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Scaling of the bulk polarization in extended and localized phases of a quasiperiodic model
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We study the finite size scaling of the bulk polarization in a quasiperiodic (Aubry-André) model using the
geometric analog of the Binder cumulant. As a proof of concept, we show that the geometric Binder cumulant
method described here can reproduce the known literature values for the flat and raised cosine distributions,
which are the two distributions that occur in the delocalized phase. For the Aubry-André model at half-filling,
the phase transition point is accurately reproduced. Not only is the correct size scaling exponent of the variance
obtained in the extended and the localized phases, but the geometric Binder cumulant undergoes a sign change
at the phase transition. We also calculate the state resolved Binder cumulant as a function of disorder strength to
gain insight into the mechanism of the localization transition.
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I. INTRODUCTION

The modern polarization theory [1–5] (MPT) overcomes
the problem of the ill-defined nature of the position opera-
tor in systems with periodic boundary conditions (PBC) by
casting crystalline polarization as a geometric or Berry [6]
phase. In band insulators, polarization is an open path [7]
geometric phase (also known as a Zak phase), while in many-
body systems [8] it is a single-point geometric phase [4], the
phase of the expectation value of a unitary operator. It is also
possible to access moments and cumulants of the polariza-
tion [9,10]. The Zak phase can be viewed as the first member
of a cumulant series. Gauge invariant cumulants [9] charac-
terize band insulators, while the variance of the polarization,
as derived [10] by Resta and Sorella (RS), provides a crite-
rion for distinguishing [11] localized systems from extended
ones. MPT is also the starting point [12,13] for deriving the
characteristic invariants of topological insulators. Moments
of the polarization form the backbone of maximally localized
Wannier functions [14,15].

In the study of phase transitions, finite size scaling [16–20]
is a useful tool. The finite systems accessible in calcula-
tions provide the expectation values of physical quantities
(for example the magnetization in the Ising model), as well
as their moments and cumulants, but care must be taken
when extrapolating to the thermodynamic limit. Using the
finite size scaling hypothesis [17,18], one can calculate the
Binder cumulant [19,20] (BC). BC is a ratio of statistical
cumulants of the order parameter (represented in quantum
systems by an operator) useful in locating critical points. BC
is equivalent to the excess kurtosis [21] (EK) of the order
parameter, a quantity widely used in probability and statistics
to characterize the tail and peak of probability distributions.
An EK of zero corresponds to a Gaussian distribution, while a
distribution with positive(negative) EK is referred to as super-
Gaussian(sub-Gaussian). In MPT, the polarization is not an
expectation value of an operator, it is a geometric phase, so it

is not immediately obvious whether a BC can be constructed
for the polarization in crystalline systems.

MPT, in its original form, does not provide accurate fi-
nite size scaling information in the delocalized phase. For
disordered systems [22,23] or in many-body localization stud-
ies [24,25], the inverse participation ratio is used instead of
MPT, even though MPT was developed to address the lo-
calization of charge carriers. Kerala Varma and Pilati [26]
made a thorough investigation of RS in quasiperiodic models.
They find some disagreement in the behavior of the variance
between open boundary conditions (OBC) and PBC. RS can
be interpreted as a second cumulant (variance) obtained from
a particular generating function. It is possible to extend to RS
formalism to derive higher order cumulants as well [27,28]
but these diverge in metallic phases and it is not possible
to construct a BC. Recently an alternative approximation
scheme [27,28], which preserves the scaling information of
the variance in the metallic, as well as the insulating phases,
was suggested to circumvent these problems. Since the ap-
proach amounts to formulating a Binder cumulant in the
context of a geometric phase, the method will be named the
geometric Binder cumulant (GBC).

