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Detecting symmetry-breaking hidden orders with conventional probes has been a long-standing challenge in
the field of magnetism. Higher-rank multipolar ordering—anisotropic charge and magnetization distributions
arising from a combination of spin-orbit coupling and crystalline environments—is a quintessential example
of such hidden orders, where new protocols of direct detection remain highly desirable. In this paper, we
propose nonlinear Hall effects as a probe for multipolar ordering in metallic systems. Taking inspiration from
the family of Pr-based heavy-fermion compounds, Pr(Ti,V)2Al20, we formulate a minimal cubic-lattice model
of conduction electrons coupled to a ferro-octupolar order parameter. The time-reversal-breaking order leads
to a band structure that supports strong quadrupolar moments of Berry curvature (BC). Using a semiclassical
Boltzmann formalism in conjunction with a symmetry analysis, we demonstrate that the BC quadrupoles produce
a third harmonic generation of the Hall voltage [VH (3ω)] measurable in an AC Hall experiment. Properties of
the Hall response such as its anisotropy, its dissipationlessness, and its dependence on the order parameter are
also examined. Our paper encourages an alternative realm of investigation of multipolar ordering from nonlinear
transport experiments.
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A deep understanding of quantum phases of matter ul-
timately requires experimental probes of the low-energy
degrees of freedom. The celebrated Hall effect is an archety-
pal example supporting this philosophy, from the remarkable
insight it can provide of the underlying properties of a system,
ranging from the electron-hole nature of the charge carriers
to the topology of the electronic band structure [1–5]. At
the core of the Hall effects is the role of the Berry curva-
ture (BC) of the occupied electronic bands. Semiclassically,
for a spin-orbit-coupled system featuring a spin-imbalanced
occupation number associated with a net magnetization, BC
acts as a spin-dependent, momentum-space magnetic field
to transversely deflect the electrons, giving rise to a well-
defined Hall response [6–8]. Occurring even in the absence
of a magnetic field, this anomalous Hall effect (AHE) scales
with the magnetization, and can shed light on the canonical,
ferromagnetically ordered ground state. This brings forth the
intriguing question of whether Hall effect (or its generaliza-
tions) is flexible enough to provide discriminating signatures
of unconventional broken-symmetry phases of matter.

Recently, nonlinear Hall effects, where the transverse Hall
voltage scales nonlinearly with the applied charge current,
have gained significant attention [9–20]. Nonlinear Hall effect
can be understood as a natural multipolar extension of the
mathematical AHE framework, where instead of merely con-
sidering the Brillouin-zone integral of the BC, one considers
BC dipoles, BC quadrupoles, and beyond [9,10,12,17,20].
Due to the higher-rank nature of these BC
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multipolar moments, the resulting nonlinear Hall effects
can arise even without a net magnetization. Indeed, evidence
of BC-dipole-driven nonlinear Hall effect has been seen
in a variety of nonmagnetic compounds [11,17,21–23] and
in noncentrosymmetric compensated antiferromagnets [24]
Similarly, there has been evidence of BC-quadrupole-driven
nonlinear Hall effects in altermagnets [25], an emerging fam-
ily of unconventional compensated collinear antiferromagnets
[26,27].

This lack of magnetization is reminiscent of a class of d
and f electronic systems, where localized electronic wave
functions support higher-rank multipolar moments [28–30].
These anisotropic charge and magnetization densities (char-
acterized by quadrupolar, octupolar, and higher-rank degrees
of freedom) have been examined in a variety of contexts
from actinide oxides (such as NpO2 [31]) to f -electron
heavy fermion systems [32–40] [including a system we will
focus on here, Pr(Ti,V)2Al20] to pyrochlore quantum spin
ices [Ce2(Sn,Zr)2O7 [41–45] and Pr2(Hf,Sn,Zr)2O7 [46–52]]
and to d-electron compounds including osmates and rhen-
ates [53–68]. Indeed, the orderings of higher-rank moments
are notoriously difficult to directly detect with conventional
local probes of magnetism, and have been appropriately
placed under the umbrella of “hidden orders” [69]. Despite
recent proposals to employ lattice-based protocols to detect
multipole-based phenomena (such as magnetostriction, ul-
trasound, and impurity-induced strains [70–75]), it is still
highly desirable to devise new probes in order to shine light
on these phases of matter. With the aforementioned promis-
ing successes of Hall measurements in systems lacking a
net magnetization, we are primed to examine the detec-
tion of multipolar orders within the framework of nonlinear
Hall effects.
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FIG. 1. Schematic of a Hall-bar configuration to realize the non-
linear Hall effect with an underlying octupolar order, φ �= 0. The
third harmonic Hall response σ

(3ω),H
abcd is measured from the Hall

voltage VH (3ω) induced by an AC current I (ω) with a frequency ω.

