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Collapse of Landau levels in semi-Dirac materials
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Two-dimensional semi-Dirac models describe a family of novel materials that have anisotropic dispersion
with a relativistic-type spectrum along one of the spatial directions and nonrelativistic along another. In the
present paper we perform a detailed analysis of the collapse of Landau levels for such models in a perpendicular
magnetic field and in-plane electric field by using a semiclassical approach. The anisotropic nature of semi-Dirac
dispersion manifests itself in the possibility of a Landau level collapse for only one of the electric field directions.
In addition, the topological transition with merging Dirac cones has its own distinct features in a Landau level
collapse.
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I. INTRODUCTION

The topological transition in novel two-dimensional ma-
terials with two Dirac cones moving and merging at one
point in momentum space has attracted much attention in
the literature [1–3]. The corresponding systems are called
semi-Dirac systems and support quasiparticles with an effec-
tive Hamiltonian that has a relativistic-type linear dispersion
along one direction in momentum space and nonrelativistic
quadratic dispersion along another direction. Several effec-
tive semi-Dirac models were used to describe the physics
in black phosphorus [4–9]. In the simplest versions of semi-
Dirac models, the additional gap parameter controls whether
two bands will be separated, touching at one point, or two
Dirac cones will appear [6,7,10–12]. There is a number of
experimental realizations of such systems in optical lattices
[13] and in microwave cavities [14]. Typically, the parame-
ters of the setup can be tuned to demonstrate different types
of quasiparticle spectra in the same system. Many physical
properties of semi-Dirac materials have been studied in recent
years, including the optical conductivity for different types
of semi-Dirac systems [6–9,15,16], the magnetoconductivity
[17,18], thermoelectric response [19], Hall conductivity [20],
and the unusual scaling of Landau levels with magnetic field
[2,3].

In the present paper, we concentrate our attention on the
phenomenon of the collapse of Landau levels in an in-plane
electric field for the semi-Dirac system. First, the presence
of such a phenomenon was discovered for relativistic quasi-
particles in graphene [21,22]. It was found that when the
electric field strength approaches a certain critical value, the
formal solutions for Landau levels become singular. The gap-
separated Landau levels are expected to disappear, and a
continuous spectrum is formed instead. Such an effect can
also be understood in terms of a Lorentz transformation when
the effective moving frame speed coincides with the speed
of massless quasiparticles [21,23,24]. Later, a Landau level
collapse was observed experimentally by measuring the field
when Shubnikov–de Haas oscillations disappear for the given

sample [25]. Later, it was found that a radial electric field can
lead to a similar collapse effect [24].

The Landau level collapse was studied theoretically and
experimentally only for systems with a Dirac-type spectrum
of quasiparticles. Thus, the general question of the existence
of a Landau level collapse in systems with other types of
quasiparticle dispersions still needs to be addressed. While the
general conclusions for the isotropic dispersion types could
be obtained from a semiclassical analysis of the drift velocity,
the behavior of Landau level collapse for anisotropic disper-
sion might contain its own peculiar properties. This motivates
our study, and we extended the corresponding part of the
Introduction.

There are a number of differences in the collapse of Landau
levels that are expected for the semi-Dirac system compared
to more typical Dirac semimetals. The main difference is
caused by the anisotropic structure of the spectrum, which
itself should lead to anisotropy in critical values of the electric
field. In addition, a set of two quasiclassically disconnected
parts of the Fermi surface is present in the cases of two sep-
arated Dirac cones [2,3,7], and one may expect an additional
effect of tunneling that will modify the Landau level collapse
in such a case. The open question of how a Landau level
collapse happens in semi-Dirac models motivates the study
in the present paper.

The paper is organized as follows: In Sec. II, we recall the
main properties of the low-energy semi-Dirac model with a
gap parameter that controls the topological phase transition.
Next, in Sec. III, we present semiclassical calculations of
Landau levels that appear in crossed electric and magnetic
fields. Additionally, we present an asymptotic analysis for
the exact Schrödinger equation for such a system. Special
attention is given to the case when tunneling (also called
magnetic breakdown) takes part and modifies the structure of
quasiclassical Landau levels. The corresponding calculations
are presented in Sec. IV. Finally, in Sec. V, we compare the
results with those known for graphene and give concluding
remarks.
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II. SEMI-DIRAC MODEL AND TOPOLOGICAL
TRANSITION WITH MERGING DIRAC CONES

