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High harmonic generation from electrons moving in topological spin textures
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High harmonic generation (HHG) is a striking phenomenon, which reflects the ultrafast dynamics of electrons.
Recently, it has been demonstrated that HHG can be used to reconstruct not only the energy band structure but
also the geometric structure characterized by the Berry curvature. Here, we numerically investigate HHG arising
from electrons coupled with a topological spin texture in a spin scalar chiral state where time reversal symmetry
is broken. In this system, a sign change in scalar chirality alters the sign of the Berry curvature while keeping the
energy band structure unchanged, allowing us to discuss purely geometrical effects on HHG. Notably, we found
that, when the optical frequency is significantly lower than the energy gap, the sign of scalar chirality largely
affects the longitudinal response parallel to the optical field rather than the transverse response. Our analysis
suggests that this can be attributed to interband currents induced by the recombination of electron-hole pairs
whose real-space trajectories are modulated by the anomalous velocity term.
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I. INTRODUCTION

With the advancement of laser technology, ultrafast phe-
nomena in the subfemtosecond and attosecond domains are
being actively researched [1–14]. High harmonic generation
(HHG) and high-order sideband generation (HSG) are rep-
resentative examples, and recent research has progressed in
solids such as semiconductors [15–37], strongly correlated
electron systems [38–59], and magnetic materials [60–69]. In
HHG and HSG, high-order harmonics are literally generated,
and the details of their spectra and chirping have been well
captured by the three-step model [70–74]. According to this
model, the elementary processes of HHG, for example, consist
of (i) ionization of electrons to the vacuum or excitation to the
conduction bands, (ii) acceleration, and (iii) recombination of
the electrons or the electron-hole pairs. Therefore the elec-
tronic structure is embedded in the high harmonic spectrum,
and using this property, all-optical reconstruction of energy
bands through HHG and HSG has been proposed and experi-
mentally demonstrated [74–79].

Recently, it has become increasingly clear that HHG can
be used to extract not only the energy band structure but
also the geometric structure of electrons, characterized by
the Berry curvature or the Berry phase [80–90]. As is well
known, the Berry curvature appears in systems where ei-
ther spatial inversion symmetry or time reversal symmetry
is broken. Hitherto, high harmonics dependent on the Berry
curvature have been observed in systems with broken spatial
inversion symmetry, for example, in a monolayer MoS2 [80]
and the surface states of a topological insulator Bi2Te3 [81].
Additionally, in a Weyl semimetal WP2 [82], the Berry curva-
ture has been successfully reconstructed in reciprocal space.
However, studies on the effects of geometric structures in
HHG have been scarce for systems with broken time reversal
symmetry [91].

Systems exhibiting nonzero Berry curvature due to bro-
ken time reversal symmetry include those with what are
called topological spin textures. For example, in skyrmion
crystals, interesting perturbative linear responses such as the
topological Hall effect [92] and the magneto-optical effect
[93–97] have been reported and discussed. However, nonlin-
ear responses, including HHG or HSG, have received limited
attention [98,99], even though the magnetic structure is ex-
pected to be embedded in the high harmonic spectrum through
the dynamics of electrons coupled with topological spin tex-
tures.

A spin scalar chiral state can be considered as one of the
simplest topological spin textures. It features a four-sublattice
magnetic order [Figs. 1(a) and 1(b)], where the Chern num-
ber of each energy band takes on an integer value, leading
to the emergence of the anomalous (topological) Hall effect
[100,101]. Hence, this state can be viewed as a skyrmion
crystal state with the smallest magnetic unit cell. Last year,
two groups experimentally reported that the scalar chiral state
is realized in CoTa3S6 and CoNb3S6 [102–104], attracting
significant interest. In this study, we numerically analyze
HHG in the scalar chiral state. We found that the transverse
response, as naively expected to reflect the Berry curvature,
indeed appears. Furthermore, we discovered that the sign of
the Berry curvature is reflected in the longitudinal response
even in cases where it predominates over the transverse re-
sponse. This finding differs from the effects of anomalous
velocity in intraband currents that have been discussed pre-
viously. We argue that the anomalous velocity modulates the
recombination conditions of electron-hole pairs, potentially
changing the interband current spectrum, on the basis of an
analysis of the real-space dynamics of electron-hole pairs.

The rest of this paper is organized as follows. In Sec. II,
we introduce our model and methods, and in Sec. III, we
present numerical results. Section III A provides an overview
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FIG. 1. (a) Magnetic unit cell of the four-sublattice spin scalar
chiral state and (b) configuration of the four localized spin vectors,
adapted from Ref. [105]. (c) Magnetic Brillouin zone.

of the equilibrium properties, focusing particularly on its ge-
ometric structure, and Sec. III B displays the high harmonic
spectrum obtained from real-time evolution. The analysis of
the real-space dynamics of electron-hole pairs is conducted
in Sec. III C. Section III D discusses HHG for parameters
close to those for CoTa3S6 and CoNb3S6. Sections IV and
V are respectively devoted to the discussion and summary.
Appendices A–D provide results for near-resonant and cir-
cular polarization driving, as well as comparisons with the
120◦ Néel state, where the Berry curvature is absent, and with
perturbative responses.

II. MODEL AND METHOD

To examine the dynamics of electrons coupled with spin
textures, we consider the ferromagnetic Kondo lattice model
on a two-dimensional triangular lattice. The Hamiltonian is
defined by

H =
∑
i js

hi jc
†
isc js − JK

∑
iss′

Si · σss′c†
iscis′ , (1)

where c†
is is a creation operator of an electron at site i with

spin s, σ is a three-component vector of the Pauli matrices,
and Si is a classical vector describing a localized spin at site i.
The transfer integral and the exchange interaction strength are
denoted by hi j and JK, respectively. Considering that the elec-
tron dynamics induced by external fields occur on time scales
of the order of subpicoseconds, we assume in this study that
a magnetic order of {Si} is not disturbed by electron motions;
that is, each Si is frozen during the real-time evolution of the
electrons.

While the Hamiltonian in Eq. (1) is invariant under the
global rotation of {Si} and σ, we explicitly define the four-
sublattice scalar chiral state as

S1 = (1, 1, 1)√
3

, S2 = (−1,−1, 1)√
3

,

S3 = (1,−1,−1)√
3

, S4 = (−1, 1,−1)√
3

, (2)

where Sm represents the localized spin of sublattice m instead
of site i (see Fig. 1). For this choice of {Sm}, the scalar
chirality, defined by

χ = S1 · (S2 × S3) + S4 · (S3 × S2), (3)

has a positive value of χ = 8/(3
√

3) ≡ χ0. The sign of χ is
changed by time reversal: Sm �→ −Sm for all m; this operation
is equivalent to JK �→ −JK in the electron system, while the

band structure remains unchanged, since the localized spins
Sm are treated classically.