In this paper, we explicitly demonstrate that metallic sys-
tems featuring a long-range ferro-octupolar order can be
probed from a third-order Hall response. Taking a minimal
cubic-lattice eg electron model coupled to a ferro-octupolar
order parameter, we show that the onset of the order opens
gaps at various band crossing points and induces strong BC
quadrupolar moments. The latter produces a third-harmonic
generation detectable within a third-order Hall effect measure-
ment (Fig. 1).

I. MINIMAL MODEL OF OCTUPOLAR ORDER

In the family of Pr-based rare-earth compounds,
Pr(Ti,V)2Al20, the combination of strong spin-orbit
coupling and crystal-electric-field effects leads the
Pr3+ ions to host higher-rank multipolar moments: (1)
time-reversal-even quadrupolar moments O20 = 1

2 (3J2
z − J2)

and O22 =
√

3
2 (J2

x − J2
y ) and (2) a time-reversal-odd

octupolar moment Txyz =
√

15
6 JxJyJz; the overline indicates a

symmetrized operator product over the angular-momentum
Stevens operators. Via the conduction-electron-mediated
Ruderman-Kittel-Kasuya-Yosida-like interaction between
the localized moments, long-range ordering is permitted
to develop. We consider the simple scenario of q = 0
ferro-octupolar order given by the spatially uniform order
parameter φ = 〈Txyz〉.

Recent de Haas–van Alphen studies on PrTi2Al20 [76,77]
have indicated a well-localized Fermi surface about the zone
center. As such, the low-energy conduction electrons can
be characterized in terms of irreducible representations of the
corresponding Oh point group symmetry. In this paper, we
consider the following Slater-Koster tight-binding model of eg

electrons on a cubic lattice, which is inspired by the Pr-based
compounds:

H0(k) = h0(k)τ 0 + h1(k)τ x + h3(k)τ z, (1)

where τ are Pauli matrices in the two-dimensional orbital
space {dx2−y2 , d3z2−r2}. hs(k) are the momentum-dependent
form factors whose full expressions are given in the Sup-
plemental Material (SM) [78]. Near the zone center, their
quadratic-order expansions are given by simple expressions:
h0(k) = const + λ̃k2, h1(k) =

√
3λ
2 (k2

x − k2
y ), and h3(k) =

λ
2 (3k2

z − k2), where λ and λ̃ are associated with the overlap
integrals (see SM).

Equipped with these orbital and spin degrees of free-
dom, the conduction electrons couple to the overlaying

FIG. 2. Cubic-lattice electronic band structure in the absence
(presence) of octupolar ordering φ. The octupolar ordering intro-
duces a splitting of the degenerate band structure. The following
overlap integrals, defined in SM [78], are used here and for the
numerical results: (t , u, v, w) = (−1, −0.6, −0.1, 0.2).

ferro-octupolar order via the symmetry-allowed term [79,80],
Hφ (k) = φτ y, where we have absorbed the coupling constant
into the octupolar order parameter. We note that the spin plays
the role of a spectator degree of freedom and is included
as an implicit identity matrix in both the kinetic and cou-
pling terms [79,80]. Therefore, the full model is H0 + Hφ =
h0(k)τ 0 + h(k) · τ, where h = (h1, h2, h3)T . The band eigen-
values are εk,± = h0(k) ± |h(k)|.

Figure 2 shows representative band structures in the
absence and presence of the octupolar ordering. Notably
when φ = 0, there are many degenerate points such as
those on the �M line and RX line. These degenerate
points are protected by the mirror symmetry of the mir-
ror planes: (110), (101), (011), (1̄10), (1̄01), and (01̄1). On
the other hand, the entire degenerate �R line is protected
by the mirrors and the threefold rotation around the [111]
axis; see SM [78] for a detailed description. A nonzero φ

breaks these symmetries and lifts the degeneracy of the bands,
leading to substantial BC near the gaps.

