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Hamiltonian reconstruction: The correlation matrix and incomplete operator bases
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We explore the robustness of the correlation matrix Hamiltonian reconstruction technique with respect to the
choice of operator basis, studying the effects of bases that are undercomplete and overcomplete—too few or
too many operators, respectively. An approximation scheme for reconstruction using an undercomplete basis is
proposed and tested numerically on select models. We discuss the confounding effects of conserved quantities
and symmetries on reconstruction attempts. We apply these considerations to a variety of one-dimensional
systems at zero and nonzero temperature.
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I. INTRODUCTION

Reconstructing a Hamiltonian has been a subject of recent
interest [1–16]. One way reconstruction may be performed is
through the use of a correlation matrix whose elements are the
expectation values of all pairs of physical observables. The
correlation matrix approach is more direct than the traditional
method that matches experiments against the predictions of
simplified models [4]. With the correlation matrix method the
Hamiltonian is simply a vector in the nullspace of the matrix
[2]. However, the method comes with a high cost: It requires
a very large number of measurements. While the approach is
guaranteed to work when the full set of covariances between
observables are available, in practice, only a small portion of
the full space of relevant physical observables are measurable.

Practical examples of this subspace problem are numerous.
Often one cannot measure external couplings, accurately sam-
ple over all material impurities, or resolve a small but nonzero
two-point response from noise. If the Hamiltonian contains
terms that couple to DOFs that are only weakly excited, these
incidental DOFs can be integrated out [17]. Similarly, if some
terms of the Hamiltonian, which acts on the important DOFs,
are small and hard to measure or treat in a given model,
one can often discard them without sacrificing accuracy. Such
approximations are a common theme across all branches of
physics. In this context, the goal of the present paper is to
understand how the neglect of such incidental degrees of free-
dom could hamper attempts to reconstruct a Hamiltonian via
the correlation matrix method in an experimentally realistic
setting.

What does an experimentally realistic setting mean in the
context of Hamiltonian reconstruction? The correlation ma-
trix procedure has not yet (to our knowledge) been applied
to an experimentally realized system. Our interpretation is
as follows: The scientist should know the basic inputs of
the model—the spatial symmetry group and also the internal
symmetry group(s) if they exist—that constraint the impor-
tant DOFs. Mathematically, knowing how the Hilbert space
factorizes. Thus, one can select a basis of likely candidates

FIG. 1. Schematic of the subspace problem in correlation matrix
reconstruction. {On} span the space of operators on the relevant
sector of Hilbert space. The Hamiltonian is only defined up to a
positive-definite overall constant and we represent the sector as a
sphere. (a) When the operator space is larger than necessary, the
presence of a conserved quantity O3 causes the reconstructed Hamil-
tonian to be a linear combination of O3 and the true H . (b) When
working with an undercomplete basis, the correlation matrix ap-
proach cannot provide a perfect match to the measured state (the
minimal eigenvalue λ0 is proportional to the square of the largest
truncated operator J3).
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for physically appropriate operators from which to reconstruct
the Hamiltonian. In this case “incidental degrees of freedom”
refers to the operators that are absent from this basis but
nonetheless appear in the Hamiltonian, even if with small
coefficients.

To test if the correlation matrix is still applicable in this
more realistic context, we will start with a complete basis
of operators, reconstruct a Hamiltonian using the correlation
matrix technique of Ref. [2], and then study the limitations of
the technique as it is pushed in opposing directions: that of an
increasingly smaller operator basis, and that of an operator
basis enlarged by additional operators. A general overview
of the problems caused by an enlarged or truncated basis is
provided in Figs. 1(a) and 1(b), respectively, for a Hilbert
space with three operators. In Sec. II we review some basic
features of the correlation matrix technique and the models
we will utilize to study it. In Sec. III we determine the effects
of decimating operators from a complete basis, arguing that
despite incomplete knowledge of the operators in the Hamil-
tonian, some important features of the missing operators may
still be gleaned from the correlation matrix. This effect is
then demonstrated in two ways: first, using a procedure anal-
ogous to the freezing out of the kinetic degrees of freedom
in the Mott limit of a Hubbard model, in which higher-order
spin exchanges contribute with diminishing significance to the
physics of a spin chain (Sec. II B 1), and secondly by making
use of a fairly general, long-range-coupling translationally
invariant spin model on a ring (Sec. II B 2). Also in Sec. III
the consequences of augmenting a complete basis on the spec-
trum of the correlation matrix are discussed jointly with the
effects of the system’s conserved quantities (Sec. III B), and
thermal effects on the reconstruction procedure are explored
(Sec. III D). Lastly, Sec. IV concludes the study, addresses
potential limitations, and presents a number of open questions
and opportunities for further work.

II. METHODS

A fully general and complete description of a quantum
many-body system is the so-called “theory of everything”
(TOE) of Pines and Laughlin [18]. The (nonrelativistic)
Hamiltonian describes the kinetic motion of the electrons and
nuclei as well as their electrostatic interaction. Relativistic
corrections can in principle also be included. The model is,
of course, too formidable to be solved directly. A hierar-
chical model-building perspective sidesteps this description
and focuses on simplified Hamiltonians that capture only the
effects that are expected to play a role in the phenomenon of
interest. It is in this context that we consider the program of
Hamiltonian reconstruction.

