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Deconfined quantum critical points have attracted lots of attention in the past decades but were mainly
restricted to incompressible phases. On the other hand, various experimental puzzles call for a new theory
of unconventional quantum criticality between metals at a generic density. Here we explore the possibility of
a deconfined transition between two symmetric Fermi liquids (FLs) in a bilayer model tuned by interlayer
antiferromagnetic spin-spin coupling J⊥. Across the transition the Fermi-surface volume per flavor jumps by
1/2 of the Brillouin zone, similar to the small to large Fermi-surface transitions in heavy fermion systems and
maybe also in the high Tc cuprates. But in the bilayer case the small Fermi-surface phase (dubbed sFL) has
neither symmetry breaking nor fractionalization, akin to the symmetric mass generation discussed in high-energy
physics. We formulate a deconfined critical theory where the two Fermi liquids correspond to Higgs and/or
confined phases of a U(1) × U(1) gauge theory. We show that this deconfined FL to FL transition fixed point is
unstable to pairing and thus a superconductor dome is expected at low temperature. At finite temperature above
the pairing scale, microscopic electron is a composite of three deconfined fractional fermions in the critical
theory. We also introduce another parameter which can suppress the pairing instability, leading to a deconfined
phase stable to zero temperature. Our work opens a direction to exploring deconfined metallic criticality and
pairing mechanism from critical gauge field. The transition may be relevant to the recently found nickelate
superconductor La3Ni2O7 and future experiments in bilayer optical lattice.
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I. INTRODUCTION

There have been intensive studies on possible uncon-
ventional transitions beyond the familiar Landau-Ginzburg
framework based on symmetry-breaking order parameters.
One famous example is the deconfined quantum critical point
(DQCP) [1–5] between the Néel ordered and valence bond
solid (VBS) phases on square lattice. DQCP was also sug-
gested for symmetric mass generation (SMG) [6,7] transition
between a semimetal and an insulator [8]. In these examples
the two sides of the phase transitions are just conventional
phases without any fractionalization but the critical regime
is described by fractionalized particle and emergent internal
gauge field at low energy. So far the discussions of decon-
fined criticalities have been largely restricted to insulators or
semimetals at integer filling. On the other hand, experiments
in the heavy fermion systems [9–16] and in the high temper-
ature superconductor cuprates [17–20] suggest the possibility
of a quantum critical point with a Fermi-surface volume jump
between two metallic phases. Besides, the phenomenology
seems to be beyond the conventional metallic criticality sim-
ply with a fluctuating symmetry-breaking order parameter
such as in the Hertz-Millis-Moriya theory [14,21,22]. There-
fore it is important to generalize the idea of DQCP to the more
sophisticated phase transition with Fermi surfaces on the two
sides. Critical theories have been proposed for the unusual
case where one side has a neutral Fermi surface [23,24], but
the examples are essentially Mott or orbital-selective Mott
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transitions with the volume of the critical Fermi surface fixed
at the half filling. A DQCP with both sides as conventional
metallic phases with arbitrary size of Fermi surfaces is still
elusive, despite of some progress for a deconfined metallic
transition with an onset of antiferromagnetism [25].

In this work we turn to a different setup with a bilayer
model and identify a much cleaner small to large Fermi-
surface transition with symmetric Fermi liquids in both sides.
More specifically, we consider a bilayer Hubbard or t−J
model with strong interlayer spin-spin interaction J⊥, but no
interlayer hopping t⊥. Naively this seems impossible because
J⊥ is usually generated from the t2

⊥/U superexchange pro-
cess. But it is actually possible to generate a large J⊥ from
Hund’s coupling to a rung-singlet from a different orbital
as proposed by one of us for the recently found nickelate
superconductor [26–30]. In this situation, the symmetry is
[U(1)t × U(1)b × SU(2)]/Z2 with the two U(1) correspond-
ing to the charge conservations of the top and bottom layers,
respectively. Oshikawa’s nonperturbative proof of the Lut-
tinger theorem [31] then shows that there are two classes
of symmetric and featureless.1 Fermi liquids: a conventional
Fermi liquid (FL) and a second Fermi liquid (sFL) [29,32].
The sFL phase has Fermi-surface volume smaller than the FL
phase by 1/2 of the Brillouin zone (BZ) per flavor. At a fixed
density per layer n = 1 − x with small hole doping level x, we
have a FL phase with large Fermi surface volume AFS = 1−x

2
per flavor at small J⊥. Then, in the large J⊥ regime, the sFL

1By featureless we mean that the phase does not have fractionaliza-
tion.
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phase with AFS = −x/2 is stabilized instead. Therefore there
is a large to small Fermi-surface transition tuned by J⊥. The
sFL phase is clearly beyond any weak-coupling theory and it
arises only in the strong-coupling regime of the four-fermion
interaction J⊥ akin to the symmetric mass generation [8,33]
discussed in high-energy physics, although in our case the
charge carriers are only partially gapped.

The FL to sFL transition, if continuous, must be beyond
Landau-Ginzburg framework because there is no symmetry-
breaking order parameter. Moreover, both phases are conven-
tional without fractionalization. Thus it is natural to expect
a deconfined criticality similar to the Néel to VBS DQCP.
We formulate such a theory in this work. In our critical
theory, the two phases correspond to Higgsed and/or con-
fined phases of a U(1) × U(1) gauge theory with deconfined
fractionalized particles existing only at the critical regime.
The critical theory is unstable to pairing at zero temperature,
but the pairing scale can be suppressed to be arbitrarily low
due to the near balance between the repulsive and attractive
interaction from the two U(1) gauge fields. Similar features of
balance from two gauge fields have been discussed previously
in other contexts [25,34–36]. Above the pairing energy scale,
we have a large critical regime where the electron is a com-
posite particle of three elementary fermions in the low-energy
theory. One immediate implication is that the quasiparticle
residue Z vanishes at the critical regime and any single
electron spectroscopy measurement [such as angle-resolved
photoemission spectroscopy (ARPES) or scanning tunneling
microscopy (STM)] cannot see any coherent quasiparticle. We
also include another axis to tune δU , the difference between
the intralayer and interlayer repulsion. We argue that the pair-
ing instability can be suppressed by tuning δU and there is an
intermediate deconfined metal (DM) phase which is similar
to the deconfined critical regime. Our work opens a door to
study DQCP between compressible phases, which, unlike the
previous discussions in insulators or semimetals, can arise at
any electron density.

II. ONE-ORBITAL BILAYER HUBBARD MODEL

We consider the following one-orbital bilayer model:

H = − t
∑
〈i j〉

∑
α

c†
i;αc j;α + 1

2
U0

∑
i

∑
a=t,b

n2
i;a

+ V0

∑
i

ni;t ni;b + J⊥
∑

i

�Si;t · �Si;b. (1)

If we view a layer as a pseudospin, then we have four flavors
labeled as α = a, σ . a = t, b labels the top and bottom layers
while σ =↑,↓ labels the spin. ni;t and ni;b indicate the density
at site i for the top and bottom layers, respectively. �Si;t and
�Si;b are the spin operators in the two layers. If V0 = U0 and
J⊥ = 0, this is the SU(4) Hubbard model. Generally U0

and V0 can be different and the model can be rewritten as

H = − t
∑
〈i j〉

∑
α

c†
i;αc j;α + 1

2
U

∑
i

n2
i

+ δU
∑

i

P2
i;z + J⊥

∑
i

�Si;t · �Si;b, (2)

FIG. 1. Restricted Hilbert space at each site in the large-U
regime. The dashed box represents a single site (combine the two
layers). Blue lines and red lines represent the top and bottom layers,
respectively. The empty state is penalized by the large U and there
are four singlon states and six doublon states. The last two doublon
states are further penalized by δU and should be removed if we also
take the large-δU limit.

where ni = ni;t + ni;b and Pi;z = ni;t − ni;b. We have U =
1
2 (U0 + V0) and δU = 1

4 (U0 − V0). The model has a [U(1)t ×
U(1)b × SU(2)]/Z2 symmetry with U(1) charge conservation
in the two layers separately because there is no t⊥ hopping.
The electron density (summed over spin) per layer is nt =
nb = 1 − x per site, so the filling per spin per layer is ν =
(1 − x)/2.

We are interested in the large-U0 and -V0 regime in this
work with U0 > V0 � t, J⊥. Note that the electron density
summed over two layers and spin is nT = 2(1 − x). nT = 1
corresponds to the Mott insulator and we consider the regime
1 < nT < 2. The restricted Hilbert space due to the large U
is shown in Fig. 1 which consists of four singlon states (with
nT = 1) and six doublon states (with nT = 2). The empty state
is forbidden since we need to add one more doubly occupied
site to create one empty site, which costs energy U0 or V0. The
Hamiltonian in this restricted Hilbert space now becomes [32]

H = − t
∑
〈i j〉

∑
α

P4+6c†
i;αc j;αP4+6

+ J⊥
∑

i

�Si;t · �Si;b + δU
∑

i

P2
i;z + · · · , (3)

where P4+6 is the projection operator into the four-singlon
six-doublon Hilbert space shown in Fig. 1. Note that here we
include the intralayer spin-spin coupling in the · · · term.