In this work, we apply the GBC to the Aubry-André [29]
(AA) model. The AA model is used to study quasicrys-
tals [30–32] and the localization phenomenon [33–37]. It
exhibits a phase transition between extended and localized
states at a finite on-site potential potential strength. At finite
system size we find that the ground state on the metallic side
can be degenerate. We discuss ways to handle this issue. The
distribution function of the polarization in the degenerate case
is a raised cosine distribution (RCD), whose EK is a specific
number known from the statistics literature [38]. Our lowest
order approximation does not reproduce that known value, but
as higher order finite difference approximations are used the
fourth order GBC (U4) converges to it (Fig. 1). The GBC also
characterizes the critical exponents near the AA transition and
locates the transition point accurately (Figs. 3 and 4).
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FIG. 1. Binder cumulant for a closed gap system with a twofold
degenerate ground state as a function of n. The value of n determines
the order of the finite difference approximation (O(L−2n)). As the ap-
proximation is improved, the geometric Binder cumulant approaches
the limiting value of 0.19792... which corresponds to the known [38]
value of the excess kurtosis for the raised cosine distribution.

We also calculate the GBC for individual eigenstates
(Fig. 5) and find that all states are delocalized in the extended
phase, while in the localized phase, only some states become
localized, but this causes the entire system (at half-filling) to
localize at finite fillings. For the AA model Jitomirskaya [34]
has shown that for infinite systems all states localize at the
transition point (W = 2t). Recently this result was questioned
to some extent by the suggestion [36,37] of “almost localized”
states. Our results within periodic boundary conditions sug-
gest that some states remain delocalized even for W > 2t , but
this may be due to the periodic boundary conditions. It is to
be noted that a calculation of this type is not possible without
the use of the technique developed here: our technique allows
the determination of whether a state is localized or not from
one calculation on the state itself, without having to compare
different system sizes.
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FIG. 2. Momentum density [44] as a function of k across the
Brillouin zone for an Aubry-André model with 610 lattice sites for
t = W = 1 (extended phase). The momentum density has disconti-
nuities as a function of k, at k = ± π

4 ,± π

2 , ± 3π

4 . Filled black circles
indicate a system with Peierls phase φ = 0, while the red diamonds
indicate the states that appear when a Peierls phase of φ = π/L is
applied to shift the momenta of states. These extra states, which
always appear halfway through discontinuities are indicated by six
arrows.
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FIG. 3. (a) M2 (second cumulant) as a function of W/t for system
sizes L = 610, 2584, and 10 946. For L = 610 and 10 946, φ = 0
(corresponding to periodic boundary conditions), while for L =
2584, φ = π/L (corresponding to antiperiodic boundary conditions).
The ground state in all three cases is nondegenerate. (b) same as
(a) except the Peierls phase is φ = π/L for L = 610 and 10 946, and
φ = 0 for L = 2584. The ground state in all three cases is degenerate.

Our paper is organized as follows. In the next section, the
MPT based cumulant method is assembled. In Sec. III, the
model and the specificities of the calculation are chronicled.
We then relate a Widom scaling analysis, in which we derive
and then numerically verify a universal relation between crit-
ical exponents. In Sec. V, we address the effects of ground
state degeneracy. In Sec. VI, the results of our calculations are
presented. In Sec. VII, we conclude our work.

II. GEOMETRIC BINDER CUMULANT

In this section we construct a version of the Binder cu-
mulants adapted to the context of the modern polarization
theory (MPT), which we will refer to as the geometric Binder
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FIG. 4. (a) U4 (geometric Binder cumulant) as a function of W/t
for system sizes L = 610, 2584, and 10 964 for the case with a
nondegenerate ground state. (b) same as (a) but for the case with a
degenerate ground state. The inset shows the same systems as (b) but
with U4 calculated via a two grid-point approximation.
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FIG. 5. Geometric Binder cumulant U4 of a a given energy eigen-
state as a function of energy eigenvalue of the Aubry-André model
for different values of W/t : (a) 1.00, (b) 1.99, (c) 2.01, and (d) 2.10.
The red dashed line indicates U4 = 0.

