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‘We use a convolutional restricted Boltzmann machine (CRBM) neural network to construct a variational wave
function (WF) for the Hubbard model on a square lattice and study it using the variational Monte Carlo (VMC)
method. In the wave function, the CRBM acts as a correlation factor to a mean-field BCS state. The number of
variational parameters in the WF does not grow automatically with the lattice size and it is computationally
much more efficient compared with other neural-network-based WFs. We find that, in the intermediate- to
strong-coupling regime of the model at half filling, the wave function outperforms even the highly accurate
long-range backflow-Jastrow correlated wave function. Using the WF, we study the ground state of the half
filled model as a function of onsite Coulomb repulsion U. We consider two cases for the next-nearest-neighbor
hopping parameter, e.g., t’ = 0 as well as a frustrated model case with ¢’ # 0. By examining several quantities,
e.g., double occupancy, charge gap, momentum distribution, and spin-spin correlations, we find that the weekly
correlated phase in both cases is paramagnetic metallic (PM). As U is increased, the system undergoes a
first-order Mott transition to an insulating state at a critical U,, the value of which depends on #’. The Mott
state in both cases is spin gapped with long-range antiferromagnetic (AFM) order. Remarkably, the AFM order
emerges spontaneously from the wave function which does not have any explicitly broken symmetry in it. Apart
from some quantitative differences in the results for the two values of ¢/, we find some interesting qualitative
differences in the way the Mott transition takes place in the two cases.
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I. INTRODUCTION

The Hubbard Hamiltonian has been studied extensively
over the years using a variety of analytical and numeri-
cal methods as a paradigmatic model for various correlated
electron phenomena [1,2]. The model on a two-dimensional
lattice is particularly interesting because of its relevance to
the high-temperature superconductors [3]. Theoretically, the
model is handled well both in the weak and strong-coupling
limits by different methods, but not so in the most interest-
ing intermediate-coupling regime. Among various numerical
methods, the variational Monte Carlo (VMC) technique has
been a very useful over the years in the study of the ground-
state properties of the model and its various extensions [4-8].
Unlike other methods, VMC does not suffer from any particu-
lar difficulty at any coupling strength, but its results are always
biased by the choice of the variational wave function (WF),
which is generally constructed based on the ground state of an
underlying mean-field Hamiltonian. However, with the advent
of machine-learning algorithms based on artificial neural net-
works (ANNSs), it was realized that ANNSs can also be used
to represent a quantum many-body wave function [9-14].
In such wave functions termed as neural-network quantum
states (NQS), the number of variational degrees of freedom is
large and it offers the possibility to overcome the fundamental
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limitation of the variational method by enabling the construc-
tion of a highly unbiased variational wave function.

A number of seminal works have already demonstrated
the power of NQS to learn quantum many-body physics
[13,15-18]. To mention some of these, Carleo and Troyer [10]
first demonstrated the use of a restricted Boltzmann machine-
based (RBM-based) variational wave function to represent the
ground state and study the dynamics of a few prototypical
spin Hamiltonians accurately and efficiently. The method in-
volved training the network by using a reinforcement learning
mechanism which essentially is an iterative tuning of the
network parameters so as to minimize the variational energy.
Torlai et al. [19] used an NQS wave function based on an
RBM network to perform a quantum state tomography and
thereby learn the ground state of a quantum spin Hamilto-
nian. In Ref. [20], the authors used a wave function based
on deep Boltzmann machine (DBM) and performed imag-
inary time evolution to obtain accurate ground state of the
transverse-field Ising and the Heisenberg model. Choo et al.
[21], by incorporating translational symmetries explicitly into
the NQS wave function, managed to generate also the ex-
cited states for the Heisenberg and Bose-Hubbard models.
RBM were also shown to be very efficient in representing
topological quantum states due to the nonlocal geometry of
its architecture [22,23]. However, most of these applications
so far have been to bosonic systems. One main reason for
this is that the fermionic systems have an additional com-
plexity that comes from the nontrivial sign structures of its
wave functions [24]. The functions that can be represented
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by neural-networks though highly nonlinear are essentially
smooth and generally fail to represent the sign structures
of fermionic many-body wave functions. For instance, the
feed-forward neural networks, a type of ANN, were shown
to be unable to correctly account for the sign structure of
even a free fermionic wave function [25]. Nomura et al. [26]
constructed a wave function by combining an RBM with a
mean-field part where the RBM part introduces correlation
effects, a role usually played by Jastrow-type correlation fac-
tors [6]. It was shown that the combination wave function
give substantially lower energy than the conventional pro-
jected variational wave functions for the fermionic Hubbard
model as well as the Heisenberg model. There also exist
other scheme-based ANNs for fermionic systems, but these
are restricted to small system size due to computational
complexity [27-30].