If we further take the limit that δU is also large, the last two
doublon states in Fig. 1 are also forbidden. Then the restricted
Hilbert space on each site now has four singly occupied states
and four doubly occupied states. The Hamiltonian in this
restricted Hilbert space simply consists of t and J⊥ term:

H = − t
∑
〈i j〉

∑
α

P4+4c†
i;αc j;αP4+4

+ J⊥
∑

i

�Si;t · �Si;b + · · · , (4)

where P4+4 is the projection operator into the four-singlon
four-doublon Hilbert space. Again we include the intralayer
Heisenberg spin-spin coupling in the · · · term.
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FIG. 2. Illustration of the double Kondo model for the bilayer
nickelate. The solid green circle with arrow, solid red circle, and the
red circle correspond to the spin-1/2 moments, electron, and hole,
respectively. t , J⊥, and JK are the hopping, interlayer coupling, and
Kondo coupling (Hund’s coupling). There is no t⊥ in this model. In
the large-J⊥ limit, the spin moments form the rung singlet 1√

2
(|↑↓〉 −

|↓↑〉).

A. Relation to the bilayer nickelate

The model in Eq. (1) is unusual in the sense that there is
a J⊥, but no interlayer hopping t⊥. Because spin-spin cou-
pling is usually from second-order superexchange process
with J⊥ ∼ t2

⊥/U , it is not clear that the model is physical.
The model has been discussed by one of us in the context
of a graphene moiré system [32] where the valley plays the
role of the layer and the J⊥ term is from the phonon-mediated
anti-Hund’s coupling. The model was also proposed for bi-
layer optical lattice with strong interlayer potential difference,
although in a nonequilibrium setting [37].

More recently a more realistic realization of the model has
been proposed [26–30] for the recently found nickelate su-
perconductor La3Ni2O7 under pressure with nt = nb = 1 − x
and x ≈ 0.5. The key is to have additional spin moments
forming a bilayer rung singlet. Then the itinerant electron
couples to the these spin moments through Hund’s coupling or
superexchange coupling JK , which shares the strong J⊥ of the
spin moments to the itinerant electron. In the end the itinerant
electron feels a strong J⊥, but without t⊥, as shown in Fig. 2.

In this situation one expects that V0 � U0 and U0 � t . In a
realistic system, V0 may not be too large, therefore one should
also keep the empty state for each rung in the low-energy
Hilbert space, as done in Ref. [29] by two of us. From our
previous analysis at finite V0, there are two different normal
states: the conventional Fermi liquid and the second Fermi liq-
uid (sFL) with Fermi-surface volume smaller by 1/2 of the BZ
per flavor. The sFL still satisfies Oshikawa’s nonperturbative
proof of the Luttinger theorem, despite that it is beyond any
weak-coupling theory and is intrinsically strongly correlated.
At low temperature, both the FL and sFL are unstable to
superconductivity due to an attractive interaction mediated by
an on-site virtual Cooper pair. In this work we are interested
in the transition between the FL and the sFL phase, so we
make V0 → +∞ to suppress the pairing instability discussed
in Ref. [29] completely.

In Fig. 3, we show the illustrated phase diagram of model
Eq. (3) and Eq. (4). In the small-J⊥ limit, as we increase
the doping, the system is always in the FL phase with Fermi

FIG. 3. Illustrated phases of the bilayer model with doping and
J⊥, for small J⊥, it is always a FL, while for large J⊥, we can reduce
the bilayer model to the ESD model, with a sFL in small x and a FL
in large x.

surface volume AFS = (1 − x)/2 per flavor. While in the
large-J⊥ limit, we can further reduce the bilayer model into
the empty, single occupancy, double occupancy model (ESD)
[29], in which there are six states per site, with two bosonic
states dubbed as d and b and four fermionic states. In the
ESD model, as we increase the doping, we can see two
different Fermi-liquid phases with a Fermi surface volume
jump by 1/2 of the BZ per flavor. Reference [29] focuses
on the large-J⊥ limit, where the sFL and FL phases are
confirmed at small and large doping x. At low temperature,
the superconducting phase is found in both the sFL and FL
phases, with a superconducting dome near x ≈ 0.5, which is
attributed to the BCS to BEC to BCS crossover. In this paper,
we focus on the region x < 0.5, and by tuning J⊥ we study
the possible transition between the FL and sFL.

B. Second Fermi-liquid phase in the large-J⊥ limit

We consider the U0,V0 � t limit and can then restrict
ourselves to Eq. (4) or Eq. (3), depending on whether δU is
large. In either case, we expect two different metallic phases
in the small- and large-J⊥ regime at filling nt = nb = 1 − x
with small x. When J⊥ is small, one can expect a conven-
tional Fermi-liquid phase with Fermi-surface volume AFS =
(1 − x)/2 per flavor.

In the large-J⊥ limit, the doublon state is dominated by
the spin-singlet. We can label this S = 0 doublon as |b〉 =
b†

i |0〉 with |0〉 as the empty state. Together with four singlon
states |aσ 〉 = f †

i;aσ |0〉, we reach an SU(4) t−J model with
4 + 1 = 5 states per site. The t−J model is written as

H = −t
∑
〈i j〉

∑
α

P4+1c†
i;αc j;αP4+1 + · · · . (5)
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We can then do the standard slave boson theory [17] for this
usual t−J model: ci;aσ = (−1)ησ 1√

2
f †
āσ̄ bi where η↑ = −η↓ =

1. We have the density n f = 2x and nb = 1 − 2x. In terms of
the parton construction, the model can be written as

H = t

2

∑
〈i j〉

∑
α

f †
j;α fi;αb†

i b j . (6)

As usual, we can describe a Fermi liquid with condensation
of the slave boson: 〈b〉 �= 0. Because n f = 2x and each of the
four flavors has filling x/2, we reach a Fermi-surface volume
of AFS = −x/2, where the minus sign indicates that we have
hole pocket because ci ∼ f †

i and fi should be interpreted as
annihilation of the hole. Also the small Fermi surface should
center at k = (π, π ) due to the negative hopping of f . One
can see now we have a different Fermi liquid in the infinite-J⊥
limit with Fermi-surface volume smaller than the noninter-
acting limit by 1/2 of the BZ per flavor. We dub this phase
the sFL phase [29]. Our goal is to formulate a theory for the
potential large to small Fermi-surface transition by tuning J⊥
at a fixed x.

III. DECONFINED FERMI LIQUID TO FERMI LIQUID
TRANSITION IN THE LARGE-δU LIMIT

We first formulate a critical theory for the FL to sFL tran-
sition in the large-δU limit, so we can restrict to the model
in Eq. (4). To capture the transition, we first need a unified
framework to describe both the FL and the sFL phase. This
can be done by a parton construction with a U(1) × U(1)
gauge structure.

A. Parton construction

We introduce the standard Abrikosov fermion to repre-
sent the four singlon states: f †

i;aσ |0〉 with a = t, b. For the
four doublon states, we introduce another fermion ψ , and
ψ

†
i;tσ ψ

†
i;bσ ′ |0〉 are four doublon states with σ, σ ′ =↑,↓. Here

ψi;aσ annihilates a fermion at layer a = t, b with spin σ =↑,↓
just as fi;aσ . The electron operator projected to this Hilbert
space is

ci;aσ =
∑
σ ′

f †
i;āσ ′ψi;āσ ′ψi;aσ , (7)

where ā is the opposite layer of a.
We have two local constraints: (I) ni; f + 1

2 (ni;ψt + ni;ψb ) =
1 and (II) ni;ψt = ni;ψb on each site. They generate two internal
U(1) gauge fields aμ and bμ whose time components impose
these two constraints as Lagrange multipliers. On average,
we have density n f = 2x while nψt = nψb = 1 − 2x. The total
density of electrons is n f + nψt + nψb = 2(1 − x) = nT .

The physical electron operator (7) is invariant under the
following two internal U(1) gauge transformations: (1) ψi →
ψieiθa (i) and fi → fiei2θa (i) for the U(1) gauge field aμ (the
subscript a stands for the gauge field, not the layer index);
(2) fi → fi, ψi;t → ψi;t eiθb(i), ψi;b → ψi;be−iθb(i) for the U(1)
gauge field bμ. Moreover, there is a global U(1) symmetry
transformation: ci;a → ci;aeiθc (i). We can assign the charge to
ψ , so under this global U(1) transformation, f → f , ψi;a →
ψi;aei 1

2 θc (i). We introduce a probing field Aμ for this U(1)

TABLE I. Gauge fields and the corresponding charges for each
operator. aμ and bμ are the gauge field introduced by the local
constraints, while Aμ and Bμ are the probing field related to the global
U(1) symmetry in each layer.

ftσ fbσ ψtσ ψbσ

aμ +2 +2 +1 +1
bμ 0 0 +1 −1
Aμ 0 0 + 1

2 + 1
2

Bμ +1 −1 0 0

global symmetry. Another global U(1) symmetry transfor-
mation corresponding to the layer polarization Pz is ci;t →
ci;t eiθd (i), ci;b → ci;be−iθd (i). We assign the charge to f , so un-
der this global U(1) transformation, ψ → ψ , fi;t → fi;t eiθd (i),
fi;b → fi;be−iθd (i). We also introduce a probing field Bμ for the
layer U(1). In the end, we have ft couples to 2aμ + Bμ, fb

couples to 2aμ − Bμ, ψt couples to 1
2 Aμ + aμ + bμ, and ψb

couples to 1
2 Aμ + aμ − bμ. The gauge charge of each field is

summarized in Table I.
Rewriting the Hamiltonian (4) in terms of the partons and

doing the mean-field decoupling, we can obtain the following
two possible mean-field Ansätze:

H (1)
MF = −

∑
i

∑
a=t,b


a f †
i;aσ ψi;aσ + H.c.,

H (2)
MF = −�

∑
i

εσσ ′ψi;tσ ψi;bσ ′ + H.c. (8)

The variational parameters 
a and � need to be decided
by optimizing the energy at each fixed J⊥. Ideally this should
be done through the variational Monte Carlo (VMC) calcu-
lation because the simple self-consistent mean-field analysis
is known to be not trustable due to the constraint. Because
our focus here is the universal theory of the transition, we
leave the VMC calculation with detailed energetical analysis
to future work. Here we simply point out two different phases
accessible in this parton framework:

(1) FL phase, 
a �= 0, � = 0. Now fa and ψa hybridize
and both of them can be identified as the electron operator
caσ ∼ faσ ∼ ψaσ . The total density is nT = 2 − 2x and the
total Fermi-surface volume per flavor is (1 − x)/2 because we
have four identical Fermi surfaces from the layer and spin. For
the gauge field, aμ is Higgsed to be locked to 1

2 Aμ while bμ

is locked to Bμ. This is a Higgsed phase of the U(1) × U(1)
gauge theory.