cumulant (GBC). We briefly introduce the MPT by way of
the twist operator, and then focus on how cumulants are
constructed. Moments and cumulants are derivatives of the
generating function, but in a periodic system this function
is only defined on a discrete set of k-points, so one can not
take an exact derivative. Given that, the usual approach is
to take finite difference derivatives, and we argue that it is
crucial how the finite difference approximation is applied,
because not all approximation schemes can reproduce finite
size scaling information. Our approach is validated through
the reproduction of the known value of the excess kurtosis
for a number of distribution functions (Fig. 1 of Ref. [28]
and Fig. 1 of this work) found in the delocalized phase. As
for the insulating phase, it was shown [28] that the GBC (U4)
can only take nonzero values for adiabatic paths which cross
degeneracy points, and it is always zero for fully adiabatic
paths. Based on this one can expect that in the insulating phase
the GBC always takes a value of zero. Our numerical results
show that this happens in the limit of large system sizes. A
GBC of zero corresponds to a Gaussian distribution of the
polarization.

A. Twist operator

In MPT, the position operator is not used directly. Instead,
for the electronic contribution [39] of the polarization, expec-
tation values of the twist operator,

Û = exp

(
i
2π

L
X̂

)
, (1)

are taken, from which the total position and its cumulants can
be extracted. In Eq. (1), L is the length of the system in which
it is periodic, X̂ = ∑N

j=1 x j n̂ j is the total position operator (x j

denotes the position, n̂ j denotes the density operator at site j,
and N is the number of particles). The expectation value over
some ground state �,

Zq = 〈�|Û q|�〉 (2)

can be interpreted as a characteristic (cumulant generating)
function, associated with the probability distribution of the
total position,

P(X ) = 〈�|δ(X − X̂ )|�〉. (3)

Since P(X ) is periodic in L, Zq is only defined on a discrete set
of points q = 0, . . . , L − 1. In general, � denotes a correlated
ground state. In band systems, such as the Aubry-André model
we study, � is a Slater determinant constructed from occupied
Bloch states.

B. Cumulants in statistics

Given a normalized probability distribution function,
P0(x), which satisfies

P0(x) � 0,

∫ ∞

−∞
dxP0(x) = 1, (4)

one can define the associated characteristic function,

f (k) =
∫ ∞

−∞
dx exp(ikx)P0(x). (5)

The nth moment (Mn) and the nth cumulant (Cn) of P(x) can
be obtained from f (k) as

Mn = 1

in

∂n f (k)

∂kn

∣∣∣∣
k=0

= 〈xn〉,

Cn = 1

in

∂n ln f (k)

∂kn

∣∣∣∣
k=0

, (6)

where 〈〉 denote the average over P0(x). The moments and
cumulants are related to each other, the first few such relations
can be written as

C1 = M1, C2 = M2 − M2
1 ,

C3 = M3 − 3M2M2
1 + 2M3

1 ,

C4 = M4 − 4M3M1 − 3M2
2 + 12M2M2

1 − 6M4
1 . (7)

C1 is known as the mean, C2 is the variance, C3 is the skew,
and C4 is the kurtosis. The distribution, P(x) can be shifted so
that the mean is zero. In this case, the cumulants and moments
become centered, and the relations in Eq. (8) become

C1 = 0, C2 = M2,

C3 = M3, C4 = M4 − 3M2
2 . (8)

The excess kurtosis, used in statistics to characterize the tails
of distribution functions, is defined as,

KE = C4

C2
2

. (9)

When the quantity x refers to the order parameter of a physical
system, the fourth order Binder cumulant (U4) is often used in
finite size scaling,

U4 = 1 − M4

3M2
2

= −1

3
KE , (10)

which is equivalent to the excess kurtosis. The two quantities
only differ in the factor of − 1

3 .
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C. Case of periodic probability distribution functions

In the modern theory of polarization, crystalline systems
are treated, whose Hamiltonians are taken as periodic. The
underlying probability distributions are also periodic. We can
write