In this work, we construct a ground-state variational wave
function for the fermionic Hubbard model on a square lattice
using a convolutional restricted Boltzmann machine (CRBM)
network where the CRBM is used as a correlation factor to
a mean-field BCS state. We show that the wave function is
not only computationally efficient compared with the RBM
wave function, it is also highly accurate in terms of the vari-
ational energy. Using VMC, we study the wave function as a
ground state of the model at half filling as a function of onsite
Coulomb repulsion U. We consider two cases of the model
when the next-nearest-neighbor hopping parameter ¢’ = 0 and
when the model is frustrated with ¢ # 0. The wave function
yields energies which are significantly lower compared with
those of the corresponding RBM or Jastrow-projected wave
functions, especially in the strong-coupling limit. Indeed, in
this limit it outperforms in terms of energy even the highly ac-
curate long-range backflow-Jastrow correlated wave function
for the model. The wave function correctly captures the pres-
ence of doublon-holon (DH) binding in the strong-coupling
regime in spite of it having no explicit DH binding term. It
also give rise to long-range antiferromagnetic (AFM) order in
the Mott insulating state spontaneously even though the wave
function contains no explicit magnetic order. We examine the
nature of Mott metal-insulator transition in the model by cal-
culating various quantities, such as double occupancy, charge
gap, momentum distribution and quasiparticle weight, and
spin-spin correlation. The results are thoroughly discussed
and compared with other variational results.

The rest of the paper is organized as follows: In Sec. II, we
describe the model and the CRBM wave function. In Sec. 111,
we describe and discuss the results, and finally in Sec. IV, we
make the concluding remarks.

II. MODEL AND METHOD

We consider the fermionic Hubbard model on a two-
dimensional (2D) square lattice at half filling. The Hamilto-
nian is given by

H=— tijlchcjo+he)+UY mymy, (1)
i.jo i

where the operator cL creates an electron at site “7” with

spin o. ci; is the corresponding annihilation operator and

Nig = c;.a cis 18 the number operator. The first term represents

hoppings of electrons from site to site. The hopping inte-
grals are t;; = ¢ for i, j nearest-neighbor (NN) sites, #;; = —t’
for i, j next-nearest-neighbor (NNN) sites, and zero other-
wise. Due to the particle-hole symmetry at half filling, the
model is equivalent to the case with opposite sign of ¢'. The
Hamiltonian is the simplest paradigmatic model that capture
the essential physics of several interesting correlated electron
phenomenon in condensed-matter physics, including the Mott
metal-insulator transition, high-temperature cuprate super-
conductors, etc [1,3,31,32]. The Mott physics in the Hubbard
model has been studied extensively using various methods
[33-42], including variational theory within the framework
of various Gutzwiller-Jastrow type wave functions (WFs)
[43—48]. These projected variational wave functions are typ-
ically of the form, |Wy,) = P|®P), where | D) is a one-body
wave function which is generally taken to be ground state
of an underlying mean-field Hamiltonian. P is a projection
operator or correlation factor which introduces many-body
correlation into the wave function. The simplest case is the
Gutzwiller (GW) projector P which describes an on-site
density-density correlation, Pg = [[,[1 — (1 — g)niyniy 1,0 <
g < 1. It penalizes electronic configurations with doubly oc-
cupied sites thereby giving a better description of the ground
state of the Hubbard model compared with the uncorrelated
state. However, GW projector was found to be inadequate
to describe the Mott insulating state. This is because in the
Mott state, local charge fluctuations creates configurations
with doubly occupied sites (doublons) next to empty sites
(holons). The insulating nature of the state means that the
doublons and holons must be bound to each other and the GW
projector does not capture this effect [44-46,49]. It was shown
that the situation can be greatly improved by considering a
correlation factor of the form P = Ppy P, where the factor
Ppr incorporates doublon-holon (DH) binding in the wave
function and is given by [44], Ppy = [[;(1 — nQ;), with Q; =
1_[5 [d,(l — /’lH_g) + /’l,(l + di+5)]- Here d,' = njpn;y is doublon
and h; = (1 — ny)(1 — n;y) is holon operator, § denotes the
nearest-neighbor sites, and 7 is a variational parameter. Al-
ternatively, one can also consider Jastrow factor of the form
[45] PJ = EXP[ZU- %U,‘j(}’li - 1)(711 - 1) + wijhidj] which in-
troduces long-range correlations including DH binding. The
description can be further improved by introducing a backflow
correlation term in addition to the Jastrow factor and such a
wave function considered for the half filled Hubbard model
was shown to be much better in terms of the ground-state
energy and in the description of the Mott insulating state in
the model [48].