(2) sFL phase, 
a = 0, � �= 0. Now ψa is gapped out be-
cause of the pairing. aμ is Higgsed to be locked to − 1

2 Aμ while
bμ is confined. In the end we have caσ ∼ f †

āσ̄ . f couples to
−Aμ and should be interpreted as the hole operator. Because
n f = 2x, we expect a Fermi-surface volume AFS = −x/2 per
flavor.

Now we see that we can capture both the FL and the
sFL phase within one framework. Although our formalism
introduces a U(1) × U(1) gauge field, the FL and sFL phases
are conventional in the sense that the emergent gauge field is
either Higgsed or confined. Following our argument before,
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we naturally expect that the above two Ansätze correspond to
the small-J⊥ and the large-J⊥ regimes. The next question is
about the intermediate regime. In principle we can have an
intermediate phase from the other two Ansätze: (III) A super-
conductor phase with 
a �= 0, � �= 0, and (IV) a deconfined
metal (DM) phase with 
a = 0, � = 0. Another possibility
is a first-order transition between the FL and the sFL phase
directly. The most interesting possibility is a continuous direct
transition from FL to sFL. If we start from the FL phase with
finite 
a, the question is whether the onset of the pairing �

can coincide with the disappearance of the Higgs condensa-
tion 
a. Depending on whether this happens and assuming
no superconductivity, there should be a critical point or a line
separating the superconductor phase from the DM phase in
between FL and sFL. In the mean-field level this is impossible
without fine tuning, but the gauge fluctuation can change the

story completely. One famous example is the Néel to VBS
DQCP [1] where the confinement happens immediately after
the Higgs phase is destroyed due to the proliferation of the
monopole. In our case we show a similar scenario with the
onset of the pairing driven by the destruction of the Higgs
condensation 
a.

B. Critical theory

We start from the FL phase with 〈
a〉 �= 0, then we expect

a decrease with J⊥ because eventually we have the sFL
phase with 〈
a〉 = 0 at large J⊥. Next we formulate a criti-
cal theory associated with the Higgs transition of 
a which
vanishes at a critical value Jc

⊥. This critical theory can be
described by the following Lagrangian:

Lc = L
 + L f + Lψ, (9)

where L
 is

L
 = 
̄t

[
∂τ − i

(
−A0

2
+ B0 + a0 − b0

)]

t + 1

2m



̄t

[
−i �∇ −

(
− �A

2
+ �B + �a − �b

)]2


t

+ 
̄b

[
∂τ − i

(
−A0

2
− B0 + a0 + b0

)]

b + 1

2m



̄b

[
−i �∇ −

(
− �A

2
− �B + �a + �b

)]2


b

− μ
(|
t |2 + |
b|2) + λ1(|
t |2 + |
b|2)2 + λ2|
t |2|
b|2. (10)

Here we assume that there is always a mirror reflection symmetry M which exchanges the two layers, so 
a and 
b have the
same mass μ
. L
 is just the standard action for the Higgs transition. Here the boson fields 
a, 
b couple to the internal U(1)
gauge fields aμ, bμ and also to the two probing fields Aμ, Bμ. When μ
 > 0, we have 〈
a〉 = 〈
b〉 �= 0, which locks aμ = 1

2 Aμ

and bμ = Bμ. When μ
 < 0, 
a is gapped and the two internal U(1) gauge fields aμ, bμ become alive.
L f and Lψ contain the action of the fermion f and ψ :

L f = f̄t ;σ [∂τ − i(2a0 + B0)] ft ;σ + 1

2m f
f̄t ;σ [−i �∇ − (2�a + �B)]2 ft ;σ

+ f̄b;σ [∂τ − i(2a0 − B0)] fb;σ + 1

2m f
f̄b;σ [−i �∇ − (2�a − �B)]2 fb;σ − μ f

∑
a=t,b

f̄a;σ fa;σ ,

Lψ = ψ̄t ;σ

[
∂τ − i

(
A0

2
+ a0 + b0

)]
ψt ;σ + 1

2mψ

ψ̄t ;σ

[
−i �∇ −

(
�A
2

+ �a + �b
)]2

ψt ;σ

+ ψ̄b;σ

[
∂τ − i

(
A0

2
+ a0 − b0

)]
ψb;σ + 1

2mψ

ψ̄b;σ

[
−i �∇ −

(
�A
2

+ �a − �b
)]2

ψb;σ − μψ

∑
a=t,b

ψ̄a;σ ψa;σ . (11)

Remember that fa couples to 2aμ ± Bμ for a = t, b and ψa

couples to 1
2 Aμ + aμ ± bμ for a = t, b. In the Higgs phase

with 〈
a〉 �= 0, both faσ , ψaσ can be identified as electron
operator. When |
a| is large enough, f , ψ hybridize together
to form a single large Fermi surface. Then at small but finite

a, we expect separate Fermi surfaces dominated by f and ψ .
But their total Fermi-surface volume is still AFS = (1 − x)/2
per flavor, and it is still a conventional FL phase. When ap-
proaching the critical point μ
 = 0, the quasiparticle residue
of both Fermi surfaces vanish. At the critical point, the Fermi-
surface volumes per flavor from f and ψ are x/2 and 1/2 − x,
respectively. In principle, there should be a Yukawa coupling

δL = g
 f †
aσψaσ but, given the mismatch of the Fermi sur-

faces from f and ψ in the momentum space, this coupling
is irrelevant because the critical boson 
 is mainly at zero
momentum.

When μ
 < 0, 
a is gapped and we can ignore L
. But
now the two internal U(1) gauge fields aμ, bμ become alive
and we need to decide whether the Fermi surfaces from f and
ψ are stable to the gauge fluctuation or not. f only couples to
2aμ and the physics is then similar to the familiar U(1) spin
liquid with spinon Fermi surface. From the previous works we
know that the Fermi surface from f should be stable. On the
other hand, ψt and ψb couple to aμ with the same charge, but
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couple to bμ with opposite charge. It is known that bμ will
mediate attractive interactions between ψt and ψb [25]. We
show next that this attractive interaction is stronger than the
repulsive interaction from aμ, leading to a pairing instability
and an intermediate superconductor phase between the two
Fermi liquids.

C. Pairing instability and superconductor dome

Here we analyze the pairing instability for μ
 � 0. First,
the fermion bubble diagrams give rise to the following effec-
tive photon action:

La,b = 1

2

(
1

e2
a,0

|q|2 + κa
|ω|
|q|

)
|a(ω, q)|2

+ 1

2

(
1

e2
b,0

|q|2 + κb
|ω|
|q|

)
|b(ω, q)|2, (12)

with
1

e2
a,0

= 1

6πmψ

+ 2

3πm f
,

1

e2
b,0

= 1

6πmψ

. (13)

Here m f and mψ are the effective masses for f and ψ

fermions. We note that 
a does not contribute to the photon
action when μ
 � 0.

Since ψt/b couples to aμ ± bμ, the exchange of the aμ (bμ)
photon induces repulsive (attractive) interaction between the
two layers for the ψ fermion. Thus there is the possibility
of pairing instability, The renormalization group (RG) flow
equation of the interaction strength V in the interlayer Cooper
channel (at any angular momentum) is [38]

dṼ

dl
= (αa,ψ − αb,ψ ) − Ṽ 2, (14)

where αa,ψ = e2
avF,ψ/4π2 and αb,ψ = e2

bvF,ψ/4π2 are the
coupling strengths, where vF,ψ is the Fermi velocity of ψ .
Here l is the RG step. The first term comes from the exchange
of photons, while the second term is the usual BCS flow for
Fermi liquids. In Appendix B, we also show that αa,ψ

αb,ψ
does

not flow [25,35]. In our case we have e2
a,0 < e2

b,0, so we have
αa;ψ − αb;ψ < 0 and the interaction Ṽ flows to −∞ even if
the initial interaction is repulsive. Assuming the initial Ṽ is
positive and large, we estimate the superconducting gap to be
� ∼ �ω exp(−lp), where

lp ≈ π/

√
α0

b,ψ − α0
a,ψ =

√
π3(m f + 4mψ )

6vF,ψm2
ψ

(15)

in the calculation with ε expansion [38]. �ω is the energy
cutoff in the RG. Note that the pairing scale is quite small if
m f is large. Generically the pairing scale is smaller than that
from the nematic critical point [38], where the critical boson
induces strong attractive interaction. For our case, because we
also have the balance from the repulsive interaction from the
other gauge field aμ, we expect suppressed pairing scale and
there should be a large critical regime at temperature above
the pairing energy scale.