II. LINEAR AND NONLINEAR HALL EFFECTS

When φ �= 0, the magnetic point group of the system
is m3̄m′. Correspondingly, the linear response conductivity
tensor σab is proportional to a 3 × 3 identity matrix in the
Cartesian basis directions. The twofold rotational symmetries
about the three coordinate axes set the off-diagonal elements
to zero, while the diagonal elements are identical due to
the threefold rotation around the [111] axis. Therefore, from
these symmetry considerations, the anomalous Hall effect is
absent; from linear response theory, one can see this explic-
itly from the vanishing Brillouin-zone integral of the BC,∑

n

∫
dk f0(εkn)	n

c (k) = 0, where n is the band index, and the
local BC is �n(k) = ∇k × i 〈kn| ∇k |kn〉. A similar analysis

125127-2



SIGNATURES OF HIDDEN OCTUPOLAR ORDER FROM … PHYSICAL REVIEW B 110, 125127 (2024)

(as described in SM [78]) shows that the the second-order Hall
response is also zero due to the inversion symmetry.

The Hall physics of our system is thus dominated by the
third-order response, where a third-order current, j (3)

a (t ) =
Re[ j (3)

a (ω)eiωt ], is induced by an applied electric field Ea(t ) =
Re[Ea(ω)eiωt ]. With a Hall-bar-like experimental setup in
mind (Fig. 1), we restrict ourselves to the linearly polarized
electric field, where Ea(ω) can be made real valued by re-
defining the initial time. The induced current can be expressed
in terms of a third-order response function, j (3)

a (2ω ± ω) =
σ

(2ω±ω)
abcd Eb(ω)Ec(ω)Ed (±ω). There are two types of currents

with frequencies ω and 3ω. The rest of the paper will focus
on the third-harmonic σabcd ≡ σ

(3ω)
abcd , while a straightforward

generalization to σ
(ω)
abcd is discussed in SM [78]. Using a semi-

classical Boltzmann formalism, it can be shown that σabcd

consists of two parts: σabcd = σ D
abcd + σ H

abcd , where σ D
abcd is

the time-reversal-even Drude-like part, and σ H
abcd is the time-

reversal-odd Hall-like part [9,10,12,20]:

σ D
abcd = e4

4h̄

∑
n

∫
dk

f0(εkn)∂a∂b∂c∂dεkn

(h̄ω̃)(h̄2̃ω)(h̄3̃ω)
, (2)

σ H
abcd = − e4

12h̄

εhabQcdh + εhacQdbh + εhad Qbch

(h̄ω̃)(h̄2̃ω)
, (3)

where m̃ω ≡ imω + 1/τ , m is an integer, and τ is the re-
laxation time in the Boltzmann formalism. Qn

abc is the BC
quadrupolar moment for a given band, which is manifestly
odd under time reversal:

Qabc ≡
∑

n

Qn
abc =

∑
n

∫
dk f0(εkn)∂ka∂kb	

n
c (k). (4)

Similarly, the induced current can be split into a Drude-like
and a Hall-like part. The Levi-Civita symbol in Eq. (3) leads
to an orthogonality between the Hall current and the applied
field, so the Joule heating is absent. The rest of the paper
will focus on the time-reversal-odd dissipationless response.
We note that we have ignored a third-order nonlinear Hall
contribution from a correction to the Berry connection due
to the electric field since it is time-reversal even and can exist
even without the octupolar order [14,81,82]; see SM [78] for
further discussions.

The m3̄m′ magnetic point group ensures that there is only
one independent component of σ H

abcd whose value is denoted
by σH :

σ H
xxyy = σ H

yyzz = σ H
zzxx = σH ,

σ H
xxzz = σ H

zzyy = σ H
yyzz = −σH , (5)

where σH ∝ Qxyz. For brevity, the components obtained from
permuting the last three indices are not shown, while the rest
of the σ H

abcd components are zero.

