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In this work we propose the average spin Chern number (ASCN) as an indicator of the topological significance
of the spin degree of freedom within insulating materials. Whenever this number is a nonzero even integer, it
distinguishes the material as a spin Chern insulator, and the number is a topological invariant whenever there is
a symmetry that commutes with the spin and protects Chern numbers. If this number is not zero, it indicates that
the material has nontrivial spin transport properties, and it lies close to the value of the spin Hall conductivity
(SHC) within the band gap. For systems where the spin commutes with the Hamiltonian, the ASCN matches
the SHC. When the noncommutativity of the spin with the Hamiltonian cannot be neglected, both values are
nonzero simultaneously. The ASCN is therefore a good complement for the intrinsic contribution of the SHC,
and permits us to detect topological information of the material, which is not possible alone from the value of
the SHC.
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I. INTRODUCTION

The investigation of topological phases of matter holds a
central position in the landscape of condensed matter physics,
tracing its origins to breakthroughs such as the quantum Hall
effect and quantum spin Hall effect [1–4]. The discovery of a
constant value within the band gap of the spin Hall conduc-
tivity (SHC) in topological insulators presents a compelling
challenge, stimulating significant interest and inquiry [5–9].
While significant progress has been made in elucidating this
issue for two-dimensional (2D) topological insulators, where
the value becomes quantized in accordance with the defini-
tion of the spin Chern number (SCN), this quantization is
applicable only in the nonrelativistic limit or weak spin-orbit
coupling (SOC) interactions [10–15]. Nevertheless, a criti-
cal question remains unresolved, particularly concerning 3D
topological insulators [16]. The constant value of the SHC
within the band gap eludes a comprehensive explanation, even
in the nonrelativistic limit.

The conventional approach to topological features of mat-
ter typically focuses on the exploration of electronic band
structures [17,18]. However, when considering the incorpo-
ration of spin quantum degree of freedom, an additional step
is required: the projection of spin operator onto the valence
electronic states [19–21]. This process produces the spin
spectrum, with the intrinsic topology originating from the
nontrivial SCN. Using this approach, Prodan [19] defined the
SCN in the thermodynamic limit, demonstrating its robustness
against disorder and smooth deformations of the Hamiltonian.
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Fu et al. [22] extended the concept to the real-space SCN
for optical near fields of finite-sized structures. Recently, Lin
et al. [20] introduced the nested spin-resolved Wilson loops
and layer constructions as tools to characterize the intrinsic
bulk topological properties of 3D spinful insulators, partic-
ularly focusing on identifying three distinct spin-resolved
phases in helical higher-order topological insulators: 3D quan-
tum insulators, spin-Weyl semimetals, and T-doubled axion
insulator states. This spin topology classification approach
provides robust topological invariants for studying the spin
transport response of quantum systems [20,23].

In this study, following the definition of Prodan [19] of the
spin Chern number, we introduce the concept of average spin
Chern number (ASCN) as a strategic tool to unravel the nature
of SHC within the band gap in 3D topological insulators.
We show that the ASCN may offer valuable insights for the
information underlying the SHC in insulator materials, thus
indicating the interplay between spin properties and topolog-
ical features in such systems. By exploring the connection
between SHC and ASCN, our work aims to contribute to
a deeper understanding of spin transport phenomena in 3D
topological insulators. This work can be seen as a continua-
tion of our previous efforts to understand spin properties in
materials [23]. It is based on many sources, but in particular
it is framed in the ideas and constructions of the colleagues
working on spin-resolved topology [20].

II. PROJECTED SPIN TOPOLOGY

In an insulator, the valence states form a complex vector
bundle that is known by the name of Bloch bundle. The
Bloch bundle is endowed with the action of the group of
crystal symmetries and moreover, it may posses time-reversal
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symmetry, or a composition of time-reversal symmetry with a
rotation, inversion or a translation in the magnetic case [24].
Incorporating spin-orbit interactions implies that the Bloch
bundle is endowed with the action of the lift of the crystal
symmetries to the spin group, and that time-reversal operator
squares to −1.

All these symmetries endow the Bloch bundle with a rich
variety of topological invariants, some of them related to
magnetoelectric properties of the crystal [7,25]. Among those
topological invariants we may mention the Chern-Simons ax-
ion coupling term and the Chern classes [26,27]. The first one
is equivalent to the Kane-Mele invariant in the presence of
time-reversal symmetry [28,29], and this invariant gives the
indication of a strong topological insulating phase.

When taking into consideration the spin operator Sn in any
direction n (here n is a unit vector in R3), we see that the Bloch
bundle is moreover endowed with the action induced by this
operator once it has been projected to the valence states. In
other words, if P is the projection operator into the valence
states

P :=
∑

n∈occ

|ψn〉〈ψn|, (1)

where ψn are the eigenstates of the Hamiltonian and occ
denotes the occupied states of an insulator, the operator PSnP
defines a Hermitian operator on the Bloch bundle and its
eigenvalues are between −1 and 1 (in h̄/2 units) [19]. The
spectrum of this projected operator will define bands whose
eigenvalues are between −1 and 1, and the separation into
positive and negative bands permits one to obtain topological
information on the bundle.

On Hamiltonians with time-reversal symmetry the pos-
itive eigenvectors are mapped to the negative ones by the
time-reversal operator, thus implying that the projected spin
spectrum is symmetric with respect to zero. The projected
spin operator separates the valence states into positive and
the negative eigenvectors except in those points where the
projected spin spectrum contains the zero. These points are
localized where the positive bands of the projected spin oper-
ator cross the negative ones, and are called spin Weyl points
(SWP). Their presence or absence have direct topological con-
sequences within the material; particularly evident is the spin
transport response, which we have explored in our previous
work [23].