Assuming sublattice structure, we can express the Hamil-
tonian in reciprocal space as

H =
∑

k

∑
ss′

∑
mm′

hsm,s′m′ (k)c†
ksmcks′m′ , (4)

where k denotes momentum, and the indices s and m cor-
respond respectively to the spin and sublattice degrees of
freedom. In the four-sublattice scalar chiral state, each energy
band is doubly degenerated in the whole magnetic Brillouin
zone (BZ) [Fig. 1(c)], and h(k) is an 8 × 8 matrix that can be
block diagonalized by the unitary transformation:

U †h(k)U = h+(k) ⊕ h−(k), (5)

into two 4 × 4 matrices h+ and h−. Adopting {Sm} in Eq. (2),
we can choose the unitary matrix U as

U = (spin) ⊗ (sublattice)

= 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i 0 0 0 i 0 0 0
0 −i 0 0 0 i 0 0
0 0 −i 0 0 0 i 0
0 0 0 −i 0 0 0 i
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

which diagonalizes another unitary matrix V that commutes
with h(k). The latter unitary matrix,

V = σy ⊗

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦, (7)

represents a mirror reflection of electron spins with respect to
the zx plane and a permutation of sublattice spins: S1 ↔ S4

and S2 ↔ S3, and it is diagonalized as

U †VU = diag(+1,+1,+1,+1,−1,−1,−1,−1). (8)

The explicit form of h± is given by

h±(k) = − JK√
3
σz ⊗ σ0 ± JK√

3
(σx + σy) ⊗ σy

− 2h1 cos(kx )σ0 ⊗ σx

− 2h1 cos

(
kx + √

3ky

2

)
σx ⊗ σ0

− 2h1 cos

(
kx − √

3ky

2

)
σx ⊗ σx, (9)

where σ0 denotes the identity matrix. Here and throughout
the paper, we consider only the transfer integral between the
nearest neighbor sites, hi j = −h1. Given the above, we can
write the Hamiltonian in Eq. (1) as

H =
∑

k

4∑
n=1

[ε+
n (k)a†

knakn + ε−
n (k)b†

knbkn] (10)

125111-2



HIGH HARMONIC GENERATION FROM ELECTRONS … PHYSICAL REVIEW B 110, 125111 (2024)

with ε+
n (k) = ε−

n (k) ≡ εn(k). Here, ε±
n (k) is the nth eigen-

energy of h±(k), and a†
kn and b†

kn are creation operators of
electrons associated with c†

ksm through a unitary transforma-
tion. The block diagonal form of h(k) in Eq. (5) facilitates
the efficient computation of real-time dynamics and enables
the calculation of the Berry curvature Bn = (0, 0, Bn) through
the following formula:

Bn(k) =
∑

m( �=n)

〈kn|vx(k)|km〉〈km|vy(k)|kn〉 − c.c.

[εn(k) − εm(k)]2
(11)

with v(k) = ∂kh+(k) [= ∂kh−(k)], where |kn〉 is an energy
eigenstate satisfying h+(k)|kn〉 = εn(k)|kn〉. Note that Bn(k)
remains unchanged even if we adopt the eigenstates of h−(k),
and the Chern number of the doubly degenerated nth band is
given by

Cn =
∫

BZ

d2k

2π
2Bn(k), (12)

where BZ stands for the magnetic BZ depicted in Fig. 1(c).
We also introduce the linear optical conductivity [106],

σαβ (ω) = iTαβ − iχαβ (ω + iη)

ω + iη
, (13)

with η being a positive infinitesimal, where

Tαβ =
∫

BZ

d2k

(2π )2
Tr

[
ρk∂kα

∂kβ
h(k)

]
, (14)

χαβ (z) = 2
∫

BZ

d2k

(2π )2

∑
mn

fn(k) − fm(k)

εm(k) − εn(k) − z

× 〈kn|vα (k)|km〉〈km|vβ (k)|kn〉. (15)

Here, ρk,mn = 〈c†
knckm〉 represents a one-body density matrix

of electrons, fn(k) = 〈a†
knakn〉 = 〈b†

knbkn〉 is the Fermi distri-
bution function for the nth band, and Tαβ in Eq. (14) is called
a stress tensor. The prefactor 2 in Eq. (15) counts the equal
contribution from the eigenstates of h−.

The real-time dynamics are governed by the von Neumann
equation with a phenomenological relaxation term,

dρk

dt
= −i[h(k), ρk] − Γ (ρk − ρ0,k), (16)

with t representing time. Here, ρ0,k denotes the one-body
density matrix in the ground state for a given k, and Γ rep-
resents the relaxation rate. We assume that the initial state
is the ground state, that is, ρk(−∞) = ρ0,k. Given our focus
on the dynamics of electrons driven by optical fields, we
consider only the coupling between the electric field and the
electrons. The vector potential A(t ) is introduced through the
Peierls substitution: k(t ) = k − A(t ), and the electric field F
is determined by F(t ) = −∂t A(t ). In this study, we apply a
continuous wave described by the following vector potential:

Aα (t ) = −F0,α


sin(t − φα ) ×

{
e−t2/(2τ 2 ) (t < 0)
1 (t � 0)

(17)

for α = x, y, where F0 = (F0,x, F0,y ), , φα , and τ represent
the electric field amplitude, frequency, phase, and ramp time,
respectively. Linear polarization is characterized by

F0,x = F0 cos ψ, F0,y = F0 sin ψ, φx = φy = φ, (18)

where ψ denotes the polarization angle measured from the x
axis [see also Fig. 1(a)]. On the other hand, left/right circular
polarization (LCP/RCP) is described by

F0,x = F0,y = F0, (φx, φy) =
{

(−π/2, 0) (LCP)
(+π/2, 0) (RCP) . (19)

The electric current density J(t ) is defined by

J(t ) = 1

NA
∑

k

Tr[ρkv(k)], (20)

where N stands for the number of k-points. The area of the
magnetic unit cell is denoted by A, and in the presence of
four-sublattice orders, A = 2

√
3a2 with a being the lattice

constant. The intensity of electromagnetic radiation is propor-
tional to

I (ω) = Ix(ω) + Iy(ω), Iα (ω) = ω2|Jα (ω)|2 (21)

for α = x, y, where J(ω) is the Fourier transformation of J(t ).
The von Neumann equation (16) is numerically solved

using the fourth-order Runge–Kutta method with a time step
of δt = 0.01h̄/h1. The number of k points is set to N = 502

unless otherwise specified, for which we confirmed the con-
vergence. In this paper, the nearest neighbor transfer integral
h1, the Dirac constant h̄, the electric charge e, and the lattice
constant a are set to one. Energy, time, electric current density,
and electric fields are expressed in units of h1, h̄/h1, eh1/(h̄a),
and h1/(ea), respectively. For h1 = 1 eV and a = 1 nm, these
read h̄/h1 = 0.66 fs, eh1/(h̄a) = 2.4 kA cm−1, and h1/(ea) =
10 MV cm−1.

