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Optimized effective potential forces with the plane-wave and pseudopotential method
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The optimized effective potential (OEP) approach has so far mainly been used in benchmark studies and
for the evaluation of band gaps. In this work, we extend the application of the OEP by determining the
analytical ionic forces within the plane-wave and pseudopotential framework. It is first shown that, due to
the constrained optimization inherent to the OEP approach, an extra term needs to be added to the standard
Hellmann-Feynman expression for the forces, whenever nonlocal pseudopotentials are employed. Computing
this term for functionals based on Hartree-Fock and the hybrid PBE0 functional yields forces with excellent
numerical accuracy. Furthermore, results for equilibrium geometries and vibrational frequencies on a set of
molecules and solids confirm that the local exchange OEP is able to reproduce results obtained with the
nonlocal exchange potential. Our work opens up the possibility to study lattice dynamics using advanced orbital
functionals for describing exchange and correlation effects.
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I. INTRODUCTION

In the field of computational physics, a wide variety of
approaches for total energy and force calculations is available.
Depending on the application, the accuracy-cost ratio can be
an important factor to consider. In this regard, Kohn-Sham
(KS) density functional theory (DFT), with a well-chosen
functional, is often the preferred approach [1–4].

Within KS-DFT, approximate functionals are sorted into
different classes according to their level of description of
the exchange-correlation (xc) energy [5–7]. Starting from the
local density approximation (LDA), improved functionals in-
clude a semilocal dependency through the gradient of the
density, and are known as the generalized gradient approxima-
tions (GGAs). Adding a dependence on the KS kinetic energy
density leads to the nonlocal meta-GGAs. Each of the above
functional classes suffers, more or less, from self-interaction
errors due to their approximate description of Hartree-Fock
(HF) exchange [8], a problem which can be mitigated with
hybrid functionals that mix a fraction of HF exchange into a
semilocal functional [9,10]. In this way, the KS density matrix
is introduced as an additional ingredient in the xc functional.
An accurate description of correlation can be found with
functionals based on the KS Green’s function that depend on
the full KS spectrum. Examples are functionals derived from
many-body perturbation theory (MBPT) such as the random
phase approximation (RPA) [11].

Meta-GGAs and hybrid and MBPT-based functionals all
have an explicit dependency on the KS orbitals, rather than the
density. As a consequence, the xc potential, i.e., the functional
derivative of the xc energy with respect to the density, does
not have an analytical expression. Self-consistent calculations
are, therefore, often performed within the generalized KS
framework [12–14], or by allowing for larger variational
freedom. In the case of hybrid functionals this implies the
use of an integral operator, the nonlocal exchange potential
[15], and, in the case of meta-GGAs, the use of a differential

operator [16,17]. The RPA functional has a natural extension
within MBPT. Free variations with respect to the many-body
Green’s function lead to a nonlocal and energy-dependent
potential—the GW self-energy [18–20]. Due to the high
complexity of such calculations there are only a few reported
in the literature [21–24].

In order to remain within the KS formulation, the vari-
ational freedom has to be restricted such that the orbitals
are generated by a local multiplicative potential. Functional
differentiation with respect to the density via the KS orbitals
leads to an integral equation, known as the optimized effective
potential (OEP) equation, for determining the xc potential
numerically [25,26]. Tests on various systems have demon-
strated that the OEP often gives total energies and densities
in close agreement with results obtained within the general-
ized KS scheme [27–29]. On the other hand, except for the
highest occupied molecular orbital (HOMO) eigenvalue [30],
the spectrum will always be different. The KS virtual orbitals
can, for example, be shown to provide a better description of
the optical excitation energies [31], but the fundamental gap
is strongly underestimated, even with the exact KS potential
[32,33]. One can show that the KS potential must jump with
a constant when crossing integer particle numbers in the en-
semble formulation of DFT [34]. Adding this constant, or the
so-called derivative discontinuity correction, to the KS gap
results in the true fundamental gap. Within hybrid functionals,
the corrected KS gap is in good agreement with the gap
obtained from the generalized KS scheme [35], and the same
is expected to be true for meta-GGAs [14]. Within RPA, it
becomes equivalent to the gap within G0W0 theory [36–38].

The numerical solution to the OEP equation has been the
subject of numerous studies. A direct solution based on the
inversion of the KS density response function is known to
present numerical instabilities in Gaussian basis sets [39–41].
These issues are almost absent from OEP calculations resort-
ing to plane waves [42], real-space grids [43,44], or spline
basis sets [20,45–48]. Furthermore, direct minimization [49]
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and iterative approaches [50–52] that circumvent the inversion
of the KS density response function have been developed,
making routine OEP calculations feasible on a wide range
of systems. All-electron studies have focused on the role
of the core-valence interaction and concluded that the pseu-
dopotential approximation is valid also for OEP calculations
[44,53–56]. A review of orbital-dependent functionals and
their numerical aspects can be found in Ref. [57].

Current applications of the OEP are mostly found in band
structure calculations, either for a direct comparison with ex-
periment [58,59] or as a starting point for G0W0 calculations
[35,38,60,61]. In principle, self-consistent OEP calculations
also give access to the ionic forces, which are relevant for
structural relaxation and phonon spectra. The prospect of
using an advanced description of exchange and correlation
for calculating these important properties has so far not been
much explored. As of now, there are only a few works study-
ing OEP forces on small molecules using Gaussian basis
sets [62–64].