FIG. 4. A schematic phase diagram with J⊥, which tunes the
mass of 
a and the temperature T in the large-δU regime. In the
FL phase, 〈
a〉 �= 0 and � = 0. When 〈
a〉 is large, f and ψ share
a Fermi surface when 〈
a〉 is small, ψ has a Fermi surface around
the � point, and f has a Fermi surface around (π, π ). In the sFL
phase, 〈
a〉 = 0 and � �= 0. ψ now is gapped while f forms a small
hole pocket. The two crossover boundaries are the usual V-shaped
quantum critical region for the critical boson 
. The dashed curve
denote the pairing of ψ . The yellow dashed line denotes a Lifshitz
transition within the FL phase. At low temperature, there is a super-
conductor dome due to the pairing instability of the DFFT critical
point. Above the pairing scale in the critical regime, we have two
types of Fermi surfaces from f and ψ particles. Both of them couple
to internal gauge field aμ, bμ and the electron is a composite particle
of three deconfined fermions c ∼ f †ψψ and thus there is no coherent
single-electron quasiparticle.

Note that the above analysis holds for μ
 � 0. Even if
μ
 = 0, the gapless Higgs boson 
a does not alter the con-
clusion because the Higgs boson does not contribute to the
photon self-energy. This means that the pairing instability
exists already at the critical point. So even at μ
 = 0, there
should be a finite pairing term �εσσ ′ψt ;σ ψb;σ ′ with � �= 0 at
zero temperature. So we expect the onsets of � must happen
before the disappearance of 
a, as illustrated by the black
dashed line in Fig. 4. In the intermediate region, 
a and �

coexist. When there is finite 
a, we expect caσ ∼ ψaσ ∼ faσ .
The pairing of ψ means pairing of electron and this is a
superconductor phase with interlayer pairing. Note that, due
to finite 
, pairing of ψ transmits to pairing of f and all of the
Fermi surfaces should be gapped. The pairing instability hap-
pens at any angular-momentum channel. Microscopic details
are needed to decide which angular momentum wins. One
natural guess is a s′-wave interlayer pairing to avoid on-site
interlayer repulsion.

When μ
 < 0, 
a is gapped. Now the pairing of ψ does
not mean the pairing of electrons anymore. Actually, we sim-
ply have caσ ∼ f †

aσ and we have a small hole pocket from f ,
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while the Fermi surface from ψ is gapped. This is the sFL
phase. Now the gauge field aμ is Higgsed by the nonzero
�. The U(1) gauge field bμ does not couple to any gapless
matter field and will be confined due to the proliferation of the
monopole of bμ in 2 + 1 dimensions [39]. As we know the
sFL phase is allowed by the Luttinger theory, the monopole
proliferation does not need to break any symmetry. We note
that the sFL phase may still have a weak pairing instability at
very low temperature. Actually, now the term 
a f †

aσψaσ leads
to a term δL = g′
t
bεσσ ′ f †

tσ f †
bσ ′ through a second-order pro-

cess, given that εσσ ′ 〈ψtσψbσ ′ 〉 �= 0. Now the small hole pocket
from f couples to the composite boson field 
 = 
t
b in the
form of a boson-fermion model. Note that 
t , 
b couples to
±bμ. The confinement of bμ means that they now strongly
bound to each other and we can treat 
 = 
t
b as a well-
defined particle. 
 is actually a virtual Cooper pair now with
an energy cost 2|μ
|. The exchange of the virtual Cooper pair
leads to an attractive interaction for the f fermion with V ∼
−g′2/|μ
|. Hence the small hole pocket in the sFL phase has
a BCS instability at low temperature. A similar mechanism
of pairing instability of the sFL phase from virtual Cooper
pair has been discussed in our previous work [29], but there
the virtual Cooper is the on-site pair from J⊥ term at finite
repulsion V . In our current case the on-site interlayer Cooper
pair is pushed to infinite energy because we take V = +∞ and
the mechanism in our previous work does not apply anymore.
The virtual Cooper pair we discussed here is from the bound
state of the Higgs boson 
 = 
t
b and plays a role only not
too far from the critical regime. Therefore, this is a completely
different mechanism of superconductivity associated with the
deconfined FL to FL criticality.

D. Property of the critical regime

As illustrated in Fig. 4, we expect a critical regime gov-
erned by the DFFT critical point at finite temperature above
the superconductor dome. In the critical regime we have
〈
a〉 = � = 0. So now the two U(1) gauge fields aμ, bμ are
deconfined. We have two types of Fermi surfaces from faσ

and ψaσ for each flavor a = t, b and σ =↑,↓. Their Fermi
surface volumes are fixed to be A f = x/2 and Aψ = 1/2 − x
per flavor when the total density per site (summed over layer
and spin) is nT = 2 − 2x. In the critical regime described by
the theory in Eq. (9), the microscopic electron operator is a
composite [24,40] of the f and ψ fermions:

caσ (τ, x) =
∑
σ ′

f †
āσ ′ (τ, x)ψā;σ ′ (τ, x)ψa;σ (τ, x). (16)

The elementary particles f , ψ in the low-energy theory
couple to 2aμ and 1

2 Aμ + aμ ± bμ, respectively. None of them
is gauge invariant, so the Fermi surface of f or ψ is not
detectable by physical probes. Instead the physical Green’s
function now is

GR
c (τ, x) = − i�(τ )〈caσ (τ, x)c†

aσ (0, 0)〉
∼ 〈 f (τ, x)ψ†

t (τ, x)ψ†
b (τ, x)

× f †(0, 0)ψt (0, 0)ψb(0, 0)〉, (17)

where in the last line we suppress the spin index for simplicity.
One obvious implication is that the physical Green’s function

now has a large power-law scaling dimension. In mean-field
level, it is three times larger than the usual free fermion
from the Wick theorem. In (ω, k) space, Gc(ω, k) is from a
complicated convolution and we do not expect any coherent
quasiparticle peak in ARPES or STM probes even without
considering gauge fluctuations. In Fig. 4, we schematically
show the properties in each phase. Here in Figs. 5–7, we calcu-
late the electron spectral function A(k, ω) = − 1

π
ImGc(k, ω).

We can see that in the critical region, there is no coherence
peak, while in the sFL phase and the FL, we can see Fermi sur-
face of quasiparticles, which is consistent with the schematical
phase diagram.

In transport the system should behave as a metal. Under Aμ,
f , ψ and aμ, bμ will respond. Let us apply a constant external
electric field �E = −∂t �A − �∇A0. We also define the internal
electric field: �ea = −∂t �a − �∇a0 and �eb = −∂t �b − �∇b0.

Then the usual conductivity relations of f and ψ give us

�Jf = σ f (2�ea),

�Jψt = 1

2
σψ

(
1

2
�E + �ea + �eb

)
,

�Jψb = 1

2
σψ

(
1

2
�E + �ea − �eb

)
, (18)

where σ f is the conductivity of the f fermion summed over the
two layers. σψ is the conductivity of the ψ fermion summed
over the two layers. Here we assume a layer exchange sym-
metry.

From the above three equations we can eliminate �ea, �eb to
reach

− �Jf

σ f
+ 2 �Jψt + 2 �Jψb

σψ

= �E .

From the local constraint ni; f + 1
2 (ni;ψt + ni;ψb ) = 1 and

ni;ψt = ni;ψb we have − �Jf = �Jψt = �Jψb = �Jc, where �Jc is the
physical current. In the end we get �Jc(1/σ f + 4/σψ ) = �E .
Finally we reach the Ioffe-Larkin rule for the resistivity:

ρc = ρ f + 4ρψ. (19)

ρ f and ρψ are resistivities of the f and ψ Fermi surfaces.
We expect them to be metallic in the sense that they increase
with temperature T . However, the exact behavior of ρ f and
ρψ are complicated due to the coupling to the internal U(1)
gauge fields [41]. We leave to future work to determine the
transport behavior of the DFFT critical regime. Another in-
teresting question is the low-energy emergent symmetry and
anomaly of the DFFT critical line. Recently it was shown that
some non-Fermi liquids share the same emergent symmetry
and anomaly structure as the Fermi liquid and they all belong
to the so-called ersatz Fermi liquid (EFL) [42]. Our DFFT
critical regime is apparently compressible, so one can ask a
similar question. We conjecture that it does not belong to the
ersatz Fermi liquid and needs a different description in terms
of emergent symmetry and anomaly, which we leave to future
work.
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FIG. 5. (a)–(c) The electron spectral function A(kx = ky, ω), A(kx, ky = 0, ω), A(kx, ky, ω = 0) in the critical regime of the FL to sFL
transition at temperature above the superconductor dome in Fig. 4. In the calculation, we use the dispersion Ef = 2t (cos kx + cos ky ) − μ f and
Eψ = −2t (cos kx + cos ky ) − μψ , and the parameters t = 1, μ f = −2.844, μψ = −1.057 are chosen to make doping x = 0.2. In the critical
region, the system is in the deconfined phase, in which the electron operator is a composite of three fermionic operators, so there is no coherence
peak in the spectral function.