III. RESULTS

In this section, we give an overview of the equilibrium
properties of the four-sublattice scalar chiral state. Then, we
show the numerical results of the HHG when linearly po-
larized light is applied, and discuss how geometrical effects
manifest themselves. Hereafter, we focus mainly on cases
where the Kondo coupling is JK = 3, and the electron number
density is ne = 0.5 (half filling) [107]. At half filling, the
optical gap increases proportionally with JK, which enables
numerical analysis at optical frequencies that are sufficiently
small relative to the gap, suppressing the excited electron den-
sity in the conduction bands. Additionally, despite the absence
of the dc Hall effect at ne = 0.5, optical transverse responses
due to the nonzero Berry curvature can be observed, as shown
in the following sections.

A. Equilibrium properties

Figure 2(a) displays the energy band structure εn(k) in the
magnetic BZ alongside the dc Hall conductivity as a function
of the chemical potential. We observe four doubly degen-
erated bands in the magnetic BZ. The dc Hall conductivity
σxy(ω = 0) exhibits a quantized value of ±e2/(2π h̄) when
the electrons are at quarter or three quarter filling, as initially
pointed out in Refs. [100,101]. Since time reversal symmetry
is broken while spatial inversion symmetry is preserved, the
Berry curvature satisfying Bn(−k) = Bn(k) can appear in the
scalar chiral state. In Figs. 2(b) and 2(c), we present the Berry
curvature Bn(k) on the energy-band surfaces for χ = +χ0 and
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FIG. 2. (a) Energy band structure εn(k) (left), and the chemical potential dependence of dc Hall conductivity 2πσxy(0) at zero temperature
(right), in the four-sublattice scalar chiral state. The conductivity is calculated using Eqs. (13)–(15) with η = 0.01. [(b) and (c)] Berry curvature
Bn(k) plotted on the energy-band surfaces for (b) χ = +χ0 and (c) χ = −χ0.

χ = −χ0. For the lower two doubly degenerated bands, the
Berry curvature takes on large values at and in the vicinity of
the K point, while for the upper two bands, the Berry curvature
appears more dispersed throughout the BZ. Notably, the sign
of the Berry curvature is reversed by changing the sign of χ

without affecting the energy bands εn(k). The Chern number
defined in Eq. (12) is numerically confirmed to be C1 = −1,
C2 = +1, C3 = +1, and C4 = −1 from the bottom to the top
band when χ = +χ0, and their signs are reversed for χ =
−χ0, as is consistent with the chemical potential dependence
of the dc Hall conductivity. It should be emphasized that since
the sign of scalar chirality alters only the sign of the Berry
curvature, if the high harmonic spectrum differs depending on
the chirality’s sign, such a difference should be attributed not
to the energy bands εn(k) but to a purely geometrical effect
originating from the Berry curvatures Bn(k).

In the case of JK = 3 and ne = 0.5, the longitudinal com-
ponent of the optical conductivity, σxx(ω), and the transverse
component, σxy(ω), are shown in Fig. 3. Although the direct

FIG. 3. Real part of optical conductivity in the scalar chiral state
with χ = +χ0 at zero temperature. The parameters are set to JK = 3,
ne = 0.5, and η = 0.01.

optical band gap of ε3(k) − ε2(k) = 4 is at the � point, there,
the transition dipole moment proportional to v(k) is zero; a
significant absorption peak can be seen in σxx(ω) at ω = 4.6,
corresponding to the interband transition at the K point. At
half filling, since the sum of the Chern numbers of the occu-
pied bands is zero, the transverse conductivity σxy(ω) vanishes
at ω = 0, indicating no dc Hall effect. Nonetheless, for ω � 4,
nonzero σxy(ω) arises owing to interband transitions, and the
sign of σxy(ω) also depends on the sign of scalar chirality.
This can be observed through linear magneto-optical effects,
as discussed in Ref. [95]. Even beyond such a linear and
perturbative regime, given that the electromagnetic radiation
intensity is determined by the expectation value of a one-body
electric current operator, we anticipate transverse HHG de-
pendent on scalar chirality.

B. Real-time dynamics and HHG

In this section, we examine the real-time dynamics when
a continuous wave [Eq. (17)] is applied, and discuss the
characteristics of the resulting high harmonic spectrum. First,
we consider the case where linearly polarized light parallel
to the x axis (i.e., ψ = 0) is irradiated. The relaxation rate
and the optical frequency are set to Γ = 0.1 and  = 10 ×
2π/500 = 0.126, respectively, with the latter being suffi-
ciently smaller than the optical gap. The ramp time in Eq. (17)
and the phase in Eq. (18) are chosen as τ = 6 and φ = 0,
respectively, which do not affect the high harmonic spectrum
in a steady state.

We show the temporal profiles of the applied vector poten-
tial A(t ) = (Ax(t ), 0) and the electric current density J(t ) =
(Jx(t ), Jy(t )) in Figs. 4(a) and 4(b), respectively, when the
electric field amplitude is F0 = 1. Given the optical period of
T = 2π/ = 50, the system quickly reaches a steady state
after a few optical cycles (on a time scale of the order of
Γ −1 = 10), where not only the longitudinal current Jx but also
the transverse current Jy is induced by the vector potential
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FIG. 4. [(a) and (b)] Temporal profiles of (a) the vector poten-
tial, Ax (t ), and (b) the electric currents, Jx (t ) and Jy(t ). (c) Power
spectra of the electric currents, Ix (ω) and Iy(ω). The inset shows the
intensity of low-order harmonics. (d) Phase difference in the trans-
verse current Jy(ω) between states with opposite chiralities, δy =
arg Jy(ω)|χ=−χ0 − arg Jy(ω)|χ=+χ0 , for odd-order harmonics. The
electric field amplitude, frequency, polarization angle, and ramp time
are set to F0 = 1,  = 0.126, ψ = 0, and τ = 6, respectively.

parallel to the x axis. Although Jy is less intense than Jx, its
high-frequency oscillatory components are of similar magni-
tude to those of Jx. As becomes clear from the subsequent
discussion related to Fig. 4(d), this transverse response is due
to σxy ( �= 0) arising from scalar chirality, and as shown in
Appendix C, it does not occur in the 120◦ Néel state when
linear polarization is along a high symmetric direction such as
ψ = 0 and π/6.

High harmonic spectrum I (ω) can be obtained using the
Fourier transformation of J(t ). In this study, we extracted real-
time data for 500 < t � 1000, considering the system to have
reached the steady state before t = 500, and applied the fast
Fourier transformation (FFT) to (1000 − 500)/δt data points.
The optical frequency of  = 10 × 2π/500 is consistent with
this number of data points, so that the FFT results include data
points at frequencies that are exact multiples of .