The effective Hamiltonian that captures separated Dirac
cones and the gapped regime as well as the topological transi-
tion between them is given by the following expression,

H =
(

� + k2
x

2m

)
σx + vkyσy. (1)

There is a number of modifications of this Hamiltonian with
higher-order terms or additional gap parameters with an-
other matrix structure [9]. Here, we analyze the simplest
version of such a Hamiltonian, which was called “universal”
in Refs. [2,3] as it captures the essential physics of the Landau
level collapse. The dispersion for each of two bands in the
absence of external fields in given by

ε±(k) = ±
√(

k2
x

2m
+ �

)2

+ v2k2
y . (2)

The two band-touching Dirac points are separated by the dis-
tance δx = 2

√
2m� in momentum space along the x direction

in the case of negative � < 0 assuming m, v > 0. In the case
of zero gap parameter � = 0 the two bands touch at k = 0.

To include the effects of an electromagnetic field we need
to make a Peierls substitution. In the case where the mag-
netic length is much larger than the spacing of the model, it
will result in adding the electrical field term −eφ and mak-
ing a transformation p̂ → p̂ + eA [26]. This will give us the
Hamiltonian

H =
[
� + a

(
p̂x + e

c
Ax

)2
]
σx + v

(
p̂ + e

c
Ay

)
σy − eφ. (3)

Analyzing the asymptotics in cases φ = −Ey and φ = −Ex
one can see that when the electrical field is directed along
the y axis there always exist bound state solutions, while if
it is directed along the x axis all the bound state solutions
disappear when

Ex

Bz
= v

c
. (4)

However, an attempt to explicitly find the eigenvalues of
this Hamiltonian will lead us to a differential equation of the
fourth order with many singularities, which is a very nontrivial
problem to solve. A semiclassical analysis of this problem has
proven to be much more effective.

III. SEMICLASSICAL QUANTIZATION OF CYCLOTRON
ORBITS AND MAGNETIC BREAKDOWN

The description of Landau levels in the effective model
given by Hamiltonian (1) was presented in Ref. [3]. The main
features such as scaling with a magnetic field and a Landau
level index can be captured by using the Peierls-Onsager
quasiclassical quantization rule, which states that the area
of the constant energy curve in momentum space should be
quantized,

S[ε(k) = const] = 2π (N + γ )eB. (5)

FIG. 1. Spectrum given by Eq. (2) with the additional term −vd k,
where vd is chosen as (0, −0.5). The gap parameter is � = 1, and
the dispersion parameters are v = 1, a = 1. As illustrated by the
blue plane, when vd vanishes, the intersection of the plane and the
spectrum figure is a closed orbit and thus the Landau level exists.
However, as vd grows, the intersection area increases. As shown at
some critical value of vd the intersection curve becomes an open
orbit, as shown with the orange plane, and therefore the collapse of
Landau levels is observed.

As was pointed out in Ref. [27], the presence of an electric
field modifies the Peierls-Onsager quantization rule,

S[ε(k) − vd k = const] = 2π (N + γ )eB, (6)

with the classical drift velocity in crossed fields defined as
vd = cE × B/B2. Here, the “const” on the left-hand side of
the dispersion equation takes into account that the contour
in k space contains all the points for which the value of the
expression ε(k) − vd k is fixed. Different Landau level indices
N would eventually result in different values of const. Before
proceeding with more detailed calculations, let us perform
a qualitative analysis. The collapse of Landau levels is as-
sociated with the fact that the area defined by a contour in
momentum space ε(k) − vd k = const becomes infinite. This
may happen either for a Landau level with a particular index
or for all levels simultaneously. Consequently, the general
criteria for the presence of a Landau level collapse for the
band spectrum in infinite momentum space −∞ < kx,y < ∞
is equivalent to the question of the absence of closed curves
of solutions for the equation ε(k) − vd k = const with a fixed
right-hand side constant. The geometrical interpretation of
this criterion can be formulated in terms of the shape of
intersection curves of the dispersion ε(k) and the plane vd k +
const = 0, as illustrated in Fig. 1. Such an intersection be-
comes an open curve when the dispersion grows slower than
linear with a prefactor vd at large momenta values:

ε(k → ∞) � vd k. (7)