The projected spin operator may be gapped, thus separating
positive from negative bands in the Bloch bundle, or it has
only a finite number of SWPs in the reciprocal space. In
both cases there are no SWPs in all but a finite number of k
planes. Hence the Chern numbers of the positive and negative
eigenstates of the projected spin operator can be determined
in all but finitely many k planes.

Denoting by {φ+
m |m ∈ S+} and {φ−

m |m ∈ S−} the positive
and negative valence eigenvectors of the projected spin oper-
ator, and making a choice of oriented coordinate axes abc, the
Chern numbers of the positive and negative eigenvectors on
the plane kc = l with l ∈ [0, 2π ], can be calculated as follows:

cSn,±
1,ab (l ) := 1

2π

∫∫
dkadkb

(2π )2

∑
m∈S±

2 Im

〈
∂φ±

m

∂ka

∣∣∣∣∂φ±
m

∂kb

〉
. (2)

Since there are only a finite number of SWPs, then these
Chern numbers are defined for all the planes kc = l except
for a finite number of them where the SWPs lie.

The spin Chern number is thus:

cSn
1,ab(l ) := cSn,+

1,ab (l ) − cSn,−
1,ab (l ), (3)

and it is a well-defined integer for all but finite number of kc

planes. For systems on which the first Chern number is zero
on all k planes, the spin Chern number is always twice the
value of the Chern number of the positive eigenvectors. This
is the case on systems with time-reversal symmetry.

Here we would like to emphasize that we are defining the
spin Chern number as the difference between the Chern num-
bers of the positive and negative valence bands with respect
to the projected spin operator. The original definition used by
Kane and Mele divides this quantity by two [4]. We follow the
definition of Sheng et al. [10] and not divide by two since we
would like the spin Chern number to also take integer values
on magnetic materials.

Average spin Chern number

We want to extract relevant topological information from
the Bloch bundle using the whole range of spin Sn operators
and all possible planes {xy, yz, zx}. So, fixing a spin direc-
tion Sn and a plane direction ab ∈ {xy, yz, zx}, we propose
to consider the average spin Chern number (ASCN) of the
projected spin operator PSnP across all planes in reciprocal
space kc = l, l ∈ [0, 2π ]:

cSn
1,ab = 1

2π

∫ 2π

0
cSn

1,ab(l )dl. (4)

For a set of axes with the opposite orientation bac we define
the ASCN as:

cSn
1,ba := −cSn

1,ab. (5)

We emphasize that the ASCN depends on a choice of spin
direction (or spin quantization axis) and a choice of k planes
on which the spin Chern numbers are calculated. Thus the
ASCN should be understood as a family of quantities associ-
ated to the material. Appropriate choices of the spin direction
and of the plane of integration are important in order to gain
some hindsight on the spin properties of a material.

The relevance of the ASCN is based on the following
properties:

(i) Whenever the spin operator commutes with the Hamil-
tonian, the intrinsic contribution of the SHC is a multiple of
the ASCN:

σ c
ab = −eπ · cSc

1,ab. (6)

Here abc is a base in a Cartesian coordinate system.
It is known that whenever the spin is a well-defined quan-

tity, the 2D SHC is a multiple of the SCN [10,12,19,30]. In
3D materials where the Hamiltonian commutes with the spin,
the SCN is a multiple of the SHC in all but a finite number of
k planes. The SHC can be thus seen as the integral of the spin
Chern numbers (SCNs) along parallel planes and therefore it
is a multiple of the ASCN.

To make this statement precise, choose an orthogonal basis
abc in the Cartesian coordinate system. Since the spin Sc and
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the Hamiltonian commute, one can choose a basis of states
ψ±

m , which are eigenvectors of both operators:

Hψ±
m = E±

m ψ±
m and Scψ

±
m = ±ψ±

m . (7)

The SCN in the plane kc = l can be written as

cSc
1,ab(l ) = 1

2π

∫∫
dkadkb

(2π )2

∑
m∈occ

2 Im

〈
∂ (Scψm)

∂ka

∣∣∣∣∂ψm

∂kb

〉
, (8)

where m runs over the valence states (occupied) and Scψm =
±ψm picks up the negative sign for the Chern number of the
negative projected spin eigenvectors.

Adding the term |ψr〉〈ψr | running over all states (identity
operator), we get the term〈

∂ (Scψm)

∂ka

∣∣∣∣ψr

〉〈
ψr

∣∣∣∣∂ψm

∂kb

〉
. (9)

Using the identity

(Em − Er )〈ψr |∇kψm〉 = 〈ψr |∇kH |ψm〉 (10)

we see that the term of Eq. (9) becomes

〈ψm|HaSc|ψr〉〈ψr |Hb|ψm〉
(Em − Er )2

, (11)

where Ha denotes ∂H
∂ka

and Hb denotes ∂H
∂kb

. Replacing HaSc

by 1
2 {Ha, Sc} and noting that 〈 ∂ψm

∂ka
|ψm〉 is real, we get the

following formula for the SCN on the plane kc = l:

cSc
1,ab(l ) =

∫∫
dkadkb

(2π )3

×
∑

m∈occ

∑
r �=m

2 Im
〈ψm| 1

2 {Ha, Sc}|ψr〉〈ψr |Hb|ψm〉
(Em − Er )2

.

(12)

Further replacing the spin current operator ĵc
a = 1

4 {Sc, Ha} and
the velocity operator v̂b = 1

h̄ Hb we get:

− e

2
cSc

1,ab(l ) = h̄
∫∫

dkadkb

(2π )3

×
∑

m∈occ

∑
r �=m

2 Im
〈ψm| ĵc

a|ψr〉〈ψr | − ev̂b|ψm〉
(Em − Er )2

.

