a function of
spin-lattice coupling and phonon frequency. Given limited
system sizes and the required double scaling, this is expected
to be a more challenging task in 2d. In 1d, however, many
numerical studies of quantum spin chains coupled to phonons
exist (see, e.g., [71–74] and references therein), so we expect
it to be possible to extract the aforementioned features. The
extracted critical exponents in higher dimension would pro-
vide interesting insight into the nature of the DQCP and the
field theory’s operator content.

Turning towards experiments, a recent study observed
“proximate-DQCP” behavior between plaquette-solid and
AFM phases in SrCu2(BO3)2 under tuning of the magnetic
field [21]. The regime of quantum critical scaling observed
here was not reproduced in another work which instead tunes
pressure to induce the transition [22]. Varying pressure is a
standard technique to tune magnetic couplings, but inherently
also changes the phonon energy scale. Due to the significant
interplay of spin and lattice degrees of freedom in candidate
DQCP materials, the strong first-order transition here does not
necessarily exclude the potential of observing an underlying
DQCP by tuning lattice-independent parameters. We empha-
size, as has been previously suggested [75], that clarifying the
interplay of spin and lattice degrees of freedom in such system
may be crucial for a more complete understanding. Our work
at hand may thus constitute a step [25] towards understanding
the conditions for deconfined quantum criticality in realistic
experiments.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with F. Assaad,
A. Chubukov, and B. Douçot. U.F.P.S. acknowledges support
from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through a Walter Benjamin fellowship,
Project ID No. 449890867. This research was supported in
part by the National Science Foundation under Grant No.
NSF PHY-1748958. J.K. acknowledges support from the
Imperial-Technical University of Munich flagship partnership
and financial support by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) via TRR 360
(Project-ID No. 492547816). The research is part of the Mu-
nich Quantum Valley, which is supported by the Bavarian state
government with funds from the Hightech Agenda Bayern
Plus. This work was performed in part at Aspen Center for

125130-10



SPIN-PEIERLS INSTABILITY OF DECONFINED … PHYSICAL REVIEW B 110, 125130 (2024)

Physics, which is supported by National Science Foundation
Grant No. PHY-2210452.

APPENDIX A: NLSM FOR THE DSL

It has been proposed that the Dirac spin liquid has a com-
plementary description in terms of a SO(6) NLSM with a
WZW term [35,40,61]. Such theory is constructed by consid-
ering a low-energy theory for fluctuations of a chiral flavor
symmetry-breaking order parameter Pi j which couples as a
mass for the fermions, mPi j ψ iψ j . Skyrmions of the field
P are charged under the dynamical gauge field a and thus
correspond to fermions in the original theory. The effective
theory of Pi j is a NLSM with a level-1 WZW term [61].
Writing in the basis of adjoint SO(6) generators σiτ j (where
i = 0 is the identity matrix and σ, τ are Pauli matrices which
act on the spin and valley degrees of freedom, respectively),
we introduce the SO(6) order-parameter field n throughPi j =
−2inT σiτ jn, leading to the effective theory

SDSL
2 [n] = Skin

2 [n] + 	
SO(6)
2 [n]. (A1)

A careful treatment uncovers that the vector n couples lin-
early to Atop and thus corresponds to the monopoles in the
original theory [35].

APPENDIX B: UNNECESSARY CRITICAL POINTS

Here, for completeness, we briefly review recent argu-
ments of Ref. [66]. The monopoles �4,5,6 of the U(1) on the
square lattice form a triplet under spin-rotation symmetry and

therefore transform as Néel order parameters Nx,y,z, just as
on the triangular lattice. Of the remaining three monopoles,
�2 transforms trivially under the UV symmetry group, and
�1,3 ∼ v1,2 transform as columnar VBS order parameters.
Upon the proliferation of the trivial monopole for |λ| > 0,
the global symmetry is reduced SO(6) × U(1)topo → SO(5)
[62,63]. The transformation of these uncondensed monopoles
corresponds to the fermion bilinears studied earlier in [76].
These order parameters can be written as a five-component
NLSM ñ and the effective theory of the system is

Skin
2 [ñ] + 	

SO(5)
2 [ñ] −

∫
d3 xκ (n2 − v2), (B1)

where κ represents an anisotropy which further breaks
SO(5) → SO(3) × U(1). Although it is irrelevant at the origi-
nal SO(6)-symmetric QED3 point λ = 0 (since it corresponds
to double-strength monopoles), it is expected to be relevant
about the new SO(5)-symmetric NLSM fixed point (here it is
really the original anisotropy of the DQCP). This is therefore
a dangerously irrelevant coupling at λ = 0, the sign of which
determines the nature of the ordered phase on both sides of
the transition.