IV. SUPPRESSION OF PAIRING BY δU AND DECONFINED
METALLIC PHASE

In the large-δU regime, we have shown that there must
be a superconductor dome between the FL and sFL phase at
zero temperature. The DFFT criticality can only be revealed
at finite temperature. It is then interesting to ask whether we
can fully suppress the pairing instability. This turns out to be
possible by decreasing δU . We study the fate of the critical
regime with μ
 and δU to be the two relevant directions. μ


governs the transition between sFL and FL, while δU tunes
another Higgs transition and suppresses the pairing instability.

Now let us start from the full model in Eq. (2). We still
take U to be large but treat δU as a tuning parameter. The
restricted Hilbert space now has four singlon states and six
doublon states (see Fig. 1) and the Hamiltonian is Eq. (3). We
still use similar parton construction with f †

i;aσ to create singlon

states and ψ
†
i;aσ to create doublon states. The difference now

is that we have two extra doublon states: ψ
†
i;t↑ψ

†
i;t↓ |0〉 and

ψ
†
i;b↑ψ

†
i;b↓ |0〉 at each site. In this case, there are two tuning

parameters δU and J⊥ in the microscopic model.
At each fixed δU , we still expect the FL and sFL phase in

the small- and large-J⊥ limit. In our low-energy critical theory,

tuning J⊥ still effectively changes the mass μ
 to gap out
the Higgs condensation 
a. We show that tuning δU changes
the mass of another boson ϕ, which Higgses the gauge field
bμ. By tuning both parameters we can approach a deconfined
critical point, which we argue is stable to pairing and may
survive down to zero temperature.

The role of δU is to add an energy penalty to the last
two doublon states which violates the condition ni;ψt = ni;ψb :
H ′ = δU

∑
i(ni;ψt − ni;ψb )2. Now the previous local constraint

ni;ψt = ni;ψb is not exact anymore unless δU = +∞. As the
U(1) gauge field bμ originates from this constraint, we ex-
pect that bμ is alive at the large-δU regime but should
disappear in the small-δU regime. How do we capture this
evolution? The best way is to introduce another slave rotor
corresponding to

Li = 1
2

(
ni,ψt − ni,ψb

)
(20)

for the doublon states. As illustrated in Fig. 1, the last two
doublon states have L = ±1 while the first four doublon states
have L = 0. Now the δU term enters as H ′ = 4δU

∑
i L2

i .
We also introduce the canonical conjugate φi which has the
commutation relation [φi, Lj] = iδi j with Lj . Then in the φ

FIG. 6. (a)–(c) The electron spectral function A(kx = ky, ω), A(kx, ky = 0, ω), A(kx, ky, ω = 0) in sFL. In addition to parameters we used
in Fig. 5, we choose the pairing � = 1. In the sFL phase, ψ is gapped, so the electron operator is roughly c ∼ f †. We can see the Fermi surface
of f from the spectral function.
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FIG. 7. (a)–(c) The electron spectral function A(kx = ky, ω), A(kx, ky = 0, ω), A(kx, ky, ω = 0) in FL. In addition to the parameters we
used in Fig. 5, we choose the condensate 
 = 1. In the FL phase, 
 �= 0, the electron operator is roughly c ∼ f † ∼ ψ . We can see the Fermi
surfaces of both f and ψ from the spectral function.

representation we can write L as Li = −i∂/∂φi. The physical
electron operators now become

ci;tσ =
∑
σ ′

f †
i;bσ ′ψi;bσ ′ψi;tσ + f †

i;t σ̄ ψi;t σ̄ ψi;tσ ϕi,

ci;bσ =
∑
σ ′

f †
i;tσ ′ψi;tσ ′ψi;bσ + f †

i;bσ̄ ψi;bσ̄ ψi;bσ ϕ
†
i ,

(21)

where ϕi = exp(−iφi ) is the slave rotor which decreases L by
one. Under the internal U(1) gauge transformation associated
with aμ, ϕ does not change. Under the internal gauge trans-
formation associated bμ, fi → fi, ψi;t → ψi;t eiθb(i), ψi;b →
ψi;be−iθb(i), ϕi → ϕie−2iθb(i). So ϕ couples to −2bμ, which
can also be seen from the fact that the time component of
bμ enforces the constraint ni;ψt − ni,ψb − 2Li = 0. Thus ϕ be-
comes a Higgs boson which controls the dynamics of the
internal gauge field bμ. For the global U(1) symmetry, ϕ only
change under the gauge transformation associated with Bμ,
in which ψ → ψ , fi;t → fi;t eiθd (i), fi;b → fi;be−iθd (i), ϕi →
ϕie2iθd (i). Thereby, ϕ couples to −2bμ + 2Bμ.

At small δU , there is no penalty for finite |Li|. So we expect
ϕ to condense like the superfluid phase of a boson. On the
other hand, at large δU , we should have fixed Li = 0, so ϕ

should be gapped, like the Mott insulator phase of a boson.
Then δU tunes a superfluid to Mott insulator transition of this
extra slave rotor ϕ.

Our critical theory consists of the critical theory Eq. (9)
tuned by J⊥ together with the superfluid to Mott transition of
ϕ:

Ltc = Lc + |[∂μ − i(−2bμ + 2Bμ)]ϕ|2 + �ϕ|ϕ|2 + λ3|ϕ|4.
(22)

There is no first-order time derivative term on ϕ because
under the mirror reflection symmetry which exchange two
layers, ϕ ↔ ϕ†. So the action for ϕ is relativistic, similar to
the interaction tuned superfluid to Mott transition of bosons.

In Fig. 8 we show the schematic zero-temperature phase
diagram with two tuning parameters: J⊥ which tunes the mass
of 
a and δU which tunes �ϕ , the gap of ϕ. Note that since ϕ

couples to 2b, it contributes to the action of bμ and modifies
e2

b,0 even when ϕ is gapped. In Appendix C we show that,

when �ϕ > 0,

1

e2
a,0

= 1

6πmψ

+ 2

3πm f
,

1

e2
b,0

= 1

6πmψ

+ 1

6π
√

�ϕ

. (23)

At a large δU , the mass �ϕ is large, so we still have e2
a,0 <

e2
b,0 and pairing instability at μ
 = 0 as discussed in the pre-

vious section. If we decrease δU until the gap of ϕ reaches the
critical value �ϕc = m2

f /16. Now we have e2
a,0 = e2

b,0, which
means the repulsive and attractive interactions mediated by
gauge fields are balanced at μ
 = 0. In this case the pairing
instability of the DFFT transition is suppressed. As we further

FIG. 8. A schematic phase diagram at zero temperature with J⊥
and δU as the tuning parameters, which effectively tune the mass of

 (μ
) and ϕ (�ϕ). μ
 and �ϕ are two relevant directions. There is a
critical value �ϕ = �ϕ;c = m2

f /16 tuned by δU , which separates the
superconducting phase and a stable intermediate deconfined metal
(DM) phase at μ
 = 0 tuned by J⊥. When �ϕ is smaller than �ϕ;c,
there are two deconfined metal (DM) phases. In DM1 there are two
deconfined gauge fields aμ and bμ while in DM, 2bμ is Higgsed by
〈ϕ〉 �= 0.
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decrease δU to get a smaller but still positive �ϕ , we have
e2

a,0 > e2
b,0. Now when μ
 < 0, the ψ Fermi surface is still

stable to pairing and we have an intermediate phase with f ,
ψ Fermi surfaces coupled to deconfined aμ and bμ. This is
roughly a stable phase similar to the DQCP and we call it
a deconfined metal (DM1). Note that, in DM1, f couples to
2aμ and ψ couples to aμ ± bμ as in the DFFT critical regime.
Lastly, if we decrease δU until �ϕ < 0, we have 〈ϕ〉 �= 0 and
bμ is Higgsed completely (bμ = Bμ). Then we have a different
intermediate deconfined metal (DM2) phase where f couples
to 2aμ and ψ couples to aμ. The property of the DM phases
should be similar to the critical regime of the DFFT discussed
in the last section.

V. CONCLUSION

In summary, we propose a deconfined quantum critical
point (DQCP) between two symmetric Fermi liquids in a
bilayer model tuned by interlayer spin coupling J⊥, with a
Fermi-surface volume jump of 1/2 Brillouin zone across the
transition. Although the two sides are just conventional Fermi
liquids, the critical regime is dominated by fractionalized
fermions coupled to two emergent U(1) gauge fields, with the
electron operator as a composite of three fermionic operators.
The critical point has an instability towards an intermediate
superconductor dome with interlayer pairing. We also show
that tuning another parameter can suppress the pairing insta-
bility and lead to a stable deconfined metallic phase in the
intermediate regime. Our phase diagram shows certain sim-
ilarity to the experimental phase diagram of the hole-doped
cuprates, with a small to large Fermi-surface transition and
an associated superconductor dome. But our setup is much
cleaner due to the absence of the complexity from various
symmetry-breaking orders. We hope future investigations of
this Fermi liquid to Fermi liquid transition can provide more
insights on the general theory of the strange metal and its
superconducting instability. The transition may be realized in
the recently found nickelate superconductor La3Ni2O7 tuned
by pressure [26,29] and also in quantum simulator based on
bilayer optical lattice [43].
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APPENDIX A: MEAN-FIELD DECOMPOSITION

In this section we show the mean-field Hamiltonian of
Eq. (4). Plugging the electron operators of parton form Eq. (7)
into Eq. (4), we have

H = − t
∑
〈i j〉

∑
σ,σ1,σ2

(
ψ

†
i;tσ ψ

†
i;bσ1

fi;bσ1 f †
j;bσ2

ψ j;bσ2ψ j;tσ

+ ψ
†
i;bσ ψ

†
i;tσ1

fi;tσ1 f †
j;tσ2

ψ j;tσ2ψ j;bσ
)

+ J⊥
4

∑
i

[ψ†
i;tσ �σσσ ′ψi;tσ ′ ][ψ†

i;bσ �σσσ ′ψi;bσ ′ ]. (A1)

We can define the following parameters:

χ f ;i j =
∑

σ

〈 f †
i;tσ f j;tσ 〉 =

∑
σ

〈 f †
i;bσ f j;bσ 〉, (A2)

χψ ;i j =
∑

σ

〈ψ†
i;tσ ψ j;tσ 〉 =

∑
σ

〈ψ†
i;bσ ψ j;bσ 〉, (A3)

χ f ψ ;i =
∑

σ

〈 f †
i;tσ ψi;tσ 〉 =

∑
σ

〈 f †
i;bσ ψi;bσ 〉, (A4)

�̃i =
∑
σσ ′

εσσ ′ 〈ψi;tσ ψi;bσ ′ 〉 = 2〈ψi;t↑ψb;↓〉 = −2〈ψi;t↓ψb;↑〉.