(13)

The Kubo formula for the intrinsic contribution of the SHC
is [31]:

σ c
ab = h̄

∫
dkc

∫∫
dkadkb

(2π )3

×
∑

m∈occ

∑
r �=m

2 Im
〈ψm| ĵc

a|ψr〉〈ψr | − ev̂b|ψm〉
(Em − Er )2

, (14)

and therefore we obtain the desired equality

σ c
ab =

∫ 2π

0
− e

2
cSc

1,ab(l )dl = −eπ · cSc
1,ab. (15)

Here we point out that whenever the spin operator does
not commute with the Hamiltonian, the 2D SHC on k planes
is not a quantized quantity, as demonstrated by various au-
thors [10,12,15,30] On the other hand, the SCN is a clearly

FIG. 1. SHC n · (σ x
xy, σ

y
xy, σ

z
xy ) (blue lines) and ASCN cSn

1,xy (black
line with dots) for the α-BiBr material. Spin Sn is defined with
n = [sin(θ ), 0, cos(θ )] where 0 � θ � π . The transition is presented
from Sz to Sx and finishes in S−z. Quantum spin Hall insulator
behavior is noted in proximity to the spin directions Sz and S−z. Note
that there are three different phases for the ASCN, and that on each
change of phase, the projected spin gap closes. On the spin directions
where the ASCN is zero there is not topological contribution of the
spin properties on the planes parallel to kxky.

defined even integer number. This is the main reason we chose
to define its average on the 3D Brillouin zone.

(ii) The ASCN is not linear on the spin direction n. The
ASCN is not linear on the vector n defining the spin Sn, in
contrast with the intrinsic contribution of the SHC, which is
linear by definition. Topological invariants such as the SCN
cannot vary linearly on n since its values are integers. Take
for example the spin Chern number cSn

1,xy(0) across the plane
kz = 0 and vary the spin Sn with n = [cos(θ ), 0, sin(θ )], 0 �
θ � π . The spin Chern number cSn

1,xy(0) as a function of the
variable θ is a step function with even integer values, hence
not linear in the spin direction.

This nonlinearity can be seen in Fig. 1 where the ASCN
and the SHC have been calculated for Sn varying from Sz to
S−z across the planes parallel to xy in the material α-BiBr.
In this material the projected spin spectrum is gapped, so the
ASCN is a step function with even integer values. Also in
Fig. 2(b) the ASCN and the SHC have been calculated for
different values of n and for different coefficients in the 3D
BHZ model. On this model, whenever the coefficient D0 goes
to zero, the location of the SWPs become less dependent on
the variable θ . This is why the ASCN looks like a step function
for the case D0 = 0.01. The nonlinearity of the ASCN with
respect to the spin direction is evident.

(iii) If the ASCN is zero in all spin directions and all
reciprocal planes then there are no SWPs and all spin Chern
numbers vanish. The location of the SWPs is sensitive to the
direction of the spin. This can be observed in the calculation
carried out in Sec. III B for the position of the SWPs for
a generic spin in the 3D BHZ model presented in Sec. III.
Therefore, if the ASCN is uniformly zero in all directions, it
indicates the absence of SWPs. Any presence of SWPs in any
spin orientation would result in a nonzero ASCN value.

Therefore, not only there are no SWPs, but also the SCNs
remain constant and equal to zero. Thus the positive eigenvec-
tors of the projected spin operator can be separated from the
negative ones. The Bloch bundle is hence a sum of positive
and negative bundles, and since the Chern numbers of both
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FIG. 2. Comparison of SHC with the ASCN in the 3D BHZ
model using various computational and theoretical approaches.
(a) Results obtained from the Kubo formula (14) of the SHC σ z

xy

for different values of D0 (in colors), and the ASCN cSz
1,xy of (4)

in reciprocal space (black line), are plotted against the M0
B0

param-
eters. The shaded areas represent different phases: the blue region
denotes the trivial phase, while the white and gray areas indicate the
strong and fragile phases, respectively. (b) Comparison of the SHC
n · (σ x

xy, σ
y
xy, σ

z
xy ) (lines without dots) with the ASCN cSn

1,xy (lines with
dots) for the spin Sn where n = [sin(θ ), 0, cos(θ )] and 0 � θ � π .
Here we go from Sz to Sx and finish in S−z. The graph (a) is at angle
θ = 0 and the graph (b) is at M0

B0
= 1.5. The red vertical line in the

graphs represent the same information. The strength of spin-orbit
coupling (D0) is measured in electron volts (eV).

bundles are zero across all planes, there is no contribution of
the projected spin operator on the SHC. The system is trivial in
terms of Chern numbers and SHC, but it may still have topo-
logical significance. The positive (and negative) bands might
have nontrivial Chern-Simons θ term, potentially resulting in
nontrivial surface SHC for each band group [26].

(iv) If the ASCN is an even integer for generic directions
of the spin, it means that the projected spin operator has no
SWPs. Therefore the material is a spin Chern insulator in the
spin directions where the ASCN is nonzero. Moreover, if there
is a symmetry that commutes with the spin and protects the
Chern numbers, then the ASCN is a topological invariant.

Whenever time-reversal symmetry is present, the SCN is
always an even integer. This follows from the fact that in the
planes kc = 0 the SCN is twice the value of the Chern number
of the positive bands. The value of the SCN only changes by
multiples of two whenever the plane is moved to kc = l and
the value changes whenever SWPs are crossed.

If the ASCN is an even integer for generic directions of the
spin, it means that the ASCN is constant for directions of the
spin that are close to one another, and therefore there cannot

be SWPs. We show in Sec. III B that the location of the SWPs
is sensitive to the direction of the spin, and since the ASCN
is constant, there cannot be SWPs. If there are no SWPs for a
choice of spin direction, then the SCNs are equal on parallel
planes.