Here, we consider a variational wave function where the
correlator is based on an artificial neural-network (ANN).
Such a wave function using the restricted Boltzmann machine
(RBM) network as a correlator was already considered for the
Hubbard as well as the Heisenberg model [26]. Here we con-
sider a convolutional restricted Boltzmann machine (CRBM)
network as a correlator. The CRBM is computationally much
more efficient than an RBM owing to much lesser number
of network connections and consequently fewer number of
variational parameters in CRBM. In fact, the number of vari-
ational parameters in CRBM can be tuned and does not grow
automatically with the lattice size which is a highly desirable
feature computationally. In the followings, first we describe
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FIG. 1. A restricted Boltzmann machine (RBM) network. The
artificial neurons in the visible layer take the inputs {n, ny, ..., ny.}
that represent the sets of electron occupation numbers. The neurons
in the hidden layer define variables /; which can take values £1.

the RBM network followed by a detailed description of the
structure of the CRBM network. The variational wave func-
tion using the CRBM as a correlator is described next.

A. Restricted Boltzmann machine network

A restricted Boltzmann machine (RBM) network [20] con-
sists of two layers of artificial neurons, one visible layer
connected to a hidden layer as shown in Fig. 1. There is no
intralayer connection between the neurons. The number of
neurons in the visible layer is N, = 2L, where L is the number
of lattice sites and that in the hidden layer is N,,. The energy
function of an RBM is given by

ERBMz—Zwijhinj—Zajnj—Zbihi- (2)
ij J i

The hidden variables 4; take values h; = £1. The set W =
{a, b, w} denotes the set of all the network parameters a;, b,
and w;;. Carrying out the summation over the hidden vari-
ables, the probability distribution over the set of input values
{ny, no, ..., ny} is given by

1 —E
Wren(R, W) = ~ the 3)

where Z is the partition function. The number of parameters
in the network can be drastically reduced by using the sym-
metries of the Hamiltonian. Here we take the hidden variable
density to be y = N, /N, = 1. In this case, it can easily be
seen that imposition of lattice translational symmetry leads to
a single bias parameter a for the visible units and a parameter
b for the hidden units. Also the number of unique elements
in the weight matrix w reduces to 2L. Thus the total number
of network parameters becomes (2L + 2) and the probability
function reduces to

1
Wepn (R, W) = Zeazl'ni U2cosh (2]: w;n; + b). 4

B. Convolutional restricted Boltzmann machine network

The convolutional restricted Boltzmann machine (CRBM)
architecture is shown schematically in Fig. 2. It can be
thought of as consisting of three layers with an additional
convolutional layer in between the visible and the hidden

FIG. 2. Schematic diagram of a CRBM network. The visi-
ble layer (V) contains N, = 2L neurons as in RBM. The hidden
layer is enlarged compared with RBM and consists of M blocks
H,, H,, ..., Hy, each containing N, neurons. There is a con-
volutional layer in between which also consists of M blocks
Cy, Gy, ..., Cy. The mth block applies a convolutional filter with
kernel K, to the visible layer and generates an output which is
in the form of N, output neurons comprising the C,, block. There
are one-to-one connections between the neurons in the C,, and H,,
blocks.