(A5)

Here, for simplicity, we consider that all the parameters are in
the trivial representation of the lattice symmetry, i.e., χi j = χ .
In terms of these mean-field parameters, we can use the Wick
theorem to obtain the following mean-field Hamiltonian:

HMF =
∑
〈i j〉

(t f f †
i;aσ f j;aσ + H.c.) +

∑
〈i j〉

(−tψψ
†
i;lσ ψ j;lσ + H.c.)

+
∑

i

(−
a f †
i;aσ ψi;aσ + H.c.)

+
∑

i

(−�εσσ ′ψi;tσ ψi;bσ ′ + H.c.)

−
∑

i

{
μ ft

(
ni; ft − x

) + μ fb

(
ni; fb − x

)
+ μψt

[
nψt − (1 − 2x)

] + μψb

[
nψb − (1 − 2x)

]}
.

(A6)

The chemical potentials μ f and μψ are introduced to con-
serve the particle number. The self-consistent equations are

t f = t

(
1

2
χ2

ψ + 1

4
�̃2

)
,

tψ = t
(
χ2

f ψ − χ f χψ

)
,


a = tχψχ f ψ,

� =
(

2tχ f − 3

8
J⊥

)
�̃. (A7)

APPENDIX B: CRITICAL THEORY AT LARGE δU

In this section we perform a renormalization-group analy-
sis to the critical theory (9), which corresponds to the large-δU
case. We can tune J⊥ (the mass μ
) to reach the QCP at
μ
 = 0. We analyze the stability of this QCP while setting
the external U(1) gauge fields A = B = 0.

1. Self-energy of the photon

We basically follow the calculation in Ref. [34]. After a
renormalization of the gauge-field Lagrangian from polariza-
tion corrections from the fermion f , � and, we obtain

La,b = 1

2

(
1

e2
a,0

|q|2 + κa
|ω|
|q|

)
|a(ω, q)|2

+ 1

2

(
1

e2
b,0

|q|2 + κb
|ω|
|q|

)
|b(ω, q)|2, (B1)
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where we use the Coulomb gauge so there is only one trans-
verse component of each gauge field. The first term comes
from the bubble diagrams of f and ψ , while the second term
only comes from ψ . Both terms include a Landau diamagnetic

q2 term and a Landau damping |ω|/|q| term. Note that the
boson 
a does not contribute to La,b since its time derivative
is of first order. The coupling constants e2 and the Landau
damping coefficients κ are

1

e2
a,0

= 1

6πmψ

+ 2

3πm f
, κa = 2mψvF,ψ

π
+ 8m f vF, f

π
,

1

e2
b,0

= 1

6πmψ

, κb = 2mψvF,ψ

π
. (B2)

2. Renormalization group flow

We consider the coupling between fermions f , ψ and gauge fields a, b. We use the ε expansion [38] to derive the RG
equations. We consider the action

S = Sa,b + S f + Sψ (B3)

with

Sa,b = 1

2

∫
dωd2q

(2π )3

[(
1

e2
a

|qy|1+ε + κa
|ω|
|qy|

)
|a(ω, q)|2 +

(
1

e2
b

|qy|1+ε + κb
|ω|
|qy|

)
|b(ω, q)|2

]
,

S f =
∫

dωd2k

(2π )3

∑
a=t,b

f̄a;σ

(
iω − vF, f kx − 1

2m f
k2

y

)
fa;σ + vF, f

∫
d3q

(2π )3

∫
dωd2k

(2π )3

∑
a=t,b

f̄a;σ (k + q) · 2a(q) fa;σ (k),

Sψ =
∫

dωd2k

(2π )3

∑
a=t,b

ψ̄a;σ

(
iω − vF,ψkx − 1

2mψ

k2
y

)
ψa;σ + vF,ψ

∫
d3q

(2π )3

∫
dωd2k

(2π )3 ψ̄t ;σ (k + q)[a(q) + b(q)]ψt ;σ (k)

+ vF,ψ

∫
d3q

(2π )3

∫
dωd2k

(2π )3 ψ̄b;σ (k + q)[a(q) − b(q)]ψb;σ (k). (B4)

We have scaling [kx] = 1, [ω] = 1, [ky] = 1/2, [ f ] = [ψ] = −7/4, [a] = [b] = −3/2, [e2
a] = [e2

b] = ε/2, [m f /ψ ] =
[vF, f /ψ ] = 0. We define the new coupling constants αa, f = e2

avF, f /4π2, αb, f = e2
bvF, f /4π2, αa,ψ = e2

avF,ψ/4π2, and αb,ψ =
e2

bvF,ψ/4π2. The naive scaling gives [αa] = [αb] = ε/2.
To do the renormalization-group analysis using an ε expansion, we redefine the fields as follows:

f 0 = Z1/2
f f ,

ψ0 = Z1/2
ψ ψ,

v0
F, f = ZvF, f vF, f ,

v0
F,ψ = ZvF,ψ

vF,ψ ,

e0
a = μ

ε
4 Zea ea,

e0
b = μ

ε
4 Zebeb,

a0 = Zaa,

b0 = Zbb, (B5)

and then we can rewrite the original action as

S = 1

2

∫
dωd2q

(2π )3

[(
Z2

a

μ
ε
2 Z2

ea
e2

a

|qy|1+ε + Z2
a κa

|ω|
|qy|

)
|a(ω, q)|2

]
+ 1

2

∫
dωd2q

(2π )3

[(
Z2

b

μ
ε
2 Z2

eb
e2

b

|qy|1+ε + Z2
b κb

|ω|
|qy|

)
|b(ω, q)|2

]

+
∫

dωd2k

(2π )3

∑
a=t,b

f̄a;σ

(
iZ f ω − Z f ZvF, f vF, f kx − Z f

1

2m f
k2

y

)
fa;σ + Z f ZvF, f vF, f

∫
d3q

(2π )3

∫
dωd2k

(2π )3

∑
a=t,b

f̄a;σ (k + q)

× 2Zaa(q) fa;σ (k) +
∫

dωd2k

(2π )3

∑
a=t,b

ψ̄a;σ

(
iZψω − ZψZvF,ψ

vF,ψkx − Zψ

1

2mψ

k2
y

)
ψa;σ
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+ ZψZvF,ψ
vF,ψ

∫
d3q

(2π )3

∫
dωd2k

(2π )3 ψ̄t ;σ (k + q)[Zaa(q) + Zbb(q)]ψt ;σ (k)

+ ZψZvF,ψ
vF,ψ

∫
d3q

(2π )3

∫
dωd2k

(2π )3 ψ̄b;σ (k + q)[Zaa(q) − Zbb(q)]ψb;σ (k).

(B6)

From the Ward identity, we expect Za = Zb = 1. Hence the fermion-gauge field vertex correction should be purely from Z f ZvF, f

and ZψZvF,ψ
. It can be shown that they both equal one, implying that there is no vertex correction. When ε < 1, we expect

Zea = Zeb = 1 because the nonanalytic form |qy|1+ε cannot be renormalized. Therefore the only important renormalization is
from Z f = Z−1

vF, f
and Zψ = Z−1

vF,ψ
.