It is often not a priori obvious what reduced form of the
TOE Hamiltonian to consider. A typical chain of logic is
as follows: First, assume experimental evidence shows the
system to be an effectively 1D crystal in an insulating phase
such that the system has a lattice translation symmetry and
the degrees of freedom at this energy scale are strictly spin
DOFs. Further assume the model is described by an effective
Hamiltonian (interactions that are nonlocal in time, such as
those due to phonons, are negligible), and assume that the
system possesses internal spin-rotation symmetry and thus

spin-orbit coupling may be neglected. At this point, there is
still a vast space of local spin operators with many allowed
couplings. As the spin operators combine (by assumption) to
form spin-rotation-invariant scalars, we have at least

N−1∑
k=1

(
N − 1

k

)
= 2N−1 − 1

operators for a chain with N sites. An additional assumption
of time-reversal symmetry eliminates odd combinations of op-
erators but still leaves

∑N−1
k=1

(N−1
2k

) = 2N−2 − 1 operators. For
tractability we make the further assumption that the majority
of those operators have small norms and one is justified in in-
cluding only low powers of nearest-neighbor bilinears of spin
operators or longer ranged bilinear spin-exchange interac-
tions. We explore the consequences of incomplete knowledge
of relevant operators in this relatively limited context.

A. The quantum correlation matrix

A Hamiltonian reconstruction can be performed reliably if
the following criteria hold:

(1) The system Hamiltonian can be written as

H =
∑

i

γihi = �γH · �h, (1)

where {hi} is a physically complete operator basis, in the sense
that it contains all operators acting nontrivially on this sector
of Hilbert space (see the above discussion).

(2) One is equipped with a state ρ = (1 − ε)|En〉〈En| +
ες with ε � 1 with ς some density matrix. That is, ρ is
almost an eigenstate of H and is associated to the state |En〉
up to some contamination by ς . A particularly important case
explored in Sec. III D is that in which n = 0 (|En=0〉 is the
ground state) and ς represents thermal effects, corresponding
to the experimentally realistic scenario of a large but finite
inverse temperature β = (kBT )−1.

(3) H must be local—i.e., it must be the sum of local
operators—and either possesses very few conserved quantities
of any degree of locality or admits states ρ that are transla-
tionally invariant. Of particular interest is the case in which
H is translationally invariant but only approximately local.
Our notion of locality for both the conserved quantities and
the Hamiltonian is that of, e.g., Ref. [19]; in particular, by
approximately local we mean that the operator norm of each
term in the Hamiltonian is at worst asymptotically vanishing
as a function of site separation.

The tool, which allows us to perform such a reconstruction
is the (quantum) correlation matrix. The quantum correlation
matrix was introduced as a tool for Hamiltonian reconstruc-
tion in Ref. [2], and it is defined as

Mρ
i j = 1

2 〈{Oi, Oj}〉ρ − 〈Oi〉ρ〈Oj〉ρ, (2)

where the expectation value is taken as 〈O〉ρ = Tr[Oρ]. Here
{Oi} is an operator basis, which may differ from that of the
Hamiltonian (1). The feasibility of reconstructing with bases
{Oi}, which differ from {hi} is precisely the focus of our paper.

We label the eigenvalues of the matrix Mρ as λi, and
henceforth refer to this set of eigenvalues as the correla-
tion spectrum. The correlation spectrum also defines a set of
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operators � = {�i}, which carry no quantum correlations be-
tween themselves, that is 1

2 〈{�i, � j}〉ρ − 〈�i〉ρ〈� j〉ρ = 0 for
i �= j. These operators are generated from the eigenvectors
�γi of Mρ by �i = ∑

k γi, kOk = �γi · �O. If the operators �

are known, the correlation spectrum can also be obtained by
considering Mρ in this diagonalized basis, e.g.,

λi = 〈
�2

i

〉
ρ

− 〈�i〉2
ρ ≡ σ 2(�i ), (3)

where the operation σ 2 will be used for shorthand for the
calculation of a diagonal element of Mρ . We occasionally
write σ 2(�i ) and omit ρ when the state in question is unam-
biguous. We also write cov(A, B) = 〈AB〉 − 〈A〉〈B〉 to denote
the covariance of two operators A, B. It is often useful to
normalize the �γi so that we can think about {�γi} as spanning
the vector space of physical operators, which also induces a
useful norm for operator similarity (namely, the standard inner
product of two such coefficient vectors in the {Oi} basis) pro-
vided the operators themselves are also suitably normalized.
In what follows we will work with ρ a pure state (ε = 0)
before returning to the case of a thermal density matrix in
Sec. III D.

Having assembled a correlation matrix Mσ
i j , a principal

result of Ref. [2] is that, provided {hi} = {Oi}, �γH will lie in
the nullspace Mρ

i j , that is, H is in the set {�i}. We are guaran-
teed this by the fact that the variance of the Hamiltonian with
respect to any of its eigenstates vanishes. Thus, the authors
of Ref. [2] suggest the following procedure for reconstructing
a Hamiltonian from ρ: (i) Choose an operator basis {Oi}, (ii)
construct Mρ

i j using Eq. (2), and (iii) diagonalize Mρ
i j and

read the coefficients γi off of the λi = 0 eigenvector.
Two considerations complicate the reconstruction tech-

nique outlined. Firstly, the Hamiltonian is only reconstructed
up to a positive definite multiplicative factor [20] and up to
linear contributions from additional operators, which com-
mute with the density matrix, for both these variations in
the Hamiltonian leave the ground state invariant. These are
familiar ambiguities in Hamiltonians and reconstruction is
not significantly hampered by them. Secondly, and more im-
portantly, one might have a limited choice of reconstruction
basis {Oi} imposed by, say, experimental constraints. Given a
reconstruction basis, there are five cases: (a) {Oi} = {hi}, (b)
{Oi} is a proper subset of {hi}, (c) {Oi} is a proper superset
of {hi}, (d) {Oi} and {hi} have a nonempty intersection, or (e)
{Oi} and {hi} have an empty intersection. The remainder of
this paper is dedicated to exploring the consequences of these
possibilities.