layers [50,51]. Since the underlying lattice is two dimensional
(2D), it is necessary to consider layers also to be 2D arrays
of neurons instead of the linear arrangement of Fig. 1. The
visible layer again contain N,, = 2L neurons, like in the RBM.
But the hidden layer (H layer) in the CRBM is enlarged to
make it into M blocks Hy, H,, ..., Hy, each block containing
N, = N, neurons. The middle convolutional layer (C layer)
also consists of M blocks Cj, C,, ..., Cy. The input layer,
the blocks’ C,, H,, are all taken to be 2P x P arrays of
neurons, where P = +/L. The mth block applies a convolution
filter with kernel K, to the input layer and produces a result
which is in the form of N, number of convolutional output
neurons (2P x P array) comprising the C,, block. The con-
volutional output blocks are connected directly to the hidden
layer blocks. That is, the ith neuron in mth convolutional block
is connected only to the ith neuron of the mth hidden layer
block and not to any other hidden unit. Thus, there is a one-
to-one connection between the neurons in the blocks C,, and
H,,, with a total of N, connections between the two sublayers.
Therefore for M « L, the total number of connections in the
CRBM is much less compared with that in the RBM, making
the CRBM representation much more efficient in comparison.
Next, consider the convolutional operation by the mth block
(Fig. 3). The convolutional filter in the block is defined by its
kernel K,, which is a matrix of D x D parameters (D < P).
Action of the filter on a D x D window of the visible layer
is given by the generalized dot product K,,, © Vj, where V; is
the matrix formed by the input values given to the neurons in
this window. This is shown schematically in Fig. 3. We slide
the filter with a stride of one step along both the directions to
cover the whole of the visible layer. This creates N, number
of windows of the visible layer and hence N, number of
convolutional outputs K,, © Vi, k =1, 2, ..., N,. Denoting
the ith hidden variable in the mth block by 4,,;, the joint energy
function in the CRBM is given by

Ecrem = — Y hu(Kn O V) —ay nj—= Y buhpi. (5)
m,k j mi
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FIG. 3. Schematic diagram showing the convolutional operation
by one of the C blocks in Fig. 2. The convolutional layer slides a filter
over the visible layer with a stride of one. The operation generates
the convolutional output layer which is of the same dimension as the
input layer.

It may be mentioned that, by construction, CRBM conserves
the lattice translational symmetry imposed in the corre-
sponding RBM. The probability distribution over the visible
variables in CRBM is given by

1 -E
WerBM =z Xh: e rer

1
=e Xjmi ]m"k[ 2cosh (K, © Vi +b,),  (6)

where Z is a normalization constant. The total number of
parameters in the CRBM is M(2D? + 1). This number de-
pends only upon the two network structural parameters M and
D and not upon the lattice size L. Therefore the number of
variational parameters in the CRBM wave function does not
grow directly with the lattice size, which is a big advantage
in the optimization process. In practice, the parameters M and
D are determined by tuning its values so as to obtain the best
variational energy. The lattice size might affect these values
somewhat, but the number of variational parameters is still
expected to be much less than that in the corresponding RBM
wave function.

C. Convolutional restricted Boltzmann machine
correlated wave function

The CRBM correlated wave function that we consider here
is given by
[Wyar) = PcremIBCS) y, @)

where | BCS) is the ground state (with fixed number of parti-
cles) of the following mean-field Hamiltonian:

Hur = Z SkCL,Cka - Z(Akcbciki +H.c). ()
ko k

Here ey = —2t(cos k, + cosky) + 4t' cos k. cos k, — 11, p1 be-
ing the chemical potential. We take superconducting pairing

amplitude Ak to be of d,._,2-wave (d-wave) symmetry with
Ag = Agc(cosky — cosky), where Agc is the superconduct-
ing (SC) gap parameter. The quantities Agc and p are the
variational parameters in the one-body part of the wave func-
tion. We consider the wave function in fixed particle number
(2N) representation with equal number of up and down spins.
In terms of the real-space (Wannier) basis, |BCS), can be
expressed as
IBCS)y = Y Wges(ni.m.....my)

ny,np,..., nar
T >
x (C]ILT Y. (CZ¢ ) (C}Li Y. (Cli Y2410)

> Wees(R)IR). )
R

Here n; are the occupation numbers which can take the value
zero or one. L is the number of lattice sites. The summation
is over the set of values {nj,...,ny } = R subject to con-
straint Zle ni = leiL 411 = N. The amplitudes Wpcs(R)
are the determinantal coefficients corresponding to the elec-
tronic configurations. The action of Pcrpy is given by

[Wyar) = Pcrem|P) = Z WerpMm (R)Wees(R)IR),  (10)
R

where Werpm (R) is the output [Eq. (6)] of the CRBM network
for a given set of input values R = {ny, ..., ny;}. The varia-
tional parameters in the wave function consists of the network
parameters plus the parameters in the mean-field part of the
wave function.