Figure 4(c) displays the intensities of the longitudinal and
the transverse response, Ix(ω) and Iy(ω), respectively, ob-
tained from Jx(t ) and Jy(t ) shown in Fig. 4(b). Since the
optical frequency is  = 0.126, which is less than 1/30 of the
optical gap, the high harmonic spectrum up to approximately
the 200th order is observed to be clearly separated from a
background of �10−32. Furthermore, as the optical period and
the number of data points used for FFT are consistent, sharp
peaks appear only at frequencies that are integer multiples of
 as shown in the inset of Fig. 4(c). These high harmonic
peaks are observed at odd orders, while the even-order har-
monics disappear because of the presence of spatial inversion
symmetry. Overall, although the intensity of the transverse
component, Iy, is several orders of magnitude lower than that
of the longitudinal component, Ix, they appear in the same
frequency range. Up to about ω � 10, a plateau appears in
the spectrum, which roughly agrees with the frequency range
where the optical conductivity is nonzero (see Fig. 3); this is
a characteristic widely observed in the HHG in the nonpertur-
bative regime.

Here, we discuss how the transverse response Jy changes
with respect to the sign of scalar chirality. We confirmed that,
for χ = −χ0, the power spectrum Iy(ω) is exactly the same
as in the case of χ = +χ0 shown in Fig. 4(c) [108]. However,
a difference is observed in the phase spectrum. Figure 4(d)
shows the difference in the phase component of Jy(ω), defined
by δy = arg Jy(ω)|χ=−χ0 − arg Jy(ω)|χ=+χ0 , for odd-order har-
monics between the cases of χ = +χ0 and χ = −χ0. As
clearly seen in Fig. 4(d), the transverse component of the
odd-order harmonics differs in phases by π from each other.
This indicates that the sign of the transverse response in the
scalar chiral state is inverted by time reversal, implying its
association with the presence of scalar chirality, or the Berry
curvature.

We show in Fig. 5 the amplitude dependence of the high
harmonic spectrum for χ = +χ0. Figure 5(a) is a color map
displaying the intensity of odd-order harmonics, I (n), as a
function of the electric field amplitude F0. Corresponding to
the plateau region observed in Fig. 4(c), the intensity in the
region of ω � 10 is enhanced for F0 � 1. The white dashed
line in the figure indicates the upper bound of the Bloch
oscillation frequency, which is ω = F0 in the case of ψ = 0.
The frequency domain mainly below this line can include
contributions from intraband currents.

The detailed amplitude dependence of the low-order har-
monics is plotted in Fig. 5(b). For F0 � 0.1, the Fourier
amplitude of the nth harmonic, Jx(n), is proportional to the
nth power of F0, indicating that HHG is in the perturbative
regime. As F0 increases, the higher-order harmonics begin
to deviate from the perturbative regime, transitioning to the
nonperturbative regime around F0 ∼ 1. The inset of the fig-
ure plots the fundamental harmonic amplitude |Jx()| on a
linear scale. This is well fitted by the exponential function
exp(−Fth/F0) with Fth = 13.22 indicated by the black dashed
line, and the excited electron density exhibits similar behavior
(not shown), suggesting that interband tunneling excitation
dominates for F0 � 1.5. Therefore, for F0 � 1.5, tunneling
excitation hardly occurs, and the geometrical effects on the
tunneling probability discussed in Refs. [109,110] can be con-
sidered negligible.

125111-5



ONO, OKUMURA, IMAI, AND AKAGI PHYSICAL REVIEW B 110, 125111 (2024)

FIG. 5. (a) Amplitude dependence of the power spectrum of odd-
order harmonics, I (n) (n = 1, 3, . . . ). The dashed line indicates
the upper bound of the Bloch oscillation frequency (see main text).
(b) Fourier amplitude of low-order harmonics, Jx (n), as a function
of F0. The inset shows Jx () on a linear scale, with the dashed curve
representing a fitted function, |Jx ()| = 52.02 exp(−13.22/F0 ). The
optical frequency and polarization angle are respectively set to  =
0.126 and ψ = 0 in (a) and (b).

We examine the polarization angle ψ dependence of the
nth harmonic intensity for F0 = 1, as shown in Fig. 6. The
red and blue lines correspond to the cases of χ = +χ0 and
χ = −χ0, respectively. For the first-order harmonic, the dif-
ference due to the chirality sign is almost negligible, and it

is approximately independent of the polarization angle. This
partially inherits the property that, in the current system with
sixfold symmetry, a linear optical response exhibits contin-
uous rotational symmetry (see Appendix D for details). On
the other hand, for the third and higher harmonics, not only
does a significant dependence on the incident polarization
angle appear, but clear differences are observed depending
on the sign of scalar chirality. As previously mentioned, the
chirality sign only changes the sign of the Berry curvature and
does not alter the energy band structure; hence, this chirality
dependence is attributed to purely geometrical effects.

The polarization angle dependence reflecting the sign
of scalar chirality is naively expected to arise from the
anomalous velocity of intraband currents, as discussed in the
literature [80–86] for systems where spatial inversion symme-
try is broken. The intraband current carried by an electron with
momentum k in the nth band is proportional to

ṙn = ∂kεn(k) + F(t ) × Bn(k), (22)

where r is the position of the electron, and the second term
is called the anomalous velocity. Note that the anomalous
velocity term always produces a current perpendicular to the
electric field F. Therefore, to extract the contribution of the
transverse response, the power spectrum I (ω) is decomposed
into components parallel and perpendicular to F, denoted by
I‖(ω) and I⊥(ω), respectively. These are related to Ix(ω) and
Iy(ω) through the relations:

I‖ = Ix cos2 ψ + 2
√

IxIy cos ψ sin ψ cos δ + Iy sin2 ψ, (23)

I⊥ = Ix sin2 ψ − 2
√

IxIy cos ψ sin ψ cos δ + Iy cos2 ψ, (24)

with δ(ω) = arg Jy(ω) − arg Jx(ω). The thin curves in Fig. 6
show the polarization angle dependence of the intensity of
the parallel component I‖(ω) = I (ω) − I⊥(ω). Contrary to
expectation, for any ψ , we observe that I‖ ≈ I , indicating
that the anomalous velocity [and a component of ∂kεn(k) that
is perpendicular to k(t ) = k − A(t )] in the intraband current
cannot explain the observed dependence on the sign of scalar
chirality. Thus, in the following section, we consider interband
currents associated with the recombination of electron-hole
pairs.

FIG. 6. [(a)–(d)] Polarization angle dependence of the nth harmonic intensity I (n) for χ = +χ0 (red) and χ = −χ0 (blue). The thin
curves show the longitudinal component I‖(n) for χ = +χ0 (orange) and χ = −χ0 (cyan). The electric field amplitude and frequency are set
to F0 = 1 and  = 0.126, respectively.
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FIG. 7. Real-space dynamics of electron-hole pair excited at t = 0 with k = (0, 0), for χ = +χ0 (top) and χ = −χ0 (bottom). The electric
field amplitude, frequency, polarization angle are set to F0 = 1,  = 0.126, and ψ = 32◦, respectively. (a) Color map of the norm of the
relative displacement, ‖δr‖, in the φ-t plane. (b) Real-space trajectory of δr until recombination for an initial phase indicated by the red circle,
“b1” and “b2,” in (a). (c) Same as (b) but for a different initial phase indicated by “c” in (a); point “c” in (a1) is not a local minimum of ‖δr‖,
and thus in (c1), the pair does not recombine (see main text).