In case (a) we have {Oi} = {hi}, i.e., one has a complete
basis, and ideally the Hamiltonian may be read off from the
nullspace of the matrix, at least up to the aforementioned ad-
ditive and multiplicative ambiguities. We will see in Sec. III B
that in the presence of conserved quantities reconstruction is
not straightforward even in this case; this is related to the fact
that although H is guaranteed to lie in the nullspace, it is not
guaranteed to be the sole linearly independent vector of the
nullspace.

In case (b), {Oi} ⊂ {hi}, one has what we term an un-
dercomplete basis, and in case (c) {Oi} ⊃ {hi} one has an
overcomplete basis. We discuss these two possibilities in
Secs. III A and III B respectively. In case (d) we expect to run

into a combination of the pathologies of (b) and (c)—namely,
the Hamiltonian will be missing from the nullspace but the
nullspace might be enlarged as detailed in Sec. III B.

In case (e) {Oi} ∩ {hi} is trivial and one obtains no infor-
mation about the Hamiltonian unless {Oi} and {hi} are not
linearly independent. In the event some subset of {Oi} can
be rewritten as a linear combination of some subset of {hi},
a change of basis reduces this case to one of the above cases.

B. Models

Our study of the correlation matrix will focus on two
different classes of 1D spin models: those with only nearest-
neighbor coupling but large spin powers, and those with long-
range coupling but only first-order spin powers. The latter case
is a well studied topic, while the former is not as commonly
considered. Nonetheless, they provide complementary model
Hamiltonians with many degrees of freedom for rigorous nu-
merical analysis of the correlation matrix approach.

We also consider a simple, noninteracting electronic tight-
binding model, which can be solved in the single-particle
limit. This model admits fast exact diagonalization, and allows
us to study the effect of disorder and long-range couplings
with a much larger dataset than those of the spin chains, which
are limited in size by the computational complexity of their
associated techniques. The code that generates the models
presented here, as well as the results in the next section, is
freely available online [21].

1. SU (2) chains with spin S > 1/2

The isotropic SU (2) spin-chain constrained to nearest-
neighbor couplings consists of exactly 2S − 1 independent
terms for spin S, and takes the form

HI
S =

2S∑
p=1

∑
〈i, j〉

J (p)(Si · S j )
p (4)

for coupling terms J (p). Unlike the models that follow, we al-
low for higher-order interactions (Si · S j )p for p = 1, . . . , 2S
and restrict to nearest-neighbor-interaction terms 〈i, j〉. We
also assume the coupling terms are independent of the position
in the chain i, but stipulate open boundary conditions such
that this model is not translationally invariant. We solve these
nonperiodic chains using the density matrix renormalization
group (DMRG) method on a matrix product operator [22]. To
construct the correlation matrix based on these assumptions,
the following complete operator basis is suitable:

{
Op ≡

N−1∑
i=1

(Si · Si+1)p, p = 1, . . . , 2S

}
,

where N is the length of the chain. We will analyze the quality
of the reconstructed H for this class of models by truncating
operators of specific powers p. This is in contrast with the
spatial truncation implemented in all other models, which is
based on the distance between sites i and j.
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2. Translationally invariant spin rings

We further consider SU(2) spin chains with full transla-
tional invariance. Such systems take the form

H =
∑
i> j

f (|i − j|)Si · S j (5)

and admit as a complete basis the following translationally
averaged basis:⎧⎨

⎩Oi ≡
∑

j

Si · Si+ j, i = 1, . . . , N\2

⎫⎬
⎭, (6)

where \ denotes integer division. The form of the operator
basis will depend on how one chooses to sum the indices,
and a good choice for a complete basis will depend upon
the direct lattice geometry. To induce translational invariance
while maintaining a finite system, we consider an N-site lat-
tice arranged in a ring so that site i + N is identified with
site i, henceforth referred to as spin rings. As is explained in
the Appendix, such a geometry reduces the size of a suitable
operator basis such that we only need to include operators up
to a separation N\2—i.e., diametrically opposing point on the
ring. To more compactly handle the ring geometry, it is useful
to introduce the following function:

δN (i, j) =
{

|a − b|, if |a − b| � |b + N − a|
|b + N − a|, if |b + N − a| < |a − b|

a = max (i, j), b = min (i, j), (7)

which measures the distance (in units of the lattice spacing)
of site i from site j on the ring.

In this operator basis, the Hamiltonian takes the form

H =
N∑
j>i

f (δN (i, j)) Si · S j

=
∑

i

f (i)Oi,

where in what follows we will consider power-law decaying
couplings of the form f (x) = x−δ . The ground states of these
systems are calculated with the use of exact diagonalization
schemes with the exception of the Haldane-Shastry Hamilto-
nian, which is described in the following section and possesses
a known exact solution.

Spin rings of the above form possess a global SU (2) sym-
metry and an associated conserved quantity in the form of the
total spin,

Stot =
(

N∑
i

Si

)2

=
N∑
i, j

Si · S j, (8)

which, in the {Si · S j} basis, manifests as a vector �1 =
(1, 1, . . . , 1) (up to a multiplicative constant). Note that, com-
pared to the form of the exchange couplings f (x) we are
considering, this is a highly “global” quantity: the support
of Stot is the entire spin chain, a fact, which, as we will
demonstrate with the Haldane-Shastry model, becomes use-
ful in discerning between the correlation matrix eigenvectors
corresponding to this conserved quantity and H .

�

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

J H
S

FIG. 2. Schematic of the models used in this paper. (a) A L = 14
spin chain with periodic boundary conditions with color intensity
indicating the Haldane-Shastry interaction JHS(�r) with the red site.
(b) A finite SU(2) spin chain of Eq. (4). The number of lines indicates
the power of the interaction Si · S j .