D. Variational Monte Carlo

Having constructed the variational wave function, we use
the variational Monte Carlo (VMC) method [4-6] to compute
the variational energy,

By = Lol ) (an
(qjvarl"pvar)

and minimize it with respect to the set of variational param-
eters a, which consists of the weight and bias parameters of
the neural network and the parameters in the mean-field wave
function. We use the stochastic reconfiguration (SR) tech-
nique [5,6] for optimization which generally works all even
for large number of variational parameters. In this method,
the variational parameters o are updated as y = & — AtS~'g,
where g = V,E,, is the energy gradient. S is the overlap
matrix with the matrix elements given by Sy = (Vo |V, ).
Wy, ) = 2)%khl/c‘). In the VMC simulations, typically we take

~10° measuring steps after warming up the system for ~103
steps. Each MC step consists of L number of MC moves that
include both the hopping and exchange moves, as mentioned
before. The number of variational parameters in the CRBM
wave function depends on the two network structural param-
eters M and D and is independent of the lattice size. For the
values of M and D considered here, the number of variational
parameters becomes of the order of 150. The optimization step
even with the SR method sometime does need large number
of iterations to converge which creates a bottleneck in the
computations.
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FIG. 4. Energy obtained by repeating optimizations for different
values of the CRBM parameter M. The energy reaches a saturation

value at M =~ 5. The value of the parameter D is four. Model param-
eters are U/t = 8 and ¢’ /t = 0.

II1. RESULTS

We consider the Hamiltonian on a square lattice of size
10 x 10 with L = 100 sites, and a band filling of one particle
per site (half filling). We consider two values of the next-
nearest hopping parameter ', e.g., '/t =0 and t'/t = 0.5.
The nonzero value ¢/t brings in frustration in the antiferro-
magnetic order expected at half filling. We study the model
as a function of Hubbard onsite interaction U/¢. In the results
below, all the energy values quoted are energy per site and in
units of ¢.

Before going ahead with the calculations, we need to de-
termine the optimal configuration of the CRBM network. It
has two crucial structural parameters—the dimension D of the
convolutional kernel and the number of convolution blocks
M. In principle, D can vary from one to L. The convolution
can be interpreted as a “feature extraction” operation [50]. A
value D = 1 implies a trivial operation while D = L implies
flattening of all features. Here we take D = 4 which we find
to be an optimal value in terms of performance and efficiency.
Regarding value of M, we checked the energy obtained by
repeating the optimizations for different values of M. An
example plot is shown in Fig. 4. It shows that at U/t = 8§,
the best energy is obtained for a minimum M value of five. In
fact, the optimal value of M depends on the value of U. It is
smaller for smaller U. Therefore, a value of five works well
for the range of U/t considered here and hence we set M = 5
for the rest of the calculations.

We optimize the CRBM wave function defined in Eq. (10)
by minimizing the corresponding variational energy for a
range of model parameter values. For comparison, we also
calculate the energies of four other variational wave functions.
These are (i) |Wew) = PIBCS)y (GW), (i) [Wewipr) =
PPoulBCS)y (GW + DH), (ii)) [Wrarow) = P/IBCS)y
(Jastrow), and (iv) |WreMm) = Prem|BCS)y (RBM), where
the projection operators are as defined above. In [Wrgwm), we
use an RBM network as the correlator. The comparison of
energies of these wave functions are shown in Fig. 5. It shows
that, in the weak-coupling limit, the energies of these WFs
are more or less similar to minor differences among them.
However, the energies start to differ in the strong-coupling
regime. This is clear from Fig. 5(b) where we have plotted
the difference AE = Ex — Egw, where X stands for the four
other wave functions shown in the figure. As the figure shows,
AE is negative in the intermediate to strong-coupling regime,

—0.4- 0.0
m —0.8 GW 2 —0.11
7 Jastrow —— Jastrow
—1.24 1 —®— GW+DH
| RBM _(.9-| = Rem
CRBM . —8— CRBM

0 2 4 6 8 10 12
Ut
(a) (b)

—
—~

—— GW-+DH
—

——

8 10 12
¢

FIG. 5. (a) Energies of the five wave functions described in the
text as a function of U /¢. (b) The difference AE = Ex — Egw, where
X stands for the four wave-function names shown in the figure.