This formula allows one to predict the existence of a Lan-
dau level collapse by analyzing the asymptotic behavior of
dispersion.
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Applying (7) to the dispersion of the semi-Dirac model and
taking asymptotics along two orthogonal directions,

ε+(kx → ∞) ∼ k2
x

2m
, ε±(ky → ∞) ∼ ±vky, (8)

we find that the collapse of the Landau levels is possible
for the case of drift velocity having a nonzero component
along the y direction. The collapse occurs for all energy lev-
els simultaneously when this component is greater than the
parameter of the model vd,y > v. For the case of a uniform
constant electric and magnetic field with the B field along the
z direction, this leads to the fact that the electric field should
have a nonzero component along the x direction, with a critical
value for the collapse:

Ex = vBz/c. (9)

For the electric field directed along the y axis of the model,
the collapse of Landau levels is not possible. One can see
that this is exactly the result (4) that we got by analyzing the
asymptotics. However, semiclassics allows for a more detailed
study of energy levels.

IV. ENERGY LEVELS IN THE PRESENCE
OF AN ELECTROMAGNETIC FIELD

To calculate energy levels we will use Eq. (6). Full techni-
cal calculations are given in the Appendix, but the main idea
is to notice that the resulting closed orbit could be described
by the equation(

k2
x

2m
+ �

)2

+ (v2 − v2
d

)(
ky − vdε

∗(k)

v2 − v2
d

)2

= v2

v2 − v2
d

ε∗2
,

(10)

where ε∗(k) = ε(k) − vd k. Denoting Ẽ = v√
v2−v2

d

ε∗ and k̃y =
(ky − vd ε∗(k)

v2−v2
d

) we can express the area of the orbit as

S(kx, ky) =
∫∫

dkxdk̃yθ

[
Ẽ2−

(
k2

x

2m
+�

)2

−(v2 − v2
d

)
k̃2

y

]
.

(11)

In the case of � � 0 the equation for energy levels has the
form

π (|Ẽ | − �)
√

|Ẽ | + �

4
√

a
√

v2 − v2
d

F

(
1

2
,

3

2
, 3,−|Ẽ | − �

|Ẽ | + �

)

= 2π (N + γ )
eB

c
. (12)

This equation can be solved numerically. In Fig. 2 we plot the
solution for a particular �, but the whole form is quite general
for the case � � 0.

In the case of negative gap parameter � < 0 the effective
dispersion (2) contains two Dirac points separated in momen-
tum space. As a result, there are two possible closed “orbits”
(see Fig. 3).

In this situation there is a possibility of tunneling between
two orbits which influences the energy level structure. The
tunneling probability decays exponentially with the energy

FIG. 2. Numerical solution for Eq. (12) with “+” in Eq. (2) and
� = mv2 = eB

mc . Energy levels are labeled with N . Here, β = vd
v

and
ε∗ is measured in units of eB

mc . As β reaches 1, the energy levels
collapse.

deviation from the saddle point level. Thus, we should im-
plement a double-well representation to properly describe
the semiclassical spectrum around that point. The complete
theory of the corresponding semiclassical description was pre-
sented in Ref. [28]. Here, we use the quantization condition
derived from this description,

cos

[
�1 + �2

2
+ φ(μ)

]
= |T (μ)| cos

[
�1 − �2

2

]
, (13)

where � j = π + eB
c S j + ∫ 1

0
H̃

ν(t j )

1
vx

ν(t j )

dk
dt j

dt j + (−1) j+1δB
y . Here,

S j is the area of the corresponding orbit, T (μ) is the scat-
tering matrix in the Peierls-Onsager approximation, H̃1 =
HR

1 + HZ
1 + HB

1 − H1(0) correspond to Roth, Zeeman, and
Berry corrections, and δB

y is an additional Berry phase. Since
in our case Berry curvature is equal to zero and the Zeeman
Hamiltonian is absent, the only term left is the area of the orbit
in k space S j . Noticing that the areas of the orbits are identical,

FIG. 3. The same as in Fig. 1, but for � = −1. Note that depend-
ing on the energy either one or two independent closed figures can
emerge.
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we get the expression

cos
[ c

eB
S + φ(μ)

]
= − eπμ/2

√
2 cosh πμ

. (14)

The area of an orbit can be calculated by the same method we
used earlier. Denoting δ = | Ẽ