3. The Haldane-Shastry model

The Haldane-Shastry model [23,24] is a special case of the
preceding class of spin ring models consisting of an N-site
periodic spin chain possessing the following Hamiltonian:

HHS =
∑
n<m

JHS(m − n) Sn · Sm,

JHS(x) = Jπ2

N2 sin2(xπ/N )
,

for J > 0. The factor 1/ sin2 ((m − n)π/N ) in the coupling
strength is equal to the square of the chord length 
 ex-
tending from site m to site n [Fig. 2(a)], consistent with the
interpretation of sites on a physical ring coupled by dipole-
dipole interactions. The Haldane-Shastry Hamiltonian is a
suitable system for our study because it is a physically realistic
long-ranged Hamiltonian possessing an exact solution, the
Gutzwiller projected wavefunction [25,26], permitting a direct
calculation of the correlation matrix. The Gutzwiller projected
wavefunction also possesses a closed-form two-point correla-
tor [27] in the thermodynamic limit; for the present purposes,
however, it suffices to calculate the correlators directly.

Both the Haldane-Shastry Hamiltonian and the Gutzwiller
projected wavefunction are translationally invariant, permit-
ting the same reduction in the operator basis described in
the preceding section. Likewise, the ring geometry of the
system further reduces the number of required operators,
as is discussed in Appendix, such that the relevant opera-
tor coefficients are JHS( j) for j = 1, . . . , N\2. Also as with
the preceding models, the Haldane-Shastry model possesses
an SU(2) symmetry and associated conserved quantity Stot .
While the exchange coupling JHS(x) is not of the form x−δ ,
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it remains local, such that the relative globality of Stot will
continue to provide a useful feature to distinguish the re-
constructed Hamiltonian and conserved quantity correlation
matrix eigenvectors.

4. Single-particle tight-binding model

Finally, we will also make use of simple, single-particle
one-dimensional tight-binding model for a ring of atoms.
Here we consider the electronic kinetic degrees of freedom
and ignore spin. Under these assumptions, the model has the
Hamiltonian

HTB =
∑
i< j

ti j (c
†
i c j + H.c.) (9)

where ci (c†
i ) annihilates (creates) an electron on site i, ti j is the

nearest-neighbor-hopping strength, and we assume periodic
boundary conditions.

Since there are no interactions, for a ring with N sites
this Hamiltonian’s ground state is obtained by diagonalizing
an N × N matrix, instead of the computationally challenging
2N × 2N sized matrix encountered in the presence of many-
body terms.

III. RESULTS

As explained in the Introduction, in this paper we will
push the boundaries of the correlation matrix technique under
nonideal choices of the operator basis. Failures in the operator
basis can take two forms, and thus we organize our results into
two sections.

First, what happens when the operator basis {Oi} does not
span H? This will occur often in experiments, as not all types
of operators can be measured by a single technique. For some
examples, imagine only spin terms up to S2 are accessible
to spectroscopy of a high-spin species, or that only spatial
correlations within a certain range of distances (or momenta)
can be obtained by diffraction measurements. As the full
Hamiltonian cannot be spanned by the measured operators,
the correlation matrix will not have a zero eigenvalue. We
refer to these challenges as those of an undercomplete oper-
ator basis and explore them in Sec. III A, where we provide a
perturbative approximation connecting the size of the smallest
eigenvalue of M to the relative strength of the missing opera-
tors. Section II B 2 explores the validity of this approximation
for translationally invariant spin models.

Second, what if the operator basis {Oi} contains operators
that do not appear in H? We will find that, in many cases, this
poses no issue. But in certain cases, it can introduce additional
zeros to the spectra of M, which are related to the symmetries
of the wavefunction. We refer to this class of problems as aris-
ing from an overcomplete operator basis. Although we expect
the case of an overcomplete basis to occur more rarely than
that of an undercomplete basis due to the few-body nature of
typical experimental probes, we nonetheless investigate them
in Sec. III B.

A. Undercomplete operator bases

In what follows we will consider the extent to which recon-
struction with the correlation matrix can be carried out when

in possession of incomplete information about the system
with the use of perturbation theory. This and the nonzero
temperature results of Sec. III D are in the same spirit as the
approximate reconstruction of Secs. 3.1 and 3.2 of Ref. [2],
only here we will explicitly consider incomplete knowledge
at the level of the operator basis as opposed to at the level of
the correlation matrix.

To consider the effect of dropping some of the relevant
operators from our basis, we partition the true Hamiltonian
into two parts. Consider a Hamiltonian, which is a sum of N
operators,

H =
N∑

n=1

JnOn. (10)

Here we assume that all of the Jn � 1, as a rescaling of H will
not affect the system’s ground state. If we keep only the first
M − 1 operators in this list, then we can write

H = H0 + �V (11)

where H0 = ∑M−1
n=1 JnOn, � = JM , and V = OM +∑N

n=M+1(Jn/JM )On. The smallest eigenvalue λ0 of the
truncated correlation matrix, e.g., M with just the first M − 1
rows and columns, can also be obtained by the projection of
H to the truncated operator basis, namely σ 2(H0). Next, we
write the correlation matrix in terms of two eigenvectors, one
with the smallest eigenvalue within the span of the remaining
operators and one with the smallest eigenvalue within the
span of the truncated operators. These eigenvectors are the
projected parts of the full H , e.g., H0 and V , and we then use
the associativity property of σ 2 to write this 2×2 correlation
matrix perturbatively in terms of �,

Mi j =
(

σ 2(H0) cov(H0,V )

cov(H0,V ) σ 2(V )

)
= σ 2(V )

(
�2 −�

−� 1

)
.