If it is energetically favorable for the lattice to distort, then
the SO(2) VBS group, which is promoted to SO(6) × U(1)
at λ = 0, is broken down to Z4. In the antiadiabatic limit, the
(marginally irrelevant) coupling is shifted as in Eq. (49), by
κ → κ − g2/ρω2

0. Hence, as ρ → ∞ the unnecessary DQCP
is preserved but the VBS-VBS transition is favored.
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and S. Choi, Landau-forbidden quantum criticality in Rydberg
quantum simulators, Phys. Rev. Lett. 131, 083601 (2023).

[35] L. Zou, Y.-C. He, and C. Wang, Stiefel liquids: Possible non-
Lagrangian quantum criticality from intertwined orders, Phys.
Rev. X 11, 031043 (2021).

[36] F. D. M. Haldane, O(3) nonlinear σ model and the topological
distinction between integer- and half-integer-spin antiferromag-
nets in two dimensions, Phys. Rev. Lett. 61, 1029 (1988).

[37] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, 2011).

[38] E. Fradkin, Field Theories of Condensed Matter Physics, 2nd
ed. (Cambridge University Press, Cambridge, 2013).

[39] N. Read and S. Sachdev, Valence-bond and spin-Peierls ground
states of low-dimensional quantum antiferromagnets, Phys.
Rev. Lett. 62, 1694 (1989).

[40] T. Senthil and M. P. A. Fisher, Competing orders, nonlinear
sigma models, and topological terms in quantum magnets, Phys.
Rev. B 74, 064405 (2006).

[41] S. Yang, Z. Pan, D.-C. Lu, and X.-J. Yu, Emergent self-duality
in a long-range critical spin chain: From deconfined criticality
to first-order transition, Phys. Rev. B 108, 245152 (2023).

[42] A. Romen, S. Birnkammer, and M. Knap, Deconfined quan-
tum criticality in the long-range, anisotropic Heisenberg chain,
SciPost Phys. Core 7, 008 (2024).

[43] I. Affleck and F. D. M. Haldane, Critical theory of quantum spin
chains, Phys. Rev. B 36, 5291 (1987).

[44] A. V. Chubukov, Spontaneous dimerization in quantum-spin
chains, Phys. Rev. B 43, 3337 (1991).

[45] M. Levin and T. Senthil, Deconfined quantum criticality and
Néel order via dimer disorder, Phys. Rev. B 70, 220403(R)
(2004).

[46] A. Tanaka and X. Hu, Many-body spin berry phases emerging
from the π -flux state: Competition between antiferromagnetism
and the valence-bond-solid state, Phys. Rev. Lett. 95, 036402
(2005).

[47] M. A. Metlitski and R. Thorngren, Intrinsic and emergent
anomalies at deconfined critical points, Phys. Rev. B 98, 085140
(2018).

[48] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, 2003).

[49] T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-
Fermi liquids near heavy-fermion critical points, Phys. Rev. B
69, 035111 (2004).

[50] A. Auerbach, Interacting Electrons and Quantum Magnetism,
Graduate Texts in Contemporary Physics (Springer, New York,
2012).

[51] N. Read and S. Sachdev, Spin-Peierls, valence-bond solid, and
Néel ground states of low-dimensional quantum antiferromag-
nets, Phys. Rev. B 42, 4568 (1990).

[52] Z. Zhou, L. Hu, W. Zhu, and Y.-C. He, SO(5) deconfined phase
transition under the fuzzy-sphere microscope: Approximate
conformal symmetry, pseudo-criticality, and operator spectrum,
Phys. Rev. X 14, 021044 (2024).