�
| and using Eq. (11) we obtain

S =
√

2m|�| 3
2 δ2

√
1 − δ

2
√

v2 − v2
d

F

(
1

2
,

3

2
, 3,− 2δ

1 − δ

)
. (15)

Using the definitions of φ and μ from Ref. [28],

φ(μ) = arg

[



(
1

2
− iμ

)]
+ μ[ln(|μ|) − 1], (16)

μ = ±
√

2m

v2 − v2
d

c|�| 3
2

eB
(1 − δ), (17)

where ∓ corresponds to the branch choice in Eq. (2). Solving
this final equation numerically, we get the structure of energy
levels described in Fig. 4.

One can notice that the conditions for the collapse of Lan-
dau levels do not depend on � and happen when β = 1.

One can observe a peculiar effect: the birth of pairs of
energy levels with an increase of the electrical field. The
mathematical origin of such a solution can be illustrated fairly
straightforwardly.

Let us take the limit μ � 1 in Eq. (14), which arises at rela-
tively small energies and large fields. In this limit, we can use
the form of Stirling’s approximation for complex arguments
with a large absolute value (see Chap. IV in Ref. [29]) and
expand arg[
( 1

2 − iμ)] ≈ −μ(ln μ − 1). Then, Eq. (14) turns
into

cos

⎡
⎢⎣ c

√
2m|�| 3

2

2eB
√

v2 − v2
d

δ2
√

1 − δF

(
1

2
,

3

2
, 3,− 2δ

1 − δ

)⎤⎥⎦ = −1.

(18)

Denoting c
√

2m|�| 3
2

2eB
√

v2−v2
d

as ω̃ we can rewrite the equation as

cos

[
ω̃δ2

√
1 − δF

(
1

2
,

3

2
, 3,− 2δ

1 − δ

)]
= −1. (19)

Now, let us denote the function

f (δ) = δ2
√

1 − δF

(
1

2
,

3

2
, 3,− 2δ

1 − δ

)
(20)

and look at this function at the point δ = δ0, such that
d
dδ

f (δ) = 0|δ=δ0 . Figure 5 suggests that there is only one point
like that. This point is also an extremum for the function
cos[ω̃ f (δ)]. Moreover, this is an extremum of that function
for any ω̃. We can see that because the function f (δ) is
continuously growing on the interval (0, δ0) and is contin-
uously decaying on the (δ0, 1), different ω̃ just correspond
to different oscillation frequencies and thus there are two
different times the cos function touches the line f (δ) = −1.
The new pair of levels is born whenever cos [ω̃ f (δ0)] = −1.
From here we can write the condition on the birth of a pair of

FIG. 4. Numerical solution for Eq. (14) with “+” in Eq. (2).
High-energy levels (labeled with N) have the same structure as in
Fig. 2. The energy levels below Ẽ = |�| (shown with black lines)
possess a different structure, including the emergence of “loops.” As
before, β = vd

v
, � = −2mv2, and ε∗ is measured in units of eB

mc . The
magnetic field is increased two times from picture to picture. The
stronger the magnetic field, the fewer levels are below the saddle
point E = �. (a) � = − 1

4
eB
mc , (b) � = − 1

2
eB
mc , (c) � = − eB

mc .

levels as √
1 − β2∗ = c

√
2m|�| 3

2

2eBv

f (δ0)

π + 2πn
, (21)
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FIG. 5. Plot of the function f (δ) defined in Eq. (20).

where β∗ are the values of vd
v

at which new pairs of lev-
els are born. The numerical calculations show that f (δ0) =
0.155 829. The observed appearance of pairs of energy levels
with growing electric field can be understood in the following
way: This phenomenon happens on the level of a saddle point,
where the tunneling effects are strong. For a typical Landau
level the orbit remains closed with changing electric field, thus
the Landau level energy moves to a lower energy. In the case
of Landau levels near the saddle point the orbit might pass
the saddle point level and break down. Such a modified quan-
tization rule might allow for the appearance of new allowed
Landau levels when the effective dispersion E∗ deforms under
a growing electric field.