(12)

But as � = JM < 1, by inspection the smallest eigenvalue in
the observed correlation matrix is given by the top-left matrix
element, e.g.,

λ = J2
Mσ 2(V ). (13)

In the following subsections, we will investigate the valid-
ity of this result across various models.

1. Small J (p) for a nearest-neighbor spin chain

First, let us consider the isotropic SU(2) Hamiltonian of
Eq. (4) with spin set to 3/2. For this choice of spin, the
Hamiltonian is defined by the parameters J (1), J (2), and J (3).
The ground state is only unique up to the relative size of
these parameters, so we divide out the largest J (p) and con-
sider a model with two parameters less than one and a single
parameter equal to exactly 1. To validate our perturbative ap-
proximation of the lowest eigenvalue of the correlation matrix,
we randomly assign one of these three J (p) to be the largest
(J (l ) = 1), one to be the smallest (J (s) randomly selected in
the range [0.0, 0.3]) and the last to be an intermediate value
(J (m) in the range [0.7, 0.9]). After using DMRG to calculate
the ground-state ρ and associated correlation matrix Mρ , we
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J(p)/Jmax
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FIG. 3. Dependence of smallest eigenvalue in the reduced corre-
lation matrix on the size of the truncated J (p) term for randomized
SU (2) invariant spin-3/2 Hamiltonians [Eq. (4) with N = 5]. When
J (3) is the smallest term, we only plot the cases for which J (1) < J (2).

truncate the row and column associated with the smallest
parameter (J (s)) and store the smallest eigenvalue λ of the
truncated M.

Plotting the value of the truncated λ against the size of the
truncated J (p) shows a clear quadratic form (Fig. 3). How-
ever, for each value of p the quadratic form has a different
curvature, showing that the value of σ 2(V ) differs for each
J (p) truncation. Nonetheless, it admits a universal form, and
so even if we do not have any access to correlators involving
J (p), one can estimate J (p) from the smallest eigenvalue.

When J (3) is the smallest term (green points in Fig. 3),
we observe during random sampling of J (1) and J (2) that the
smallest eigenvalue falls onto one of two curves with different
curvature, in contrast to the universal curvature found in the
p = 1 and p = 2 cases. These two values correspond to the
ground state ordering of ρ, which appears to depend on if
J (1) > J (2). Since we have constrained all parameters to be
positive in this sampling, the transition is not between ferro-
magnetic and antiferromagnetic order, but rather due to some
internal spin structure arising from competition between odd
and even powers of S · S in the Hamiltonian. We have only
plotted the J (1) < J (2) cases in Fig. 3 for clarity, but note
that the results for the other phase lay close to the p = 1
curve. Interestingly, even if J (1) < J (2), ρ can still achieve the
opposite ordering if J (3) is sufficiently large, as evidenced by
the two green dots near the much lower curvature p = 1 curve
at J (3) > 0.25.

2. A long-range tight-binding Hamiltonian

For a Hamiltonian where we assume the Ji are monotoni-
cally decreasing [say, Ji ≡ J (ri ), for some distance ri between
sites on a lattice], we can go a step further in our perturbative
treatment of M and write

λ(r) = J (rtrunc)2Q(rtrunc) (14)

where the eigenvalue and coupling are both assumed to
depend smoothly on rtrunc. The variance in the remaining
operators [σ 2(V )] is now assumed to follow a smooth function
of the truncated hopping distance rtrunc, given by Q(rtrunc).

We test this approximation of M on a simple single-
particle one-dimensional tight-binding model, as defined in
Eq. (9). If we assume the hoppings depend only on the
distance between sites ti j ≡ t (|i − j|), the model obtains com-
plete translational symmetry and the electronic DOFs obey
conservation of crystal momentum. As we will see in the next
results section, the inclusion of many additional conserved
quantities (crystal momentum) will cause an equivalent num-
ber of zeros to enter the spectra of M. To avoid this issue, we
destroy translational symmetry by adding a fixed percentage
of noise to each coupling, e.g., for a given sample of the
Hamiltonian we set

ti j = θi j f (|i − j|) (15)

where θi j is a random number sampled uniformly from the
range [0,1], which is unique for every pair of sites. We test the
validity of Eq. (14) for various forms of the function f (r) in
Fig. 4(a). As every instance of a Hamiltonian is unique due to
the randomness introduced by θi j , we take 50 samples of each
functional form and report the average value and standard de-
viation of λ. For most forms of f (r), almost all of the variance
in λ is explained by J (r) alone, as shown in Fig. 4(b). One
can, to good approximation, take Q(rtrunc) = Q0, a constant,
for most values of r. The only hopping form which showed
strong dependence of Q on rtrunc is the form with the sharpest
decay, J (r) ∼ e−(r/8)2

.
Our observation of the constant prefactor Q0 inspires a

more robust procedure of reconstructing the parameters J (r)
of H than simply looking at the eigenvector M. The pro-
cedure is as follows: artificially continue the truncation of
Mρ , throwing out measured observables along the way. Then,
estimate the Hamiltonian coupling at every measured cou-
pling range by the obtained lowest eigenvalue, following
J (r) ∝ √

λ0(r). In Sec. II B 2 we numerically explore the va-
lidity of this approach with the use of translationallyinvariant
spin rings.

