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Microscopic origin of scalar potential induced topological transition
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We present a systematic study of scalar potential induced topological transition in massive Dirac fermions.
We show how a distribution of scalar potential can manipulate the signature of the gap or the mass, as well
as the dispersion leading to a band inversion. This is mediated by the Klein tunneling as well as inverse Klein
tunneling, which makes it inherently different from the mechanism leading to topological Anderson insulator.
In one dimension it can lead to the formation of edge localization. In two dimensions this can give rise to the
quantized Hall effect. Unlike conventional Hall effects, this is induced by a scalar interaction and is intrinsic in
nature. Therefore, we call it a scalar Hall effect. This can facilitate direct manipulation of topological invariants,
e.g., the Chern number, as well as the manipulation of the edge states locally in a trivial insulator and thus opens
new possibilities for tuning physical observables which originate from the nontrivial topology.
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I. INTRODUCTION

In recent years topology has become a central concept
in condensed matter physics [1], while materials with non-
trivial topological properties have become a key ingredient
in designing next-generation transport and memory devices
[2,3]. An immense effort has been directed at discovering suit-
able materials [4,5] and characterization of their topological
classes [6,7]. This highly active research field has brought
several new topological phases in the last decade [8,9]. The
first topological insulator, namely, the quantum Hall insulator,
was discovered under a strong magnetic field [10], which
is quite challenging for any practical purpose. In materials
with strong spin-orbit coupling (SOC), such as HgTe [11]
and Bi2Se3 [12], the nontrivial topological features arise from
electronic interactions involving orbital and spin degrees of
freedom. Such interactions can give rise to different topo-
logical phases such as the quantum anomalous Hall insulator
[13] and quantum spin Hall insulator [14]. Such phases can
host dissipationless current [15], which opens immense pos-
sibilities in device applications due to their robustness against
scattering. Impurity scattering can also contribute to the Hall
current [16–18] via mechanisms like side jumps and skew
scattering, which is known as the extrinsic contribution. This
is inherently different from the intrinsic contribution arising
from the internal characteristics of the systems which is of-
ten described in terms of the topology of the system [19].
Several physical observables with a connection to real [20]
and reciprocal [21] space topology are known to be enhanced
in the presence of scalar impurity, which indicates that the
scalar potential might have a deeper connection to the intrinsic
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contribution as well. A proper theoretical description of such
a connection is still missing.

In certain cases it is possible to tune the topological prop-
erties with magnetic impurities [22,23]; however, these cases
are very material specific. For most of the cases, SOC is con-
sidered to be the source of nontrivial topological properties
which manifest via band inversion [24]. The band inversion
is, indeed, an impeccable sign of a topological transition;
however, on its own, it does not directly reflect the specific
mechanism which drives it. In addition, it is also possible to
have a topological insulator even without SOC or a magnetic
moment [25,26] by exploiting the symmetry of the electronic
degrees of freedom. A proper description of the mechanism
behind the induced topological features and the transition
dynamics between different topological phases is therefore
highly desired to access and manipulate the topological phases
of solid-state systems.

The key to accessing the nontrivial topological properties
of these systems lies in their dispersion, which resembles that
of a relativistic particle. One of the characteristic features of
relativistic dispersion is that each gap is associated with a
well-defined signature. For any generic Dirac spinor ψ obey-
ing (iγ μ∂μ − m)ψ = 0 (in natural units c = h̄ = 1), where
γ μ (μ = 0 is the temporal component) are the Dirac matrices
obeying the Clifford algebra {γ μ, γ ν} = 2ημνI, with η being
the Minkowski metric, the spectrum has a fundamental gap
of 2m. This is commonly known as the mass gap since the
gap is associated with the rest mass of the particle in relativis-
tic theory. Each energy band is associated with a particular
sign of 〈γ 0〉, and as a result, each gap can be identified
with a specific signature. While the eigenvalue spectra remain
the same irrespective of the sign of m, the eigenstates are
sensitive to it and manifest different topological features. A
pronounced example is the appearance of Jackiw-Rabi modes
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at the boundary of two different domains characterized by op-
posite mass terms [27] where the topological phase boundary
is manifested as spatial localization which is the essence of
edge states in topological insulators.

