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We characterize, by means of large-scale fermion quantum Monte Carlo simulations, metallic and deconfined
quantum phase transitions in a bilayer honeycomb model in terms of their quantum critical and finite-temperature
properties. The model features three distinct phases at zero temperature as a function of interaction strength. At
weak interaction, a fully symmetric Dirac semimetal state is realized. At intermediate and strong interaction,
respectively, two long-range-ordered phases, each breaking different symmetries are stabilized. The ordered
phases feature partial and full gap openings in the fermion spectrum, respectively. We clarify the symmetries
of the different zero-temperature phases and the symmetry-breaking patterns across the two quantum phase
transitions between them. The first transition between the disordered and long-range-ordered semimetallic phases
has previously been argued to be described by the (2 + 1)-dimensional Gross-Neveu-SO(3) field theory. By
performing simulations with an improved symmetric Trotter decomposition, we further substantiate this claim
by computing the critical exponents 1/ν, ηφ , and ηψ , which turn out to be consistent with the field-theoretical
expectation within numerical and analytical uncertainties. The second transition between the two long-range-
ordered phases has previously been proposed as a possible instance of a metallic deconfined quantum critical
point. We further develop this scenario by analyzing the spectral functions in the single-particle, particle-hole,
and particle-particle channels. Our results indicate gapless excitations with a unique velocity, supporting the
emergence of Lorentz symmetry at criticality. We also compute the finite-temperature phase boundaries of
the ordered states above the fully gapped state at large interaction. The phase boundary vanishes smoothly in
the vicinity of the putative metallic deconfined quantum critical point, in agreement with the expectation for a
continuous or weakly first-order transition.

DOI: 10.1103/PhysRevB.110.125123

I. INTRODUCTION

Quantum critical points refer to continuous phase tran-
sitions occurring at absolute zero temperature. In two-
dimensional systems consisting of only few atomically thin
layers, a number of control parameters that may potentially
drive such transitions exist, such as uniaxial or hydrostatic
pressure, lattice mismatch, or twisting angle. In insulators,
conventional quantum critical points are characterized by
fluctuations of a bosonic order parameter alone. These quan-
tum critical points can usually be fully understood in terms
of a corresponding higher-dimensional classical transition
within the Landau-Ginzburg-Wilson paradigm. In metals, by
contrast, the presence of gapless fermionic degrees of free-
dom at the transition inhibits such a quantum-to-classical
mapping. As potential platforms for physics beyond the
Landau-Ginzburg-Wilson paradigm, metallic quantum critical
points have therefore attracted significant attention in recent
years [1–11]. A different route towards the exploration of un-
conventional phase transitions has been the physics frustrated
quantum magnets [12]. In the presence of significant quantum
fluctuations arising from frustration, the system can fea-
ture fractionalized excitations, interacting via emergent gauge
fields. Such a scenario has been heavily discussed at quantum
phase transitions between Néel antiferromagnetic and valence
bond solid phases in magnetic Mott insulators [13–23]. Since

the two states adjacent to the phase transition point break
different symmetries, a continuous and direct transition is,
without fine tuning, not possible if the transition is governed
by fluctuations of the order parameters alone. The numeri-
cal evidence for a generic continuous (or weakly first-order)
transition has therefore been interpreted as a consequence of
the emergence of fractionalized quasiparticle excitations that
are confined in both long-range-ordered phases, but become
deconfined at the transition point [24]. A related class of
unconventional quantum critical points has been discussed in
models that feature transitions into phases characterized by
topological order, such as quantum spin liquids. If the frac-
tionalized excitations associated with the topological order
become or remain gapless at the transition point, they give
rise to exotic fractionalized quantum universality classes that
do not have any classical analogues [25–31].

In this paper, we study a lattice model that features
two metallic quantum phase transitions as function of cou-
pling strength [32]. The first one is continuous and can
be understood within the (2 + 1)-dimensional Gross-Neveu-
SO(3) [GN-SO(3)] field theory [33]. In the SO(3)-broken
phase, two out of three Dirac cones acquire a mass, and
the wave function of the ungapped Dirac electron couples
to the SO(3) order parameter. Similar mass terms have been
put forward in spin-orbit-coupled fermions on a honeycomb
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lattice [34]. The second one is a transition between two
long-range-ordered phases that break different symmetries:
the aforementioned SO(3)-spin-symmetry-broken semimetal
and a U(1)-charge-symmetry-broken fully gapped state [35].
The latter can be understood as an insulator characterized
by U(1) interlayer coherence [32]. We show, nevertheless,
that the interlayer-coherent insulator is degenerate with an
s-wave superconducting state as a consequence of a partial
particle-hole (PPH) symmetry. At the level of mean-field
theory, the transition between the SO(3)-spin- and U(1)-
charge-symmetry-broken phases is strongly first order [32].
Quantum fluctuations beyond mean-field theory significantly
weaken this order-to-order transition, rendering it a candidate
for a deconfined quantum critical point in the presence of
gapless fermionic excitations—a potential microscopic real-
ization of metallic deconfined quantum criticality [36]. We use
large-scale sign-problem free quantum Monte Carlo (QMC)
simulations with a Hermitian Trotter decomposition, which
significantly improves convergence properties with respect to
the limit of small Trotter time steps, to compute the quantum
critical and thermodynamic properties of both transitions. Fur-
thermore, in contrast to our initial exploratory study of this
model [32], we employ a microscopic implementation that
preserves the model’s PPH symmetry explicitly, maintaining
the degeneracy of the interlayer-coherent insulating and s-
wave superconducting ground states in the fully gapped phase
already on finite lattices. The interlayer-coherent insulating
and s-wave superconducting states allow finite-temperature
phases above the zero-temperature order. The latter breaks
both U(1)-charge and PPH symmetries. Upon increasing tem-
perature, it is therefore possible that the U(1) and PPH orders
melt at different temperatures, with an intermediate vestigial
phase at intermediate temperatures [37–39]. We compute the
finite-temperature phase diagram of the model and show that
the boundaries of the low-temperature orders vanish upon
approaching the putative deconfined quantum critical point,
in agreement with the expectation for a continuous or weak-
first-order transition.

The rest of this paper is organized as follows: In Sec. II, we
introduce our model. Its symmetries are discussed in Sec. III.
Details of our QMC simulations, with a focus on the technical
advances achieved in the present paper in comparison with
our initial exploratory study of the model [32], are given in
Sec. IV. Section V contains a discussion of our results on the
critical properties of the two different quantum phase transi-
tions occurring in our model at zero temperature. In Sec. VI,
we present our results on the finite-temperature phase diagram
of the model. We conclude with a summary and outlook in
Sec. VII.