B. Overcomplete operator bases and conserved quantities

As discussed in Sec. II A, the correlation matrix is di-
agonalized by operators �i whose eigenvalues are equal to
their variances σ 2(�i) = 〈�2

i 〉 − 〈�i〉2. The nullspace of the
correlation matrix thus comprises the algebra of operators that
commute with the provided density matrix ρ. In an ideal sce-
nario, this nullspace is of dimension one, i.e., the only operator
with vanishing variance in the space spanned by the operator
basis {Oi} is the Hamiltonian H = �γH · �O. In this case, the
nullspace encodes �γH up to rescaling. Indeed, one expects
that the overwhelming majority of the operators that could
act on a Hilbert space fall outside the sector spanned by {Oi},
such that any reasonable complete operator basis suffices to
reconstruct the Hamiltonian unambiguously. However, there
are cases where the nullspace is enlarged by operators other
than the Hamiltonian, which are hidden in the span of the
selected operator basis.
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FIG. 4. (a) Dependence of the smallest eigenvalue λ of the trun-
cated correlation matrix on the largest kept term r for a noisy
N = 50 1D tight-binding Hamiltonian for four types of coupling
decay forms. Results are obtained by averaging over 50 random
samples of the Hamiltonian at each R truncation value, with the solid
line indicating the mean value and the shaded region providing the
range of one standard deviation. The dashed line gives the value of
J (r)2, showing that for each model, most of the variation in λ(r) is
explained by the square of the largest truncated operator parameter of
the reduced basis. (b) Dependence of Q(rtrunc ) = λ(rtrunc)/J (rtrunc)2

on rtrunc for simple tight-binding models of different J (rtrunc) forms.
The solid line gives the mean value, while the shaded region gives
the range of one standard deviation.

Specifically, additional zeros appear in the spectrum of
the correlation matrix whenever there are operators in the
span of {Oi} that possess vanishing variance and are linearly
independent from the Hamiltonian. One such scenario arises
when symmetries of the two-point correlators are not fully
resolved by the choice of operator basis. By “symmetries
of the two-point correlators” we mean symmetries that act
nontrivially on the operator basis—for instance translational
symmetry if the basis is not spatially averaged. Notably this
excludes on-site symmetry such as the SU(2) symmetries of
our spin-ring models. Concretely, consider two distinct op-
erators O
 and O′


 with identical two-point correlators with
every other operator in the basis. If one starts with a complete
basis {O1, . . . , O
} and enlarges it by including O′


 to form a
new basis {O1, . . . , O
, O′


} or �O′, the correlation matrix sees
as a zero-variance operator both the Hamiltonian in the form
�γH = (γH,1, . . . , γH,
, 0) and the operator

�γ ′
H · �O′, �γ ′ = (γH,1, . . . , 0, γH,
),

i.e., the coefficient of O
 is taken to O′

. These two operators

are manifestly linearly independent, and the correlation matrix
thus accrues an additional zero; the inclusion of O′


 thus makes
�O′


 an overcomplete basis. An example of this phenomenon is
the redundancy in the translationally averaged basis explained
in the Appendix, wherein operators at separations |i − j| and
|i − (N − j)| have identical two point correlations.

Another source of additional zeros is rooted in the notion of
a correlation matrix symmetry. This is a symmetry embedded
in the correlation matrix, and is not necessarily a symmetry
observed by the Hamiltonian. We say that a Hamiltonian
enjoys a symmetry if the Hamiltonian commutes with the
Cartan subalgebra of the symmetry’s generators. Thus we de-
mand that any eigenstate transform according to an irreducible
representation of the associated algebra [28]. The correlation
matrix, on the other hand, views as a symmetry any operator,
which commutes with ρ. Generally, we expect there to be a
very large number of operators that commute with ρ. Luckily,
most such operators will not lay in the span of the chosen
operators, {Oi}, but two types of commuting operators that do
lay in this span occur frequently.

First, if the system possesses a conserved quantity J with
[H, J] = 0, the operator J will commute with ρ and thus
its variance will vanish. Notably, J may generally lie in the
span of a complete operator basis, such that the correlation
matrix suffers from additional zeros despite being equipped
with a complete basis. Indeed, similar findings are reported
in Ref. [29] in the context of entanglement Hamiltonians,
and it is unsurprising that an analogous complication arises
in the correlation matrix. We observe precisely this situation
observed in Secs. III C and III C 1 with the total spin charge
acting as the conserved quantity arising from the systems’
SU(2) symmetries. In this case the symmetry is observed both
by the correlation matrix and the Hamiltonian.

Second, sometimes the ground-state wavefunction’s sym-
metry differs from that of the Hamiltonian’s symmetry. One
familiar example is spontaneous symmetry breaking (SSB). In
this case a symmetry of the Hamiltonian would not appear at
the level of the correlation functions. However, if a symmetry-
breaking operator were to be introduced to the operator basis,
would appear with zero coefficient in the nullspace, leav-
ing the reconstruction procedure effectively unchanged. Less
commonly, the wavefunction might possess a higher degree
of symmetry than the Hamiltonian: there may be operators,
which are not conserved quantities, but commute with the
Hamiltonian when restricted a subspace, a form of Hilbert
space fragmentation [30,31]. In such cases, sectors of Hilbert
space are labeled by irreducible representations of so-called
commutant algebras [32] as opposed to conventional con-
served quantities of the system. This phenomenon is exhibited
by, for instance, the t–Jz model in the form of a product of
number operators, which does not commute with Ht−Jz but
nonetheless possesses zero variance with respect to certain
eigenstates of the Hamiltonian [32,33].