To understand the relation between the mass term and
topological characteristics of a system, let us consider a
generic 2×2 Dirac Hamiltonian σ · n(R) defined on a Bloch
sphere, where σ is the vector of Pauli matrices and n(R) is
the unit vector parametrized by R. In this case, the vector
Berry curvature is simply given by n [28]. In two dimen-
sions, two of the Pauli matrices are coupled with momentum
corresponding to the direction of motion, while the third is
coupled to the mass term. The Chern number in this case
follows the same signature of the out-of-plane component of
n, which is nothing but the mass term. A similar correlation
was observed in two-dimensional paramagnetic systems and
three-dimensional complex heterostructures as well [29]. In
a condensed matter system, the mass term is associated with
an order parameter and therefore can be exploited to identify
different phases [30]. In a real system, however, manipulating
the mass term is quite nontrivial. The mass term does not
commute with the rest of the Hamiltonian and thus results
in intriguing new topological features [31]. Physically, this
noncommuting nature originates from a complex mixture of
different degrees of freedom, which makes controlling them
quite challenging. A simple way to manipulate the magnitude
and signature of the mass gap thus has enormous potential
for fabricating topologically nontrivial systems and exploring
their applications.

In this work, taking a generic two-band system as a pro-
totype, we present a systematic analysis of the topological
properties in a multiband system and demonstrate a simplified
way to generate and manipulate nontrivial topological features
with the help of the scalar potential. In practice, this scalar
potential can be introduced by means of nanopatterning [32]
or a surface superlattice [33]. By using the two-band Dirac
Hamiltonian, we demonstrate how one can manipulate the
mixture of different quantum states, which in turn controls the
topological features. Since the scalar potential is represented
by an identity matrix which commutes with any other matrix,
our formalism is equally applicable to systems where the non-
trivial topology arises from spin or orbital degrees of freedom.
The formalism is thus applicable to a large class of condensed
matter systems, which facilitates a wide range of applications
of this generic protocol.

II. DIRAC EQUATION IN ONE DIMENSION

To understand the connection between the scalar potential
and the mass term, let us first consider the one-dimensional
Dirac equation in the continuum limit. In one dimension, it is
sufficient to consider the 2×2 representation of Dirac matri-
ces, which we choose here as the Pauli matrices σ. We define
our system with the one-dimensional Dirac Hamiltonian

HD
1 = −iσ1∂x + σ3m + σ0V (x), (1)

where V (x) is a scalar potential and σ0 is the identity matrix of
rank 2. In the absence of the potential term, the energy spec-
trum consists of two hyperbolic branches (E = ±

√
p2 + m2,

where p is the momentum) separated by a gap of 2m with

FIG. 1. Variation of mass gap with V0. (a) Schematic of the one-
dimensional periodic lattice. The dashed box shows the unit cell,
and the gray boxes show the scalar potential V0. (b) Variation of
bandwidth (filled region) with the applied potential. White regions
correspond to the band gap. (c) Band structure for selected values
of V0 marked by vertical colored lines in (b). (d) Distribution of the
order parameter �(x) over the unit cell with respect to V0, where red
and blue represent the positive and negative magnitudes, respectively.

positive and negative energy eigenvalues characterized by
positive and negative values of 〈σ3〉. For such a system, it is
possible to achieve complete transmission if the barrier height
is greater than twice the mass term (V0 > 2m; Appendix A).
This is known as the Klein paradox [34], which has attracted
a lot of interest in both high-energy physics and condensed
matter physics [35]. The simplest way to understand the un-
derlying mechanism is via the mixture of states with positive
and negative energies. If the scalar potential is strong enough
(V0 > 2m), then it can elevate the negative energy states inside
the potential barrier to an energy level occupied by the positive
energy states outside the barrier, which creates a continu-
ous channel using plane-wave modes. For a smaller barrier
width, interference due to the finite-size effect is more promi-
nent, manifesting as oscillations in transmission probability
(Appendix A).