II. MODEL

We consider a model of interacting complex fermions on
the bilayer honeycomb lattice, defined by the Hamiltonian

Ĥ = Ĥ0 + ĤJ (1)

with nearest-neighbor intralayer hopping part

Ĥ0 = −t
∑
〈i j〉

ĉ†
i,σ,λĉ j,σ,λ (2)

with hopping parameter t > 0 and an SO(3)-symmetric
on-site interaction part

ĤJ = −J
∑
i,α

(
ĉ†

i,σ,λKα
σσ ′τ

z
λλ′ ĉi,σ ′,λ′

)2
. (3)

with coupling J � 0. Here, 〈i j〉 denotes nearest neighbors on
the single honeycomb layer with N = 2L × L sites, λ = 1, 2
is the layer index, α = 1, 2, 3 counts the three 3 × 3 gener-
ators (Kα )σσ ′ = −iεασσ ′ of SO(3), and σ, σ ′ = 1, 2, 3 count
internal SO(3) degrees of freedom; the diagonal Pauli matrix
τ z acts on the layer degrees of freedom. The summation
over repeated layer and SO(3) indices is implicitly assumed
throughout the paper, unless specified otherwise.

The interacting fermion hopping model defined by Ĥ can
be understood as an effective low-energy description of a frus-
trated Kugel-Khomskii-type spin-orbital model [30]. In the
spin-orbital formulation, the fermionic quasiparticles created
by ĉ†

i,σ,λ represent spinons arising from fractionalization in
a quantum spin-orbital liquid phase [40]. Moreover, in this
formulation, the SO(3) vector �̂si,λ = (ŝα

i,λ) with components

ŝα
i,λ := ∑

σ,σ ′ ĉ†
i,σ,λKα

σσ ′ ĉi,σ ′,λ (no summation over λ) describes
the spin density on site i and layer λ. The interaction term
ĤJ = −J

∑
i(�̂si,1 − �̂si,2)2 then favors differences in spin den-

sities between the two layers, and can therefore be understood
as a type of interlayer spin-density interaction. For simplicity,
in what follows, we consistently refer to ĤJ as spin-density
interaction, also in those cases in which no explicit reference
to the model’s spin-orbital formulation is made. A sketch of
the model is depicted in Fig. 1(a).

The interacting bilayer honeycomb model defined by
Eqs. (1)–(3) has previously been studied at zero temperature
using mean-field theory and projective QMC simulations in
Ref. [32]. The corresponding quantum phase diagram as func-
tion of interaction strength J , as obtained from Ref. [32], is
schematically shown in the bottom panel of Fig. 1(b). The
model features three different phases at zero temperature. At
weak interaction J < Jc1, a fully symmetric Dirac semimetal
(DSM) is realized. It features 3 × 2 × 2 = 12 gapless Dirac
cones at the Fermi level, arising from the spin, layer, and val-
ley degrees of freedom. At intermediate interaction Jc1 < J <

Jc2, an SO(3)-spin-symmetry-broken Dirac semimetal (SO3
DSM) is stabilized, in which eight out of the 12 Dirac cones
acquire a mass gap, while the four leftover Dirac cones remain
gapless. This partial gap opening is a consequence of the zero
eigenvalue of the SO(3) generators Kα

σσ ′ . At strong interaction
J > Jc2, a U(1)-charge-symmetry-broken fully gapped state is
stabilized. It can be understood as an insulator characterized
by U(1) interlayer coherence [32]; however, we show below
that the interlayer-coherent insulator (ILC) is degenerate with
an s-wave superconducting state (SSC) as a consequence of a
PPH symmetry. The fermion single-particle spectral function
from mean-field theory [32] is shown for representative values
within the three different phases in the top panel of Fig. 1(b),
illustrating the partial and full gap opening at intermediate and
strong coupling, respectively.

III. SYMMETRIES

The model’s rich phase diagram originates from the large
number of fermion internal degrees of freedom together with
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FIG. 1. (a) Sketch of bilayer honeycomb model defined by
the Hamiltonian given in Eqs. (1)–(3). Each lattice site (purple
dots) contain three SO(3) spin flavor degrees of freedom. The
two layers interact via an SO(3)-symmetric spin-density interaction
parametrized by the coupling J (orange link). (c) (Bottom) Schematic
quantum phase diagram as function of J , showing the disordered
Dirac semimetal (DSM) at small J , the SO(3)-spin-symmetry-broken
Dirac semimetal (SO3 DSM), in which 2/3 of the Dirac cones
acquire a mass gap, while 1/3 remains gapless, at intermediate J ,
as well as the fully gapped degenerate interlayer-coherent insulator
(ILC) and s-wave superconductor (SSC) at strong J . The insets
illustrate the fermion band structures in the three different phases.
(Top) Fermion single-particle spectral function from lattice mean-
field theory along a high-symmetry path in the first Brillouin zone
[depicted in (b)], illustrating the partial and full gap openings in the
SO3 DSM and ILC/SSC phases, respectively.

the intricate symmetry structure. In the following, we analyze
in detail the symmetries of the hopping and interaction parts
of the Hamiltonian defined in Eqs. (2) and (3), respectively.
It will prove convenient to do this using a Majorana fermion
representation.

A. Majorana representation

We introduce two Majorana fermions γ̂i,σ,λ,1 and γ̂i,σ,λ,2 for
each complex fermion ĉi,σ,λ on the two different sublattices A
and B as

ĉi,σ,λ =
{

1
2 (γ̂i,σ,λ,1 − iγ̂i,σ,λ,2), if i ∈ A,
i
2 (γ̂i,σ,λ,1 − iγ̂i,σ,λ,2), if i ∈ B.

(4)

The Hermitian Majorana operators obey the anticommuta-
tion relation {γ̂i,σ,λ,l , γ̂ j,σ ′,λ′,l ′ } = 2δi jδσσ ′δλλ′δll ′ , where l =
1, 2 corresponds to the Majorana index. Introducing a

twelve-component spinor �̂γ �
i = (γ̂i,σ,λ,l ), obtained by com-

bining the spin, layer, and Majorana indices into one
super-index, allows us to write the kinetic energy Ĥ0 as

Ĥ0 = it

4

∑
〈i j〉

�̂γ �
i �̂γ j . (5)

In this form, the hopping part of the Hamiltonian becomes
manifestly invariant under O(12) rotations, under which the
Majorana spinor transforms as a vector,

�̂γi �→ �̂γ ′
i = O �̂γi, with O�O = 112. (6)

The on-site interaction term becomes in the Majorana
formulation(

ĉ†
i,σ,λKα

σ,σ ′τ
z
λ,λ′ ĉi,σ ′,λ′

)2

= 1
4

[
(γ̂i,σ,λ,1 + iγ̂i,σ,λ,2)Kα

σσ ′τ
z
λλ′ (γ̂i,σ ′,λ′,1 − iγ̂i,σ ′,λ′,2)

]2

= 1
4

(
γ̂i,σ,λ,l K

α
σσ ′τ

z
λλ′ γ̂i,σ ′,λ′,l

)2

= 1
4

(
�̂γ �

i Kατ zμ0 �̂γi
)2

, (7)

where, in the last step, we have introduced the identity matrix
μ0 := 12 that acts on the Majorana flavor index. We recall that
τ z acts on the layer index and the SO(3) generators Kα , α =
1, 2, 3, act on the spin indices. In the above, the cross terms
in the Majorana index vanish since the Kα are antisymmetric
and τ z is symmetric.