A spin Sn Chern insulator (SCI) is an insulator with gapped
projected spin operator PSnP whose positive bands (also neg-
ative) carry a nontrivial first Chern number [23]. The value of
the ASCN parallel to kc = l planes is exactly twice the value
of the Chern number of the positive bands.

Changing the direction of the spin does not close the
projected spin gaps unless there is a change of topolog-
ical phase for the spin operator. The change of direction
of the spin might change the Chern number for the posi-
tive and negative eigenvectors of the projected spin operator,
and when this happens, there is a change in the topological
phase. This change of phase happens in a set of dimension
1 (curve) inside the sphere of all possible directions for the
spin. Whenever there is a change of phase we claim that
the ASCN changes by multiples of 4. The reasoning is the
following.

In the generically gapped projected spin operator, the
ASCN is a constant even number. Since ASCN is locally
constant, then the SCNs are also locally constant on each
plane kc = l . For the ASCN to change, all the SCN must
change simultaneously. This means that there must be zeros
of the projected spin operator in all planes kc = l for a specific
choice of spin direction Sn. These crossings must come in
pairs for each plane kc = l since they appear twice on the
plane kc = 0 due to the time-reversal operator, and the change
in SCN is the same across all parallel planes. Since on each
plane, we have two crossings of the projected spin operator,
the change in SCN is by multiples of 4. Hence the change of
phase for the ASCN is also by multiples of 4

Whenever the ASCN is an even integer, we also might
expect this number to be a topological invariant of the system.
This is indeed the case if there a symmetry on the material
commuting with the spin operator that moreover protects the
Chern numbers on the positive and the negative bands. This
is, for example, the case whenever inversion is a symmetry
of the material. Inversion commutes with the spin operators,
and protects the Chern numbers on the planes kc = 0, π . But
whenever there is no such symmetry commuting with the spin
that protects the Chern numbers, then there is no reason to
expect that the local SCNs are protected. This is the case of
the SCN in 2D materials in the presence only of time-reversal
symmetry. The topological invariant associated to the SCN in
this case is only its value modulo 4 [19].

The even integer value of the ASCN indicates that the
material has a constant SCN across all parallel k planes in
a fixed spin direction. This number does not change on adia-
batic deformations of the Hamiltonian if there is a symmetry
that commutes with the spin, and which moreover protects
Chern numbers. This particular phase is also recognized as
the 3D quantum spin Hall insulator state, in analogy with the
2D [32–36].

The previous phenomena can be seen in Fig. 1 where the
material α-BiBr has been studied for different directions of the
spin. Here the projected spin operators are gapped, the ASCN
is 4 close to Sz and −4 close to S−z, while it is 0 close to
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Sx. The material α-BiBr is therefore a SCI for the spin Sz but
not for the spin Sx. It will have SHC for the Sz spin direction,
while it for the Sx direction the SHC will be negligible. In this
case the ASCN is a topological invariant of the material. This
follows from the fact that inversion symmetry is present, it
commutes with the spin operators, and it protects the Chern
numbers on both positive and negative bands.

It is important to highlight that the material α-BiBr pos-
sesses an even more interesting topological structure. It has
been found that both the positive and the negative bands pos-
sess a nontrivial Chern-Simons θ term. [20] This implies that,
independently of the direction of the spin, the surface SHC is
nontrivial on this material. This material α-BiBr was first rec-
ognized as a strong topological crystalline insulator [37,38],
and recently has been further characterized as T-double axion
insulator [20].

(v) If the Chern-Simon axion coupling term is nonzero, and
the positive spin projection eigenvectors are mapped to the
negative ones, then the ASCN is generically nonzero in all
spin directions. In particular, the SHC is nontrivial.

Whenever the Chern-Simons coupling term is nonzero
(the Kane-Mele Z2 = 1 invariant for time-reversal invariant
systems), and the positive spin projection eigenvectors are
mapped to the negative ones, then there cannot be a spin gap in
any direction of the spin. If there is a spin gap, then the Bloch
bundle is a sum of the positive and the negative eigenvec-
tors, and since one is mapped to the other, the Chern-Simons
coupling term of the total Bloch bundle is twice the one of
the positive eigenvectors. Hence the Chern-Simons coupling
term is trivial. This implies that the nontriviality of the Chern-
Simons coupling term, together with a symmetry that maps
positive to negative eigenvectors (such as time reversal, or a
composition of time reversal with a translation), implies the
nontriviality of the ASCN. The nontriviality of the ASCN
implies the nontriviality of the SHC. This can be taken as one
explanation of the nontriviality of the SHC on TIs [6,10].

(vi) In strong topological insulators (Z2 = 1) the value of
the ASCN cSn

1,ab determines the spin Chern numbers on the

planes kc = 0 and kc = π with abc a base. If 2s < cSc
1,ab <

2s + 2 for s ∈ Z then the spin Chern numbers cSn
1,ab(0) and

cSn
1,ab(π ) on the planes kc = 0 and kc = π are 2s and 2s + 2

(not necessarily in this order).
In strong topological insulators there is only one pair of

SWPs with opposite chirality and position. If the ASCN cSn
1,ab

lies between 2s and 2s + 2 for s ∈ Z, then the spin Chern
numbers cSn

1,ab(l ) can only take values of 2s and 2s + 2. Hence

the spin Chern numbers cSn
1,ab(0) and cSn

1,ab(π ) can only be 2s

and 2s + 2. In the STI Bi2Te3 the ASCN cSz

1,xy = −3.16, hence
the spin Chern numbers on the planes kz = 0 and kz = π

can only be −2 and −4. The calculation shows indeed that
cSz

1,xy(0) = −2 and cSz

1,xy(π ) = −4.
The ASCN is therefore a good indicator for the existence

of topological properties of the spin spectrum. It is not in
general a topological invariant, in the sense that adiabatic
deformations of the Hamiltonian will not leave the ASCN
fixed unless the ASCN is an even integer and there is a sym-
metry commuting with the spin operator that protects Chern
numbers.