III. ANISOTROPIC NATURE OF THE INDUCED
HALL CURRENT

Using a spherical-coordinate representation of E(ω) =
|E(ω)|Ê , where Ê = (cos ϕ sin θ, sin ϕ sin θ, cos θ )T , the

0
0.1
0.2
0.3
0.4
0.5
0.6

FIG. 3. Schematic illustration of the anisotropic nature of the
nonlinear Hall response: at each point on S2, the arrow lying in the
tangent plane represents the induced Hall current jH in response to an
applied electric field (that is normal to the surface). The color map
(and the size of the arrows) illustrates the magnitude of jH , which
vanishes at 14 high-symmetry points.

induced Hall current is given by

jH ∼

⎛
⎜⎝

sin θ cos ϕ(sin2 θ sin2 ϕ − cos2 θ )

sin θ sin ϕ(cos2 θ − sin2 θ cos2 ϕ)

cos θ sin2 ϕ(cos2 ϕ − sin2 ϕ)

⎞
⎟⎠. (6)

If we define Ê by a point on an S2 sphere, jH can be repre-
sented by a tangent vector at that point. In this manner, Fig. 3
illustrates the profile of jH (blue arrows) featuring a strong
dependence on the orientation of Ê . The magnitude of jH is
given by the color map of the inner sphere. jH vanishes at
14 points where Ê lies on the high-symmetry axes of [100],
[010], [001], [111], [1̄11], [11̄1], and [1̄11].

IV. BERRY CURVATURE QUADRUPOLE

The magnitude of the Hall response is proportional to the
BC quadrupole moments. In our model, BC is given by

	±
a (k) = ∓εabc

4
ĥ · ∂kb ĥ × ∂kc ĥ, (7)

where ĥ(k) = h(k)/|h(k)|. 	±
a (k) is nonzero only when the

vector field ĥ(k) is locally noncoplanar. In the absence of the
octupolar order, ĥ(k) is coplanar, so BC vanishes everywhere.
To provide intuition for this argument, it is instructive to
consider the low-density limit, where the BC for the ± bands
near the zone center is given by

�±(k) = ±
√

3λ2φ(
h2

1 + h2
3 + φ2

)3/2 (kykz, kxkz, kxky)T . (8)

We can clearly see that in the absence of the time-reversal-
breaking octupolar order, BC vanishes as expected (as
inversion is a symmetry in this cubic system). The correspond-
ing BC quadrupole is given by

Q±
xyz = ±

√
3λ2

∫
dk

F1(k)φ + F3(k)φ3 − φ5(
h2

1 + h2
3 + φ2

)7/2 . (9)

F1,3 are polynomial functions of momenta (see SM [78]).
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(b)(a)

FIG. 4. (a) Reciprocal-space distribution of the Berry curvature,
	+

z (k), in the plane of kz = 0, featuring a quadrupolar structure,
which leads to a nontrivial Berry curvature quadrupole Qxyz and a
nonzero third-order Hall response. (b) Nonmonotonic dependence of
Qxyz on the octupolar order parameter φ. Qxyz is expressed in the unit
of the cubic-lattice constant, a. Note that the x axis is in a logarithmic
scale. In the large-|φ| regime, Qxyz scales as 1/φ2, as explained in the
main text.

Figure 4(a) shows the reciprocal-space profile of 	+
z (k) =

−	−
z (k) when φ/|t | = 0.2 within the plane of kz = 0. The

BC profile possesses an azimuthal-angle dependence that is
quadrupolar in nature, thus hinting at the BC quadrupole, Qxyz.
It is also apparent that there are BC hot spots with large BC
concentration occurring near the gapped-out band crossing
points along the �M line (as well as �R and RX lines) due
to the octupolar order.

Figure 4(b) shows the dependence of Qxyz on φ at a fixed,
low electron density of 0.004/a3. As will be clear, the low
density is chosen since it permits a partly tractable analysis of
the φ dependence of Qxyz; for numerical results at other den-
sities, see SM [78]. Our main observation is that the strength
of the third-order Hall response is a nonmonotonic function
of the order parameter φ. This is rather unusual compared
with, for instance, the linear Hall response of a ferromagnet,
where it generally increases with the magnetization order
parameter.1

To provide intuition it is once again instructive to return
to the low-density limit. In the regime where |φ| � |t |, we
have two well-separated bands, and the electrons only occupy
the lower band. Appealing to Eqs. (8) and (9), where the

BC reduces to 	−
z (k) = −√

3λ2sgn(φ)
φ2 kxky, we find that the BC

quadrupole reduces to Qxyz ∼ sgn(φ)
φ2 . This is in agreement with

our numerical finding in Fig. 4(b). This regime ends when
the upper band also becomes occupied as |φ| is lowered. It
can be shown that, after and near the Lifshitz transition, the
function Qxyz(φ) no longer scales like 1/φ2 and becomes more
complicated, as also evident from the numerical results (see
SM [78] for a discussion).