All in all, the full Hamiltonian takes the form

Ĥ = it

4

∑
〈i j〉

�̂γ �
i �̂γ j − J

4

∑
i,α

(
�̂γ �

i Kατ zμ0 �̂γi
)2

. (8)

The interaction term reduces the O(12) global symmetry of
the hopping term down to a subgroup that satisfies

O�Kατ zμ0O = RαβKβτ zμ0, (9)

where R is an SO(3) matrix and the sum over repeated spin
indices is implicitly implied. We can now systematically read
off the global symmetries of our Hamiltonian.

B. SO(3) spin rotational symmetry

Here,

OSO(3) = eiθ �e· �K , (10)

with rotation angle θ ∈ [0, 2π ) and rotation axis �e, and a
similar form holds for R. Since O�

SO(3) = O†
SO(3), the complex

fermion operators transform as

ĉi,σ,λ �→ (OSO(3))σσ ′ ĉi,σ ′,λ. (11)

The SO(3) order parameter reads

�̂Si = (
Ŝα

i

)
:= ĉ†

i,σ,λKα
σσ ′ ĉi,σ ′,λ, (12)

which can be understood as total spin density, �̂Si = �̂si,1 + �̂si,2,
where �̂si,λ denotes the spin density at site i on layer λ. The

spin density �̂Si transforms as a vector under SO(3) rotations.
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C. U(1) total-charge symmetry

Here,

OU(1)T = eiθμy
(13)

and R = 1. In the above, μy corresponds to the second Pauli
matrix that acts on the Majorana flavor index. For i ∈ A, we
have

ĉi,σ,λ = 1
2 (γ̂i,σ,λ,1 − iγ̂i,σ,λ,2) �→ eiθ ĉi,σ,λ, (14)

and a similar form holds for i ∈ B. A possible order parameter
for U(1) total-charge symmetry breaking is the interlayer s-
wave pairing operator �̂i := ĉ†

i,σ,1ĉ†
i,σ,2.

D. U(1) layer-charge symmetry

Here,

OU(1)L = eiθτ zμy
(15)

and R = 1. This symmetry reflects the fact that the charge is
conserved separately on each layer. For the fermion operator,
the symmetry transformation reads

ĉi,σ,λ �→ (eiθτ z
)λλ′ ĉi,σ,λ′ . (16)

An order parameter for spontaneous U(1) layer-charge sym-
metry breaking is given by the interlayer coherence operator
n̂†

i := ĉ†
i,σ,1ĉi,σ,2.

E. Z2 partial particle-hole (PPH) symmetry

Here,

OPPH = 1 + τ z

2
+ 1 − τ z

2
μz (17)

and R = 1. The PPH symmetry is a Z2 symmetry since
O2

PPH = 1. It acts solely on the second layer where τ z
2,2 = −1.

In the fermion representation, it leads to

ĉi,σ,1 �→ ĉi,σ,1, for all i ∈ A, B, (18)

ĉi,σ,2 �→
{

ĉ†
i,σ,2, if i ∈ A,

−ĉ†
i,σ,2, if i ∈ B,

(19)

While det(OSO(3)) = det(OU(1)T
) = det(OU(1)L ) = 1, one will

show that det(OPPH) = −1. A possible order parameter that
probes PPH symmetry breaking hence reads

P̂i :=
∏
σ,λ,l

γi,σ,λ,l , (20)

since under O(12) transformations P̂i �→ det(O)P̂i. In fermion
notation, we find

P̂i =
∏
σ,λ

(1 − 2ĉ†
i,σ,λĉi,σ,λ). (21)

(In the above equation, there is no summation over σ, λ.)
Under the PPH transformation, the interlayer-coherent insula-
tor thus maps onto an s-wave superconductor and vice versa.
These two states are therefore degenerate by symmetry. Long-
range order in the U(1) layer-charge symmetry broken sector
thus implies long-range order in the U(1) total-charge sector.
We note that the insertion of a flux quantum, as done in our
previous paper [32], breaks the PPH symmetry, and as such

lifts on finite lattices the degeneracy between the interlayer-
coherent insulator and the s-wave superconductor in favor of
the insulating state. In this paper, we therefore refrain from in-
serting a flux quantum, such that the PPH-symmetry-required
degeneracy remains intact already on finite lattices.

IV. QMC SIMULATIONS

In this section, we present aspects of our QMC simulations.
It is beyond the scope of this article to provide a detailed
account of the algorithm and we will concentrate on model
specific issues. We start by describing two different possible
Trotter decompositions, demonstrate the absence of the sign
problem, describe the specific implementation, and finally il-
lustrate the convergence properties with respect to the limit of
small Trotter time steps of the two different decompositions.

A. Trotter decomposition

We represent the partition function at inverse temperature
β as

Z = Tr
M∏

n=1

exp(−�τ Ĥ ), (22)

where M corresponds to the number of Trotter time steps
�τ = β/M.

(a) Naive Trotter decomposition. For sufficiently large
M 
 1, the partition function can be decomposed as

exp(−�τ Ĥ ) =
∫

D �φ e− ∑
i

�φ2
i,τ
2 Tr

M∏
n=1

{
e− �τ

2 Ĥ0

×
(

3∏
α=1

e− ∑
i, j ĉ†

i,λV α
i j ( �φ)τ z

λλ′ ĉ j,λ′

)
e− �τ

2 Ĥ0

}

+ O(�τ 2), (23)

where the functional integral
∫
D �φ is assumed over the aux-

iliary fields �φi,τ = (φα
i,τ ), and we have introduced V α

i j ( �φ) =√
2�τJδi jφ

α
i,τ Kα and ĉi,λ = (ĉi,σ,λ). The partition function

can then be represented in terms of a fermion determinant as

Z =
∫

D �φe− ∑
i

�φ2
i,τ
2 det W ( �φ) (24)

with the fermion matrix given as

W ( �φ) = 1 +
M∏

n=1

{
e− �τ

2 T

(
3∏

α=1

e−V α ( �φ)

)
e− �τ

2 T

}
. (25)

Here, V α = (V α
i j )τ z corresponds to the vertex matrix and

T = (Ti j )τ 0 corresponds to the hopping matrix, with elements
Ti j = −t if i and j are nearest neighbors and Ti j = 0 other-
wise, and the identity matrix τ 0 = 12 acts on the layer degrees
of freedom. As the generators of SO(3), Kα , α = 1, 2, 3, do
not commute with each other, the naive Trotter decomposition
in Eq. (23) leads to a Hermitian time evolution only in the limit
M → ∞.

(b) Hermitian Trotter decomposition. A Hermitian time
evolution already at finite M can be achieved at the expense
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of introducing another set of auxiliary fields �χ in a symmetric
Trotter decomposition as

exp(−�τ Ĥ ) =
∫

D �φD �χ e− ∑
i

�φ2
i,τ +�χ2

i,τ
2 Tr

M∏
n=1

{
e− �τ

2 Ĥ0

×
(

3∏
α=1

e− ∑
i, j

1
2 ĉ†

i V α
i j ( �φ)ĉ j

)

×
⎛
⎝ 1∏

β=3

e− ∑
i, j

1
2 ĉ†

i V β
i j ( �χ )ĉ j

⎞
⎠e− �τ

2 Ĥ0

}

+ O(�τ 2). (26)

The partition function can then analogously be represented in
terms of a fermion determinant det W ( �φ, �χ ), with the corre-
sponding fermion matrix given as

W ( �φ, �χ ) = 1 +
M∏

n=1

{
e− �τT

2

(
3∏

α=1

e− V α ( �φ)
2

)⎛
⎝ 1∏

β=3

e− V β ( �χ )
2

⎞
⎠

× e
−�τT

2

}
. (27)

Below, we show that the above Hermitian Trotter decompo-
sition leads to significantly improved convergence properties
towards the M → ∞ limit.