V. CONCLUSIONS

To summarize, we have analyzed the semi-Dirac model
subjected to in-plane electric and out-of-plane magnetic fields
and found the condition for the appearance of the Landau level
collapse phenomenon. Based on a semiclassical WKB-type
approach, we found that the Landau level collapse appears
only when the effective dispersion grows as a linear function
of momentum or slower. Application of these general criteria
as well as an exact derivation of semiclassical Landau level
(LL) dispersion from the constant energy curves modified by
an electric field have shown that the LL collapse happens only
for one direction of electric field. In other words, only an
electric field with the x component exceeding the threshold
leads to LL collapse. This result can be contrasted with the
example of monolayer graphene, where any direction of the
electric field has the possibility to make a collapse.

In addition, we analyzed the structure of LL for electric
field values close to collapse for the gap parameter of the
model corresponding to three topologically distinct cases (two
Dirac cones, one band touching point, and two gapped bands).
We have discovered that in the case of the negative gap pa-
rameter � < 0 the number of Landau levels below the saddle
point increases.
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APPENDIX: EVALUATION OF AREA INTEGRALS FOR
SEMICLASSICAL QUANTIZATION

The effective dispersion of the semi-Dirac model has the
form

ε(k) = ±
√(

k2
x

2m
+ �

)2

+ v2k2
y . (A1)

It predicts the relativistic dispersion along one direction and
nonrelativistic along another (and a mix in between). The “un-
usual” power law comes from the anisotropy of the model and
the corresponding constant energy curve area function with
energy. The Landau level collapse happens when the electrical
field has the component Ex > v

c H . The Ey component has no
effect on the collapse.

Let us find semiclassical energy levels in the presence of
an electrical field. The modified dispersion [27]

ε∗(k) = ±
√(

k2
x

2m
+ �

)2

+ v2k2
y − vd ky = const . (A2)

In order to find areas in the momentum space it is convenient
to rewrite this equation as(

k2
x

2m
+ �

)2

+ (v2 − v2
d

)(
ky − vdε

∗(k)

v2 − v2
d

)2

= v2

v2 − v2
d

ε∗2
.

(A3)

From this equation it is clear the electrical field corresponds
only to the scaling of energy levels, and does not lead to other
significant effects. It is worth noting that here we can see the
collapse arising at vd = v.

Let us denote in the following calculations that v2

v2−v2
d
ε∗2 =

Ẽ2 and (ky − vd ε∗(k)
v2−v2

d
) = k̃y. The area of orbit in the momentum

space can be calculated as

S(kx, ky) =
∫∫

dkxdk̃yθ

[
Ẽ2−

(
k2

x

2m
+�

)2

−(v2 − v2
d

)
k̃2

y

]
.

(A4)

There are two cases we need to study: � � 0 and � < 0. Let
us start with the first case. The integral comes down to

S(kx, ky) = 2√
v2 − v2

d

∫ √
2m

√
|Ẽ |−�

−√
2m

√
|Ẽ |−�

√
Ẽ2−

(
k2

x

2m
+�

)2

dkx,

(A5)
and can be transformed to

S(kx, ky) = 2
√

2m(|Ẽ | − �)
3
2√

v2 − v2
d

×
∫ 1

−1

√
Ẽ2

(|Ẽ | − �)2
−
(

x2+ |Ẽ |
(|Ẽ | − �)

− 1

)2

d.

(A6)
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From here, changing the integration variable to d (x2) and us-
ing the integral representation of the hypergeometric function

F (a, b, c, z) = 
(c)


(b)
(c − b)

×
∫ 1

0
t b−1(1 − t )c−b−1(1 − zt )−a dt, (A7)

we get that

S(kx, ky) = 2
√

2m(|Ẽ | − �)
√

|Ẽ | + �√
v2 − v2

d

× F

(
1

2
,

3

2
, 3,−|Ẽ | − �

|Ẽ | + �

)
= 2π

eB

c
(n + γ ).