In the present study, we investigate the analytical OEP
forces using the plane-wave basis set and norm-conserving
pseudopotentials, and show that it is possible to achieve ex-
cellent numerical accuracy when applied to both molecules
and solids.

The paper is organized as follows. In Sec. II, we provide
the mathematical details of the OEP approach. In Sec. III, we
discuss the OEP forces and their implementation using norm-
conserving pseudopotentials. We also analyze the numerical
accuracy achieved on various molecules and solids. Finally, in
Sec. IV, we exploit the calculated forces to determine equilib-
rium geometries, the vibrational modes of H2O and α-quartz,
and the phonon dispersion of diamond. The conclusions are
given in Sec. V.

II. OPTIMIZED EFFECTIVE POTENTIAL

Similarly to xc functionals depending explicitly on the
density and its gradient, orbital-dependent functionals based
on the OEP are designed to predict the density and the ground-
state energy through a local effective KS potential. The
self-consistent procedure does, however, present differences
as the OEP KS potential does not have an analytical expres-
sion explicit in the orbitals. Instead, the numerical solution of
the OEP integral equation is required as an intermediate step
in each iteration toward self-consistency.

The ground-state total energy within KS-DFT is written as

Etot = Ts + EHxc +
∫

vext (r)n(r) dr, (1)

where Ts is the kinetic energy of noninteracting electrons
moving in an effective KS potential veff (r) such that{− 1

2∇2 + veff (r)
}
ϕi(r) = εiϕi(r). (2)

EHxc is the Hartree (H) and xc energy, and vext (r) is the ex-
ternal nuclear potential interacting with the electronic density
n(r). Each independent electron is described by a Kohn-Sham
orbital ϕi and has the energy εi. The total energy is minimized
when the effective potential is given by

veff (r) = vext (r) + vHxc(r), (3)

where

vHxc(r) = δEHxc

δn(r)
. (4)

All terms in Eq. (1) can be expressed explicitly in terms of
the density except for the KS kinetic energy and the xc part
of the Hxc energy. Since the functional dependence of the
exact xc energy on the density is unknown, approximations
are needed for its evaluation. The OEP method is relevant for
xc functionals with an implicit dependence on the density via
KS orbitals. In this case, the functional derivative in Eq. (4)
is evaluated using the chain rule since the variation of the
orbitals with respect to veff is easy to construct from linear
response theory,

δExc

δveff (r)
=

∫
δn(r′)
δveff (r)

vxc(r′)dr′. (5)

Let us now focus on the exact-exchange (EXX) approxi-
mation. Within EXX, there is no correlation and the exchange
energy functional is identical to the HF exchange energy [28],

Ex = −1

4

∫
γ (r, r′)v(r − r′)γ (r′, r)drdr′. (6)

Assuming closed-shell systems, γ is the first-order spin-
averaged reduced density matrix and v is the Coulomb
interaction. Free variation of the EXX total energy with
respect to γ yields the HF equation with the nonlocal
HF exchange potential Vx(r, r′) = − 1

2v(r − r′)γ (r′, r) [3]. A
variation with respect to a local effective potential corresponds
to a minimization of the EXX total energy on a restricted
domain of allowed orbitals, and the minimum is found when
the exchange part of the effective potential obeys Eq. (5)
[25,26]. We thus need to evaluate the functional derivative of
Ex [Eq. (6)] with respect to veff ,

δEx

δveff (r)
=

∫
δγ (r′, r′′)
δveff (r)

Vx(r′, r′′)dr′dr′′. (7)

Combining Eq. (5) and Eq. (7) yields the following integral
equation for vx(r),∫

χs(r, r′)vx(r′)dr′ =
∫

�s(r, r′, r′′)Vx(r′, r′′)dr′dr′′, (8)

known as the OEP equation. The variation of the electronic
density with respect to veff is equal to the KS linear density
response function and can be written explicitly as

χs(r, r′) = 2
occ∑

i

unocc∑
j

ϕ∗
j (r′)ϕ j (r)ϕ∗

i (r)ϕi(r′)

εi − ε j

+ 2
occ∑

i

unocc∑
j

ϕ∗
i (r′)ϕi(r)ϕ∗

j (r)ϕ j (r′)

εi − ε j
. (9)

The variation of γ with respect to veff is given by

�s(r, r′, r′′) = 2
occ∑

i

unocc∑
j

ϕ∗
j (r′)ϕ j (r)ϕ∗

i (r)ϕi(r′′)

εi − ε j

+ 2
occ∑

i

unocc∑
j

ϕ∗
i (r′)ϕi(r)ϕ∗

j (r)ϕ j (r′′)

εi − ε j
. (10)

125110-2



OPTIMIZED EFFECTIVE POTENTIAL FORCES WITH THE … PHYSICAL REVIEW B 110, 125110 (2024)

Both χs and �s contain summations over occupied and unoc-
cupied states.