B. Absence of sign problem

For simplicity, we show the absence of the sign problem for
the naive Trotter decomposition with the fermion determinant
det W ( �φ). Analogous arguments hold for the Hermitian Trot-
ter decomposition with the fermion determinant det W ( �φ, �χ ).

In our model, the hopping matrix T and the vertex matrix
V α ( �φ) are block diagonal with respect to the layer index, such
that the fermion determinant can be written as a product of
single-layer fermion determinants as

det W ( �φ) = det W1( �φ) det W2( �φ), (28)

where Wλ corresponds to the fermion matrix on the λth layer,
λ = 1, 2,

Wλ( �φ) = 1 +
M∏

n=1

{
e

−�τ (Ti j )

2

(
3∏

α=1

e(−1)λ(V α
i j )( �φ)

)
e

−�τ (Ti j )

2

}
,

(29)

where the N × N matrices (Ti j ) and (V α
i j ) act only on a sin-

gle layer. As the hopping matrix is real, (Ti j )∗ = (Ti j ), and
the vertex matrix purely imaginary, (V α

i j )∗ = −(V α
i j ), we have

[det W1( �φ)]∗ = det W2( �φ) for all real configurations �φ. As a
consequence, the fermion determinant is nonnegative,

det W ( �φ) � 0, (30)

facilitating sign-problem-free QMC simulations.

FIG. 2. (a) Expectation value of the interaction part of the
Hamiltonian 〈ĤJ〉 as function of Trotter time step �τ for the two
different Trotter decompositions, using t = 0, J = 1, and β = 4.
The Hermitian Trotter decomposition leads to significantly improved
convergence properties towards the limit �τ = β/M → 0. (b) Au-
tocorrelation function of hopping part of the Hamiltonian 〈Ĥ0〉 as
function of Monte Carlo time tQMC for different fixed values of J ,
using L = 6 and β = 18. The autocorrelation time remains small
near the GN-SO(3) transition point at Jc1 = 0.465(2), but signifi-
cantly increases in the vicinity of the SO(3)-U(1) transition point at
Jc2 = 1.057(10).

C. Specific implementation

We use the ALF implementation [41] of the auxiliary
field QMC algorithm [42–45]. This package utilizes Gauss-
Hermite quadrature to replace sampling over continuous fields
with a discrete field that takes the values ±2 and ±1. For fur-
ther details, we refer to Refs. [41,46]. While both approaches
are formally equivalent, sampling over discrete fields gen-
erally reduces fluctuations. Our finite inverse temperature β

calculations are carried out in the grand-canonical ensemble,
choosing linear system sizes L = 6, 9, 12, 15, 18 with peri-
odic boundary conditions. For the zero-temperature results,
we adopt a β = L scaling, consistent with a dynamical critical
exponent z = 1, as naively expected from the linear fermion
dispersion. If not stated otherwise, we use a Trotter time step
of �τ = 0.2. We choose units in which t = 1 and kB = 1,
such that the temperature T = 1/β and the coupling constant
J � 0 become dimensionless parameters, which we scan.

D. Convergence of Trotter decomposition

Figure 2(a) shows the expectation value of the interaction
part of the Hamiltonian 〈ĤJ〉 as function of the Trotter time
step �τ for the two different Trotter decompositions. Im-
portantly, the Hermitian decomposition leads, in comparison
with the naive decomposition, to significantly improved con-
vergence properties towards the limit �τ = β/M → 0. In the
remainder of this paper, we therefore exclusively employ the
Hermitian Trotter decomposition. As shown below, this allows
us to obtain significantly improved estimates for the quantum
critical properties at zero temperature in comparison with our
previous paper [32].

V. ZERO-TEMPERATURE RESULTS

In this section, we demonstrate that the above-described
advances in the implementation of our model leads, in
comparison with our previous paper [32], to significant
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(a) (b) (c)

FIG. 3. (a) SO(3) correlation ratio RSO(3)
c as function of coupling J in the vicinity of the GN-SO(3) transition for different fixed lattice sizes

L. The crossing point of the different finite-size curves indicates the location of the GN-SO(3) quantum critical point. (b) Same as (a), but for
the SO(3) order parameter m2

SO(3). (c) Same as (a), but for the fermion quasiparticle weight Zqp.

improvements in the results obtained at zero temperature. This
is in particular true in the vicinity of the two quantum phase
transition points.

A. GN-SO(3) transition

We start by discussing the GN-SO(3) transition at Jc1

between the fully symmetric Dirac semimetal and SO(3)-spin-
symmetry-broken partially gapped Dirac semimetal. To this
end, we measure the SO(3) order parameter mSO(3) defined via

m2
SO(3)(J, L) = SSO(3)(k = �, τ = 0)

L2
, (31)

where

SSO(3)(k, τ ) =
∑

i

e−ik·ri〈�̂si,λ(τ ) · �̂s0,λ(0)〉 (32)

is the SO(3) spin structure factor at momentum k and imag-
inary time τ , and ri denotes the position vector of the lattice
site i. The spin structure factor describes correlations between
the spin density �̂si,λ(τ ) = ĉ†

i,λ(τ ) �K ĉi,λ(τ ) (no summation over

λ), where ĉ†
i,λ(τ ) is the time-evolved fermion operator in the

Heisenberg picture. In order to locate the GN-SO(3) transi-
tion, we compute the renormalization group invariant SO(3)
correlation ratio [47]

RSO(3)
c (J, L) = 1 − SSO(3)(k = � + dk, τ = 0)

SSO(3)(k = �, τ = 0)
, (33)

where dk connects neighboring momenta in the Brillouin zone
of the finite-size lattice. In the limit of large system size, the
correlation ratio RSO(3)

c goes to zero (one) in the SO(3)-ordered
(disordered) phase. The crossings of the correlation-ratio
curves as function of the tuning parameter J for different
fixed lattices sizes L indicate the location of the SO(3)-spin-
symmetry-breaking phase transition. In addition, we measure
the fermion quasiparticle weight

Zqp(J, L) = G(J, L)

G(0, L)
(34)

where G(J, L) is constructed from the time dependence of the
fermion Green’s function as

G(J, L) = 〈ĉ†
i,λ(β/2) · ĉi,λ(0)〉. (35)

Figure 3 shows the raw data of these three observables near
the GN-SO(3) quantum phase transition. For the correlation
ratio [Fig. 3(a)], we observe a clear crossing point, indicating
the position of the GN-SO(3) quantum critical point. Follow-
ing the finite-size scaling hypothesis [48], the observables are
expected to obey the critical scaling form

RSO(3)
c (J, L) ∼ f R

0 ( jL1/ν ) + L−ω f R
1 ( jL1/ν ), (36)

m2
SO(3)(J, L) ∼ L−1−ηφ

[
f m
0 ( jL1/ν ) + L−ω f m

1 ( jL1/ν )
]
, (37)

Zqp(J, L) ∼ L−ηψ
[

f z
0 ( jL1/ν ) + L−ω f z

1 ( jL1/ν )
]
, (38)

where j = J − Jc1 corresponds to the reduced coupling and
ω denotes the correction-to-scaling exponent. We use two
different types of finite-size analysis in order to extract the
critical coupling and the corresponding exponents. The two
methods lead to results that are consistent within the numeri-
cal uncertainty.