C. Results from translationally invariant spin rings

As in the preceding sections, we study the effects of an
undercomplete basis on reconstruction by repeatedly comput-
ing and diagonalizing the correlation matrix, starting from
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FIG. 5. (a) Dependence of smallest eigenvalue λ0 of translation-
ally invariant spin rings with various coupling decays δ (N = 18).
The dashed lines are functions proportional to r−2δ

trunc. (b) Dependence
of the variance Q(R) of the truncated operators on the separation of
the largest truncated operator. Note the relatively constant value at
separations 3–7.

the basis defined in Eq. (6) and sequentially truncating the
operator acting at the largest separation. We find agreement
with the result of Sec. III A: for each coupling decay power,
δ = 2, . . . , 6, the smallest eigenvalue in the correlation spec-
trum is well approximated by Q0r−2δ

trunc for intermediate values
of rtrunc, where rtrunc is the separation the largest truncated
operator [Fig. 5(a)]. The Q0 form is a good approximator
of the smallest eigenvalue as long as the variance of the
truncated spin-spin interactions Q(rtrunc) is roughly constant.
It remains nearly constant when rtrunc > 3, but for stronger
decays (δ = 6) Q(rtrunc) begins to undergo more dramatic
variations, signaling a breakdown of the r−2δ

trunc form [Fig. 5(b)].

1. Results from the Haldane-Shastry Hamiltonian

The reconstruction of the Haldane-Shastry Hamiltonian
proceeds in a manner identical to that of the spin rings of the
preceding section. Again using the operator basis of Eq. (6),
we find further agreement with the result of Sec. III A in that
the smallest eigenvalue of the correlation matrix is, to a good
approximation, proportional to the square of the Haldane-
Shastry coupling strength JHS( j) at the smallest truncated
separation [Figs. 6(a) and 6(b)]. This is the case for interme-
diate separations, owing to the approximately constant value
of the factor Q(rtrunc) in this region; at larger separations, the
variance in the truncated operators undergoes more dramatic
variations, the lowest eigenvalue suddenly drops considerately
as we approach a complete operator basis, and this approxima-
tion is no longer valid.

The presence of the conserved quantity Stot mentioned in
Sec. II B 3 produces an additional zero when reconstructing
with a complete basis. Computing the correlation matrix with
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FIG. 6. (a) Dependence of smallest eigenvalue λ0 of the Haldane-
Shastry correlation matrix on the number of kept operators over
the magnitude of the truncated term’s coefficient for an N = 21
chain, in analogy with Fig. 4(a). (b) Dependence of Q(rtrunc ) =
λ0(rtrunc)/J2

HS(rtrunc ) on number of kept operators. Note Q(rtrunc ) is
approximately constant in the range 1–8.

incomplete bases, however, leads to a splitting in the two
lowest eigenvalues—the Haldane-Shastry coupling, being a
local quantity, maintains a lower variance as operators are
truncated as operators at increasing separations contribute
increasingly less to it owing to the decaying nature of JHS.
The variance of the conserved quantity Stot, on the other hand,
departs further from zero as it is a global quantity; i.e., every
site in the chain contributes uniformly. This can be seen in
spectrum of the correlation matrix by employing the notion of
operator similarity introduced in Sec. II A. In particular, one
can measure the bias toward either quantity by normalizing
the operator similarity according to full similarity with either
HHS or Stot; this is performed in Fig. 7 to reveal that indeed
the eigenvector closest to the conserved quantity maintains a
higher eigenvalue than that of the eigenvector closest to HHS.

D. Nonzero temperature results

Understanding the accuracy of reconstruction from an
impure state ρ = (1 − ε)|E0〉〈E0| + ες is relevant in experi-
ments, which always occur at nonzero temperature. In what
follows, we will take ε � 1, which corresponds to a large
inverse-temperature Boltzmann weight (low, but nonzero tem-
perature). Using correlators constructed from the mixed state
ρ, the correlation matrix corresponding to an operator basis
{Oi} can be written as

Mi j = (1 − ε)M0
i j + εης (Oi, Oj ).

M0
i j denotes the correlation matrix as defined in Eq. (2) with

respect to the pure state |E0〉〈E0|. The perturbative results of
Sec. III A will continue to hold for this term, unaffected by the
nonzero-temperature contamination. ης (Oi, Oj ) is a matrix
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FIG. 7. Two lowest eigenvalues of the correlation matrix of the
Haldane-Shastry ground state, colored according to the bias of the
corresponding eigenvector toward the Hamiltonian and the conserved
quantity (Stot).

defined by

ης (A, B) = 〈AB〉ς + (1 − ε)〈A〉0〈B〉0

− (1 − ε)〈A〉0〈B〉ς − (1 − ε)〈A〉ς 〈B〉0

− ε〈A〉ς 〈B〉ς . (16)

Because the reconstructed Hamiltonian is only unique up to
an overall multiplicative factor, the reconstruction procedure
is unaffected by dividing Mi j by (1 − ε) to normalize the first
term; this is equivalent to stating that only the relative contam-
ination from ς is relevant to the spectrum of the correlation
matrix. Based on this observation, we redefine

Mi j → M′
i j = M0

i j + ε

1 − ε
ης (Oi, Oj ).

The case of a nonzero temperature measurement is cap-
tured by the general form

ε

1 − ε
= e−β�E , ς =

∑
i>0

e−β(Ei−E1 )|Ei〉〈Ei|

where �E = E1 − E0 is the gap between the ground state and
first excited state and where we make β dimensionless by
working in units of the gap. Thus, in analogy with Sec. III A,
we conclude that the lowest eigenvalue follows