The physics becomes more intriguing if this potential re-
gion is employed periodically, which can create states with
alternating signs of the mass term in successive regions in
space. As a result, although the scalar potential itself can-
not alter the mass gap, the interference between states with
different mass terms can alter the characteristic band gap.
To demonstrate this effect we consider the one-dimensional
Dirac-Kronig-Penney model, which has been used to analyze
relativistic quarks [36] and fermions [37]. Here we consider a
one-dimensional lattice with length L (set to be 1) and with
a rectangular potential of height V0 and width a such that
a/L = 0.4 and calculate the band structure (Fig. 1). We define
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FIG. 2. Variation of the mass gap with the barrier width a and
barrier height V0. The color shows the value of the mass gap mul-
tiplied by the sign of the order parameter at x = 0, and the black
dashed lines show the transition boundaries for the mass term. V2

and V4 show the locations of transition points in Fig. 1.

the spatial order parameter

�(x) = [(〈+, x|σ3|+, x〉 − 〈−, x|σ3|−, x〉)/2]k=0, (2)

where |+, x〉 and |−, x〉 denote the wave function at x of the
lowest positive energy and highest negative energy states. For
V0 = 0 these two states reside at energy E = ±m. For V0 >

0, both of these states are shifted by a positive value. To keep
these two states symmetric around the zero level we subtract
a fixed energy EF for each value of V0. This energy is anal-
ogous to the Fermi level in a system with a finite number of
states [38].

From Fig. 1 one can see that by increasing the barrier
height it is possible to manipulate the mass gap. The mass
gap decreases because the potential V0 now pulls up nega-
tive energy states within the window −m < E < m which
can now tunnel through the region without potential where
the evanescent modes have opposite signatures of the mass
term. In a sense, this is the inverse Klein tunneling, where
the tunneling happens through the potential-free region. This
mechanism promotes more mixing of quantum states, which
creates a spatial modulation of the order parameter �. Note
that at some critical values, the gap vanishes completely
(V2, V4 in Fig. 1), and the distribution of the order param-
eter also flips sign. This critical potential is minimal when
the barrier width is half of the unit cell, which maximizes
the mixture of quantum states (Fig. 2). The flipping of the
order parameter establishes that each of these crossings is
associated with a band inversion. The impact of the band
inversion will become more clear when we explore the topo-
logical properties of a two-dimensional model in the next
section.

III. LATTICE MODEL: FROM ONE TO TWO DIMENSIONS

The transition from the continuum to a lattice model for a
relativistic Hamiltonian is not a straightforward task. Since
we are not looking into chiral fermions here, we are free
from the obstacles imposed by the Nielson-Ninomiya theorem
[39]. For modeling massive/gapped Fermions, one can start
from a chiral Fermion and simply add a mass term. This
produces a pair of fermions with opposite group velocities
within the Brillouin zone, commonly known as doublers.

To avoid this, one can adopt Wilson’s prescription [40] and
introduce a momentum-dependent coupling between the
spinor components. This is also known as the Creutz lattice
[41]. For a two-component spinor field ψ = [a, b]T the Creutz
Hamiltonian can be expressed as

HC = iA
∑

j

a†
j+1a j − a†

j a j+1 − b†
j+1b j + b†

jb j+1

− B
∑

j

a†
j+1b j + b†

j+1a j + M
∑

j

a†
j b j + b†

ja j . (3)

For convenience we perform a unitary transformation H1 =
U †HCU [where U = (σ1 + σ3)/

√
2]. The transformed Hamil-

tonian in reciprocal space is given by H1(k) = [M −
2B cos(k)]σ3 + 2A sin(k)σ1. Although the physical outcome
does not change under such unitary transformation, the mod-
ified form makes it easier to correlate our prediction with
known physical systems, which will be clearer when we dis-
cuss the scenario in two dimensions.

A. Tuning the topological phase in one dimension:
Emergence of edge localization

We start from the lattice Hamiltonian in one dimension
given by

H1(k) = [M − 2B cos(k)]σ3 + 2A sin(k)σ1. (4)

One can readily see that for k → 0, the low-energy
spectrum corresponds to the continuum Dirac Hamiltonian
[Eq. (1)] with a mass gap of M − 2B. Here we choose
M = A = 5.0 and B = 2.0 and a unit cell with L = 40 sites.
A scalar potential of strength V0 is spanned over a region of
a = 16 sites. In the absence of any scalar potential, the system
has a mass M − 2B = 1, which is expected in any massive
Dirac system. The Fermi level corresponds to half filling and
is kept at zero. We define the site-resolved order parameter

�i = [(〈+, i|σ3|+, i〉 − 〈−, i|σ3|−, i〉)/2]k=0, (5)

where |+, i〉 and |−, i〉 are the wave functions at site i of the
lowest positive energy and highest negative energy states.