(a) Data-collapse analysis. As a first step, we ignore
the corrections to scaling ∝ O(L−ω ) in the above finite-size
scaling forms. In order to extract the critical coupling Jc1

and the correlation-length exponent ν, we fit the correlation
ratio RSO(3)

c (J, L) as function of (J − Jc1)L1/ν to a fourth-
order polynomial. The optimal scaling collapse is obtained
for the best-fit parameters Jc1 = 0.465(2) and 1/ν = 0.86(8),
see Fig. 4(a). From the finite-size scalings of the order pa-
rameter m2

SO(3)( j, L) and the Zqp( j, L), we analogously obtain
the estimates ηφ = 0.73(2) for the order-parameter anoma-
lous dimension and ηψ = 0.078(8) for the fermion anomalous
dimension, respectively. The corresponding scaling collapses
are shown in Figs. 4(b) and 4(c).

(b) Crossing-point analysis. As a second step, we com-
pare the above results of the scaling-collapse analysis with
those of a crossing-point analysis that takes scaling-correction
effects into account [17]. We define the finite-size critical
coupling Jc1(L) as the crossing point of the SO(3) correla-
tion ratio RSO(3)

c (J, L) of system sizes L and L + c with size
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(a) (b) (c)

FIG. 4. (a) Finite-size scaling collapse of SO(3) correlation ratio as function of (J − Jc1)L1/ν in the vicinity of the GN-SO(3) transition,
yielding the best-fit parameters Jc1 = 0.465(2) and 1/ν = 0.86(8). (b) Same as (a), but for the order parameter m2

SO(3) in units of L−1−ηφ ,
yielding ηφ = 0.73(2). (c) Same as (a), but for the fermion quasiparticle weight Zqp in units of L−ηψ , yielding ηψ = 0.078(8).

increment c as

RSO(3)
c (Jc1(L), L) = RSO(3)

c (Jc1(L), L + c). (39)

For increasing system sizes, the finite-size critical coupling
approaches the thermodynamic critical point as Jc1(L) =
Jc1 + aL−ω−1/ν , with nonuniversal coefficient a [49]. Fig-
ure 5(a) shows the finite-size critical coupling as function
of 1/L for two different size increments (orange diamonds
and blue squares) in comparison with the critical coupling

(a) (b)

(c) (d)

FIG. 5. (a) Finite-size critical coupling Jc1(L) as function of
1/L from crossing-point analysis using size increments c = 3 (blue
squares) and c = 6 (orange diamonds), respectively, in comparison
with the critical coupling Jc1 obtained from the data-collapse analysis
(green dot). For sufficiently large lattice sizes, the estimates are
consistent with each other within the numerical uncertainty. (b) Same
as (a), but for the effective correlation-length exponent 1/ν(L).
(c) Same as (a), but for the effective order-parameter anomalous
dimension ηφ (L). (d) Same as (a), but for the effective fermion
anomalous dimension ηψ (L). Purple triangles in (b)–(d) show the
field-theoretical estimates from Ref. [33] for comparison.

obtained from the data-collapse analysis (green circle). For
sufficiently large lattice sizes, the estimates are consistent with
each other within the numerical uncertainty.

Having computed the finite-size critical coupling, effective
finite-size critical exponents can be obtained from

1/ν(L) = ln
s(Jc1(L), L + c)

s(Jc1(L), L)

/
ln

L + c

L
, (40)

ηφ (L) = −1 − ln
m2

SO(3)(Jc1(L), L + c)

m2
SO(3)(Jc(L), L)

/
ln

L + c

L
, (41)

ηψ (L) = −ln
Zqp(Jc1(L), L + c)

Zqp(Jc1(L), L)

/
ln

L + c

L
, (42)

where s(J, L) = ∂RSO(3)
c (J, L)/∂J corresponds to the slope

of the correlation ratio as function of the coupling J . For
increasing system sizes L, the deviation between the effective
critical exponent and the corresponding value in the thermo-
dynamic limit vanishes with L−ω. Our results for the effective
finite-size critical exponents as function of 1/L for two dif-
ferent size increments (blue squares and orange diamonds)
in comparison with the critical exponents obtained from the
data-collapse analysis (green circles) are shown in Figs. 5(b)–
5(d). For sufficiently large lattice sizes, the estimates from the
different analyses are again consistent with each other within
the numerical uncertainty.

From the symmetry of the order parameter and the low-
energy field content of the lattice model, we expect the
continuous quantum phase transition at Jc1 to be described
by the GN-SO(3) field theory [30] given by the action S =∫

d3xL with

L = �̄γ μ∂μ� − g �φ · �̄(14 ⊗ �K )�, (43)

where �φ = (φα ), α = 1, 2, 3, corresponds to the SO(3) vector
order parameter and the complex fermion fields � and �̄

have 23 × 3 = 24 components, arising from sublattice, valley,
layer, and internal SO(3) degrees of freedom. The Dirac ma-
trices γ μ, μ = 0, 1, 2, form a 24-dimensional representation
of the Clifford algebra, and the summation convention over re-
peated space-time indices μ is assumed. The GN-SO(3) field
theory has previously been studied using three-loop 4 − ε
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expansion, next-to-leading-order 1/N expansion, and func-
tional renormalization group calculations in the local-
potential approximation [33]. The corresponding estimates for
the critical exponents from combining these analytical meth-
ods are also shown in Figs. 5(b)–5(d) for comparison (purple
triangles). Importantly, in comparison with our previous pa-
per [32], in which the naive Trotter decomposition has been
employed, the improved implementation using the Hermitian
Trotter decomposition leads to results that are significantly
closer to the field-theoretical estimates, in particular for the
anomalous dimensions ηφ and ηψ . We attribute the remaining
small deviations of the order of � 2σ to systematic uncertain-
ties that are difficult to control within both field-theoretical
and numerical approaches.