indicating that the energy of the GW wave function is high-
est here. The energies of the GW + DH and RBM wave
functions are comparable and lower than that of the Jastrow
wave function. The best wave function among the five is
the CRBM wave function which yields energies significantly
lower than the other four. We also compare the CRBM ener-
gies with those for the long-range backflow-Jastrow correlated
wave function used in Ref. [48], which was shown to be
the most accurate among the Jastrow-type projected wave
functions. We find that the CRBM wave function even out-
performs the backflow-Jastrow wave function. For example,
the backflow WF give energies per site equal to —0.5961(1),
—0.4803(1), —0.4022(1), and —0.3451(1) at U/t equal to
6, 8, 10, and 12, respectively. For the same values of U /z,
the CRBM wave function give energies per site equal to
—0.6076(2), —0.4882(2), —0.4048(2), and —0.3456(2), re-
spectively. These energies are clearly lower than the backflow
WEF energies. It must be mentioned that the lattice sizes used
in these two studies are not the same, and hence the compar-
ison is not strictly rigorous. Still, it gives an idea about how
accurate the CRBM wave function is. In Ref. [26], the authors
used an RBM correlator in conjunction with a many-variable
one-body wave function. The energies of this wave function
is actually lower than the CRBM energies, although such a
wave function is computationally much more expensive. We
also examine the size dependence of the variational energies
of all the wave functions listed in Fig. 5(a). We consider two
values of U/t, one below and the other above the critical
value for Mott transition. The upper panels of Fig. 6 show
the energy per site as a function of N, where the lattice size
is L =N x N. In each case, the energy of the CRBM wave
function is the lowest at all N. The size dependence of the
energy for all the WFs becomes small for roughly N > 10.
The lower panels of Fig. 6 show the scaling of the energy as
a function of 1/N 3. It shows that in the Mott state (U /t = 8),
the CRBM energy scales very accurately as 1/N? as predicted
by spin-wave theory [52]. For the other WFs, there are small
deviations from this behavior.

Next, we examine the ground-state phase of the model as
a function of U/t as described by the CRBM wave function.
As mentioned before, we have done calculations for two dif-
ferent values of ¢/, e.g., ¢/t = 0 and ¢/t = 0.5. Although the
model has been studied extensively in the past using a variety
of methods, several important aspects of its phase diagram
including the nature of the zero-temperature Mott transition,
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FIG. 6. Size dependence of variational energies of various wave
functions shown in the figure at U/t =4 and U/t = 8. The upper
panels show the energies as a function of N, where the lattice size
is L = N x N. The lower panels show the energies as a function of
1/N3.

are not yet established unambiguously [2,42,53]. For example,
questions exist whether the ground state of the unfrustrated
model (¢'/t = 0) on square lattice is antiferromagnetic (AFM)
insulating at any U/t > 0, or is it paramagnetic with a fi-
nite value of critical interaction U, /¢t for Mott metal-insulator
transition. What is the nature of Mott insulating state, is it
magnetically ordered or a spin liquid? If the unfrustrated
model is AFM insulating, is there a critical value of ¢’ beyond
which the ground state become paramagnetic metallic? The
answers to these questions somewhat vary among different
methods. Within the variational theory, the phase diagram
of the two-dimensional Hubbard model has been studied by
looking at the competition between wave functions with dif-
ferent symmetries. In these wave functions, the one-body part
is taken to be either pure BCS type without any magnetic
order or an AFM type with explicitly broken spin rotational
symmetry. By using the GW-DH projector as the correlator,
Yokoyama et al. [44] have shown that at ¢’ = 0, the lowest-
energy state at any U/t > 0 is the symmetry-broken one with
long-range AFM order and insulating. For t'/t > 0, there
exists a nonzero value of critical interaction U, below which
the state is paramagnetic metallic (PM). For U/t > U, /¢, the
state is AFM insulating for small ¢'/¢, but paramagnetic in-
sulating at large #’/t. The transition to the AFM insulating
state at '/t = 0 is continuous. It gradually turns first-order
at larger ¢’ /t. However, if considered within the nonmagnetic
projected BCS wave function only, the state is found to be
PM for any '/t below a critical U./t # 0. In this case, the
Mott transition is of first-order nature at any #'/f, and the
insulating state is nonmagnetic. In another work, Tocchio
et al. [47] used variational WFs with backflow correlations
in addition to a long-range Jastrow projector. The backflow
correlated WFs is much more accurate with lower variational
energy compared with only DH or Jastrow-projected WFs.
The study also showed that for small U/t and nonzero t' /¢, the
ground is paramagnetic metallic. It becomes insulating with