P(x) =
∞∑

w=−∞
P0(x + wL), (11)

where P0(x) is a normalized probability distribution, not pe-
riodic, as defined in Eq. (4). P(x) is periodic in L. One is
interested in the moments and cumulants of P0(x), but the
characteristic function is only available at a discrete set of k
points,

kq = 2π

L
q, (12)

where q = 0, . . . , L − 1. This also means that the derivatives
which need to be calculated to obtain Cn or Mn have to be
approximate derivatives. Most often they are finite difference
derivatives. Denoting the discrete characteristic function as
Zq, which we define as

Zq =
∫

dxP0(x) exp

(
i
2π

L
qx

)
. (13)

The Resta-Sorella approximation for the variance amounts
to using a finite difference approximation for C2 of order
O(L−2),

C2 =
(

L

2π i

)2

(ln Z1 + ln Z−1 − 2 ln Z0) = − L2

2π2
ln |Z1|.

(14)
In the last part of this equation, we used the fact that Z−1 = Z∗

1 ,
and that Z0 = 1.

D. Finite difference derivatives

Given a function f (x) represented on a discrete set of
points, fq = f (qh), with q integer, where h denotes the spac-
ing between the points. One can construct [40] the centered
finite difference approximation of fq to different levels of
accuracy. For example, for the second derivative at q = 0, we
can write

∂2 f (x)

∂x2

∣∣∣∣
x=0

≈ f1 + f−1 − 2 f0

h2
. (15)

This approximation leads to an error of order O(h−2). The
Resta-Sorella variance can be derived using this approxima-
tion, by associating h = 2π

L and ln |Zq| = fq. One can also
improve on the Resta-Sorella scheme, by using higher order
approximations to the second derivative, for example, the next
order (O(h−4)) is

∂2 f (x)

∂x2

∣∣∣∣
x=0

≈ − f2 + 16 f1 − 30 f0 + 16 f−1 − f−2

12h2
. (16)

We see that in higher order approximations fqs with larger qs
appear. Using this approximation one can obtain an O(h−4)
approximation to the variance,

C2 = L2

24π2
(ln |Z2| − 16 ln |Z1|). (17)

By including more Zqs with larger qs one can obtain system-
atically improved approximations in the insulating phase.

It is also possible to derive higher order cumulants, such
as the kurtosis, needed to construct the Binder cumulant. The
lowest order (O(h−2)) approximation to the fourth derivative
reads as

∂4 f (x)

∂x4

∣∣∣∣
x=0

≈ f2 − 4 f1 + 6 f0 − 4 f−1 + f−2

h4
. (18)

Based on this approximation, one can write an expression for
the kurtosis of the polarization as

C4 = L4

8π4
(ln |Z2| − 4 ln |Z1|), (19)

alternatively, using the next best approximation results in

C4 = L4

48π4
(− ln |Z3| + 12 ln |Z2| − 39 ln |Z1|). (20)

Again, higher order approximations need Zqs with progres-
sively larger values of q. In principle, one is in a position
now to construct the Binder cumulant, since both C4 and C2

are available. However, if one used the above approximations,
one would encounter a problem, namely that the terms Zq

approach zero in the extended phase, leading to divergences
in ln Zq.

E. Approximating the logarithm

It is, of course, possible to approximate the terms ln |Zq|,
by expanding the quantity (|Zq| − 1), resulting in

ln[1 + (|Zq| − 1)] = (|Zq| − 1) − (|Zq| − 1)2

2
+ . . . (21)

Using this approximation in O(L−2) expressions for C4

[Eq. (19)] and C2 [Eq. (14)] lead to

C2 = L2

2π2
(1 − |Z1|),

C4 = L4

8π4
(−|Z2| + 4|Z1| − 3). (22)

We define the geometric Binder cumulant (GBC) as

U4 = −1

3

C4

C2
2

. (23)

In the nondegenerate case of the extended phase all Zq → 0,
except Z0 which is unity. It follows that U4 = 1

2 . In the de-
generate case, as discussed below, Zq → 0, except for Z0 = 1
and Z1 = 1/2, leading to U4 = 1

3 . In the extended state ln Zq

for q > 1 will diverge. C2 will not diverge at O(L−2), but if
higher order approximations are used, it will. Also C4 will
diverge, and so will U4. This means that in the original RS
scheme size scaling information in the extended phase will be
lost. Approximating ln Zq as in Eq. (21) solves this problem.