From Fig. 3(a), one can readily see that the mass term
behaves similar to the continuum model with respect to V0.
The variation of the band gap in the lattice model [Fig. 3(b)]
is also qualitatively the same as the prediction of the con-
tinuum model. This establishes the validity of the lattice
model for our study. From the band structure, one can see
that the distribution of the mass term switches signs as it
passes through a band crossing [denoted by vertical black
dashed lines in Figs. 3(a) and 3(b)]. To understand whether
these jumps are associated with any change in the topolog-
ical phase, we consider a supercell with 8 unit cells (total
320 sites) and with open boundary conditions. We consider
two different strengths of the scalar potential [Vd and Ve

in Fig. 3(c)] on either side of the crossing point. One can
readily see that after the critical potential, the finite chain
has eigenvalues close to zero energy [Fig. 3(c)]. The eigen-
states corresponding to these zero-energy modes are strongly
localized near the edges [Fig. 3(g)], whereas before the tran-
sition the highest occupied and lowest unoccupied states are
localized in the bulk [Fig. 3(f)]. One can see that the system
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FIG. 3. Tuning the phases of a one-dimensional chain. (a) Varia-
tion of site-resolved order parameter �i with V0 in a one-dimensional
model. (b) Variation of band gap with V0. (c) Variation of energy
eigenvalues of a finite chain (dotted lines). The shaded region shows
the energy range spanned by a periodic chain. Vertical red and blue
dashed lines show two specific values of V0 (Vd = 3 and Ve = 5,
respectively). (d) and (e) The band structure close to k = 0 for
V0 = Vd and V0 = Ve, marked with red and blue dashed lines in (c).
The horizontal black lines show the energy level of a finite system.
(f) and (g) The probability density of the highest occupied (ψ1) and
lowest unoccupied (ψ2) states, marked with orange and green arrows
in (d) and (e), respectively. L denotes the length in units of the unit
cell, and the gray regions denote the potentials.

essentially behaves like an Su-Schrieffer-Heeger model [42],
where the variation of the hopping parameter can be achieved
with the scalar potential. This indicates that one can tune the
mass of the system with a scalar potential which, in turn, can
influence the topology of the system. This connection will be
clearer in the next section, where we discuss two-dimensional
systems.

B. Tuning the topological phase in two dimensions:
Emergence of the quantized Hall effect

The extension of Hamiltonian H1 [Eq. (4)] to two dimen-
sions is quite straightforward and is given by

H2(kx, ky) = {M − 2B[cos(kx ) + cos(ky)]}σ3

+ 2A[sin(kx )σ1 + sin(ky)σ2]. (6)

One can easily recognize that this is the 2×2 block of
the Hamiltonian used to define the quantum spin Hall ef-
fect in HgTe-CdTe quantum wells, commonly known as the
Bernevig-Hughes-Zhang (BHZ) model [11]. The Creutz lat-
tice [Eq. (3)] and the BHZ model [Eq. (6)] are the simplest
models of a Chern insulator. In the following sections, we use
the BHZ model, which exhibits a Chern number C = sgn(M )
for |M| < |4B| and C = 0 for |M| > |4B|. This lends us a per-
fect playground for further predictions. We start with M = 9,
B = 2, and A = 5, which gives a trivial Chern insulator state
(C = 0). The mass gap at kx, ky = 0 is given by M − 4B,
which for our choice of parameters is 1. Here we consider
a 3×3 supercell with one scalar potential (resulting in 11.1%
coverage) and calculate the variation of the band structure,
mass term, and Chern number (Fig. 4) with the variation of

FIG. 4. Variation of the topological nature with V0. (a) Schematic
of the supercell lattice with a 3×3 motif. Dark brown blocks corre-
spond to areas with an additional scalar potential. (b)–(d) The band
structures for V0 = Vb,Vc,Vd , respectively [shown by the vertical
dashed lines in (e)], with red (blue) showing positive (negative)
values of 〈σ3〉. (e) The variation of the band gap with V0, where red
(blue) corresponds to the positive (negative) value of m(E ). (f) The
variation of the Chern number (black) and the total order parameter
� (red) with V0.