The OEP equation allows us to interpret the optimal local
exchange potential as the potential that makes the perturbation
(Vx − vx), i.e., the perturbation that turns the KS equation into
the HF equation, produce a vanishing first-order density
response [65,66].

The theory presented above can readily be generalized to
other approximations based on nonlocal exchange such as
hybrid functionals [29,35]. In the present work, we have used
the PBE0 functional, which mixes in a fraction α = 0.25 of
nonlocal exact exchange in the PBE functional. Contrary to
the HF method, electronic correlation is present but remains
described at the PBE level.

A direct numerical solution of the OEP equation requires
the construction of the response functions χs and �s, and the
subsequent inversion of χs. This procedure has been shown
to work well on small systems but can give rise to numer-
ical instabilities, in particular when Gaussian basis sets are
used [39–41]. With large basis sets, such as plane waves, it
can instead be computationally demanding as it requires the
summation over all unoccupied states and the manipulation of
large matrices [52].

An iterative approach that avoids some of these problems
was developed by Kümmel and Perdew [50,51] and gener-
alized to the plane-wave and pseudopotential framework by
Nguyen et al. [52,67]. The basic idea is to exploit the fact that
the left and right hand sides of the OEP equation are linear
density responses, δn[vx] and δn[Vx], of the potentials vx and
Vx, respectively. These responses can be calculated within
density functional perturbation theory (DFPT), a framework
developed for the calculation of phonon modes [68]. For a
given trial potential vi

x, the two density responses will differ
but their difference

	ni(r) = δn
[
vi

x

]
(r) − δn[Vx](r) (11)

can be used to update vx according to

vi+1
x (r) = v0

x (r) +
i∑

m=1

βm	nm(r), (12)

where v0
x is the initial trial potential. In each iteration, the

coefficients βm are determined by minimizing the integral of
|	ni+1| and convergence is achieved when this value reaches
a given threshold. The converged exchange potential is then
used to update veff and the KS equation is solved non-self-
consistently to generate a new set of orbitals that are used for
solving the OEP equation another time. This cyclic procedure
continues until the electronic density is found converged to
a given threshold. An extension of this scheme to hybrid
functionals and solids can be found in Refs. [35,69].

III. ANALYTICAL FORCES WITH OEP

To understand the stability of a system, its set of nu-
clear forces needs to be computed. For a fixed configuration
of the nuclei, each force FI describes the variation of the
ground-state energy with respect to the position RI of a given

nucleus I ,

FI = −∂ER
tot

∂RI
. (13)

Following the notation in Ref. [70], we denote the set of
nuclear positions as R = {RI}. At equilibrium geometry, the
force exerted on each nucleus is zero. Calculating the second
derivative of ER

tot with respect to RI then yields interatomic
force constants, which are necessary quantities for computing
harmonic vibrational frequencies [71].

The derivative in Eq. (13) can be evaluated using the
Hellmann-Feynman theorem (HFT) [72,73], which states that
due to the stationary property of the total energy, it is sufficient
to consider the explicit dependence on external parameters,
here the nuclear positions. The HFT is valid in DFT and with
the OEP method.

The total force becomes a sum of two components,

FI = FNN
I + Fext

I . (14)

The first term is the derivative of the nuclear-nuclear potential
energy

FNN
I = −∂ER

NN

∂RI
= − ∂

∂RI

∑
J �=I

ZI ZJ

|RI − RJ | , (15)

where ZI is the charge of nucleus I . The second term has its
origin in the interaction between the nuclei and the electrons,

Fext
I = −

∫
nR(r)

∂vR
ext (r)

∂RI
dr, (16)

where

vR
ext (r) =

∑
I

ZI

|RI − r| . (17)

The calculation of Fext
I requires the knowledge of the elec-

tronic density nR(r), obtained by performing a self-consistent
calculation at fixed nuclear geometry R.

A. Nonlocal pseudopotentials

The force equations presented so far are valid in the context
of all-electron calculations. However, in practice, pseudopo-
tentials are often used to reduce the computational cost. In
this approach, the core electrons are frozen and described
by an effective interaction. In general, the pseudopotential is
separated into two contributions [74,75]:

vext (r, r′) = vL(r)δ(r, r′) + vNL(r, r′). (18)

The first term is fully local while the second is nonlocal both
in the radial and the angular momentum dependence. This
nonlocal contribution is written as a sum of projectors, which
are functions of the spherical harmonics. The action of pro-
jectors is short-ranged as they are only defined within the core
radius, i.e., the cutoff region [76–78]. Such a separable form
for the pseudopotential allows an accurate reproduction of
the scattering properties of the all-electron external potential.
It also crucially improves the computational efficiency with
respect to the size of the plane-wave basis set used.