It may appear that the GBC technique advocated here is
worse than the original RS scheme, since another approxi-
mation is introduced. It is to be noted that the two simple
polarization distributions which occur in the extended phase
(the flat distribution in the nondegenerate case, and the RCD
in the degenerate case) both have known EK values, which
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are reproduced by the GBC technique (Fig. 1 in Ref. [28] and
Fig. 1), but this can not done by the original RS scheme, which
exhibits divergences.

III. MODEL AND CALCULATION DETAILS

We consider a Hamiltonian of the Aubry-André type given
by

Ĥ = −t
L∑

j=1

(c†
j+1c j + c†

j c j+1) + W
L∑

j=1

ξ jn j, (24)

where ξ j = cos(2πα j), where α is the golden ratio obtained
from the ratio of consecutive members of the Fibonacci
sequence in the limiting case, and the operators c†

j (c j) cre-
ate(annihilate) a particle at site j. For finite systems with PBC,
the irrational α is approximated as a ratio α ≈ Fn+1/Fn, where
Fn is the nth Fibonacci number, so the size of the system can
not be smaller than Fn.

In our calculations below, we diagonalize Ĥ under periodic
boundary conditions, meaning that we obtain a set of states
on the lattice, 	λ( j), where λ denotes the state index, and
j denotes the lattice site. For a system with N particles, the
ground state wave function is a Slater determinant consisting
of the N states, 	λ( j), λ = 1, . . . , N with lowest energy,

�( j1, . . . , jN ) = Det[	λ( jμ)], (25)

where jμ denotes the lattice coordinate of particle μ, and
μ = 1, . . . , N . To calculate the quantity Zq, one can use the
fact that the overlap of determinants equals the determinant of
overlaps, resulting in

Zq = 〈�|Û q|�〉 = Det[〈	λ|ûq|	λ′ 〉], (26)

where û denotes the one-body analog of Û resulting in

〈	λ|Û q|	λ′ 〉 =
L∑

j=1

φ∗
λ ( j) exp

(
i
2πq

L
j

)
φλ′ ( j). (27)

IV. WIDOM SCALING IN THE AUBRY-ANDRÉ MODEL

By considering the continuous generalization of Zq, which
occurs in the thermodynamic limit, it is possible to con-
struct a scaling theory within the MPT. This was done in
Ref. [41]. Sending 2π

L q → K , we define the singular “free en-
ergy” 	(w, K ) = ln Z (w, K ), where w = W −Wc

t denotes the
reduced potential strength in the vicinity of the transition
(Wc = 2). The second and fourth cumulants (susceptibilities)
all diverge as Wc is approached. Using the usual definition for
susceptibilities,

χ (n) = 1

in

∂n	(w, K )

∂Kn
, (28)

one can define critical exponents which characterize the sys-
tem in the vicinity of Wc,

χ (2)(w, 0) ∝ 1/wβ,

χ (4)(w, 0) ∝ 1/wα,

χ (2)(0, K ) ∝ 1/Kδ. (29)

Assuming the Widom scaling form, 	(λaw, λbK ) =
λ	(w, K ) leads to the relation between the critical exponents,

αδ = β(δ + 2). (30)

In Ref. [41], the exponent δ was determined to be δ = 2, since
this exponent characterizes the system at the critical point, and
the distribution of the extended state can be used to estimate
it for any model with a localization transition. This results in
the relation α = 2β, which appears to be a universal relation
in 1D systems for transitions accompanied by gap closure. For
other 1D models, this relation was verified in Ref. [41]. Here,
we also find verification for the AA model: we find α = 2 and
β = 1, in agreement with Eq. (30).