TABLE I. Average spin Chern number (cz
1,i j) and spin Hall con-

ductance (σ z
i j) values for topological materials Bi2Te3, MnBi2Te4,

and MnBi6Te10 and α-BiBr, where MnBi2Te4 and MnBi6Te10 are
taken in their antiferromagnetic phase. The table includes ASCN and
SHC values are given in units of −eπ . The last row classifies the
materials as strong topological insulator (STI), axion insulator (AI)
or topological crystalline insulator [37,38] (TCI).

Bi2Te3 MnBi2Te4 MnBi6Te10 α-BiBr

σ z
yx 3.27 −2.70 −4.48 −3.96

cSz
1,xy 3.16 −2.60 −5.04 −4

σ z
xy −3.25 2.70 4.48 3.66

Type STI AI AI TCI

When the ASCN is nonzero, it implies a corresponding
nonzero value for the SHC, and the intensity of the SHC is
linked to the magnitude of the ASCN. In Table I we have
collected the values of the ASCN and the SHC for different
materials with topological properties. It is important to note
that their values are related, and moreover, that we can de-
duce from the value of the ASCN the fact that α-BiBr has a
projected spin gap and therefore it is a spin Chern insulator.
Additionally, we deduce that the spin Chern numbers for
MnBi6Te10 are −6 and −4 on the kz = 0 and kz = π planes,
respectively.

The ASCN can also be calculated in Weyl semimetals. The
occupied states restricted to a plane kc = l are gapped except
where the energy meets the Fermi energy, which happens only
at a finite number of k points. Moreover, the projected spin
operator is always gapped for the planes kc = l except for a
finite number of planes. Hence the SCN is well defined for all
planes kc = l , except for a finite number of planes where Weyl
points are located. In the case of Weyl semimetals, the value
of the ASCN will be very close to the one of the SHC since
the eigenvalues of the projected spin operator will be close to
1 and −1 [39].

Note that the average Chern number (ACN) can also be
define on the occupied states:

c1,ab = 1

2π

∫ 2π

0
c1,ab(l )dl. (16)

Here c1,ab(l ) is the first Chern number of the occupied states
restricted to the plane kc = l . In this case it follows that the
AHC is a multiple to the ACN, no matter what the Fermi
energy level is. In formulas we have

σab = e2

h
2π · c1,ab. (17)

So we can interpret the AHC as the average contribution of
the Chern numbers across parallel planes in reciprocal space.
This number is therefore directly linked with the distance
in momentum space of the Weyl points in Weyl semimet-
als [40,41].

III. 3D BHZ MODEL

We have carried out extensive calculations for the ASCN
and its relation to the SHC in the 3D BHZ model of four
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bands [5]. The BHZ Hamiltonian can be written as:

H (k) = M(k)τ3σ0 + A(k)τ1σ3 + C(k)τ2σ0 + D(k)τ1σ1,

(18)

with

M(k) = M0 − B0[cos(kx ) + cos(ky) + cos(kz )], (19)

A(k) = A0 sin(kx ), (20)

C(k) = C0 sin(ky), (21)

D(k) = D0 sin(kz ), (22)

spin matrices Sx = τ0σ1, Sy = τ3σ2 and Sz = τ0σ3, time re-
versal T = iτ0σ2K where K is complex conjugation, and
inversion I = τ0σ3 [23].

Whenever D0 = 0 we have the original 2D BHZ Hamil-
tonian consisting of two disconnected blocks related by
time-reversal symmetry. In this context, the nontrivial off-
diagonal term D could be interpreted as the spin-orbit
coupling term in the 3D layered system. This new term also
breaks the commutativity with the spin operator.

In matrix form the Hamiltonian is

H (k) =

⎛
⎜⎜⎝

M A + iC 0 D
(A + iC)∗ −M D 0

0 D M −(A + iC)∗
D 0 −(A + iC) −M

⎞
⎟⎟⎠,

(23)

it preserves time-reversal symmetry and inversion since the
function M(k) is even and the functions A(k),C(k), D(k) are
odd with respect to inverting k.

The energy of the Hamiltonian is degenerate with E = ±λ,
and

λ =
√

(M2 + A2 + C2 + D2). (24)

One choice of eigenvectors of the Hamiltonian is

ν1 := (M − λ, A − iC, 0, D)T (25)

ν2 := (A + iC,−M − λ, D, 0)T (26)

ν3 := (M + λ, A − iC, 0, D)T (27)

ν4 := [−(A + iC), M − λ,−D, 0]T (28)

with ν1 and ν2 with energy −λ and ν3 and ν4 with en-
ergy λ. The energy of the spectrum is gapless whenever
M = A = C = D = 0 and this happens only whenever M0

B0
=

−3,−1, 1, 3. Otherwise the energy has a gap.
Furthermore note that T I preserves the energies and the k

points. Therefore T Iν1 is also an eigenvector of the Hamilto-
nian and it is spanned by ν1 and ν2. In the base given above
one can calculate explicitly the coefficients of both T Iν1 and
T Iν2 with respect to ν1 and ν2.

More important is the spin operator and its projected ver-
sion. Consider the projected version PSnP of the spin operator
Sn where P is the projection into the occupied states and n is

a generic direction. In the BHZ model we have

P = |ψ1〉〈ψ1| + |ψ2〉〈ψ2|, (29)

where the normalized base is

ψi = 1

|νi|νi. (30)

The projected spin operator acts on the vector spaces of
occupied states and returns a linear combination of occu-
pied states. The spectrum of the projected spin operator in
the reciprocal space will be denoted spin spectrum, and it
splits into two main cases. Either the spin spectrum is gapped
or not.