1Deviations can arise when there are additional features in the
systems, e.g., Weyl points in the band structures, or an interplay
between intrinsic and extrinsic AHE, or topological skyrmion spin
textures. These can lead to a nonmonotonic relation between AHE
and the magnetization. See, e.g., [3,83–87].

V. SIGNATURES IN THE AC HALL EXPERIMENT

A suitable way to measure the nonlinear Hall response due
to the octupolar order is to perform a low-frequency2 AC Hall
experiment, where an AC current of a frequency ω is sent
across a Hall bar, and the Hall voltage in the transverse direc-
tion at a frequency of 3ω is measured (see Fig. 1). To remove
the Drude-like contribution from the third-order response, as
in Eq. (3), the measured values need to be antisymmetrized
between the two uniformly polarized domain measurements
with the opposite order parameters, ±φ. A uniformly polar-
ized octupolar domain could be procured, for example, by
applying a magnetic field along the [111] direction [70]. The
I-V relation between the amplitude of the applied current and
that of the Hall voltage is expected to follow a cubic relation,
I ∼ V 3. Such a measurement is rather standard and has been
used to measure various second-order Hall responses [17]
and recently a third-order Hall response in FeSn [88]. For
a future experimental design, it is worth emphasizing that
the Hall response depends strongly on the orientation of the
applied current relative to the crystallographic directions, as
demonstrated by Fig. 3. Our results show that an apprecia-
ble BC quadrupole is possible in some parameter regime
with Qxyz ≈ 100–102 Å [see Fig. 4(b) and assuming that
the lattice constant a ≈ 14 Å for PrTi2Al20 [89]]. Remark-
ably, this is of a comparable strength to that of the BC
quadrupole in FeSn, where the third-order Hall effect has been
measured [88].

VI. IMPACTS OF POSSIBLY COEXISTING
MULTIPOLAR ORDERS

It is possible, yet not necessary, to have the octupolar order
coexisting with other multipolar orders, e.g., the quadrupolar
order, φ̃ = 〈O22〉. φ̃ alone does not break time-reversal sym-
metry, so the third-order Hall effect cannot be present with
merely quadrupolar order. We have shown in SM [78] that,
in the coexistence case starting with a nonzero φ, a growing
φ̃ increasingly suppresses BC quadrupoles. This outcome is
attributed to the smearing effect of φ̃ on the BC distribution.
This can also be understood from the large-φ̃ limit, as φ̃

opens gaps at symmetry-protected band crossing points, but
it does not produce any BC hot spots (see SM); a nonzero
φ no longer generates BC hot spots like before, hence a
smoother BC distribution and smaller BC quadrupoles. There-
fore, the third-order Hall response is the largest when φ stands
alone.

VII. DISCUSSION

In this paper, we demonstrated that a metallic system
with ferro-octupolar order can exhibit a dissipationless third-
order time-reversal-odd Hall response as a leading Hall
phenomenon. This provides a means to detect the onset of
octupolar order. We emphasized that this Hall effect arises
despite the lack of a dipole moment, and we highlighted the
key role of the Berry curvature quadrupole and its highly

2The low frequency is suited with the Boltzmann formalism since
the interband transitions are suppressed; see [17] for a discussion.
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nontrivial dependence on the octupolar order parameter. Our
paper encourages experimental investigations of multipolar
ordering using nonlinear Hall measurements (and more gen-
erally nonlinear transport studies [18,90]), in particular in the
Pr-based systems. Future theoretical studies are required to
incorporate the effects of impurities, order parameter fluctua-
tions, as well as influence of Kondo-like effects [79,80,91,92]
on nonlinear Hall response.
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