B. SO(3)-U(1) transition

We continue by describing the behavior of the system near
the potentially deconfined metallic transition at Jc2 between
the SO(3)-spin- and U(1)-charge-symmetry-broken states.
Across this transition, the remaining gapless fermion modes
acquire a spectral gap. In order to characterize the transition,
we compute both the SO(3) spin structure factor SSO(3)(k, τ )
and the U(1) layer-charge structure factor, defined as

SU(1)(k, τ ) =
∑

i

e−ik·ri〈[n̂†
i (τ ) + n̂i (τ )][n̂†

0(0) + n̂0(0)]〉,

(44)

where n†
i (τ ) = ĉ†

i,σ,1(τ )ĉi,σ,2(τ ) corresponds to the interlayer
coherence operator in the Heisenberg picture. Under the PPH
transformation, the U(1) layer-charge structure factor trans-
forms into the U(1) pairing structure factor

S ′
U(1)(k, τ ) =

∑
i

e−ik·ri〈[�̂†
i (τ ) + �̂i (τ )][�̂†

0(0) + �̂0(0)]〉,

(45)

where �i(τ ) = ĉ†
i,σ,1(τ )ĉ†

i,σ,2(τ ) corresponds to the interlayer
s-wave pairing operator in the Heisenberg picture. In this
paper, we use a microscopic implementation that explicitly
preserves PPH symmetry. As a consequence, our results pre-
sented for SU(1)(k, τ ) in the following are representative for
both the U(1) layer-charge and U(1) pairing structure factors.
The U(1) correlation ratio is defined as

RU(1)
c (J, L) = 1 − SU(1)(k = � + dk, τ = 0)

SU(1)(k = �, τ = 0)
, (46)

Analogously, we define the PPH structure factor SPPH(k, τ )
and the corresponding correlation ratio RPPH

c using the parity
operator P̂i(τ ) = ∏

σ,λ[1 − 2ĉ†
i,σ,λ(τ )ĉi,σ,λ(τ )] (no summation

over σ, λ).
Figures 6(a)–6(c) show our results for the SO(3), U(1)

and PPH correlation ratios. These observables indicate
a phase transition between the partially gapped SO(3)-
spin-symmetry-broken semimetal at Jc1 < J < Jc2 and the
interlayer-coherent insulating or s-wave superconducting
state, which breaks U(1)-charge and PPH symmetries, at J >

Jc2. This interpretation is also supported by the finite-size
scaling of the correlation-ratio crossing points for consec-
utive system sizes, shown as function of 1/L in Fig. 6(d).

(a)

(c) (d)

(b)

(e) (f)

FIG. 6. (a) SO(3) correlation ratio RSO(3)
c as function of J in

the vicinity of the SO(3)-U(1) transition for different fixed lattice
sizes L. (b) Same as (a), but for the U(1) correlation ratio RU(1)

c .
(c) Same as (a), but for the PPH correlation ratio RPPH

c . (d) Finite-
size critical coupling Jc2(L) as function of 1/L from crossing-point
analysis of SO(3) correlation ratio (orange squares), U(1) correlation
ratio (purple squares), and PPH correlation ratio (red squares). Blue
solid curve indicates a power-law fit of Jc2(L) = Jc2 + aL−e from
SO(3) correlation ratio, yielding Jc2 = 1.057(10). Critical coupling
Jc2 from data-collapse analysis of U(1) correlation ratio is also shown
for comparison (green triangle). All values for Jc2 are consistent
with each other, indicating a direct SO(3)-U(1) transition without an
intermediate coexistence phase. (e) First derivative of free energy F
as function of J , showing no discontinuity near Jc2 within our accu-
racy. (f) Effective finite-size critical exponent 1/ν(L) as function of
1/L from crossing-point analysis of SO(3) correlation ratio (orange
squares) and U(1) correlation ratio (purple squares), in comparison
with estimate for 1/ν from data-collapse analysis of U(1) correlation
ratio (green triangle).

Importantly, the finite-size critical couplings Jc2(L) associated
with the three different order parameters all scale towards
a unique limiting value of Jc2 = 1.057(10) (orange triangle
at 1/L = 0). This indicates a direct transition at Jc2 between
the two different symmetry-broken states, without an inter-
mediate coexistence phase. In Fig. 6(d), we present the first
derivative of the free energy F as function of J in the vicinity
of Jc2. Up to the largest system sizes considered (L � 15),
no discontinuity in ∂F/∂J can be identified, in sharp contrast
to the mean-field result [32]. This suggests a fluctuation-
induced continuous or weakly first-order transition at Jc2. In
order to characterize the associated quantum critical behavior,
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FIG. 7. Spectral functions in (a) single-particle, (b) particle-hole,
and (c) particle-particle channels at the SO(3)-U(1) transition point
for J = 1.057 ≈ Jc2. Here, we show data for system size L = 12 and
inverse temperature β = 24. Dash-dotted lines indicate the linear
dispersions of the gapless excitations around the K (single-particle
channel) and � (particle-hole and particle-particle channels) points
in the Brillouin zone. The data support emergent Lorentz symmetry
characterized by a single “velocity of light.”

we attempt a scaling collapse of RU(1)
c (J, L) as function of

(J − Jc2)L1/ν . The resulting values of Jc2 and 1/ν are shown in
Figs. 6(d) and 6(f), respectively (green triangles). We note that
the value of Jc2 from the data-collapse analysis is consistent
with the extrapolation of the correlation-ratio crossing points
[Fig. 6(d)]. For comparison, Fig. 6(f) also shows estimates
for the correlation-length exponent 1/ν from a crossing-point
analysis analogous to Eq. (40), replacing Jc1 → Jc2 therein
and choosing c = 3. Several remarks are in order: First, the
autocorrelation time in the QMC simulations significantly
increases near Jc2, as illustrated in Fig. 2(b). This restricts
the available system sizes in the vicinity of Jc2 to L � 15.
Second, for the available system sizes, there is a significant
drift in the estimates for 1/ν, suggesting the presence of
sizable corrections to scaling. Third, we note that the finite-
size values for 1/ν(L) from the SO(3) and U(1) correlation
ratios are consistent with each other within the numerical
uncertainty, pointing towards a unique value for 1/ν from the
two different correlation functions. Fourth, if we assume a
dynamical exponent z = 1, the estimates for 1/ν are above the
value d + z expected for a first-order transition [39,50–53].
These results are again consistent with our interpretation of a
fluctuation-induced continuous or weakly first-order order-to-
order transition at Jc2. We refrain from estimating fermion and
order-parameter anomalous dimensions, as the corresponding
fitting processes in the scaling-collapse analysis involve an
additional free parameter and are therefore even harder to
control.

Spectral functions in different channels and at the criti-
cal point provide valuable insight on emergent symmetries.
For instance, Lorentz symmetry imposes the constraint of a
channel-independent velocity. In Fig. 7, we use the ALF [41]
implementation of the stochastic maximum entropy methods
[54] to compute the spectral functions in the single particle,

Ac(k, ω) = π
∑
n,λ

|〈n|ĉ†
k,λ

|0〉|2δ(En − E0 − ω), (47)

particle-hole,

χ s(k, ω) = π
∑
n,λ

|〈n|�̂sk,λ|0〉|2δ(En − E0 − ω), (48)

and particle-particle,

χ c(k, ω) = π
∑

n

|〈n|�̂†
k|0〉|2δ(En − E0 − ω), (49)

channels, where |n〉 and En, n = 0, 1, 2, . . . , correspond to
the energy eigenstates and eigenvalues, respectively. Here, we
consider J ≈ Jc2 = 1.057(10). As apparent from Fig. 7, all
quantities show a linear dispersion relation at low energy. The
single-particle spectral function is gapless at the K and K′
points in the Brillouin zone, while the particle-particle and
particle-hole spectral functions are gapless at the � point. The
gapless excitations in the particle-particle and particle-hole
channels can be understood as collective modes associated
with the SO(3) and U(1) order parameters, which characterize
the neighboring long-range-ordered phases. Importantly, the
velocity in all three aforementioned channels are comparable,
such that the data support emergent Lorentz symmetry char-
acterized by a single “velocity of light.”