λ(rtrunc) = Q(rtrunc)J2(rtrunc) + ε

1 − ε
ης (H0, H0)

such that for a fixed operator basis and in the small ε (large
β) regime, the smallest eigenvalue of the correlation matrix
acquires an additive error proportional to e−β�E . At larger
temperatures, one expects contributions from higher (Ei for
i > 1) Boltzmann weights contained in ς to contribute to this
error through ης . At the temperature scale of the gap, however,
ης (Oi, Oj ) is approximately constant in ε and the asymptotic
e−β�E behavior is a good approximation of the nonzero-
temperature contribution to the lowest eigenvalue [Fig. 8(b)].
For a fixed β, the separation from the zero-temperature lowest
eigenvalue retains a dependence on the truncation separation
rtrunc through ης (H0, H0); the separation increases with the
size of the truncated operator due to the presence of the
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FIG. 8. Results of nonzero temperature reconstruction trials for
L = 18 spin rings with periodic boundary conditions and coupling
decay δ = 2. (a) Dependence of lowest eigenvalue of correlation
matrix on number of kept operators for various coldnesses β. The
dashed line represents the functional form r−2δ

trunc. (b) Distance of
lowest eigenvalues of nonzero temperature correlation matrices from
zero-temperature lowest eigenvalue of the correlation matrix against
increasing coldness.

expectation values of H0 and H2
0 , which themselves can be

written as quadratic functions of � per Sec. III A.
In the case of a gapless system the method accrues an

error constant in ε and the situation evidently worsens. This
is perhaps to be expected as it is common for quantum many-
body methods to encounter difficulties arising from vanishing
spectral gaps [34–36]. In the event that the correlators of the
ground state and gapless excitations are sufficiently similar,
one might speculate that the correction remains small enough
to retain some efficacy—this is plausible if the low-lying
excitations are, for instance, described by long-wavelength
Bloch-waves built from the ground state. Nevertheless, the
accuracy of the correlation matrix methods remains uncertain
in this regime and further care in investigating this technique’s
use at nonzero temperature is needed.

IV. CONCLUSIONS

This study has explored the correlation matrix recon-
struction technique introduced by Ref. [2] as subjected to
experimentally realistic, imperfect choices of operator bases.
We have devised a strategy to perturbatively obtain the
magnitudes of the missing terms of the Hamiltonian by
leveraging the variance with respect to incomplete operator
bases, and verified their accuracy using an assortment of one-
dimensional models. This result suggests that even relatively
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local or otherwise limited probes of the many-body system’s
two-point correlations suffice to approximately reconstruct
the system using the correlation matrix. We have additionally
demonstrated that improper resolution of the wavefunction’s
symmetries significantly harms the reliability of the technique
by enlarging the correlation matrix’s nullspace, while the pres-
ence of conserved quantities similarly complicates matters
even in possession of a complete basis, as does the presence
of unconventional symmetries of the wavefunction (exhibited
by recently discovered classes of ergodicity-breaking systems
[31,32]).

On the experimental front, this study suggests that the
correlation matrix is a promising approach to understanding
the many-body Hamiltonians of condensed matter and cold-
atom systems through the usage of standard, local probes of
correlations such as scattering techniques. On the theoretical
front, one should be able to reconstruct the Hamiltonian cor-
responding to, say, a particular wavefunction ansatz, where
otherwise such a search would be nonstraightforward.

The systems under consideration were relatively limited
in scope in order to simplify our demonstration of the phe-
nomena of interest—an extended investigation of the ideas
presented in this work might make use of higher-dimensional
systems, models with more diverse interactions, or a more
careful treatment of the thermodynamic limit of such models.
In particular, the effects of Hilbert space fragmentation on the
correlation matrix technique deserve a more careful study and
present a natural extension of this paper.
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APPENDIX: RING GEOMETRIES

In cases of fully translationally invariant Hamiltonians on
a ring, the basis of independent operators is substantially

diminished. It should be noted that a similar operator basis
decimation is required for any systems with toroidal sub-
manifolds, and not just ring geometries. However, the ring
basis will provide all necessary tools to understand how this
process applies in nearly arbitrary geometries.

As is alluded to in the definitions for Eq. (6) by the phrase
“full translational invariance,” our Hamiltonian and wave-
function |ψ〉 must both be invariant under translations. This
condition can only apply in the case of a ring-like geometry or
the thermodynamic limit. Finite chains with hard boundaries
inherently contain finite size effects, which break the local
translational invariance of the wavefunction. Explicitly, within
a finite chain we always find that the reduced density matrix
of degrees of freedom at the edges are different than those
in the deep bulk, even if only slightly. In many cases these
effects are small or can be made small if one is willing to
trace out some of the edge degrees of freedom. Thus ring-like
boundary conditions are often a good approximation. In this
regime, using the translationally averaged basis of Eq. (6) is
desirable; however, directly applying this averaged basis will
lead to a overcomplete basis.

The reason the averaged basis is overcomplete is the fol-
lowing. Let us consider an operator acting at separation r =
N − 1 on a ring with N sites. The ring geometry of the system
forces that operator be identified with that same operator
acting at separation r = 1. More generally, if O(|i − j|) is
an operator that depends on |i − j|, a ring lattice requires
O(|i − j|) = O(|i − (N − j)|), as past the diametrically op-
posed site of the lattice—or for odd-sized lattices, at the first
site past the diameter—the separation begins to “loop around”
such that the actual site separation is smaller than |i − j|. For
the purposes of reconstruction, this has the effect of reducing
the size of a suitable basis to N\2, where \ denotes integer di-
vision. Eigenstates of H are simultaneous eigenstates of a new
Hamiltonian obtained by exchanging operators at separations
|i − j| and |i − (N − j)|; consequently, the nullspace of the
correlation matrix increases in dimensionality for each kept
operator acting at separation greater than N\2. The “reflection
symmetry” with respect to i ↔ j of O(|i − j|) is a necessary
but insufficient condition for this reduction in the operator
basis to occur; such a symmetry justifies the usage of a basis
labelled by separation alone (that is, by |i − j| as opposed to
i − j), but a toroidal system geometry is additionally neces-
sary to permit this halving of the operator basis.
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