C. Electron-hole dynamics in real space

In the previous section, as shown in Fig. 6, it was revealed
that the polarization angle dependence of harmonic intensity
changes with the sign of scalar chirality, and that it is mostly
due to the contribution of an electric current component par-
allel to the electric field. Since it is currently difficult to fully
understand this cause microscopically, in this section, we dis-
cuss interband currents by analyzing a real-space trajectory of
an electron-hole pair excited at a wave-number point k = k0.

At half filling, optical driving primarily excites electrons
into the third lowest band ε3(k), while creating holes in the
second band ε2(k). Interband currents are induced when these
electrons and holes recombine. In the saddle-point approxima-
tion [70–74], this condition is expressed as ‖δr‖ = 0, where δr
represents the relative displacement of the electron-hole pair
excited at time t = 0. This displacement is given by

δr(t ) =
∫ t

0
δṙ(t ′) dt ′, (25)

where δṙ denotes the relative velocity of the electron-hole pair
with momentum k:

δṙ = ∂k[ε3(k) − ε2(k)] + F(t ) × [B3(k) − B2(k)]. (26)

The optical vector potential is introduced through the
Peierls substitution: k(t ) = k0 + A(0) − A(t ) with A(t ) =
−(F0/) sin(t − φ). Therefore, by finding the phase φ for
which ‖δr‖ = 0 at time t > 0, we can determine the real-
space trajectory of the electron-hole pair until recombination.

Analyzing all trajectories of electron-hole pairs for ev-
ery k0 would only complicate the problem. Thus, here, we
specifically show representative cases for a pair excited at
k0 = (0, 0), that is, at the � point. Figure 7(a) displays the
relative displacement ‖δr‖ on a logarithmic scale as a function
of the initial phase φ and time t , with Fig. 7(a1) for χ = +χ0

and Fig. 7(a2) for χ = −χ0. The polarization angle is set
to ψ = 32◦, for which the fifth-order harmonic intensity for
χ = +χ0 nearly reaches its maximum [see Fig. 6(c)]. Overall,
both cases exhibit similar behaviors, but, reflecting the sign
of scalar chirality (i.e., the sign of the Berry curvature), the
details differ. There are specifically two cases in which the
electron-hole pair can recombine: (i) for both χ = +χ0 and
χ = −χ0, the pair recombines at almost the same phase φ and
time t (indicated by points “b1” and “b2”), and (ii) the pair
recombines only for either χ = +χ0 or χ = −χ0 (indicated
by point “c”). We discuss these two cases in detail.

Case (i). The phase and the recombination time of
points “b1” and “b2” in Figs. 7(a1) and 7(a2) are φ/π =
0.344 and t/T = 0.800 for χ = +χ0, and φ/π = 0.333 and
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FIG. 8. Temporal profiles of the energy of electron-hole pair until
the recombination, with the initial phases indicated by “b1” for χ =
+χ0 and by “b2” for χ = −χ0 in Figs. 7(a1) and 7(a2) (see main
text). The other parameters are the same as those in Fig. 7.

t/T = 0.799 for χ = −χ0. Here, T = 2π/ = 50 represents
the optical period. The corresponding trajectories in real space
are shown in Figs. 7(b1) and 7(b2). Although these trajec-
tories are close to what would be expected if the time was
reversed for the other, the contribution from the anomalous
velocity term modifies the conditions for recombination. This
results in a slight difference in a recombination energy. Fig-
ure 8 shows the temporal profile of the electron-hole pair’s
energy, ε3(k(t )) − ε2(k(t )), where we in fact observe the slight
difference. Thus, in this case, while the electron-hole pair
recombines for both χ = +χ0 and χ = −χ0, their different
recombination energies at t ≈ 0.8 yield a different harmonic
intensity.

Case (ii). When φ/π = 0.2416 and t/T = 0.344, indicated
as “c” in Fig. 7(a), pair recombination occurs only for χ =
−χ0. The trajectories for this case are shown in Figs. 7(c1)
and 7(c2). For χ = +χ0, the electron-hole pair does not return
to the coordinate origin, and thus, this pair does not contribute
to interband currents.

From the two cases above, the reason why the dependence
of the chirality sign, as shown in Fig. 6, appears as a longitu-
dinal response can be inferred to be due to the difference in
the dynamics of electron-hole pairs in real space. This differ-
ence is caused by the anomalous velocity, which also changes
the recombination conditions. Furthermore, even in a case
where recombination occur for both χ = +χ0 and χ = −χ0,
the difference in the recombination energy results in variations
in harmonic intensity. However, it is also important to note
that the analysis conducted here is significantly simplified and
does not consider crucial factors such as temporal changes in
the carrier density and interference with other pairs excited
at different k’s, necessitating more comprehensive analyses as
conducted in Ref. [89] in future work.

D. HHG with parameters for real materials

In the previous sections, we discussed the case where JK =
3 and ne = 0.5. Recently, some experiments reported that
the four-sublattice scalar chiral state is realized in CoTa3S6

and CoNb3S6 [102–104]. Here, we discuss the high harmonic
spectrum and its polarization angle dependence for parame-

FIG. 9. (a) Energy band structure εn(k) for JK = 0.4 (χ = +χ0 ).
The color variation along the lines indicates the Berry curvature
Bn(k). The gray horizontal line shows the chemical potential μ =
2.137 for ne = 0.75. (b) Real part of optical conductivity in the scalar
chiral state with χ = +χ0 at zero temperature. The parameters are set
to JK = 0.4, ne = 0.75, and η = 0.01.

ters close to these materials, with JK = 0.4 and ne = 0.75.
We will see that the aforementioned conclusion regarding
the dominance of the longitudinal response depending on the
chirality sign also holds in this case.

Before moving on to the discussion of HHG, we present
the equilibrium properties. Figure 9(a) shows the energy band
structure and Berry curvature in the ground state for JK = 0.4.
Only at three-quarter filling (ne = 0.75), the ground state is
insulating. The optical conductivity is shown in Fig. 9(b). A
significant absorption peak in σxx(ω) is observed near ω =
0.42, corresponding to the transition between the upper two
bands on the �–M line. Hereafter, the optical frequency will
continue to be set at  = 0.126, which is still lower than the
optical gap. Furthermore, reflecting the Berry curvature, the
optical Hall conductivity σxy(ω) also appears, and it reaches
the quantized value of +e2/(2π h̄) in the dc limit (ω → 0).

In Fig. 10, we show the power spectrum Iα (ω) for F0 = 0.1
and  = 0.126. Similarly to Fig. 4(c), the transverse response
Iy appears with the same order of magnitude as or several
orders of magnitude smaller than the longitudinal response
Ix(ω). As the energy range from the bottom to the top band
edge is approximately 9 [see Fig. 9(a)], we observe the cutoff
energy (i.e., the upper end of the plateau region) to be at the
same energy ∼8 in the spectrum.
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FIG. 10. Power spectra of the electric currents, Ix (ω) and Iy(ω).
The inset shows the intensity of low-order harmonics. The parame-
ters are set to JK = 0.4, ne = 0.75, F0 = 0.1,  = 0.126, and N =
2002.