A nonlocal external potential does not pose any problem
for functionals depending explicitly on the density or the
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gradient of the density because the total energy is not only
stationary with respect to the density, but also with respect to
variations of the KS density matrix. The expression for the
external force term, Eq. (16), then only needs to be modified
by replacing the density with the density matrix

Fext
I = −

∫
γ R(r, r′)

∂vR
ext (r, r′)
∂RI

drdr′. (19)

However, the total energy with OEP functionals is not
stationary with respect to the KS density matrix, but with
respect to the effective local potential. This difference leads
to an extra term in the expression for the OEP total force. To
derive this term, let us look at the EXX total energy at fixed
nuclear positions R,

ER,EXX
tot = 2

occ∑
i

εR
i −

∫
vR

Hx(r)nR(r)dr

+ 1

2

∫
nR(r)v(r − r′)nR(r′)drdr′

− 1

4

∫
γ R(r, r′)v(r − r′)γ R(r′, r)drdr′

+ ER
NN, (20)

and take the derivative with respect to RI . We get straightfor-
wardly

FEXX
I = FNN

I + Fext
I + �FEXX

I , (21)

where Fext
I is given by Eq. (19) and

�FEXX
I = −

∫
vR

x (r)
∂nR(r)

∂RI
dr

+
∫

V R
x (r, r′)

∂γ R(r, r′)
∂RI

drdr′. (22)

If the external potential were fully local, �FEXX
I would vanish

at self-consistency thanks to the OEP equation, Eq. (8), being
fulfilled. However, when the derivative of nR and γ R is taken
via a nonlocal potential, the two terms in Eq. (22) are not
guaranteed to cancel. To see this, let us look more closely
at the derivative of the density with respect to the nuclear
positions

δnR(r)

δvR
eff (r′, r′′)

∂vR
eff (r′, r′′)
∂RI

= δnR(r)

δvR
eff (r′, r′′)

×
[(

∂vR
L (r′)
∂RI

+ ∂vR
Hxc(r′)
∂RI

)
δ(r′, r′′) + ∂vR

NL(r′, r′′)
∂RI

]
.

(23)

The derivatives via the local potentials (vR
L and vR

Hxc) involve
the standard noninteracting KS density response function [see
Eq. (9)]. Therefore, when the OEP equation is fulfilled, they
cancel exactly the corresponding contributions coming from
the derivative of the density matrix with respect to the nuclear
positions in Eq. (22). However, the derivative via the nonlocal
potential (vR

NL) requires the three-argument noninteracting KS

density response function. The OEP equation can thus not be
used and we are left with the following extra force term to
evaluate

�FEXX
I = −

∫
vR

x (r)
δnR(r)

δvR
eff (r′, r′′)

∂vR
NL(r′, r′′)
∂RI

drdr′dr′′

+
∫

V R
x (r, r′)

δγ R(r, r′)
δvR

eff (r′′, r′′′)
∂vR

NL(r′′, r′′′)
∂RI

× drdr′dr′′dr′′′. (24)

We note that, since the nonlocal part of the external potential
is fixed in the self-consistent procedure, i.e., it does not de-
pend on the orbitals, only the bare responses are needed. The
computational cost of this extra force term, calculated for the
complete set of ions, is, therefore, estimated to be similar to a
single iteration of the self-consistent procedure.

The extra force term due to the nonlocal pseudopo-
tential will appear for any functional based on the OEP
approach. In this work we have focused on hybrid function-
als and norm-conserving pseudopotentials, and implemented
Eq. (24) at the end of the self-consistent cycle. This was
done within a modified version of the OEP implementation
in the ACFDT (Adiabatic Connection Fluctuation Dissipation
Theorem) package of the QUANTUM ESPRESSO distribu-
tion [35,52,67,79]. In order to evaluate the change in the KS
orbitals with respect to variations in the ionic positions, we
have imported and adapted routines based on DFPT from the
PHonon package. The internuclear and external force terms
[Eqs. (15) and (19)] are general and both already implemented
in the PWscf package.

With the knowledge of analytical forces, the design of
a structural optimization tool for the OEP method can be
devised. We have completed it by adapting the existing
Broyden-Fletcher-Goldfarb-Shanno algorithm [80–83] imple-
mented within PWscf.

B. Numerical test

As discussed in Sec. II, the OEP self-consistent procedure
runs two intertwined parts. One solves the Kohn-Sham equa-
tion non-self-consistently to retrieve the electronic density
and the corresponding KS orbitals of the ground state, while
the other solves the OEP equation iteratively to generate the
local EXX potential. The whole procedure is initialized with
a good starting guess for the KS potential. We have found the
PBE approximation to be a convenient choice in this regard.
In addition to the plane-wave basis set cutoff, there are two
parameters that control the accuracy of the final results. The
accuracy of the iterative solution to the OEP equation is deter-
mined by setting a threshold for

∫ |	n| [see Eq. (11)], and the
accuracy of the self-consistent OEP potential is determined
by setting a threshold for the difference in KS densities in
between successive cycles.

In principle, one should use pseudopotentials optimized
for the specific functional used [53]. However, since our
objectives are to study the numerical precision and to
compare OEP to generalized KS calculations we have settled
for PBE optimized norm-conserving Vanderbilt (ONCV)
pseudopotentials [84]. Independently of the functional used
to optimize the pseudopotential they will, in general, contain
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FIG. 1. Change in the analytical total force Ftot [defined in
Eq. (25)] of the LiH molecule upon variations of its intramolecular
bond distance. The HF method is compared to EXX with and without
the extra force term in Eq. (24).

nonlocal projectors and it is necessary to include the extra
OEP force term in Eq. (24).