In the BHZ Hamiltonian the spin spectrum is not gapped
whenever −3 < M0

B0
< 3, and since the energies are always

degenerate, the spin spectrum crosses the 0 line in points.
These points are called spin Weyl points (SWP) [23].

A. ASCN for Sz

Focusing at the projected Sz spectrum, we know that the
SWPs are located at the points [23]:[

0, 0, arccos

(
M0

B0
+ 2

)]
for − 3 <

M0

B0
< −1 (31)

[
0, π, arccos

(
M0
B0

)]
[
π, 0, arccos

(
M0
B0

)] for − 1 <
M0

B0
< 1 (32)

[
π, π, arccos

(
M0

B0
− 2

)]
for 1 <

M0

B0
< 3. (33)

Denote by k0 any of these points. Note that on these points,
the projection on the valence bands of the Sz operator applied
of the valence eigenstates is precisely zero. What this means
theoretically is that on k0

Szψ1(k0)〉 =
∑
j=3,4

|ψ j (k0)〉〈ψ j (k0)|̂Szψ1(k0)〉 (34)

and therefore the Sz of the valence bands on the point k0 is all
conduction (see Fig. 3). This means that the 3D BHZ models
an insulator for the Hamiltonian but not for the projected spin.

Around the SWP we could put a small 2D sphere surround-
ing it. On this sphere the Sz operator splits into valence and
conduction part. The way the negative projected spin spectrum
eigenvectors twirl around the spin Weyl point is measured
by the chirality of the point (Chern number). The SWPs are
topologically protected whenever their chiralities are different
from zero. Their positions may vary through adiabatic pertur-
bations of the Hamiltonian, but their chiralities will remain
fixed.

The values of the SCN for the projected spin Sz operator
on the planes k j = 0, π for j = x, y, z permits us to determine
the ASCN on the three cases. That is:

cSz

1,xy =

⎧⎪⎪⎨
⎪⎪⎩

−2 + 2
π

arccos
(M0

B0
+ 2

)
for −3 < M0

B0
< −1

2 − 4
π

arccos
(M0

B0

)
for −1 < M0

B0
< 1

2
π

arccos
(M0

B0
− 2

)
for 1 < M0

B0
< 3

.

(35)
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FIG. 3. Graph of the projection of the positive projected spin Sz

eigenvector into the valence and conduction bands on the 3D BHZ
model at the kz axis on the point (kx, ky ) = (0, π ) for M0

B0
= 0.5,

A0 = C0 = 1, D0 = 0.11. The SWPs are located on this axis and the
graph of the projected spin eigenvalues lies at the bottom. The top
graphs are the degenerate energies of the four bands, and the color
represents the square of the norm of the projection of the positive
spin eigenvector of PSzP into the valence and the conduction states
respectively. If φ is the positive eigenvector of PSzP, then the color
on the upper bands represent the value |〈ψ3|φ〉|2 + |〈ψ4|φ〉|2 and on
the bottom bands the value |〈ψ1|φ〉|2 + |〈ψ2|φ〉|2. In the location of
the SWPs, the spin Sz of both the valence states ψ1 and ψ2, is all
conduction. Even though the 3D BHZ model has an energy gap, at
some points in momentum space the spin of the valence states lies
on the conduction band. The BHZ models an energy insulator, which
does not insulate the spin.

These results are highlighted by the red line depicted in
Fig. 2. Here it is important to notice that noninteger values of
the ASCN implies the existence of SWPs.

The SOC could be interpreted as the matrix Dτ1σ1 and its
intensity as the value of D0. In Fig. 2(a) the ASCN cSz

1,xy has

been plotted with respect to the value of M0
B0

, together with the
SHC σ z

xy for different values of D0.
It is important to note that the ASCN remains unaffected by

the value of D0, serving as a direct measure of the SWP’s dis-
tance. Notably, in the case of D0 = 0, the ASCN aligns with
the SHC and the intensity of the SHC decreases for bigger D0;
however, both the ASCN and the SHC retain nonzero values
simultaneously.

B. SWP for generic spin

Consider the unitary vector n = (α, β, γ ) and the generic
spin Sn = n · (Sx, Sy, Sz ). If ψ j are the eigenvectors of the
Hamiltonian forming a unitary base (norm one and perpendic-
ular to one another), then the projected spin matrix is defined
as follows:

(MSn )i j = 〈ψi|Sn|ψ j〉 i, j ∈ {1, 2}. (36)

The projected spin eigenvalues vanish whenever the whole
projected spin matrix vanishes. Note that in this case we could
use the degenerate basis {ν1, ν2} of Eqs. (25) and (26) in order
to solve the equations

〈νi|Sn|ν j〉 = 0 i, j ∈ {1, 2}. (37)

Let us calculate first the matrix elements 〈νi|Sxk |ν j〉 for k =
1, 2, 3:

〈ν1|Sx|ν1〉 = 2DA (38)

〈ν1|Sx|ν2〉 = −2λD (39)

〈ν2|Sx|ν1〉 = −2λD (40)

〈ν2|Sx|ν2〉 = 2DA (41)

〈ν1|Sy|ν1〉 = −2DC (42)

〈ν1|Sy|ν2〉 = 2iλD (43)

〈ν2|Sy|ν1〉 = −2iλD (44)

〈ν2|Sy|ν2〉 = −2DC (45)

〈ν1|Sz|ν1〉 = (M − λ)2 + A2 + C2 − D2 (46)

〈ν1|Sz|ν2〉 = 2(A + iC)λ (47)

〈ν2|Sz|ν1〉 = 2(A − iC)λ (48)

〈ν2|Sz|ν2〉 = (M + λ)2 + A2 + C2 − D2. (49)

The projected spin matrix has for entries:

(MSn )11 = 2αDA − 2βDC + γ ((M − λ)2 + A2 + C2 − D2)

(50)

(MSn )21 = −2αλD + 2iβλD + 2γ λ(A + iC) (51)

(MSn )12 = −2αλD − 2iβλD + 2γ λ(A − iC) (52)

(MSn )22 = 2αDA − 2βDC + γ ((M + λ)2 + A2 + C2 − D2).