0.8
1 = /=00
_ 061 = =05
™
204
S
0.2
0216 8 R
U/t
(®)

FIG. 7. Doublon-holon correlations at (a) nearest-neighbor and
(b) next-nearest-neighbor distances as a function of U/t. Results are
shown for two values of ¢'/t.

a long-range AFM order as U is increased above a critical
value. Interestingly, the backflow WF give a region in the
phase diagram at large enough values of U/t and ¢’ /t, where
the state is an insulating spin-liquid without any long-range
magnetic order.

In contrast with the above studies which considered wave
functions with different symmetries, here we study the ground
state within the single variational wave function. We show
that, although no magnetic order is put explicitly into the
CRBM + BCS wave function, it spontaneously gives rise to
long range AFM order in the insulating state. This is remark-
able because, with Gutzwiller-Jastrow type wave functions,
one has to introduce explicit symmetry breaking in the wave
function in order to obtain a state with strong AFM order. To
characterize the ground state, first we compute the doublon-
holon (DH) correlation function defined as

C(ry = ki) — tdir ), (12)

(di)(hj)

where d; = njyn;; and h; = (1 —n;; )(1 —n;)) are the dou-
blon and holon operators, respectively. The results for the
nearest-neighbor (NN) and next-nearest-neighbor (NNN) cor-
relations as a function of U are shown in Fig. 7. It shows that
C;j(r) is very close to zero at small U /t. As U/t is increased,
it shows a jump at a critical U, /t and steadily rises after. The
NNN values are an order of magnitude smaller than the NN
values, indicating the bindings of doublons and holons within
short distances from each other. Thus the wave function is
able to capture the correct physics of doublon-holon bindings
in the strong-coupling regime in spite of it not having any
explicit doublon-holon correlation factor. Next, we compute
the double occupancy D, defined as

1
D = ]VS Xi:nmnii. (13)

It is a crucial quantity that can indicate the presence of Mott
transition. The value of D is shown in Fig. 8. Starting from a
value of 0.25 at U/t = 0, D decreases as U/t is increased. It
shows a sudden drop at a critical U, /¢ indicating the onset
of Mott transition. The jump in the value of D is clearly
present at both the values of ¢/, although it is sharper in the
frustrated case. It may be mentioned that, even in the long
ranged backflow correlated WF used in previous studies [48],
the D at the Mott transition at t'/t = 0 shows only a kink,
not a jump. We find that the values of critical interaction
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FIG. 8. Double occupancy D as a function of U/t at the two
values of ¢’ shown.

are U./t ~ 5.4 for '/t =0 and U,./t =~ 6.6 for t'/t = 0.5.
These values are in roughly in good agreement with previous
results [44,47]. The occurrence of the Mott transition can be
confirmed directly by looking at the charge gap, which can be
estimated from the knowledge of the ground state WF itself.
Given the ground state | V), an excited state with momentum
q is given by ny| V), and the charge gap in the limit ¢ — 0 for
the square lattice can be shown to be [48]

2
Eg=_1<1im gl )(IC1+2’C2)7 14

4\q—0N(q)
where N(q) = (nqn—q) is the charge structure factor. Ky and
IC, are the NN and the NNN kinetic energy per site, respec-
tively. The results for E, are shown in Fig. 9. It confirms
that the state below U, /¢ is metallic with no charge gap, while
above U, /t it is insulating with a finite charge gap. Next we
look at the momentum distribution function, n(k) = (CZU Cko )+
The n(k) values calculated as a function of k along the
symmetry path I'(0, 0)-X (7, 0)-M (r, 7w )-I"(0, O) for different
values of U/t for the case t'/t = 0 are shown in Fig. 10(a).
In the metallic state, n(k) has a discontinuity at the Fermi
surface, k = kp in the nodal I'-M direction. The magnitude
of the jump gives the quasiparticle weight Z which roughly
corresponds to the inverse effective mass of the quasipar-
ticles [7,44]. We plot the values of Z so determined as a
function of U/t in Fig. 10(a). For both the cases of #'/t, Z
decreases with increasing U/t and shows a sudden drop at the
respective critical interaction U, /t. Interestingly, Z does not
vanish completely in the Mott state for the unfrustrated case
at t’/t = 0, although it becomes very small. Thus it suggests
that the Mott transition in this case takes place via vanishing of
spectral weight at the Fermi level rather than via divergence
of effective mass. In contrast, Z vanishes completely in the