We first tested our implementation of the OEP forces on a
simple system, the LiH molecule. We used a simulation cell
of 20 bohrs and a plane-wave basis set with a kinetic energy
cutoff of 80 Ry. The quantity we are interested in is the so-
called “total force,” which is defined as

Ftot =
√√√√ M∑

I=1

3∑
α=1

(
Fα

I

)2
, (25)

where the α index runs over the Cartesian components of
the force on each of the M ions. The quantity Ftot is a
positive-definite scalar able to describe the global behavior of
the system. Its value decreases upon approaching an energy
minimum, and is zero at equilibrium.

In Fig. 1, the total force is plotted as a function of the
Li-H intramolecular bond distance within the HF and EXX
approximations. The EXX calculations have been performed
with and without the inclusion of the extra OEP force term,
	FEXX. Without this term, EXX predicts an equilibrium bond
distance at 1.645 Å as compared to 1.625 Å for HF. The
difference of 0.020 Å corresponds to a difference in Ftot of
0.008 hartrees/Å. On the other hand, if we looked at the total
EXX energy as a function of bond distance, we would find the
same geometry at equilibrium as with HF. This inconsistency
can be explained by the missing OEP force term, previously
identified. Including it in the calculation of Ftot gives a good
agreement between the EXX and HF total forces on the LiH
molecule. Given that the importance of including nonlocal
projectors in pseudopotentials increases with the number of
electrons, we expect that 	FEXX will become even more im-
portant for heavier elements.

Having verified that the OEP forces come out accurately,
we then optimized the geometry of the LiH molecule. Since
the HF approximation is not expected to give a good equilib-
rium geometry, we used PBE0 with 25% of exact exchange
(PBE025). We compared the fully nonlocal PBE025, already
implemented, to the corresponding local OEP version, which

FIG. 2. Evolution of the intramolecular bond distance of the LiH
molecule after each iteration of the geometry relaxation procedure.
The nonlocal PBE025 functional is compared to the local OEP25.

we call OEP25. In Fig. 2, we see that starting from a Li-H
bond length of 2.200 Å, the convergence of the geometry with
OEP25 follows the same pattern as PBE025. The relaxation
steps are similar, with both methods returning, after only five
iterations, the same intramolecular bond distance of 1.607 Å.

We will now present a more comprehensive study of the
accuracy of OEP forces by comparing the analytical force,
FA, as obtained from Eq. (21), with the numerical force, FN,
calculated by finite difference, using the five-point stencil
formula with a step size of 0.01 Å. Given that energies con-
verge faster than forces thanks to error cancellation, numerical
forces also converge faster than analytical ones. Indeed, FA is
calculated by omitting certain contributions that are zero only
at perfect self-consistency. The absolute difference |FA − FN|
can therefore be viewed as an estimation of the error on the an-
alytical forces calculated and the quality of the self-consistent
procedure. We started by studying the water molecule H2O
(see Fig. 3) using five different approximations: PBE, HF,
EXX, PBE025, and OEP25. All data have been obtained using
a simulation cell of 25 bohrs, and results for 80 Ry and
200 Ry plane-wave cutoff are compared. The threshold on
the energy convergence of PBE, HF, and PBE025 was set
to the lowest possible value to ensure high accuracy of the
numerical forces. The same was done for the two different
thresholds used by EXX and OEP25 (see Sec. II). Regarding
the atomic structure, the angle between the two O-H bonds has
been fixed to 104.3◦. Only the O-H(1) bond distance is varied
while the length of O-H(2) is set to 0.97 Å. These parameters
define a geometry for the water molecule that is close to
the PBE equilibrium geometry. By performing several test
calculations at different geometries, we found that the choice
of starting geometry does not impact the results we obtained
on H2O.

In Fig. 3(a), we plot the analytical force on atom H(1) along
the O-H(1) bond distance as the bond is stretched. A smooth
behavior is observed for every method. Similarly to LiH, the
effect of using a local OEP potential as an approximation to
the nonlocal Fock exchange potential appears very small for
both HF and PBE025. In Fig. 3(b), the difference between
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(a)

(b)

(c)

FIG. 3. (a) Change in the analytical force FA exerted on one of
the hydrogen atoms of the H2O molecule along the bond it forms
with the O atom, according to different approximations. The corre-
sponding numerical force FN is not plotted as it is indistinguishable
from FA on the scale of the figure. (b) Absolute difference between
FA and FN forces at fixed cutoff of 80 Ry and (c) 200 Ry.

analytical and numerical forces is calculated at a cutoff of
80 Ry. For every method, the scale of the error on FA is found
to be relatively small. The performance of the hybrid PBE025
functional is one order of magnitude better than PBE, and
three orders of magnitude better with HF. If we now analyze
the performance of the OEP methods, we notice that OEP25
produces a similar error to PBE025, which on average is about
4 × 10−5 hartrees/Å at 80 Ry. On the other hand, EXX fails to
deliver the exceptionally small error seen with HF. While HF
returns force differences of the order of 10−7 hartrees/Å, EXX
results are closer in magnitude to PBE025 and OEP25. The
difference observed between EXX and HF is probably related
to the threshold used to solve the OEP equation. In Fig. 3(c)
we present the same curves as in Fig. 3(b) but with a higher
plane-wave cutoff of 200 Ry. An improvement of roughly one
order of magnitude is seen in the error profile of all methods
except HF, for which the error was already very small. The
enhanced performance of the EXX approximation suggests
that, for a given threshold used to solve the OEP equation, a
higher plane-wave cutoff helps to improve the accuracy of the
EXX potential. For the OEP methods, the extra source of error
related to the evaluation of the local KS potential via the OEP
equation seems to have a small impact. This is evident from
the good agreement observed between OEP25 and PBE025 in
Figs. 3(b) and 3(c). Only small irregularities in the error of the
force can be seen with OEP25.