V0. The Chern number can be calculated from

C = 1

2π

nF∑
n

∫
BZ

dkxdky[ f (En) − f (Em)]

×
∑
m �=n

2 Im

[ 〈m|∂H/∂ky|n〉〈n|∂H/∂kx|m〉
(En − Em)2

]
, (7)

where nF is the number of states below the Fermi level. f (En)
is the Fermi-Dirac distribution for the nth energy eigenvalue
and |n〉 is the nth eigenstate. The mass term at any particular
energy is given by

m(E ) =
∫

BZ
dkxdky

2N∑
n

〈n|σ3 ⊗ IN |n〉δ(En − E ), (8)

where N is the number of sites (which for our case is 9)
and IN is the identity matrix of rank N . δ(x) is the Dirac
delta function, which is approximated as a Lorentzian with
broadening η, which we choose to be 0.005. For a better
comparison, we use the same broadening in the calculation
of the Chern number as well. Here we use the integrated order
parameter, defined as

� = [(〈+|σ3 ⊗ IN |+〉 − 〈−|σ3 ⊗ IN |−〉)/2]k=0, (9)

which is sufficient to denote the phase transition.
With these definitions, one can clearly see the connection

between the band inversion and the mass (Fig. 4) in two
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FIG. 5. Variation of (a) the Chern number C, (b) order parameter
�, and (c) mass gap with the parameter M and the strength of
the scalar potential V0. The black dashed line shows the transition
boundary.

dimensions as well. From Fig. 4, one can see that with the in-
crease of the scalar potential, there are a band gap closing and
reopening, similar to what we observe in the one-dimensional
case (Figs. 1 and 3). At the critical point, where the bands
touch each other, the order parameter and the Chern number
undergo a jump, indicating a change in the topological phase.
This is consistent with our earlier picture of band inversion
through the mixing of different mass regimes. The nonzero
Chern number indicates the generation of a Hall current due
to the scalar potential. Since the effect is triggered by a scalar
term rather than a vector field, we call it the scalar Hall effect.
This is to distinguish its origin. In spirit it is an emergent quan-
tum anomalous Hall effect caused by the mixture of quantum
states mediated by the scalar potential. In a topologically
trivial regime, each occupied band comprises states with the
same sign for the mass term. As we increase the potential, the
interchange of states with opposite mass terms takes place. An
increase of the scalar potential enhances the mixing of states
with opposite mass terms and thus transports the system from
a topologically trivial to a nontrivial phase, characterized by a
nonzero Chern number. The critical potential (VC in Fig. 4) at
which the transition takes place shows a parabolic dependence
with respect to the parameter M that controls the mass of the
system (Fig. 5) and a logarithmic behavior with respect to the
potential concentration (Fig. 6).
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FIG. 6. Variation of the critical potential VC with the density of
the scalar potential f .

There is an important difference between the underly-
ing mechanism leading to the scalar Hall effect and that
leading to a topological Anderson insulator [43]. Theory on
the Anderson insulator shows that the topological phase is
formed by the dissipative state, whereas the scalar Hall ef-
fect is caused by plane waves mediated through (inverse)
Klein tunneling. While the topological Anderson phase is
observed within the initial metallic regime, the scalar Hall
effect emerges in the gapped region. In contrast to a ran-
dom disorder-induced Chern insulator [44], this mechanism is
intrinsic in nature. This is reflected in the fact that the emer-
gent nontrivial phase possesses the same magnitude of the gap
as the potential-free case, whereas the disorder-induced non-
trivial phase is known to have an order of magnitude smaller
gap [44]. The underlying mechanism is also distinct from
the previously reported mechanism for the voltage-modulated
Chern number [45], in which one can arbitrarily enhance
the Chern number by increasing the voltage. Our mecha-
nism, on the other hand, facilitates a transition from C = 0
to C = 1, which is the highest Chern number possible for this
model. If one starts from a topologically nontrivial configura-
tion, the additional scalar potential enhances the topological
protection and reduces the mixing of quantum states and thus
prevents any further topological transition (Fig. 5).