The self-energy of f at one-loop order is

� f (iω) = 4e2
av

2
F, f

(2π )3

∫
dq0d2q

1

|qy|1+ε + κae2
a

|q0|
|qy|

1

iω + iq0 − vF, f (kx + qx ) − 1
2m f

(ky + qy)2

= 2αa, f

∫
dq0dqy

isign(ω + q0)

|qy|1+ε + κae2
a

|q0|
|qy|

= 4αa, f
1

ε

∫
dq0isign(ω + q0) + · · ·

= 8αa, f iω
1

ε
. (B7)

In the above we only keep the divergent part O(1/ε). To cancel the divergence, we need

Z f = Z−1
vF, f

= 1 − 8αa, f
1

ε
+ O

(
1

ε2

)
. (B8)

The self-energy of ψ at one-loop order is

�ψ (iω) = e2
av

2
F,ψ

(2π )3

∫
dq0d2q

1

|qy|1+ε + κae2
a

|q0|
|qy|

1

iω + iq0 − vF,ψ (kx + qx ) − 1
2mψ

(ky + qy)2

+ e2
bv

2
F,ψ

(2π )3

∫
dq0d2q

1

|qy|1+ε + κbe2
b

|q0|
|qy|

1

iω + iq0 − vF,ψ (kx + qx ) − 1
2mψ

(ky + qy)2

= αa,ψ

2

∫
dq0d2q

isign(ω + q0)

|qy|1+ε + κae2
a

|q0|
|qy|

+ αb,ψ

2

∫
dq0d2q

isign(ω + q0)

|qy|1+ε + κbe2
b

|q0|
|qy|

= (αa,ψ + αb,ψ )
1

ε

∫
dq0isign(ω + q0) + · · ·

= 2(αa,ψ + αb,ψ )iω
1

ε
. (B9)

Therefore,

Zψ = Z−1
vF,ψ

= 1 − 2(αa,ψ + αb,ψ )
1

ε
+ O

(
1

ε2

)
. (B10)

Next, we show explicitly that the vertex correction vanishes. For simplicity we use a f̄ f as an illustration. We have

δ�c(p0, px, py) =
∫

d3q

2π

1

iq0 − vF, f qx − 1
2Kf

q2
y

1

iq0 + ip0 − vF, f (qx + px ) − 1
2Kf

(qy + py)2

4αa, f vF, f

|qy|1+ε + κae2
a

|q0|
|qy|

= isign(p0)
∫

dqy

∫ |p0|

0
dq0

4αa, f

|qy|1+ε + κae2
a

|q0|
|qy|

1

ip0 − vF, f px − 1
Kf

pyqy − 1
2Kf

p2
y

, (B11)

where (p0, px, py) is the external momentum of a photon at the vertex. We assume one of the external f fermions at the vertex
has zero momentum. In the first step we integrate over qx and get a factor sign(p0 + q0) − sign(q0), which equals to two for
q0 ∈ [−p0, 0] and zero otherwise. We can see that δ�c(p0 = 0, px, py) = 0 so there is no vertex correction. The same conclusion
holds for every fermion-gauge field vertex.
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Finally, we can get the beta functions β(α) = −dα/dlnμ (note that this is the negative of the usual definition) from the
relations

α0
a, f = μ

ε
2 Z2

ea
ZvF, f αa, f ,

α0
b, f = μ

ε
2 Z2

eb
ZvF, f αb, f ,

α0
a,ψ = μ

ε
2 Z2

ea
ZvF,ψ

αa,ψ ,

α0
b,ψ = μ

ε
2 Z2

eb
ZvF,ψ

αb,ψ .

(B12)

Using dlnα0/dlnμ = 0 and Zea = Zeb = 1, we have

0 = −ε

2
− dlnα

dlnμ
− dlnZvF

dlnμ
= −ε

2
− dlnα

dlnμ
+ dlnZ

dlnμ
, (B13)

where in the second step we use the relation Z f ZvF, f = ZψZvF,ψ
= 1. We have the equations(

1 − αa, f
∂lnZ f

∂αa, f

)
β(αa, f ) = ε

2
αa, f , (B14)

β(αb, f ) − αb, f
∂lnZ f

∂αa, f
β(αa, f ) = ε

2
αb, f , (B15)(

1 − αa,ψ

∂lnZψ

∂αa,ψ

)
β(αa,ψ ) − αa,ψ

∂lnZψ

∂αb,ψ
β(αb,ψ ) = ε

2
αa,ψ , (B16)

−αb,ψ
∂lnZψ

∂αa,ψ

β(αa,ψ ) +
(

1 − αb,ψ
∂lnZψ

∂αb,ψ

)
β(αb,ψ ) = ε

2
αb,ψ . (B17)

Using

lnZ f = − 8αa, f
1

ε
+ O

(
1

ε2

)
,

lnZψ = − 2(αa,ψ + αb,ψ )
1

ε
+ O

(
1

ε2

)
, (B18)

and the fact that all O(1/εn) terms should vanish for the theory to be renormalizable, we obtain the beta functions:

β(αa, f ) = ε

2
αa, f − 4α2

a, f ,

β(αb, f ) = ε

2
αb, f − 4αa, f αb, f ,

β(αa,ψ ) = ε

2
αa,ψ − αa,ψ (αa,ψ + αb,ψ ),

β(αb,ψ ) = ε

2
αb,ψ − αb,ψ (αa,ψ + αb,ψ ). (B19)

We can see that there are fixed points satisfying αa, f = ε/8 and αa,ψ + αb,ψ = ε/2. We also find that the ratio αa,ψ/αb,ψ does
not flow, which shows that αa,ψ − αb,ψ does not change sign.

3. Pairing instability

The leading contribution to the interaction in BCS channel for fermions is from exchange of one photon. Among all the
fermion pairing terms, the following is the most important:

SBCS =
∫ ∏

d2kidωiψ̄t (k1)ψ̄b(−k1)ψb(−k2)ψt (k2)V F (k1 − k2), (B20)

where F (q = k1 − k2) arises from the propagator of photons. Note that ψt couples to a + b while ψb couples to a − b, which
means that a mediates repulsive interaction between ψt and ψb while b mediates attractive interaction. The final sign of the
interaction between ψt and ψb depends on the competition between a and b.

We define the dimensionless BCS interaction constant

Ṽm = kF,ψ

2πvF,ψ

Vm, (B21)
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where m is the angular momentum for the corresponding pairing channel. By integrating out photon in the intermediate energy,
we obtain

δṼm = kF,ψ

2πvF,ψ

v2
F,ψ

∫
dθ

2π

(
e−imθ

|kF,ψθ |1+ε/e2
a

− e−imθ

|kF,ψθ |1+ε/e2
b

)

= vF,ψ

4π2
2

∫ �y

�ye−δl/2
dqy

(
1

|qy|1+ε/e2
a

− 1

|qy|1+ε/e2
b

)

= (αa,ψ − αb,ψ )δl. (B22)

The renormalization in Eq. (B22) should be combined with the usual flow of the BCS interaction to obtain the RG equation

dṼ

dl
= (αa,ψ − αb,ψ ) − Ṽ 2. (B23)

From Eq. (B2) we have bare values α0
a,ψ − α0

b,ψ < 0, then Ṽ will flow to −∞. Considering the case ε = 0, then from Eq. (B19)
we obtain

αa,ψ (l ) = αa,ψ (0)

1 + [αa,ψ (0) + αb,ψ (0)]l
,

αb,ψ (l ) = αb,ψ (0)

1 + [αa,ψ (0) + αb,ψ (0)]l
, (B24)

where we identify −lnμ as l . The decreasing of α is slow so we can approximately use the bare value when solving Eq. (B23).
We get

Ṽ (l ) =
√

α0
b,ψ − α0

a,ψ tan

⎛
⎜⎝−

√
α0

b,ψ − α0
a,ψ l + tan−1 Ṽ (0)√

α0
b,ψ − α0

a,ψ

⎞
⎟⎠. (B25)

We can see that Ṽ (l ) diverges at

lp = 1√
α0

b,ψ − α0
a,ψ

⎛
⎜⎝π

2
+ tan−1 Ṽ (0)√

α0
b,ψ − α0

a,ψ

⎞
⎟⎠, (B26)

which also gives a estimation of the superconducting gap � ∼ �ω exp(−lp). In the limit Ṽ (0) � (α0
b,ψ − α0

a,ψ )1/2, we have
lp ≈ (π/2)(α0

b,ψ − α0
a,ψ )1/2. In the limit Ṽ (0) � (α0

b,ψ − α0
a,ψ )1/2, we have lp ≈ π/(α0

b,ψ − α0
a,ψ )1/2. Here �ω is the high-energy

cutoff of RG.

APPENDIX C: PAIRING INSTABILITY IN THE CRITICAL REGION

Now the photon self-energy is given by the polarization corrections from the fermion f , ψ and boson ϕ. The contribution
from the ϕ bubble is

δ�μν (q) = 4
∫

d3l

(2π )3

[
(2l + q)μ(2l + q)ν

[(l + q)2 + �ϕ](l2 + �ϕ )
− 2δμν

l2 + �ϕ

]

=
∫ 1

2

− 1
2

dy
2y2

π

√(
1
4 − y2

)
q2 + �ϕ

(q2δμν − qμqν ). (C1)

The factor of four comes from the fact that ϕ couples to −2bμ. The Feynman parametrization is used to get the second line. It
has different behaviors for �ϕ > 0 and �ϕ = 0:

�ϕ = 0 : δ�μν = q2δμν − qμqν

4|q| ,

�ϕ > 0 : δ�μν = q2δμν − qμqν

6π
√

�ϕ

+ O(q4). (C2)
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Combining all the polarization corrections from f , ψ , and ϕ, for �ϕ > 0 and μ
 = 0 we have

La,b = 1

2

(
1

e2
a,0

|q|2 + κa
|ω|
|q|

)
|a(ω, q)|2 + 1

2

(
1

e2
a,0

|q|2 + κa
|ω|
|q|

)
|b(ω, q)|2, (C3)

where the coupling constants e2 are

1

e2
a,0

= 1

6πmψ

+ 2

3πm f
,

1

e2
b,0

= 1

6πmψ

+ 1

6π
√

�ϕ

. (C4)

Note that all the RG analysis in Appendix B is still valid when ϕ is gapped. At �ϕ = �ϕc = 1
16 m2

f , we have e2
b,0 = e2

a,0. The
attractive and repulsive interactions mediated by gauge fields are balanced.