Figure 11(a) shows the color map of the intensity of odd-
order harmonics for χ = +χ0, as a function of the electric
field amplitude. Reflecting the observation in Fig. 2(b) that the
optical gap is about an order of magnitude smaller than that in
the case of JK = 3, the transition from the perturbative to the
nonperturbative region occurs at a lower F0. The intensity I (ω)
is particularly strong in the region of ω � 10, consistent with
the bandwidth of the electrons. In addition, in the region below
the white dashed line in Fig. 11(a), a significant contribution
from intraband currents associated with the Bloch oscillation
is also apparent.

The F0 dependence of the harmonic intensities up to the
ninth order is shown in Fig. 11(b). For the fundamental har-
monic (n = 1), a deviation from the perturbative line Jx() ∝
F0 can be seen above F0 ∼ 0.1, and for higher harmonics, this
deviation can be seen at a smaller F0. To consider the same
situation as in the previous sections, the following discusses
the polarization angle dependence for F0 = 0.1.

We present the polarization angle dependence of harmonic
intensity in Fig. 12. Similarly to the case of JK = 3 and ne =
0.5, the harmonic intensities depend on the polarization angle
ψ , reflecting the sign of chirality. However, for harmonics up
to the fifth order at F0 = 0.1, the significant angle dependence
shown in Figs. 6(c) and 6(d) are not observed. Additionally,
the thin dashed lines in the figure indicates the longitudinal
intensity I‖ parallel to the electric field F0, which, as in the
previous case, satisfies I‖ ≈ I , indicating the dominance of
the longitudinal response depending on the chirality sign.
Therefore we consider that the results and discussions in the
previous sections do not qualitatively depend on details such
as model parameters or electron density.

IV. DISCUSSION

In Sec. III, we have focused particularly on a case where
the optical frequency is significantly lower than the energy
gap. Previous studies [80–86] have mainly discussed the ef-
fects of anomalous velocity in intraband currents; however,
our results reveal that despite the dominance of the longitu-
dinal response over the transverse response, the polarization
angle dependence of harmonic intensity strongly reflects the

FIG. 11. (a) Amplitude dependence of the power spectrum
of odd-order harmonics, I (n) (n = 1, 3, . . . ). The dashed line
indicates the upper bound of the Bloch oscillation frequency.
(b) Fourier amplitude of low-order harmonics, Jx (n), as a func-
tion of F0. The inset shows Jx () on a linear scale, with the
dashed curve representing a fitted function, |Jx ()| = 0.3692F0 +
0.6032 exp(−0.2177/F0 ), and the dotted line being its linear com-
ponent. The parameters are set to JK = 0.4, ne = 0.75,  = 0.126,
ψ = 0, and N = 1002 in (a) and (b).

sign of scalar chirality. While this behavior might also be
observed in systems with broken spatial inversion symmetry
and nonzero Berry curvature, note that the sign of the Berry
curvature can be easily switched by an external magnetic field
in systems with broken time reversal symmetry.

It is also a natural question whether the anomalous velocity
term in intraband currents (i.e., the transverse response) could
dominate in the present system. In Appendix A, we show
results on the polarization angle dependence in the case of
near-resonant driving. There, indeed, the transverse response
can become comparable to or greater than the longitudinal
response. Besides, it is noteworthy that the longitudinal re-
sponse still exhibits a dependence on the chirality sign. In
addition, Appendices B and C respectively present brief sum-
maries of the high harmonic spectrum in the case with circular
polarization driving, and of the polarization angle dependence
of the harmonic intensities in the 120◦ Néel state, where the
Berry curvature is zero.

As already mentioned, the linear optical Hall effect with
topological spin textures has been discussed in the litera-
ture [93–97]. In systems with sixfold symmetry like the one
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FIG. 12. [(a)–(d)] Polarization angle dependence of the nth harmonic intensity I (n) for χ = +χ0 (red) and χ = −χ0 (blue). The thin
curves show the longitudinal component I‖(n) for χ = +χ0 (orange) and χ = −χ0 (cyan). The parameters are set to JK = 0.4, ne = 0.75,
F0 = 0.1, and  = 0.126.

considered here, the linear conductivity exhibits continuous
rotational symmetry, and thus shows no polarization angle
dependence, unlike what is observed in Figs. 6 and 12. There-
fore, to verify the results presented in this paper, experiments
need to be conducted on single crystals without grain bound-
aries. Additionally, the scalar chiral state in CoTa3S6 and
CoNb3S6 is metallic [102–104], leading to the enhancement
of the intraband-current response. Thus, examining harmon-
ics in a frequency range higher than the Bloch oscillation
frequency would facilitate a clearer observation of the con-
tribution from interband currents.

V. SUMMARY

In this paper, we numerically analyzed HHG arising from
electrons in the spin scalar chiral state. Reflecting the pres-
ence of the Berry curvature, the transverse response emerges,
which is of the same order of magnitude as, or several orders
of magnitude smaller than, the longitudinal response; its phase
inversion depends on the sign of scalar chirality. Furthermore,
we observed a marked variation in harmonic intensity with
respect to the incident polarization angle, dependent on the
chirality sign, with the dominant component being the lon-
gitudinal response rather than the transverse one. Since the
anomalous velocity term in intraband currents produces only
the transverse currents, this longitudinal response can be at-
tributed to interband currents induced by the recombination
of electron-hole pairs whose trajectories are modulated by the
anomalous velocity. This modulation changes the recombina-
tion energies of the pairs and thus can alter the spectrum of
interband currents. These results indicate that the magnetic
structure with scalar chirality is, in fact, reflected in the high
harmonic spectrum through the electron dynamics, which can
be verified in experiments with materials such as CoTa3S6 and
CoNb3S6, where the sign of scalar chirality can be switched
by a magnetic field. Further research is expected to extend
to HHG and HSG in systems with other topological spin
textures, such as skyrmion lattice and hedgehog lattice states.
Additionally, while the localized spins are fixed in this study,
considering the dynamics resulting from the coupling between
electrons and magnons would present an interesting direction
[105,111–113].
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APPENDIX A: NEAR-RESONANT DRIVING

In the main text, we set the optical frequency to  = 0.126
and discussed the situation where it is significantly lower
than the optical gap of 4 for JK = 3. Here, we present in
Fig. 13 the polarization angle dependence of harmonic inten-
sity for a near-resonant case with  = 320 × 2π/500 = 4.02
and F0 = 1. Since  is near resonant, the intensity of the
fundamental harmonic is six orders of magnitude larger than
that in Fig. 6(a), but the angle dependence is small, suggesting
that its deviation from the perturbative regime is small. The
higher order harmonics show a pronounced polarization angle
dependence similar to the case of  = 0.126, and changes rel-
ative to the sign of scalar chirality can be similarly observed.
Among the higher order harmonics shown in Fig. 13, the third-
and seventh-order longitudinal response satisfies I‖ ≈ I , but
for the fifth harmonic, the transverse response I⊥ becomes
comparable to or greater than I‖. This large transverse re-
sponse can be attributed to the anomalous velocity term in
intraband currents, as discussed in the literature. Neverthe-
less, I‖ still clearly depends on the chirality sign, indicating
that I (ω) contains interband-current contributions discussed
in Sec. III C.