VI. FINITE-TEMPERATURE RESULTS

Further insight into the nature of the SO(3)-U(1) transition
can be obtained by studying the finite-temperature proper-
ties above the potential quantum critical point. Since the
interlayer-coherent insulating or s-wave superconducting state
at J > Jc2 breaks U(1) charge and Z2 PPH symmetries only,
we expect that the gapped phase extends to finite temper-
atures up to a critical temperature Tc(J ). By contrast, the
SO(3)-spin-symmetry-broken state for J < Jc2, is expected to
destabilize at arbitrary small temperatures as a consequence
of the Mermin-Wagner theorem.

In order to investigate the finite-temperature properties, we
compute the uniform susceptibilities [55]

χ
SO(3)
uni = β

L2
(〈 �̂S · �̂S〉 − 〈�̂S〉 · 〈 �̂S〉) (50)

measuring SO(3) spin fluctuations, with the total-spin oper-

ator �̂S = (Ŝα ) = ∑
i ĉ†

i,σ,λKα
σσ ′ ĉi,σ ′,λ, which generates SO(3)

rotations, and

χ
U(1)
uni = β

L2
(〈ρ̂ρ̂〉 − 〈ρ̂〉〈ρ̂〉) (51)

measuring U(1) charge fluctuations, with the total-charge op-
erator ρ̂ = ∑

i ĉ†
i,σ,λĉi,σ,λ, which generates U(1) rotations.

The results for the uniform susceptibilities as function
of temperature are shown for three different values below,
near, and above, respectively, the SO(3)-U(1) transition point
in Fig. 8. For strong coupling J > Jc2 above the interlayer-
coherent insulating or s-wave superconducting ground state,
the SO(3) susceptibility χ

SO(3)
uni is strongly suppressed at low

temperatures, in agreement with the expectation of an expo-
nential decay, see Fig. 8(c). This reflects the gapped nature
of the SO(3) spin spectral function in this phase. By con-
trast, the U(1) susceptibility χ

U(1)
uni approaches a finite value

in the low-temperature limit, see Fig. 8(f), reflecting the low-
energy spectral weight in the U(1) charge spectral function in
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(a) (b) (c)

(d) (e) (f)

c1 c2J JJ<< J ≈ c2J

J ≈ c2J J > c2J

J> c2J

c1 c2J JJ<<

FIG. 8. (a) Uniform SO(3) susceptibility χ
SO(3)
uni as function of

temperature for a representative fixed value of J = 0.80 below the
SO(3)-U(1) transition point. (b) Same as (a), but for a value of
J = 1.06 close to the SO(3)-U(1) transition point. (c) Same as (a),
but for a value of J = 1.30 above the SO(3)-U(1) transition point.
(d) Uniform SO(3) susceptibility χ

U(1)
uni as function of temperature

for a representative fixed value of J = 0.80 below the SO(3)-U(1)
transition point. (e) Same as (d), but for a value of J = 1.06 close to
the SO(3)-U(1) transition point. (f) Same as (d), but for a value of
J = 1.30 above the SO(3)-U(1) transition point.

this phase. For intermediate coupling Jc1 < J < Jc2 above the
SO(3)-spin-symmetry-broken ground state, the SO(3) suscep-
tibility χ

SO(3)
uni approaches a finite value in the low-temperature

limit [Fig. 8(a)], indicating the onset of short-range order in
the SO(3) spin sector. The U(1) susceptibility χ

U(1)
uni is con-

sistent with a linear behavior as function of temperature T at
low T , reflecting the semimetallic behavior of the underlying
SO(3) ground state [Fig. 8(d)]. At finite temperatures above
a quantum critical point, we expect that the uniform sus-
ceptibilities scale with temperature as χuni ∝ T 2/z−1, where z
corresponds to the dynamical critical exponent [55]. Assum-
ing z = 1 leads to a linear-in-T behavior. In the vicinity of
the SO(3)-U(1) transition point at Jc2, our data for both χ

SO(3)
uni

and χ
U(1)
uni are indeed consistent with a linear-in-T dependence

in the low-temperature limit, see Figs. 8(b) and 8(e). This
again confirms our interpretation of a continuous or weakly
first-order SO(3)-U(1) transition.

In order to characterize the finite-temperature phase bound-
ary T U(1)

c (J ), below which U(1) symmetry is spontaneously
broken for J > Jc2, we also compute the momentum-resolved
U(1) susceptibility

χ
U(1)
k =

∫
dτSU(1)(k, τ ), (52)

where SU(1) is the U(1) structure factor defined in Eq. (44).
We expect the low-temperature phase at T < T U(1)

c (J ) to be
bounded by a Berezenskii-Kosterlitz-Thouless (BKT) tran-
sition [56–58], associated with the U(1)-charge-symmetry-

broken ground state at J > Jc2. The low-temperature phase is
characterized by algebraic order that scales as r−η as func-
tion of distance r, with temperature-dependent anomalous
dimension η = η(T ) for T � Tc(J ). Right at the BKT tran-
sition, the anomalous dimension becomes η(Tc) = 0.25. As
a consequence, the BKT transition temperature can therefore
be located by a crossing-point analysis of the rescaled U(1)
susceptibility Lη−2χ

U(1)
k=�

with η = 0.25. Instead of scanning
as function of temperature for fixed J , we may also use the
coupling J as tuning parameter for the transition at fixed finite
temperature T . This procedure turns out to be particularly
useful in the vicinity of the SO(3)-U(1) quantum phase tran-
sition, in the vicinity of which the finite-temperature phase
boundary in the plane spanned by J and T is very steep. The
rescaled U(1) susceptibility Lη−2χ

U(1)
k=�

as function of J for
different system sizes L and a representative fixed tempera-
ture is shown in Fig. 9(a). The corresponding crossing points
JU(1)

c (T ) are shown in the finite-temperature phase diagram
for J near Jc2 in Fig. 9(e). For larger values of J , the phase
boundary in the plane spanned by J and T is rather flat,
and it is more convenient to use the temperature as tuning
parameter at fixed coupling J . The rescaled U(1) susceptibility
Lη−2χ

U(1)
k=�

as function of T for different system sizes L and
a representative fixed large value of J is shown in Fig. 9(b).
The corresponding crossing points T U(1)

c (J ) are shown in the
finite-temperature phase diagram for large J well above Jc2 in
Fig. 9(f).