V. GROUND STATE DEGENERACY

In 1D lattice models, a degeneracy often occurs for finite
systems, see, for example, Ref. [42,43]. The origin of this
degeneracy is the fact that the Brillouin zone for a finite
system is discrete, and whether it occurs or not depends on
the parity of N and/or L. This effect is expected to disappear
in the thermodynamic limit, and is therefore considered an
artifact. Still, calculations are done in finite systems, so it is
important to understand the effects of this degeneracy. In this
section, we discuss how it effects the GBC, and also present
various ways of addressing it.

In the extended state, we find that the GBC can take
two values, U4 = 1

2 or 1
3 . The former(latter) corresponds to a

nondegenerate(degenerate) ground state. In the nondegenerate
case, all Zq = 0, except, Z0 = 1. When the ground state is
degenerate, Z0 = 1, |Z1| = 1/2, and all other Zq are zero. The
degeneracy depends on the optimal spacing of k-vectors in the
Brillouin zone and whether N and L are even or odd.

The quantity Zq is a scalar product, 〈�|�̃〉, where |�̃〉 =
exp(i 2πq

L X̂ )|�〉 denotes the ground state with all momenta
shifted by 2π

L q as a result of the twist operator. If the ground
state is nondegenerate, then there is only one ground state,
which has to have zero total momentum. Since Zq will be
the scalar product of a zero momentum state and one with a
finite momentum (due to the action of Û q), all Zq = 0, except
if q = 0. When the ground state is degenerate, the ground
state wave function will have two components, one with total
momentum π/L, the other with total momentum −π/L. Let
us write this ground state wave function as

|�〉 = a|�π/L〉 + b|�−π/L〉, (31)

where a and b are two complex numbers, each with magnitude
1/

√
2, because the total wave function has to have zero total

momentum. To calculate Z1, we apply the shift operator Û
once, resulting in

|�̃〉 = Û |�〉 = a|�3π/L〉 + b|�π/L〉. (32)

Evaluating the scalar product results in

Z1 = 〈�|�̃〉 = a∗b, (33)

from which it follows that |Z1| = 1/2. A similar analysis
shows that other Zq = 0, except Z0 = 1.

The momentum density [44] for both the degenerate and
nondegenerate cases is shown in Fig. 2 in the extended phase
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indicating discontinuities. In the degenerate case, states are
found with momentum density precisely at the discontinuity,
indicated by arrows in the figure. The Fourier transform of Zq

gives the polarization distribution [Eq. (13)]. For a metallic
system with a nondegenerate ground state this distribution
is flat, while for a degenerate system it is RCD (inset of
Fig. 1). For both functions the GBC (or EK) takes well-known
values [38] (U4 = 0.4 and U4 = 0.19792 . . . ., respectively).
Our results based on Eqs. (22) and (23) do not coincide with
those values, but if higher order approximations are used, our
U4s converge to the known values. For the nondegenerate case
(flat distribution), this is shown in Fig. 1 of Ref. [28], for the
degenerate case (RCD), we present it in Fig. 1 of this work.

The results of the above calculations suggest several ways
to get around the degeneracy issue. One is to handle the two
cases (degenerate and nondegenerate) separately, since in the
former(latter), the GBC will tend to 1/3(1/2) in the extended
phase. It is also possible to apply a Peierls phase of π/L
to lift the degeneracy (or to generate a degenerate ground
state). Such calculations are presented in Figs. 3 and 4. It is
also possible to construct a U4 which is not sensitive to this
degeneracy. To do this, send q → 2q in all the Zq’s occurring
Eq. (22), amounting to doubling the distance over which the
finite difference derivative is defined. Results for a calculation
of this type are shown in the inset of Fig. 4. As presented in
the Results section, all of these methods work in locating the
critical point.

For locating critical points, our results for AA below, and
previous studies [27,28] show that U4 approximated up to
O(L−2) works well. The original RS variance [8,10] is based
on a finite difference logarithmic derivative and it is correct up
to O(L−2). It is possible to construct higher order cumulants
to any order approximation by extending the RS scheme as
well (see, for example, Eq. (51) of Ref. [28]), however, these
will fail to give the known values of the flat or the RCD for
the EK, because of terms like ln Zq with q > 0 which diverge
as Zq → 0.