(a)

(b)

(c)

FIG. 4. (a) Change in the analytical force FA exerted on one of
the silicon ion of the α-SiO2 quartz phase upon variations of its posi-
tion along the Cartesian x axis, according to different approximations
and at a plane-wave cutoff of 80 Ry. The corresponding numerical
force FN is not plotted as it is indistinguishable from FA on the scale
of the figure. (b) Absolute difference between FA and FN forces at
fixed cutoff of 80 Ry and (c) 200 Ry.

To investigate whether the high accuracy we observe on
molecules also extends to solids, we have performed the same
analysis of forces on the α-quartz phase of SiO2. For this solid
that belongs to the P3221 space group, cell parameters and
atomic positions have first been relaxed at the PBE level using
a uniform 333 Monkhorst-Pack grid of k points and a cutoff of
80 Ry. On the optimized structure, one of the silicon ions has
then been displaced away from its equilibrium position along
the Cartesian x axis, and the change in the force exerted on
this ion has been monitored using PBE, PBE025, and OEP25
at 80 Ry and 200 Ry. The data obtained are presented in Fig. 4.

Similarly to the conclusions drawn from Fig. 3, we find
on silica that PBE025 performs better than PBE at fixed
plane-wave cutoff. The overall error on FA forces is, how-
ever, smaller on SiO2 as compared to H2O. This renders the
irregularities in the error profile of OEP25 more apparent,
despite their amplitudes being very small, about 5 × 10−6

hartrees/Å at 80 Ry. Given the magnitude of the force exerted
on ion Si(1) in Fig. 4(a), the errors observed here are not
expected to be of practical importance. As already noticed
on H2O, using a larger cutoff leads to a decrease of the error
in analytical forces for all methods. The OEP25 irregularities
are also dampened, reducing from 5 × 10−6 hartrees/Å at
80 Ry to 2 × 10−6 hartrees/Å at 200 Ry. The different results
obtained on SiO2 confirm a good accuracy of the OEP forces
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TABLE I. Structure parameters and vibration frequencies of the H2O molecule calculated at equilibrium geometry with various methods.
The O-H bond distance and the H-O-H bond angle are given. The frequencies have been calculated for the infrared-active mode in-plane
scissoring δH-O-H, symmetric stretching νs

O-H, and asymmetric stretching νas
O-H. Results obtained in the literature with CCSD(T)/TZ(2df,2pd)

[85] as well as experimental results [86] are also presented for reference.

d(O-H) (Å) (H-O-H) (deg) δH-O-H (cm−1) νs
O-H (cm−1) νas

O-H (cm−1)

PBE 0.9668 104.38 1597 3703 3816
PBE025 0.9558 104.91 1640 3857 3971
OEP25 0.9558 104.91 1639 3858 3972
HF 0.9385 106.06 1760 4113 4221
EXX 0.9380 106.17 1757 4123 4233
CCSD(T) [85] 0.9594 104.2 1650 3835 3944
Harmonic expt. [86] 0.9572 104.52 1649 3832 3943
Anharmonic expt. [86] 0.9572 104.52 1595 3657 3756

for periodic solids. We have been able to identify two main
sources of errors in the analytical forces. The first error is
method-dependent. Different functionals may need different
cutoffs to be fully converged. The second error is specific to
the OEP method and is related to the accuracy of the local
potential generated from the iterative solution of the OEP
equation. Both of these errors can be reduced by increasing the
plane-wave cutoff and by improving the convergency thresh-
olds of the OEP and KS equations.

IV. APPLICATIONS

Given the high accuracy seen in the previous section, the
calculated OEP forces can be exploited to compute vibra-
tional frequencies. In this section, we will calculate the OEP
vibrational frequencies of different molecular and solid state
systems, and compare them to the ones predicted by the cor-
responding methods that use a nonlocal exchange potential.

The three systems investigated are the water molecule
H2O, diamond, and the α-quartz phase of SiO2. For H2O,
we used the same functionals as tested in Sec. III, i.e., PBE,
HF, EXX, PBE025, and OEP25. For diamond and SiO2, only
PBE, PBE025, and OEP25 have been used. For each func-
tional we first relaxed the structure. The vibration modes were
subsequently determined using the Phonopy Python package
[87,88]. Considering the atomic positions and the existing
symmetries in the system, this code is able to generate several
relevant supercell configurations through slight displacement
of the elements. After computation of the analytical forces
of each supercell, the existing vibration modes in the system
can be predicted by Phonopy and their frequency calculated
by finite difference of the forces using the central derivative
formula.