APPENDIX D: CALCULATION OF GREEN’S FUNCTION

Consider the electron Green’s function Gc(k, iω) = −〈ct↑(k, iω)c†
t↑(k, iω)〉. In the following, I use ξ f (k) = ε f (k) − μ f ,

ξψ (k) = εψ (k) − μψ , k = (k, iω). From the parton construction Eq. (7), we have

Gc(k) = − 2
∫

k1

∫
k2

〈 f †
b↑(−k2) fb↑(−k2)〉〈ψb↑(k1)ψ†

b↑(k1)〉〈ψt↑(k − k1 − k2)ψ†
t↑(k − k1 − k2)〉

= 2
∫

k1

∫
k2

−1

−iω2 − ξ f (k2)

1

iω1 − ξψ (k1)

1

iω − iω1 − iω2 − ξψ (k − k1 − k2)

= 2
∫

k1

∫
k2

1

iω1 − ξψ (k1)

�(ξψ (k − k1 − k2)) − �(ξ f (k2))

−iω1 + iω + ξ f (k2) − ξψ (k − k1 − k2)

= 2
∫

k1

∫
k2

[�(ξ f (k2) − ξψ (k − k1 − k2)) − �(ξψ (k1))][�(ξ f (k2)) − �(ξψ (k − k1 − k2))]

iω + ξ f (k2) − ξψ (k − k1 − k2) − ξψ (k1)

= 2
∫

k1

∫
k2

[�(ξ f (k2))�(−ξψ (k1))�(−ξψ (k − k1 − k2)) + �(−ξ f (k2))�(ξψ (k1))�(ξψ (k − k1 − k2))]

iω + ξ f (k2) − ξψ (k − k1 − k2) − ξψ (k1)
. (D1)

The spectral function is then

A(ω, k) = − 1

π
ImGR

c (ω, k) = − 1

π
ImGc(k)|iω→ω+iη. (D2)

1. Green’s function in second Fermi liquid

The mean-field Hamiltonian of a sFL is

H =
∑

k

ξ f (k) f †
aσ (k) faσ (k) +

∑
kα

� (α)†(k)h(k)� (α)(k), (D3)

where α = 1, 2,

� (1) = (ψt↑(k), ψ†
b↓(−k))T , � (2) = (ψb↑(k), ψ†

t↓(−k))T , (D4)

and

h(k) =
(

ξψ (k) �

� −ξψ (k)

)
. (D5)

Now the electron Green’s function becomes

Gc(k) = − 2
∫

k1

∫
k2

〈 f †
b↑(−k2) fb↑(−k2)〉〈ψb↑(k1)ψ†

b↑(k1)〉〈ψt↑(k − k1 − k2)ψ†
t↑(k − k1 − k2)〉

− 〈 f †
b↓(−k) fb↓(−k)〉

∫
k1

〈ψb↓(k1)ψt↑(−k1)〉
∫

k2

〈ψ†
t↑(−k2)ψ†

b↓(k2)〉

= 2
∫

k1

∫
k2

−1

−iω2 − ξ f (k2)

iω1 + ξψ (k1)

(iω1)2 − E2
ψ (k1)

iω − iω1 − iω2 + ξψ (k − k1 − k2)

(iω − iω1 − iω2)2 − E2
ψ (k − k1 − k2)

+ 1

iω + ξ f (k)

(∫
k1

�

(iω1)2 − E2
ψ (k1)

)2

, (D6)

125122-15



XIAOFAN WU, HUI YANG, AND YA-HUI ZHANG PHYSICAL REVIEW B 110, 125122 (2024)

where ξ (k) = ε(k) − μ, and Eψ (k) = +(ξ 2
ψ (k) + �2)1/2. To simplify the calculation, we can use

− 〈ψb↑(k)ψ†
b↑(k)〉 = iω + ξψ (k)

(iω)2 − E2
ψ

(k)
= u2(k)

iω − Eψ (k)
+ v2(k)

iω + Eψ (k)
,

− 〈ψb↑(k)ψt↓(−k)〉 = �

(iω)2 − E2
ψ

(k)
= �

2Eψ (k)

(
1

iω − Eψ (k)
− 1

iω + Eψ (k)

)
, (D7)

where

u2(k) = 1

2

(
1 + ξψ (k)

Eψ (k)

)
, v2(k) = 1

2

(
1 − ξψ (k)

Eψ (k)

)
. (D8)

Then,

Gc(k) = 2
∫

k1

∫
k2

−1

−iω2 − ξ f (k2)

1

iω1 − Eψ (k1)

u2(k1)u2(k − k1 − k2)

iω − iω1 − iω2 − Eψ (k − k1 − k2)

+ −1

−iω2 − ξ f (k2)

1

iω1 − Eψ (k1)

u2(k1)v2(k − k1 − k2)

iω − iω1 − iω2 + Eψ (k − k1 − k2)

+ −1

−iω2 − ξ f (k2)

1

iω1 + Eψ (k1)

v2(k1)u2(k − k1 − k2)

iω − iω1 − iω2 − Eψ (k − k1 − k2)

+ −1

−iω2 − ξ f (k2)

1

iω1 + Eψ (k1)

v2(k1)v2(k − k1 − k2)

iω − iω1 − iω2 + Eψ (k − k1 − k2)

+ 1

iω + ξ f (k)

[∫
k1

�

2Eψ (k1)

(
1

iω1 − Eψ (k1)
− 1

iω1 + Eψ (k1)

)]2

(k3 = k − k1 − k2)

= 2
∫

k1

∫
k2

(
u2(k1)u2(k3)�(−ξ f (k2))

iω + ξ f (k2) − Eψ (k1) − Eψ (k3)
+ v2(k1)v2(k3)�(+ξ f (k2))

iω + ξ f (k2) + Eψ (k1) + Eψ (k3)

)

+ 1

iω + ξ f (k)

(∫
k1

�

2Eψ (k1)

)2

. (D9)

2. Green’s function for a Fermi liquid

The mean-field Hamiltonian of a FL is

H =
∑

k

ξ f (k) f †
aσ (k) faσ (k) + ξψ (k)ψ†

aσ (k)ψaσ (k) − 
 f †
aσ (k)ψaσ (k) − 
ψ†

aσ (k) faσ (k)

= (
f †
aσ (k), ψ†

aσ (k)
)
h(k)

(
faσ (k)
ψaσ (k)

)
, (D10)

with

h(k) =
(

ξ f (k) −


−
 ξψ (k)

)
. (D11)

We have

−
( 〈 faσ (k) f †

aσ (k)〉 〈 faσ (k)ψ†
aσ (k)〉

〈ψaσ (k) f †
aσ (k)〉 〈ψaσ (k)ψ†

aσ (k)〉
)

= 1

[iω − E+(k)][iω − E−(k)]

(
iω − ξψ (k) −


−
 iω − ξ f (k)

)
, (D12)

where

E± = ξ f + ξψ

2
±

√(
ξ f − ξψ

2

)2

+ 
2. (D13)

The following equations are useful:

− 〈 faσ (k) f †
aσ (k)〉 = ξ f (k) − E−(k)

E+(k) − E−(k)

1

iω − E−(k)
+ E+(k) − ξ f (k)

E+(k) − E−(k)

1

iω − E+(k)
= u2

f (k)

iω − E+(k)
+ 1 − u2

f (k)

iω − E−(k)
,

−〈ψaσ (k)ψ†
aσ (k)〉 = ξψ (k) − E−(k)

E+(k) − E−(k)

1

iω − E−(k)
+ E+(k) − ξψ (k)

E+(k) − E−(k)

1

iω − E+(k)
= u2

ψ (k)

iω − E+(k)
+ 1 − u2

ψ (k)

iω − E−(k)
,
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−〈 faσ (k)ψ†
aσ (k)〉 = −


E+(k) − E−(k)

(
1

iω − E+(k)
− 1

iω − E−(k)

)
= u f ψ (k)

(
1

iω − E+(k)
− 1

iω − E−(k)

)
,

−〈ψaσ (k) f †
aσ (k)〉 = −


E+(k) − E−(k)

(
1

iω − E+(k)
− 1

iω − E−(k)

)
= u f ψ (k)

(
1

iω − E+(k)
− 1

iω − E−(k)

)
. (D14)

Now the electron Green’s function becomes

Gc(k) = − 2
∫

k1

∫
k2

〈 f †
b↑(−k2) fb↑(−k2)〉〈ψb↑(k1)ψ†

b↑(k1)〉〈ψt↑(k − k1 − k2)ψ†
t↑(k − k1 − k2)〉

− 4〈ψt↑(k)ψ†
t↑(k)〉

∫
k1

〈 f †
b↑(k1)ψb↑(k1)〉

∫
k2

〈ψ†
b↑(k2) fb↑(k2)〉

= 2
∫

k1

∫
k2

u2
f (k2)u2

ψ (k1)u2
ψ (k3)

�(E+(k2))�(−E+(k1))�(−E+(k3)) + �(−E+(k2))�(E+(k1))�(E+(k3))

iω + E+(k2) − E+(k1) − E+(k3)

+ (other 7 terms with u2 → 1 − u2, E+ → E−)

+ 4

(
u2

ψ (k)

iω − E+(k)
+ 1 − u2

ψ (k)

iω − E−(k)

)[∫
k1

u f ψ (k1)�(
2 − ξ f (k1)ξψ (k1))

]2

. (D15)
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