(53)

The projected spin matrix has zero eigenvalues whenever
all entries are zero. Subtracting (MSn )11 = 0 from (MSn )22 = 0
we see that M = 0, and therefore

αDA − βDC + 2γ (A2 + C2) = 0. (54)

From (MSn )21 = 0 we see that

αD − iβD + γ (A + iC) = 0. (55)

Replacing A + iC = −α+iβ
γ

D in Eq. (54) we see that the
equation is satisfied. Then we only need to consider
the equations M = 0 and αD − iβD + γ (A + iC) = 0. These
equations can be written as:

cos(kx ) + cos(ky) + cos(kz ) = M0

B0
(56)

γ A0 sin(kx ) + αD0 sin(kz ) = 0 (57)

γC0 sin(ky) − βD0 sin(kz ) = 0. (58)

Let us see some explicit choices of n. n = (0, 0, 1), in
this case we have that kx, ky = 0, π and kz = arccos( M0

B0
+

{2, 0,−2}) depending on the location of M0
B0

. n = (1, 0, 0),
n = (0, 1, 0) or any combination of the two. In this case the
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system is degenerate and the matrix is zero on the whole
kz =| 0 plane. n = ( 1√

2
, 0, 1√

2
), and moreover A0 = C0 = D0,

then we have that ky = 0, π , kx = −kz, and 2 cos(kx ) = M0
B0

±
1.

In general, for any direction n of the spin, there is a pair of
opposite chiralities SWPs in the Bulk whenever 1 < |M0

B0
| < 3.

For |M0
B0

| < 1 there are two pairs of opposite chiralities SWPs.
Their location is defined by the solution of the equations de-
fined above.

In Fig. 2(b) we have plotted the ASCN cSn
1,xy and the SHC

for values of n = [sin(θ ), 0, cos(θ )] where 0 � θ � π . The
ASCN only depends on the location and chiralities of the
SWPs for each choice of n, while the SHC can be calculated
by the expression

σ n
xy = sin(θ )σ x

xy + cos(θ )σ z
xy. (59)

In Fig. 2(b) it is observed that the SHC exhibits align-
ment with the ASCN when the spin direction rotates along
the ky axis. In this graph, it is noted that both ASCN and
SHC undergo a change in sign from Sz (angle = 0) to S−z

(angle = π ).
In Fig. 3 we have plotted the energy bands on the kz axis for

(kx, ky) = (0, π ) for specific choice of constants. The SWPs
are located on this axis. We have colored the energy bands
with the square of the norm of the projection of Sz|φ〉 on the
valence and the conduction bands where φ is the eigenvector
of the projected spin operator PSzP with smallest positive
eigenvalue. Note that at the SWPs, the spin of the valence
energy states is all conduction. Namely, even though the BHZ
models an insulator in terms of its energy spectrum, it is not
an insulator on the spin spectrum.

IV. MATERIALS

In order to demonstrate the applicability of the current
methodology to real-world materials, we have calculated
the ASCN and SHC for different insulator materials. Here
we contrast the results for the case of Bi2Te3, MnBi2Te4,
MnBi6Te10, and α-BiBr, which were chosen due to their pre-
dicted topological properties [18,20,37,38,42,43]. Previous
works classified them as either strong topological insulators,
axion insulators, or quantum Hall spin insulators. The struc-
tural parameters for these materials were obtained from the
Materials Project [44] and previous studies [43].

The calculations were performed using a combination
of first-principles methods based on the VASP [45], the
WANNIER90 [46], and the PYTHTB code [47], with detailed
computational setups outlined in our previous work [23].
However, computational tools have recently been created to
study the spin topology of materials [20,48].

We evaluated the electronic and spin spectra of these ma-
terials, including the projection of spin projected eigenvalues
(PSzP) onto the electronic bands, as depicted in Fig. 4. For
the case of Bi2Te3, we observed a pronounced concentration
of valence spin information around a singular point in the
conduction band along the �T k path. This localization of spin
information suggests the existence of a spin Weyl point along
the �T path, as depicted in Fig. 4(a). Remarkably, the pro-
jected spin spectrum calculation unveils the presence of spin

Weyl points both in the T� and −T� paths, which represent
the diagonal direction in the rhombohedral phase or z axis in
Cartesian coordinates. Consequently, the ASCN is expected
to be proportional to the distance between these SWPs, as
in the 3D BHZ model. Indeed, we have found that the both
ASCN and SHC exhibit a proportional relationship with the
SWPs distance. Table I presents the value of ASCN and SHC
for Bi2Te3, demonstrating a topological response across all
kz planes in the hexagonal BZ. Notably, the SHC signal is
particularly pronounced along the z axis, coinciding with the
location of SWP in reciprocal space. This result aligns with
the layered structure of Bi2Te3, where the z planes correspond
to the layers in real space [49].