IV. FORMATION AND MANIPULATION OF EDGE STATES

A nonvanishing bulk topological invariant has direct cor-
respondence with the existence of edge states [46,47]. To
demonstrate that, we consider a ribbon configuration; i.e., we
assume a periodic boundary condition along the x direction
and an open boundary condition along the y direction by
repeating the block shown in Fig. 4(a). Here we choose 3 sites
along x and 90 sites along y (a total of 270 sites, Fig. 7) and
introduce a scalar potential V0 in one in every nine (3×3) sites
(11.1% coverage).

In such a ribbon the edge states emerge when V0 crosses the
critical value at which the bulk bands cross each other (Fig. 7).
This is similar to the emergence of edge localization in a one-
dimensional system (Fig. 4). Each edge hosts a single edge
state such that opposite edges host states with opposite group
velocities, which is expected in the case of a Chern insulator
with a Chern number of 1.

One can further manipulate the behavior of the edge states
locally by controlling the distribution of the scalar poten-
tial. As we explained before, the scalar potential enhances
the mixing between states with opposite mass terms, which
causes the topological transition. In an extended system, one
can use the scalar potential selectively in different regions of
space to infuse the topological nature selectively. To demon-
strate this we consider the aforementioned ribbon (Fig. 7).
Then we start removing the scalar potential from one end and
calculate the band structure (Fig. 8). The Fermi level EF is
defined as the middle of 270th and 271th eigenvalues at the
� point.

With this simple procedure, one can easily manipulate the
edge states selectively. By removing the scalar potential at
one edge, we reduce the mixing of the states locally, and as
a result, the states which were sharply localized at the edges
before now start moving more into the central region. This
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FIG. 7. Variation of bulk and edge properties with V0. (a) The
schematic of the ribbon with scalar potentials is denoted in black.
(b) and (c) The band structure for V0 = Vb and V0 = Vc [Vb and
Vd in Fig. 4(e)]. Red, blue, and black mark the contributions from
the edge at y = 1, the edge at y = 90, and the bulk region. Gray
shaded regions mark the regions spanned by the bulk bands. (d) and
(e) The probability density of states �1,2, marked with green and
orange arrows in (a) and (b). (f) The variation of eigenvalues at the
� point, where black and red correspond to the contributions from
the bulk and edges. The gray regions show the areas spanned by the
bulk bands, and the vertical red dashed line shows the point of band
inversion [V0 = Vc in Figs. 4(c), 4(e) and 4(f)].

is manifested by the fact that the sharp red line in Fig. 8
remains intact as long as there are scalar potentials at the
corresponding edges, whereas the blue lines fade out and mix
strongly with the gray bands.
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FIG. 8. Variation of the band structure with the distribution of
the scalar potential along the ribbon. (a) The band structure when
the full width of the ribbon is covered with the potential. (b) and
(c) The band structure with 2/3 and 1/3 coverage and (d) the band
structure with no potential. The inset in each plot shows the spatial
distribution, where the black dots represent the scalar potential. Red
and blue denote the y = 1 and y = 90 edges [Fig. 7(a)].

V. CONCLUSIONS

In this paper, we presented an alternative paradigm to in-
fuse nontrivial topological characteristics into a trivial insula-
tor using a scalar potential. The scalar potential was utilized to
enhance the mixing between different quantum states, which
in turn drives the system into a topologically nontrivial regime
accompanied by a reversal in mass term. This switching is
present in both one and two dimensions. In one dimension, it
produces strong edge localization, whereas in two dimensions
it shows the appearance of the chiral edge states with specific
group velocity. In two dimensions, it gives rise to an emergent
Hall effect which can be verified by calculating the Chern
number. In addition, our method also allows us to control the
topological properties by local means, which is not possible
with a conventional topological insulator. We demonstrated
that the edge states can be controlled by selective placement
of the scalar potential. One can observe the same qualitative
behavior with periodic and nonperiodic distributions of the
scalar potential as long as it does not form clusters. These
predictions can be realized in real materials available exper-
imentally. A suitable candidate for such a study would be
a CdTe-HgTe-CdTe quantum well, in which the topological
phases can be controlled by changing the width of the well.
The scalar potential can be designed with suitable fabrication
techniques [48,49] or can be introduced via a nonmagnetic
dopant. For a Hg0.32Cd0.68Te-HgTe quantum well, the mass
gap (2m) is ∼50 meV for a thickness of 50 Å [11], which indi-
cates the scalar potential induced topological transition can be
observed for V0 � 0.5 eV. Our results thus open several new
possibilities to control the topological properties and design
highly controllable devices for topological electronics.
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FIG. 9. Variation of the transmission probability for different
energies and barrier widths in the case of a rectangular barrier in-
troduced in a one-dimensional Dirac Hamiltonian. Here we choose
V0 = 4 and m = 1.
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FIG. 10. Variation of the mass gap and Chern number for a
supercell. (a) Distribution of the potential (black blocks) over the
supercell. (b) Variation of the band gap, where red and blue lines
denote positive and negative values of 〈σz〉. (c)–(e) Band structures
and Chern numbers for the three different values of V0 denoted by
the vertical dashed lines in (b).