(A8)

When � < 0 an interband breakdown for some energy
levels can arise, so our quantization rule should be modified.
When | Ẽ

�
| = δ � 1, formula (A8) holds for negative � as

well. However, when δ < 1 there exist two closed classical
orbits and there is a possibility of tunneling between them.
This case is described in Ref. [28]:

cos

[
�1 + �2

2
+ φ(μ)

]
= |T (μ)| cos

[
�1 − �2

2

]
. (A9)

In our case, with the absence of Berry’s curvature and the
Zeeman Hamiltonian, �1 and �2 are just equal to the di-
mensionless surfaces of both trajectories in the momentum
space. As we can see from Eq. (A4) the surfaces are equal
to each other. Using Eq. (A4) we obtain four possible “stop
points”—the integration limits for surface calculation: kx =
±
√

2m(|�| ± |Ẽ |). Transforming to dimensionless variables
we get

S1 = S2 = 2
√

2m|�| 3
2√

v2 − v2
d

∫ −√
1+δ

−√
1−δ

√
δ2 − (x2 − 1)2 dx. (A10)

Changing the integration variable to x2−1
δ

and expanding the
expression as (δ + 1 − x2)(δ + x2 − 1) we will get

S = 2
√

2m|�| 3
2 δ2√

v2 − v2
d

∫ 1

−1

√
(1 − x)(1 + x)(1 + δx) dx. (A11)

From here it is easy to obtain the integral representation of
a hypergeometric function (A7) by changing the integration
variable to 1+x

2 and as a result we get

S =
√

2m|�| 3
2 δ2

√
1 − δ

2
√

v2 − v2
d

F

(
1

2
,

3

2
, 3,− 2δ

1 − δ

)
. (A12)

We take μ, φ(μ), and T (μ) as defined in Ref. [28],

μ = ±
√

2m

v2 − v2
d

c|�| 3
2

eB
(1 − δ), (A13)

where the choice of the sign corresponds to the branch choice
in Eq. (A2) [note that Eq. (A12) includes both branches due

to the modulus of Ẽ ]. So,

φ(μ) = arg

[



(
1

2
− iμ

)]
+ μ[ln(|μ|) − 1], (A14)

T (μ) = eiφ(μ) eπμ/2

√
2 cosh πμ

, (A15)

and all that is left to do is to put them into this final equation,

cos
[ c

eB
S + φ(μ)

]
= − eπμ/2

√
2 cosh πμ

. (A16)

An approximate solution of this equation could be found
with the right estimation for arg[
( 1

2 − iμ)]. To find this esti-
mation, we use the Weierstrass’s definition of the 
 function


(z) = e−γ z

z

∞∏
n=1

(
1 + z

n

)−1
ez/n, (A17)

where γ is the Euler-Mascheroni constant.
Let us define the phase φn as (z + n) = |z + n|eiφn . Then,

according to (A17),

arg

[



(
1

2
− iμ

)]
= γμ − φ0 −

∞∑
n=1

(μ

n
+ φn

)
, (A18)

where we can take φn = −arcsin( μ√
(n+ 1

2 )2+μ2
). Using

the approximation
∑∞

n=1 f (n) ≈ ∫∞
1 f (x)dx for slowly

changing functions (which applies to 1
x when x � 1)

we get

arg

[



(
1

2
− iμ

)]

≈ γμ + arcsin
μ√

1
4 + μ2

× +
∫ ∞

1

⎛
⎜⎝arcsin

μ√(
x + 1

2

)2 + μ2
− μ

x

⎞
⎟⎠dx. (A19)

Expanding arcsin( μ√
(x+ 1

2 )2+μ2
) = x′arcsin( μ√

(x+ 1
2 )2+μ2

) we

get

∫
arcsin

⎛
⎜⎝ μ√(

x + 1
2

)2 + μ2

⎞
⎟⎠dx

= x arcsin

⎛
⎜⎝ μ√(

x + 1
2

)2 + μ2

⎞
⎟⎠

+μ

2
ln

[
μ2 +

(
x + 1

2

)2
]

+ C,

and therefore

arg

[



(
1

2
− iμ

)]
≈ γμ + μ − μ

2
ln

(
μ2 + 9

4

)

+ arcsin
μ√

1
4 + μ2

− arcsin
μ√

9
4 + μ2

.

(A20)
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Now, let us look at two asymptotics |μ| � 1 and |μ| � 1.
Expanding (A20) for both cases we get

φ(μ) ≈ γμ, when |μ| � 1,

φ(μ) ≈
(

γ + ln
3

2

)
μ + μ ln |μ|, when |μ| � 1.

(A21)

Equation (A16) turns into

cos
( c

eB
S + γμ

)
≈ 1, when |μ| � 1,

cos

[
c

eB
S +

(
γ + ln

3

2

)
μ + μ ln |μ|

]

≈ 1√
2

− π

2
μ, when |μ| � 1. (A22)
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