We have performed an analysis of the electronic and pro-
jected spin spectrum of α-BiBr, uncovering a nonzero energy
and projected spin gap throughout the entire Brillouin zone.
This characteristic serves to classify the α-BiBr as both as a
material with both energy gap and spin gap, as it shown in
Fig. 4(b), in agreement with Lin et al [20]. Furthermore, no
significant exchange of spin information between the conduc-
tion and valence bands is evident. However, we have observed
a constant cz

1,xy value of −4 along all the kz planes and zero of
the kx and ky planes in the Brillouin zone for α-BiBr, which
is consistent with the σ z

yx ∼ −4 as presented in Table I. The
alignment between SHC and ASCN reflects the full topologi-
cal response of α-BiBr perpendicular to the z axis. This result
is hidden for the Z2 = 0 index for this material, highlighting
the efficacy of ASCN as a tool for extracting valuable insights
into the spin response of topological insulators. Here it is
worth mentioning that each group of bands, the positive and
the negative, possess nontrivial Chern-Simons θ term [20].
This implies that independent of the spin direction, it will give
rise to a surface SHC contribution in a finite sample.

It is found that α-BiBr displays a vanishing ASCN for the
Sx and Sy spin components, suggesting a lack of topological
response in SHC for these spin directions. Our calculations
confirm α-BiBr as a 3D quantum spin Hall insulator (Sz).
The observed anisotropy between σ z

xy and σ z
yx responses is

further supported by symmetry analysis of the SHC tensor,
indicating distinct components within this space group (#12).
This convergence of ASCN and SHC values highlights the
unique topological nature of α-BiBr.

Regarding the axion insulators (AI) MnBi2Te4 and
MnBi6Te10, we also see that the values of the ASCN and SHC
are very similar. In these two materials time-reversal coupled
with a translation is a preserved symmetry, and therefore the
Chern numbers of the positive and negative projected spin
eigenvectors are inverse to one another. Therefore we can
conclude that the spin Chern number on all kz planes for
MnBi2Te4 are less than −2 and for MnBi4Te10 are less than
−4. These findings align with the nontrivial results of the
pseudo SCN for the MnBi2Te4 family, as obtained by Wang
et al. [50].

With the SHC alone we may not distinguish the materi-
als in Table I, but with the incorporation of the ASCN we
differentiate α-BiBr from the others. The incorporation of
the ASCN into the set of material classifiers will help dis-
tinguish QSHIs from strong topological and axion insulators,
and moreover, it will permit us to distinguish the topological
features underlying the projected spin operator.
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FIG. 4. Energy bands and projected spin Sz eigenvalues for the strong topological insulator Bi2Te3 and the weak topological insulator
α-BiBr. The color on the energy bands represent the square of the norm of the projection of the smallest positive projected spin eigenvector
into each pair of degenerate bands, both valence and conduction. If φ is the eigenvector of the smallest positive eigenvalue of PSzP, the color
on each pair of consecutive degenerate bands ψ2n−1, ψ2n is given by the value |〈ψ2n−1|Szφ|〉|2 + |〈ψ2n|Sz|φ〉|2. (a) Bi2Te3 is a strong topological
insulator, and as such, it has SWPs on the T-�-T path. The chiralities of these SWPs is ±1 and the ASCN is cSz

1,xy = 3.16, which means that
the SWPs are located almost in the middle of the T-� path. Note that the value of the intrinsic SHC is σ z

yx = 3.27, which is very close to the
ASCN. The eigenvector of the projected spin operator with smallest positive eigenvalue is entirely conduction on the SWPs. This can be seen
in the �-T path. (b) α-BiBr is a spin Chern insulator since the value of the ASCN cSz

1,xy = −4 is a nonzero even integer. The spin insulation can
be read from the fact that the ASCN is an even integer, and the topological feature is given by the constant value of −4 for the SCN on the
kxky planes. Since this SCN is a multiple of 4, the Chern number of the positive and negative projected spin eigenvectors is equal to 2 and −2,
respectively. Hence the number of pairs of negative eigenvalues of the inversion operator is even and therefore the strong topological insulator
marker Z2 of Fu-Kane-Mele is equal to zero. Nevertheless, it has been shown [20] that the Chern-Simons axion θ term of both the positive and
the negative bands is nontrivial. Thus, independent of the spin direction, the surface SHC contribution is nontrivial. This material α-BiBr was
firstly recognized as a strong topological crystalline insulator [37,38], and recently has been characterized also as a T -double axion insulator
[20].

It is also important to remark that the ASCN calculations
are significantly less intensive compared to SHC calculations.
The former needs 3D dense k grids while the latter only
needs a dense k grid in one dimension. The ASCN can also
be calculated in collinear ferromagnetic or antiferromagnetic
when the spin z component can be consider a good quantum
number in the weak SOC limit. These results indicate the
practical advantage of employing ASCN as a computational
tool and topological indicator, in scenarios where the efficient
calculation of SHC is limited.

V. CONCLUSION

The ASCN consists of a family of numbers associated with
a choice of spin direction and a choice of plane of integration.
These numbers provide hindsight of the spin properties of
an insulator material. If the ASCN is nonzero for a specific
choice of spin direction, then a signal in the SHC should be
expected. Moreover, if the material is an STI, then the ASCN
is different from zero. Therefore, materials with nonzero val-
ues for the ASCN include all STIs. When the ASCN is an
even integer, then there is a gap in the projected spin operator,
and therefore the Kane-Mele invariant Z2 is trivial. More-
over, if there is a symmetry commuting with the spin, which

protects Chern numbers, the value of the ASCN is a topologi-
cal invariant.

From a computational perspective, calculating the ASCN
is less computationally intensive compared to the SHC. For
the latter, a 3D dense grid is mandatory, while for the former
just a dense grid in the direction of integration is necessary.
The calculation of the Chern numbers does not require dense
grids. Understanding the ASCN for various spin directions
and planes contributes to the comprehension and categoriza-
tion of insulating materials, enhancing our knowledge of their
topological properties and aiding in their classification.
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