In the low-temperature phase for T < T U(1)
c , the sys-

tem spontaneously selects an s-wave superconducting or
interlayer-coherent insulating state as ground state. This im-
plies that Z2 PPH symmetry is broken in this phase as well.
As a consequence, a lower bound for the critical temperature
T PPH

c , marking the melting of PPH order, is given by the U(1)
critical temperature T U(1)

c , i.e., T PPH
c � T U(1)

c . An interesting
question is whether the two critical temperatures coincide
or differ. The latter scenario would imply an intermediate
vestigial phase for T U(1)

c < T < T PPH
c , in which PPH sym-

metry is spontaneously broken, but both U(1) global-charge
and U(1) layer-charge symmetries remain intact. Such ves-
tigial orders have previously been discussed in a variety of
two-dimensional models [37–39]. In order to characterize the
melting of PPH order, we measure the PPH susceptibility

χPPH
k =

∫
dτSPPH(k, τ ), (53)

where SPPH is the PPH structure factor defined analogously to
Eq. (44), using the parity operator P̂i instead of the interlayer
coherence operator n̂i. From the symmetry of the order param-
eter, we expect the PPH transition, if continuous, to fall into
the 2D Ising universality class. In Fig. 9(c), we therefore show
the rescaled PPH susceptibility Lη−2χ

U(1)
k=�

as function of J for
different system sizes L and a representative fixed temperature
[same temperature as those of the U(1) susceptibility shown
in Fig. 9(a)], using the Ising exponent η = 0.25. Similarly, we
show in Fig. 9(d) the rescaled PPH susceptibility as function
of T for different system sizes L and a representative fixed
large value of J [same coupling as those of the U(1) suscep-
tibility shown in Fig. 9(b)] using η = 0.25. While the data
clearly indicate the PPH order at sufficiently large J and low
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(a) (b)

(c) (d)

(e) (f)

BKT phase BKT phase

FIG. 9. (a) Rescaled U(1) susceptibility Lη−2χ
U(1)
k=� for η = 0.25

as function of coupling J for different system sizes L and a rep-
resentative fixed inverse temperature β = 15. The crossing point
indicates the phase boundary JU(1)

c (T ) at finite temperature T = 1/β.
(b) Rescaled U(1) susceptibility Lη−2χ

U(1)
k=� for η = 0.25 as function

of temperature T for different system sizes L and a representa-
tive large value of the coupling J = 2 well above the SO(3)-U(1)
transition. The crossing point indicates the finite-temperature phase
boundary T U(1)

c (J ). (c)(d) Same as (a) and (b), but for the rescaled
PPH susceptibility Lη−2χPPH

k=� . (e) Finite-temperature phase diagram
in the vicinity of the SO(3)-U(1) transition from crossings of rescaled
U(1) susceptibility as function of J . Red region refers to phase
characterized by algebraic order in the U(1)-charge sector (“BKT
phase”). (f) Same as (c), but at large coupling J well above the
SO(3)-U(1) transition from crossings of rescaled U(1) susceptibility
as function of T .

T , they are too noisy to clearly identify whether the critical
temperature T PPH

c lies above or right at T U(1)
c . This is also due

to the fact that vestigial orders are typically realized in only
small temperature windows above the corresponding primary
orders [37–39]. The presence of a tiny vestigial phase above
T U(1)

c can therefore at present not be excluded from our data.
Exploring this possibility deserves further investigation.

VII. CONCLUSIONS

In this paper, we have characterized, by means of
large-scale determinant QMC simulations, the metallic and

deconfined quantum phase transitions recently discovered
in a bilayer honeycomb model with an SO(3)-symmetric
spin-density interaction in terms of their quantum criti-
cal and finite-temperature properties. In comparison with
our initial exploratory study of this model [32], we have
employed a Hermitian Trotter decomposition, which sig-
nificantly improves convergence properties with respect to
the limit of small Trotter time steps. Furthermore, we have
employed a microscopic implementation that preserves the
model’s partial particle-hole symmetry explicitly, maintain-
ing the degeneracy of the interlayer-coherent insulating and
s-wave superconducting ground states in the fully gapped
phase stabilized at strong coupling already on finite lattice
sizes.

These advances have lead to improved estimates for
the critical exponents characterizing the Gross-Neveu-SO(3)
quantum critical point at Jc1. From the data-collapse analysis,
we have obtained 1/ν = 0.86(8) for the correlation-length
exponent, ηφ = 0.73(2) for the order-parameter anomalous
dimension, and ηψ = 0.078(8) for the fermion anoma-
lous dimensions. These results are consistent with ear-
lier field-theoretical estimates [33] within the systematics
uncertainties of both the numerical and field-theoretical
approaches.

We have also provided a further characterization of the
putative deconfined metallic quantum critical point at Jc2.
In particular, the spectral functions in the single-particle,
particle-hole, and particle-particle channel indicate gapless
excitations with a unique “velocity of light,” supporting the
emergence of Lorentz symmetry at Jc2. We have also com-
puted the finite-temperature phase diagram of the model
and show that the boundary of the low-temperature phase
vanishes continuously upon approaching Jc2, in agreement
with the expectation for a continuous or weak first-order
transition.

Our microscopic model features an explicit SO(3) ×
U(1) × UL(1) × Z2 symmetry in the spin, total-charge, layer-
charge, and partial-particle-hole sectors. For the future, it
would be interesting to investigate the possibility of an
emergent higher symmetry at the SO(3)-U(1) transition. To
this end, the decay of dynamical correlation functions of
higher-symmetry generators should be studied. This could
help to develop a field-theoretical understanding of the
putative deconfined metallic transition, e.g., via a Wess-
Zumino-Witten theory coupled to fermionic degrees of
freedom.

Furthermore, it would be interesting to study the effects of
explicit symmetry breaking, e.g., in the SO(3) spin sector. The
Gross-Neveu-SO(3) transition at Jc1 is expected to become a
multicritical point featuring emergent SO(3) symmetry within
the enlarged parameter space, and the SO(3)-spin-ordered
semimetal phase at intermediate coupling Jc1 < J < Jc2 is
destabilized in favor of a SO(2)- or Z2-spin-ordered phase
by the symmetry-breaking perturbations [59]. Since the U(1)-
ordered phase at strong coupling J > Jc2 is gapped, one might
expect that it is stable upon adding small symmetry-breaking
perturbations in the spin sector. If that is correct, it would be
interesting to study the nature of the transition between the
SO(2)- or Z2-spin-ordered phases at intermediate coupling
and the U(1)-ordered phase at strong coupling. This should
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be expected to also lead to further insights into the nature of
the putative deconfined metallic quantum critical point at Jc2.

A recent field-theoretical analysis [60] proposed the exis-
tence of another quantum critical point in a new universality
class, which may be reached within the parameter space of our
model by adding to the Hamiltonian an interaction of the form

ĤJ ′ = −J ′ ∑
i,α<β

(
ĉ†

i,σ,λQαβ

σσ ′ ĉi,σ ′,λ
)2

, (54)

with the real 3 × 3 matrices Qαβ = 1
2 {Kα, Kβ} − 2

3δαβ . It
would be interesting to investigate this conjecture numer-
ically. As the vertex matrix associated with the above
interaction is real, the model can be simulated using QMC
simulations without a fermion sign problem for positive val-
ues of J ′.
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