APPENDIX B: CIRCULAR POLARIZATION DRIVING

Here, we briefly discuss HHG when circularly polarized
light defined in Eq. (19) is applied. Before that, we present
the relationship between the parameters of an ellipse and
the electric current amplitude and phase. When the electric
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FIG. 13. [(a)–(d)] Polarization angle dependence of the nth harmonic intensity I (n) for χ = +χ0 (red) and χ = −χ0 (blue). The thin
curves show the longitudinal component I‖(n) for χ = +χ0 (orange) and χ = −χ0 (cyan), and I‖(5) is additionally shaded for visibility.
The electric field amplitude and frequency are set to F0 = 1 and  = 4.02, respectively.

current corresponding to the nth harmonic is given by

Jα (t ) = J0,α cos(nt − φα ) (B1)

with J0,α = |Jα (n)| and φα = arg Jα (n), the trajectory on
the Jx-Jy plane is an ellipse. Its semi-major axis J+ and semi-
minor axis J− are respectively given by

J+ = max{J̃x, J̃y}, J− = sgn(δ) min{J̃x, J̃y}, (B2)

where δ = φy − φx represents the relative phase, sgn denotes
a sign function, and J̃x and J̃y are defined by

J̃x = | sin δ |
[

cos2 ϕ

J2
0,x

− sin 2ϕ cos δ

J0,xJ0,y
+ sin2 ϕ

J2
0,y

]− 1
2

, (B3)

J̃y = | sin δ |
[

sin2 ϕ

J2
0,x

+ sin 2ϕ cos δ

J0,xJ0,y
+ cos2 ϕ

J2
0,y

]− 1
2

. (B4)

Here, ϕ represents the inclination angle of the ellipse’s major
axis with respect to the x axis, which is given by

ϕ = 1

2
arctan

2J0,xJ0,y cos δ

J2
0,x − J2

0,y

. (B5)

The ellipticity ε is defined by

ε = −J−
J+

, (B6)

such that it equals +1 for RCP and −1 for LCP.
Figure 14(a) shows the power spectrum I (ω) for harmon-

ics with intensity sufficiently separated from the background
(�10−30). It is established that the allowed harmonics for a
given crystal symmetry and optical-field waveform are de-
scribed by a theory of dynamical symmetry [35,114–118].
In the present system, which exhibits sixfold symmetry, only
the (6l ± 1)th-order harmonics (l ∈ Z) are allowed when
circularly polarized light is applied, and our results are
in agreement with this theoretical prediction. Additionally,
Fig. 14(b) demonstrates that the ellipticity ε of each harmonic
is determined solely by the handedness of the circular polar-
ization, regardless of the sign of chirality. Furthermore, a kind
of circular dichroism is observed; that is, for χ = +χ0, the
intensity of the fifth- to 13th-order harmonics under LCP is
more pronounced than those under RCP, and this difference in
intensities is inverted when the sign of chirality is altered.

APPENDIX C: COMPARISON WITH
THE 120◦ NÉEL STATE

The 120◦ Néel state exhibits a three-sublattice magnetic
order, which is stabilized at ne = 0.5 in the present model
[101]. The vector of the mth sublattice spin is defined by Sm =
(cos θm, sin θm, 0) with θ1 = 0, θ2 = 2π/3, and θ3 = −2π/3.
Given this configuration, the electron system is invariant un-
der the combination of a mirror reflection with respect to the
xy plane and the time reversal operation; thereby the Berry
curvature Bn(k) satisfies Bz

n(−kx,−ky, kz ) = −Bz
n(kx, ky, kz )

[119], or in two dimensions, Bn(−kx,−ky) = −Bn(kx, ky).

FIG. 14. (a) Power spectrum I (ω) and (b) ellipticity ε, for (6l ±
1)th-order harmonics. RCP and LCP correspond to ε = +1 and ε =
−1, respectively. The parameters are set to JK = 3, ne = 0.5, F0 =
0.1, and  = 0.126.
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FIG. 15. Polarization angle dependence of the (a) third and
(b) fifth harmonic intensity. The red and blue lines represent the
longitudinal (I‖) and transverse (I⊥) component, respectively. For
visibility, I⊥(3) in (a) is multiplied by 20.

Additionally, the presence of spatial inversion symmetry
imposes Bn(−kx,−ky ) = Bn(kx, ky). Therefore the Berry cur-
vature Bn(k) turns out to be zero for any k. In the case with
JK = 3 and ne = 0.5 as adopted in the main text, the ground
state is insulating, and the optical gap is 2JK = 6.

In Fig. 15, we present the polarization angle dependence
of the third- and fifth-order harmonic intensities for F0 = 1
and  = 0.126, along with their longitudinal and transverse
components. Similarly to the case in the four-sublattice scalar
chiral state, sixfold symmetric harmonic intensity is observed,
with the fifth harmonic showing more pronounced angle de-
pendence. The transverse component I⊥, shown in blue lines
in the figure, appears except in the high symmetric directions
such as ψ = 0 and ψ = π/6, and it does not depend on the
sign of JK unlike in the scalar chiral state. Such transverse
response can be attributed to the first term of Eq. (22), ∂kεn(k),
having components that are not parallel to the momentum k.

APPENDIX D: NONLINEAR RESPONSE IN THE
PERTURBATIVE REGIME

We derive the perturbative expressions for the harmonic
intensity and discuss the polarization angle dependence. In
general, the nth-order response of the electric current J to the
electric field F is given by

J (n)
α (ω) =

∫ ∞

−∞

dω1 · · · dωn

(2π )n−1
δ(ω1 + · · · + ωn − ω)

× σ (n)
αα1···αn

(ω1, . . . , ωn)Fα1 (ω1) · · · Fαn (ωn), (D1)

where σ (n) is the nth-order response function, α and αi=1,...,n

indicate Cartesian components (such as x and y), and summa-
tion over repeated indices (Einstein summation convention) is
assumed. By definition, σ (n) is invariant under the permutation
of (αi, ωi ) ↔ (α j, ω j ), and thus, it is convenient to introduce
the nth-order symmetrized response function:

σ̄ (n)
αα1···αn

(ω1, . . . , ωn)

=
∑
s∈Sn

σ (n)
ααs(1)···αs(n)

(ωs(1), . . . , ωs(n) ), (D2)

where Sn is the symmetric group of degree n. For exam-
ple, when n = 2, Eq. (D2) is written as σ̄ (2)

αα1α2
(ω1, ω2) =

σ (2)
αα1α2

(ω1, ω2) + σ (2)
αα2α1

(ω2, ω1). Additionally, if the system is
invariant under a symmetry operation represented by a unitary
matrix U , the response function satisfies the relation:

σ (n)
αα1···αn

= UαβUα1β1 · · ·Uαnβnσ
(n)
ββ1···βn

, (D3)

which reduces the number of independent nonzero compo-
nents of σ (n)

αα1···αn
.