[53] R. Citro, E. Orignac, and T. Giamarchi, Adiabatic-antiadiabatic
crossover in a spin-Peierls chain, Phys. Rev. B 72, 024434
(2005).

[54] L. P. Kadanoff, Singularities near the bifurcation point of the
Ashkin-Teller model, Phys. Rev. B 22, 1405 (1980).

[55] G. Delfino and G. Mussardo, Non-integrable aspects of the
multi-frequency sine-Gordon model, Nucl. Phys. B 516, 675
(1998).

[56] I. Affleck, Exact critical exponents for quantum spin chains,
non-linear σ -models at θ = π and the quantum Hall effect,
Nucl. Phys. B 265, 409 (1986).

125130-12

https://doi.org/10.21468/SciPostPhys.15.2.061
https://arxiv.org/abs/2405.06607
https://arxiv.org/abs/2307.02547
https://doi.org/10.1103/PhysRevLett.132.246503
https://doi.org/10.1126/science.adc9487
https://arxiv.org/abs/2310.20128
https://doi.org/10.1103/PhysRevB.75.235122
https://arxiv.org/abs/2406.02681
https://doi.org/10.1103/PhysRevX.9.041037
https://doi.org/10.1038/s41467-024-51367-w
https://doi.org/10.1140/epjst/e2015-02444-5
https://doi.org/10.1103/PhysRevB.108.235126
https://doi.org/10.1103/PhysRevLett.115.267203
https://doi.org/10.1103/PhysRevLett.111.137202
https://doi.org/10.1103/PhysRevB.99.075103
https://doi.org/10.1103/PhysRevB.99.165143
https://doi.org/10.1103/PhysRevB.99.205153
https://doi.org/10.1103/PhysRevLett.131.083601
https://doi.org/10.1103/PhysRevX.11.031043
https://doi.org/10.1103/PhysRevLett.61.1029
https://doi.org/10.1103/PhysRevLett.62.1694
https://doi.org/10.1103/PhysRevB.74.064405
https://doi.org/10.1103/PhysRevB.108.245152
https://doi.org/10.21468/SciPostPhysCore.7.1.008
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1103/PhysRevB.43.3337
https://doi.org/10.1103/PhysRevB.70.220403
https://doi.org/10.1103/PhysRevLett.95.036402
https://doi.org/10.1103/PhysRevB.98.085140
https://doi.org/10.1103/PhysRevB.69.035111
https://doi.org/10.1103/PhysRevB.42.4568
https://doi.org/10.1103/PhysRevX.14.021044
https://doi.org/10.1103/PhysRevB.72.024434
https://doi.org/10.1103/PhysRevB.22.1405
https://doi.org/10.1016/S0550-3213(98)00063-7
https://doi.org/10.1016/0550-3213(86)90167-7


SPIN-PEIERLS INSTABILITY OF DECONFINED … PHYSICAL REVIEW B 110, 125130 (2024)

[57] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M.
Somoza, 3D loop models and the CPn−1 sigma model, Phys.
Rev. Lett. 107, 110601 (2011).

[58] H. Knops and L. den Ouden, Momentum space renormalization
for the sine-Gordon model, Phys. A (Amsterdam) 103, 597
(1980).

[59] P. Nozières and F. Gallet, The roughening transition of crystal
surfaces. I. Static and dynamic renormalization theory, crystal
shape and facet growth, J. Phys. (France) 48, 353 (1987).

[60] A. Götz, M. Hohenadler, and F. F. Assaad, Phases and exotic
phase transitions of a two-dimensional Su-Schrieffer-Heeger
model, Phys. Rev. B 109, 195154 (2024).

[61] C.-M. Jian, A. Thomson, A. Rasmussen, Z. Bi, and C. Xu, De-
confined quantum critical point on the triangular lattice, Phys.
Rev. B 97, 195115 (2018).

[62] X.-Y. Song, C. Wang, A. Vishwanath, and Y.-C. He, Unifying
description of competing orders in two-dimensional quantum
magnets, Nat. Commun. 10, 4254 (2019).