APPENDIX A: TRANSMISSION OF A MASSIVE DIRAC
PARTICLE IN ONE DIMENSION THROUGH

A RECTANGULAR BARRIER

Here we briefly show the transmission of a massive Dirac
particle through a scalar potential, which can provide a better
understanding of the modulation of the mass term. We start
with a massive Dirac equation in one dimension, given by

HD
1 = −iσ1∂x + σ3m + σ0V (x), (A1)

where m is the mass term, which we choose to be 1. σ1,3 are
the Pauli matrices, and σ0 is the identity matrix of rank 2.
The simplest way to study the impact of a scalar potential
is to introduce a rectangular barrier of width w, such that
V (x) = V0 for −w/2 � x � w/2 and V (x) = 0 otherwise.
The transmission probability for such a rectangular barrier is
given by T = 16|λ/[(1 + λ)2e−iκ2w − (1 − λ)2eiκ2w]|2, where
κ1 = √

E2 − m2, κ2 =
√

(E − V0)2 − m2, and λ = κ2
κ1

E+m
E−V0+m .

For such a system, it is possible to achieve complete transmis-
sion probability if the barrier height is greater than twice the
mass term (V0 > 2m), which manifests as multiple transmis-
sion channels for E < V0 in Fig. 9.

For w → ∞, the Klein window (m � E � V0 − m) can
manifest complete transmission. At this limit, the region
inside and outside the scalar potential is dominated by a
particular sign of the mass term. For small w, there is more
mixing between the states with a different mass term, which
manifests as a modulation of the transmission probability
with respect to the energy on both sides of the forbidden
zone (V0 − m � E � V0 + m). In a periodic lattice with a
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FIG. 11. Edge state formation for the extended ribbon. (a) Dis-
tribution of the potential over the ribbon. (b) The band structure of
the ribbon, where red and blue lines show the contributions from the
y = 1 and y = 60 edges. (c)–(f) The average probability density along
the x axis for the four different states marked in (b).

fixed width of the potential region, this interference results
in a modulation of the mass gap with respect to the barrier
height V0.

APPENDIX B: RANDOM ORIENTATION OF POTENTIAL

The obvious question that arises at this point is whether this
topological transition is an artifact of a perfect periodic system
or not. To answer that we consider a 12×12 supercell with 16
scalar potentials (11.1% coverage) and calculate the variation
of the mass gap (Fig. 10). Since calculating the Chern number
for such a large system is computationally quite demanding,
we calculate it for two different topological phases. One can
readily see that the mass gap and the topological features
change in a way similar to the small and uniform supercell
(Fig. 4), which establishes that it is an intrinsic property and
does not depend on the distribution of the scalar potential.
Similar behavior can be observed with a ribbon with an open
boundary condition along the y direction (Fig. 11). We choose
a supercell of 15×60 sites and scatter 100 scalar potential
with V0 = 20. Here we also observe a pair of chiral edge
states similar to the case of uniform distribution (Fig. 7).
Note that there is a small asymmetry in the bulk states which
comes from the asymmetric distribution of the scalar poten-
tial. However, it does not affect the presence of the edge
states. These results confirm that the topological transition
can be achieved with the scalar potential for any arbitrary
distribution.
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