Given that the present system preserves sixfold symmetry,
we obtain from Eq. (D3) the well-known relations,

σ (1)
xx = σ (1)

yy , σ (1)
xy = −σ (1)

yx (D4)

for the first-order response. Such relations can also be derived
for higher-order responses, while we do not write them all out.
Instead, here we discuss the polarization angle dependence
of the nth harmonic intensity, assuming the linearly polarized
electric field,

F(ω) = 2πδ(ω − )F0, F0 = F0(cos ψ, sin ψ ). (D5)

Here, F0 and  represent the amplitude and frequency of
the electric field, respectively, and ψ denotes the polarization
angle as in Eq. (18). Under this assumption, the nth-order
response in Eq. (D1) reduces to

J (n)
α (ω) = 2πδ(ω − n)σ (n)

αα1···αn
F0,α1 · · · F0,αn , (D6)

J (n)
α (t ) =

∫ ∞

−∞

dω

2π
e−iωt J (n)

α (ω)

= e−intσ (n)
αα1···αn

F0,α1 · · · F0,αn

= e−i(nt−φ(n)
α )

∣∣J (n)
0,α

∣∣, (D7)

where

J (n)
0,α = σ (n)

αα1···αn
F0,α1 · · · F0,αn , φ(n)

α = arg J (n)
0,α, (D8)

and σ (n)
αα1···αn

is a shorthand for σ (n)
αα1···αn

(, . . . , ). Conse-
quently, the nth-order harmonic intensity is given by

I (n) = (n)2(∣∣J (n)
0,x

∣∣2 + ∣∣J (n)
0,y

∣∣2)
. (D9)

By using Eqs. (D3) and (D5)–(D9), we obtain an expres-
sion for the first-order harmonic intensity,

I () ∝ (∣∣σ (1)
xx

∣∣2 + ∣∣σ (1)
xy

∣∣2)
F 2

0 , (D10)

which is independent of ψ as mentioned in the main text.
Similarly, the third harmonic intensity, written as

I (3) ∝ (∣∣σ̄ (3)
xxxx

∣∣2 + ∣∣σ̄ (3)
xxxy

∣∣2)
F 6

0 , (D11)

is also independent of ψ . However, the fifth harmonic inten-
sity turns out to be

I (5) ∝ [C0 + C+ cos(6ψ ) + C− sin(6ψ )]F 10
0 , (D12)

which exhibits sixfold symmetry in the perturbative regime
and reaches its maximum when 6ψ = arctan(C−/C+) mod
2π . Here, C0, C+, and C− are constants given by

C0 = 117
∣∣σ̄ (5)

yyyxxx

∣∣2 + 432
∣∣σ̄ (5)

yyyxxxσ̄
(5)
yyyyyx

∣∣ + 468
∣∣σ̄ (5)

yyyyyx

∣∣2

+ 25
(∣∣σ̄ (5)
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(D13)
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C+ = −45
∣∣σ̄ (5)
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C− = −90
∣∣σ̄ (5)

yyyxxxσ̄
(5)
yyyyxx

∣∣
− 120

∣∣σ̄ (5)
yyyyyx

∣∣(∣∣σ̄ (5)
yyyyxx

∣∣ − 5
∣∣σ̄ (5)

yyyyyy

∣∣). (D15)

For the seventh harmonic intensity, we find that

I (7) ∝ [D0 + D1+ cos(6ψ ) + D1− sin(6ψ )

+ D2+ cos(12ψ ) + D2− sin(12ψ )]F 14
0 , (D16)

where D0, D1±, and D2± are constants depending on σ (7).
Note that Eqs. (D10)–(D16) are perturbative expressions valid
in the limit of F0 → 0 and are derived solely from the six-
fold symmetry, without making any additional assumptions
regarding the electronic or magnetic structure.

Figure 16(a) shows the polarization angle dependence of
the third and fifth harmonics for F0 = 0.01. At this value of F0,
the response is within the perturbative regime, as evidenced
by Fig. 5(b). In fact, the numerical results exhibit continu-
ous rotational symmetry for the third harmonic and sixfold
symmetry for the fifth harmonic, which are consistent with
Eqs. (D11) and (D12).

We also notice that, in Fig. 16(a), while the third harmonic
intensity becomes independent of the chirality sign as F0 → 0,
the fifth harmonic intensities show a slight difference between
the cases of χ = +χ0 and −χ0. When the electric-field am-
plitude is finite, F0-dependent terms enter Eqs. (D13)–(D15)
through higher-order processes. Thus, to clarify whether the
slight chirality-sign dependence observed in the fifth har-
monic persists in the limit of F0 → 0, it is necessary to
examine the dependence on F0. In Fig. 16(b), the polarization
angle at which I (5) is maximized is plotted as a function of
F0, and it deviates from the x-axis by ∓0.0113 rad = ∓0.65◦
for χ = ±χ0 in the limit of F0 → 0. Since this deviation is
quite small, the significant chirality-sign dependence observed
in Figs. 6, 12, and 13, as well as the pronounced polarization
angle dependence with a nodelike structure, is likely enhanced
by nonperturbative effects.

To further validate that the polarization angle dependence
observed in Fig. 16(a) can be described perturbatively, we
consider the difference between the harmonic intensities for
ψ = 0 and ψ = π/6:

δI (n) = I (n)|ψ=0 − I (n)|ψ=π/6. (D17)

Figure 16(c) presents δI (n) on a logarithmic scale for n = 1 to
9. For the first and third harmonics, we observe that

δI (1) ∝ F 6
0 = o

(
F 2

0

)
, δI (3) ∝ F 8

0 = o
(
F 6

0

)
. (D18)

This suggests that a weak angle dependence, vanishing in the
limit of F0 → 0, arises from higher-order perturbative pro-
cesses. On the other hand, for the fifth and higher harmonics,

FIG. 16. (a) Polarization angle dependence of the third (left) and
fifth (right) harmonic intensity in the perturbative regime, F0 = 0.01.
(b) Amplitude dependence of the polarization angle at which the fifth
harmonic intensity I (5) is maximized. The dashed curves represent
quadratic fits to the data points for F0 ∈ [0.006, 0.01]. (c) Amplitude
dependence of δI (n) in Eq. (D17) when χ = +χ0. The parameters are
set to JK = 3, ne = 0.5, and  = 0.126 in (a)–(c).

we see that

δI (n) ∝ F 2n
0 , (D19)

which indicates that the angle dependence remains even
in the limit of F0 → 0. The above discussion and the nu-
merical results shown in Fig. 16 explain why the nodelike
structure observed for the fifth and seventh harmonics in
Figs. 6 and 13 is absent for the first and third harmonics;
that is, when F0 = 1, the first- and third-order responses are
still near the perturbative regime, as tunneling excitation is
negligible.
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