[63] X.-Y. Song, Y.-C. He, A. Vishwanath, and C. Wang, From
spinon band topology to the symmetry quantum numbers of
monopoles in Dirac spin liquids, Phys. Rev. X 10, 011033
(2020).

[64] S. M. Chester and S. S. Pufu, Anomalous dimensions of scalar
operators in QED3, J. High Energy Phys. 08 (2016) 069.

[65] S. Albayrak, R. S. Erramilli, Z. Li, D. Poland, and Y. Xin, Boot-
strapping Nf = 4 conformal QED3, Phys. Rev. D 105, 085008
(2022).

[66] Y. Zhang, X.-Y. Song, and T. Senthil, Dirac spin liquid as an
“unnecessary” quantum critical point on square lattice antifer-
romagnets, arXiv:2404.11654.

[67] Y.-C. He, J. Rong, and N. Su, Conformal bootstrap bounds for
the U(1) Dirac spin liquid and N = 7 Stiefel liquid, SciPost
Phys. 13, 014 (2022).

[68] F. Ferrari, F. Becca, and R. Valentí, Spin-phonon interactions
on the kagome lattice: Dirac spin liquid versus valence-bond
solids, Phys. Rev. B 109, 165133 (2024).

[69] M. Weber, Valence bond order in a honeycomb antiferromag-
net coupled to quantum phonons, Phys. Rev. B 103, L041105
(2021).

[70] S. Karakuzu, K. Seki, and S. Sorella, Solution of the sign
problem for the half-filled Hubbard-Holstein model, Phys. Rev.
B 98, 201108(R) (2018).

[71] M. Weber, F. P. Toldin, and M. Hohenadler, Competing or-
ders and unconventional criticality in the Su-Schrieffer-Heeger
model, Phys. Rev. Res. 2, 023013 (2020).

[72] M. Weber, Quantum spin chains with bond dissipation,
arXiv:2310.11525.

[73] G. S. Uhrig, Nonadiabatic approach to spin-Peierls tran-
sitions via flow equations, Phys. Rev. B 57, R14004(R)
(1998).

[74] F. Ferrari, R. Valentí, and F. Becca, Variational wave func-
tions for the spin-Peierls transition in the Su-Schrieffer-Heeger
model with quantum phonons, Phys. Rev. B 102, 125149
(2020).

[75] F. Mila, Towards an experimental test of deconfined quan-
tum criticality, J. Club Condens. Matter Phys. (2023),
doi:10.36471/JCCM\_August\_2023\_03.

[76] M. Hermele, T. Senthil, and M. P. A. Fisher, Algebraic spin
liquid as the mother of many competing orders, Phys. Rev. B
72, 104404 (2005).

125130-13

https://doi.org/10.1103/PhysRevLett.107.110601
https://doi.org/10.1016/0378-4371(80)90028-X
https://doi.org/10.1051/jphys:01987004803035300
https://doi.org/10.1103/PhysRevB.109.195154
https://doi.org/10.1103/PhysRevB.97.195115
https://doi.org/10.1038/s41467-019-11727-3
https://doi.org/10.1103/PhysRevX.10.011033
https://doi.org/10.1007/JHEP08(2016)069
https://doi.org/10.1103/PhysRevD.105.085008
https://arxiv.org/abs/2404.11654
https://doi.org/10.21468/SciPostPhys.13.2.014
https://doi.org/10.1103/PhysRevB.109.165133
https://doi.org/10.1103/PhysRevB.103.L041105
https://doi.org/10.1103/PhysRevB.98.201108
https://doi.org/10.1103/PhysRevResearch.2.023013
https://arxiv.org/abs/2310.11525
https://doi.org/10.1103/PhysRevB.57.R14004
https://doi.org/10.1103/PhysRevB.102.125149
https://doi.org/10.36471/JCCM_August_2023_03
https://doi.org/10.36471/JCCMLY1	extbackslash _AugustLY1	extbackslash _2023LY1	extbackslash _03
https://doi.org/10.1103/PhysRevB.72.104404