A. H2O

The O-H bond distance d(O-H), the bond angle (H-O-H),
and the vibrational frequencies of the infrared-active modes of
H2O are presented in Table I. The data have been obtained
using a simulation box size of 25 bohrs and a plane-wave
cutoff of 80 Ry. The accuracy achieved at the end of the
optimization procedure is excellent for all approximations. It
has been possible to converge the O-H bond distance below
1 × 10−4 Å, the bond angle below 1 × 10−2 degrees, and the

vibrational frequencies below 1 cm−1. We also tried increas-
ing the cutoff from 80 to 200 Ry without noticing any changes
in the results. This confirms that the errors in the forces noted
at 80 Ry in Sec. III are sufficiently small to be of no relevance
for an accurate determination of equilibrium geometries and
vibrational frequencies.

If we compare the structural parameters from each method,
we see that the equilibrium geometry predicted by OEP25 is
consistent with that of PBE025. The good agreement between
these two methods also extends to the vibrational frequencies,
with PBE025 and OEP25 returning similar values for the three
infrared-active modes, namely the in-plane scissoring δH-O-H,
the symmetric stretching νs

O-H, and the asymmetric stretching
νas

O-H. On the other hand, small differences can be observed
in the structural parameters obtained by the EXX and HF
methods. Although very close in geometry, the changes in
the O-H bond length and bond angle are sufficient to affect
the vibrational frequencies. Compared to HF, EXX returns a
lower frequency for the deformation mode, but higher for the
two elongation modes. This change is consistent with the evo-
lution of the structural parameters between the two methods
as EXX predicts more rigid bonds and a looser angle than HF.
The evolution of the structural parameters between EXX and
its nonlocal exchange counterpart method HF also agrees with
the results presented by Wu et al. [62]. It confirms that, despite
including a maximal fraction of local OEP exact exchange, the
EXX method is able to mimic well HF performance.

Compared to reference CCSD(T)/TZ(2df,2pd) [85] and
harmonic experimental [86] data, PBE025 and OEP25 are
the only two methods returning appropriate structural and
vibrational properties for the isolated water molecule.

B. Diamond

Diamond crystallizes in the Fd-3m space group. Thanks
to the high symmetry, the atomic positions are fixed within
the unit cell. Only the lattice parameter a is left to vary in
order to identify the optimized unit cell. We have identified the
suitable cell dimensions by monitoring the change of the total
energy upon variations of the lattice parameter a. The values
of 6.700 bohrs for both OEP25 and PBE025 and 6.742 bohrs
for PBE are optimal.

We first calculated the electronic band structure along
the L-�-X high symmetry path within PBE025 and OEP25
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FIG. 5. Band structure plot of diamond obtained along the high-
symmetry path L-�-X. Data have been obtained using PBE025 and
OEP25. The PBE025 bands have been spline-interpolated between
the dots.

(see Fig. 5). The OEP25 bands are easy to generate using
postprocessing tools since the local exchange potential is
k-independent. For PBE025 we only have the band energies
on the k-point grid used in the self-consistent calculation.
The bands have, therefore, been spline-interpolated between
these points. The band structures are clearly different in the
two approximations. The first conduction band is shifted by
approximately 2 eV in PBE025. This difference is expected
and related to the derivative discontinuity within the OEP
method [32,33]. Adding the derivative discontinuity correc-
tion to the OEP25 result returns a gap in very good agreement
with PBE025, with an energy difference of 0.02 eV.

We calculated the phonon dispersion along a high-
symmetry path in the Brillouin zone with Phonopy using a
single 2 × 2 × 2 supercell containing 64 carbon atoms. A
uniform 222 Monkhorst-Pack grid of k points and a plane-
wave cutoff of 100 Ry have been employed. The results are
presented in Fig. 6. Despite the use of the frozen phonon
approach, our PBE results agree well with the data presented
by Mounet et al. [90] using DFPT. We also notice a very
good agreement between the PBE025 and OEP25 frequencies.

FIG. 6. Phonon dispersion of diamond. The nonlocal PBE025
functional is compared to its local OEP25 counterpart and to PBE.

TABLE II. Structural parameters of α-SiO2 according to differ-
ent functionals. The internal parameters x, y, and z given describe
the position of oxygen and silicon ions within the unit cell. The Si-O
bond distances, the Si-O-Si bond angle, and the O-Si-O bond angles
are also given. For every method considered, experimental unit cell
parameters have been used (a = 4.916 Å, c = 5.405 Å) [89].

PBE PBE025 OEP25 Expt. [89]

x(Si) 0.4685 0.4727 0.4727 0.4697
x(O) 0.4120 0.4147 0.4148 0.4135
y(O) 0.2694 0.2623 0.2623 0.2669
z(O) 0.1172 0.1235 0.1235 0.1191
d(Si-O) (Å) 1.612 1.599 1.599 1.605

1.617 1.603 1.603 1.614
(Si-O-Si) (deg) 142.7 145.3 145.3 143.7
(O-Si-O) (deg) 108.7 108.9 108.9 108.8

108.7 108.9 108.9 109.0
109.1 109.2 109.2 109.2
110.8 110.4 110.4 110.5

As expected, both methods return higher frequencies than
PBE because the effect of exact exchange is well known
to strengthen bonds. This case study proves that accurate
phonons can be calculated using the OEP method.