6
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= ¢/t=05
n /
m%
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0 T T
0 2 4 6 8 10 12
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FIG. 9. Charge gap E, as a function of U/t.
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FIG. 10. (a) Momentum distribution at various values of U/t
along the symmetry path in the first Brillouin zone (¢'/t = 0).
(b) Quasiparticle weight Z determined from the jump at the Fermi
surface, as a function of U/, for the two cases of ¢/ /¢.

Mott state for the '/t = 0.5 case, suggesting divergence of the
effective mass in this case. For both the cases, the transition is
found to be first order in nature as evinced from discontinuities
of various quantities at the critical point. Finally, we look at
the magnetic correlations in the CRBM wave function. We
calculate the spin structure factor S(q), defined as

I«
S@ =7 Z e () (57 53), (15)
i,j

where S7 = (n;y — n;}) is the z component of the spin operator
at site i. The results for S(q) calculated at various values
of U/t are shown in Fig. 11. As the figure shows, S(q) is
very small at all q for U < U,, indicating very weak mag-
netic correlations in the metallic state. For U > U,, S(q) is
very sharply peaked at q = (7, ) which indicates onset on
long-range AFM correlations as soon as the system enters the
Mott state. The nonzero values of ¢’ considered here does not
seem have any impact on the AFM correlations. In fact, we
find that the sublattice magnetization m = |S7| which is close
zero in the metallic phase, jumps to around 0.8 at transition, a
value close to the saturation limit. If we compare with results
in Ref. [44], the AFM correlations in the insulating state in
the GW + DH wave function used in this study is much
weaker compared with what is found here. The insets in the
figures show S(q) for a small range of |q|. Clearly, in the
limit |q| — 0O, the S(q) o |q| in the metallic phase suggests
an absence of spin gap in this phase. On the other hand,

159 U/t 159 U/t

4 - 20 9 - 20

—&— 4.0 ] —— 4.0

101 = 60 104 = 60
E ] —— 8.0 E ] —— 8.0
CQ ——10.0| n ——10.0
50 X 50 X _
q t/t=0 ] q '/t = 0.5

[ —— 7 s [0 * A
I X M r I X M I

q q
(@) (b)

FIG. 11. Spin structure factor S(q) as a function of q at various
values of U/t for the cases (a) t'/t = 0 and (b) ¢'/t = 0.5. The insets
in each case show S(q) versus q for small |q|. It shows that in the
limit |q] — 0, S(q) o |q| for U < U, (gapless), while S(q) o |q|?
for U > U, (spin gap).
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S(q) o |q|? for U > U, suggests that the Mott state is also
spin gapped.

IV. CONCLUSION

In summary, we have studied the ground-state phase of
the half filled Hubbard model on a square lattice using a
variational wave function constructed by applying a convolu-
tional restricted Boltzmann machine (CRBM) neural network
as correlator to a mean-field BCS wave function. The num-
ber of variational parameters in the wave function does not
automatically grow with the lattice size and can be tuned. The
wave function is also highly accurate, especially in the strong-
coupling limit where it yields variational energies lower than
those of the best known Jastrow variational WFs for the
model. The picture of Mott metal-insulator transition in the
model as described by the CRBM wave function is roughly
similar to that obtained by using other variational wave func-
tions [44,47,48], with some interesting differences. Regarding
the shortcomings of the CRBM wave function, the results for
the energies shows that the it does not necessarily perform

better in the weak-coupling limit. Other more accurate meth-
ods strongly suggest that for the unfrustrated model with
t'/t = 0, there exist short-range AFM fluctuations even in
the weak-coupling limit and the ground state in this case
is insulating at all U./t > 0 [2,42,53]. This physics is not
captured correctly in the CRBM wave function. This of course
can be remedied readily by putting an AFM order manually
into the mean-field part of the wave function, although it
would be highly desirable to have the correlations generated
spontaneously in the same manner as in the Mott insulating
state. It is also interesting to study the wave function for a
range of '/t values in order to obtain a full phase diagram as
a function of U/t and ¢’ /t. We leave it for a future study.
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