VI. RESULTS

Figure 3 shows the second cumulant of the polariza-
tion as a function of W/t for both nondegenerate (a)
and degenerate (b) ground states. Three system sizes, L =
610, 2584, and 10 946, were investigated. Two sets of re-
sults are shown, the upper (lower) panel for a nondegenerate
(degenerate) ground state. In the region W/t < 2, the func-
tions are straight lines, a drastic change occurs at W/t =
2, the transition point. Defining the size scaling exponent
γ as M2 = aLγ , we find that for W/t < 2, γ = 2, while
for W/t > 2, γ = 1 (negligible error in both cases). These
results are in line with expectations [45]. At the transi-
tion point itself, we find γ = 1.44(7) [γ = 1.71(3)] for the
nondegenerate (degenerate) case. The phase transition point
is clearly identified. For comparison, Ref. [26] reports a flat
variance and γ = 2.008(5) for OBC, meaning that our method
for PBC, in this sense, coincides with their OBC results.

The Binder cumulant results (Fig. 4) corroborate the find-
ings based on the variance. In the regime of extended states,
the Binder cumulant shows the predicted sensitivity to ground
state degeneracy, because its value is 1/2 (1/3) for the

nondegenerate (degenerate) case. In the localized regime the
GBC becomes negative but tends to zero with both increasing
disorder strength and system size.

Figure 4 shows that the transition can be determined using
one system size only when U4 is used, since even for one
system size U4 changes sign. We now exploit this feature
to calculate localization in individual eigenstates of the AA
model. To gain insight into the localization mechanism, we
calculated U4 for each eigenstate for different values of W/t
(Fig. 5). For W/t = 0 (not shown), all states are extended
(U4 = 1

2 ). The states are evenly distributed, no clustering oc-
curs, there are no gaps. As W is increased, but still metallic,
bands form, with gaps between them, clustering is seen in (a)
and (b) of Fig. 5. While the values of U4 span a wider range,
all states have U4 > 0. As the phase boundary is crossed, a
fraction of states localize, U4 < 0. Interestingly, not all states
have U4 < 0, some appear to remain delocalized, at least in
the periodic box of size L = 610. Unlike in uncorrelated dis-
ordered systems [22] with mobility edges, the localized states
are not necessarily on the edges of the bands. In the AA in
1D, at half-filling, the wave function is a Slater determinant of
occupied states, the localized states localize the whole system.
Away from half-filling the critical point remains W/t = 2.
This follows from the results in Fig. 4.

VII. CONCLUSION

We developed a finite size scaling method to be used
to locate quantum phase transition points in the context of
the modern polarization theory, where the polarization is ex-
pressed as a geometric phase, rather than the expectation value
of an operator. The method was applied to the Aubry-André
model, the canonical model in the study of quasi-periodicity,
and one which exhibits a transition between extended and lo-
calized phases. The Binder cumulant construction allows the
determination of localization of individual states, because, un-
like when the variance is used, a comparison between different
system sizes is not necessary. We calculated the localization of
individual eigenstates and found that some of the states remain
delocalized even upon crossing the phase transition point.
This result raises interesting questions about localization, and
how it occurs [34,36,37] when periodic boundary conditions
are used.

In a seminal paper in 1964, Walter Kohn [11] was the
first to point out that the quantum criterion to distinguish
conductors from insulators is the localization of the center of
mass of the charge distribution, rather than the localization of
individual charge carriers, which is the appropriate criterion in
the classical case. The numerical testing of this idea was not
possible at the time, because in model calculations periodic
boundary conditions are used, and the position operator is ill-
defined. The modern theory of polarization, developed [1,2] in
the 1990s, overcame this problem by casting the polarization
as a geometric phase [6,7]. All example calculations based
on this theory support the original tenet of Kohn. Our work
provides for the use of scaling methods [17–20], originating
from renormalization group theory, in a modern polarization
theoretical context, and allows for quantitative tests of Kohn’s
tenet.
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