C. SiO2

The last system we considered is the α-quartz phase of
SiO2. Unlike diamond, α-quartz silica has polar bonds. There-
fore, correct phonons can only be obtained if the LO-TO
splitting is explicitly calculated. To evaluate the LO-TO split-
ting, knowledge of the dielectric tensor and Born effective
charges of all symmetry-inequivalent ions within the unit cell
is required [70,92]. However, since our present objective is
to compare the performance of the OEP25 functional with
respect to PBE025, we have neglected the LO-TO splitting
correction when computing the phonon modes of SiO2.

For this study, we have used experimental unit cell pa-
rameters [89] and then relaxed the atomic positions for each
functional. We have used a uniform 333 Monkhorst-Pack
dense grid of k points and a plane-wave cutoff of 100 Ry.
The structural parameters are presented in Table II. The in-
ternal coordinates x(Si), x(O), y(O), and z(O) describe, along
with the symmetries of the crystal, the position of each ion
within the cell. Given the complexity of the SiO2 unit cell,
it is remarkable that PBE025 and OEP25 produce similar
structural parameters. These two methods give tighter bonds
and looser angles than PBE. On the other hand, experimental
structure parameters appear to be located halfway between
these methods.

We then calculated the phonon modes at the � point by
generating a total of nine different 1 × 1 × 1 supercells with
Phonopy. The list of phonon modes and their associated
frequencies are presented in Table III. For each mode, we
find an excellent agreement between PBE025 and OEP25.
As expected, by including a fraction of exact exchange, the
frequencies obtained are in general higher in energy than
that of PBE. For the TO modes located over 1000 cm−1,
experimental frequencies are located halfway between PBE
and PBE025/OEP25 results, which might indicate that the
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TABLE III. Phonon frequencies calculated at the � point of
α-SiO2 on the relaxed structures presented in Table II for different
functionals. Frequencies are given in cm−1. While the acoustic sum
rule is applied, the LO-TO splitting is only considered in experimen-
tal results [91]. Phonon frequencies affected by LO-TO splitting are
underlined in the table.

PBE PBE025 OEP25 Expt. [91]

Eu(TO1) 140 67 67 133
Eu(LO1) 140 67 67 133
A1(1) 211 167 167 219
Eu(TO2) 263 242 242 269
Eu(LO2) 263 242 242 269
A1(2) 351 354 354 358
A2(TO1) 352 363 364 361
Eu(TO3) 386 388 388 394
Eu(LO3) 386 388 388 402
Eu(TO4) 442 446 447 453
Eu(LO4) 442 446 447 512
A1(3) 452 453 453 469
A2(TO2) 484 489 489 499
Eu(TO5) 677 696 696 698
Eu(LO5) 677 696 696 701
A2(TO3) 756 782 783 778
Eu(TO6) 776 797 797 799
Eu(LO6) 776 797 797 812
Eu(TO7) 1042 1085 1085 1066
Eu(LO7) 1042 1085 1085 1227
A2(TO4) 1050 1092 1093 1072
A1(4) 1061 1101 1102 1082
Eu(TO8) 1133 1181 1182 1158
Eu(LO8) 1133 1181 1182 1155

true fraction of exact exchange to include for PBE0 should
actually be lower than the standard 25%. The comparison with
experimental data also show for which LO modes a significant
shift of the frequencies we calculated can be expected.

This comprehensive analysis on SiO2 α quartz confirms
that our implementation of OEP forces can be used for ac-
curate studies of complex systems.

V. CONCLUSIONS AND OUTLOOK

Achieving full self-consistency with orbital-dependent
xc functionals requires the solution of the OEP equation.
Although numerically challenging, the OEP represents a sim-
plification over the use of nonlocal and energy-dependent
potentials. Being formulated within the KS-DFT framework,
it is, for example, easy to combine the OEP with exist-
ing codes for excited state properties (e.g., GW ) or lattice
dynamics.

In this work, we have shown that OEP forces, within hybrid
functionals, can be computed with a numerical accuracy sim-
ilar to that obtained with commonly used functionals in DFT.
However, we also showed that special care is needed when
employing nonlocal pseudopotentials. Since the OEP is based
on a constrained optimization, an extra force term needs to be
added to the standard Hellmann-Feynman expression for the
forces. We implemented this term within the ACFDT package
of the QUANTUM ESPRESSO distribution, which already
computes the OEP potential. This allowed us to calculate
forces, relax geometries, and determine phonon frequencies
for a number of molecules and solids. Our different studies
show that the local OEP exchange potential is a good ap-
proximation to the nonlocal exchange potential, being able to
produce almost identical equilibrium structures and phonon
frequencies.

The high numerical accuracy we have obtained with the
OEP applied to hybrid functionals paves the way for deter-
mining the OEP forces also with more advanced functionals,
such as those based on MBPT. Furthermore, our work pro-
vides a first step toward the calculation of phonon spectra and
electron-phonon couplings within DFPT, using an advanced
treatment of exchange and correlation.
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