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We study the O(N )∗ transitions that occur in the 3D Z2-gauge N-vector model and the analogous Ising∗

transitions occurring in the 3D Z2-gauge Higgs model, corresponding to the Z2-gauge N-vector model with
N = 1. At these transitions, gauge-invariant correlations behave as in the usual N-vector (Ising for N = 1)
model. Instead, the non-gauge-invariant spin correlations are trivial and therefore the spin order parameter that
characterizes the spontaneous breaking of the O(N ) symmetry in standard N-vector (Ising) systems is apparently
absent. We define a gauge fixing procedure—we name it stochastic gauge fixing—that allows us to define
a gauge-dependent vector field that orders at the transition and is therefore the appropriate order parameter
for the O(N ) symmetry breaking. To substantiate this approach, we perform numerical simulations for N = 3
and N = 1. A finite-size scaling analysis of the numerical data allows us to confirm the general scenario: the
gauge-fixed spin correlation functions behave as the corresponding functions computed in the usual N-vector
(Ising) model. The emergence of a critical vector order parameter in the gauge model shows the complete
equivalence of the O(N )∗ (Ising∗) and O(N ) (Ising) universality classes.
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I. INTRODUCTION

Gauge symmetries and Higgs phenomena are key features
of theories describing collective phenomena in condensed-
matter physics [1–4]. To understand these phenomena and,
in particular, the major mechanisms driving phase transi-
tions and critical phenomena in these theories, it is crucial
to achieve a solid understanding of the interplay between
global and gauge symmetries and, in particular, of the role
that local gauge symmetries play in determining the phase
structure of a model, the nature of the different phases and of
the quantum and thermal transitions. Several lattice Abelian
and non-Abelian gauge models have been considered, with
the purpose of identifying the possible universality classes of
the continuous transitions. In this paper, we focus on systems
characterized by an emerging discrete gauge symmetry and,
in particular, the Z2 gauge group.

Lattice vector systems with Z2 gauge symmetry may de-
velop critical behaviors belonging to nonstandard N-vector
universality classes, in which the fundamental vector modes
cannot be identified by using gauge-invariant correlators;
see, e.g., Refs. [4–22]. Such unconventional O(N ) transitions
occur, for example, in three-dimensional (3D) Z2-gauge N-
vector models [22], i.e., in lattice N-vector models in which
the global Z2 symmetry is gauged, along the line that sep-
arates the spin-disordered phase from the spin-ordered one,
for sufficiently small values of the gauge coupling, i.e., for
large K in the phase diagram sketched in Fig. 1. These non-
standard O(N ) vector universality classes, characterized by
the symmetry-breaking pattern SO(N ) → O(N − 1) and by
the absence of a vector order parameter, have somehow been

distinguished by adding a star, i.e., by naming them O(N )∗
universality classes, see, e.g., Ref. [20]. Of course, the length-
scale critical exponent ν is the same in O(N ) and O(N )∗
systems.

In our paper, we mostly discuss the O(N )∗ transitions
developed by the Z2-gauge N-vector models, which are rel-
atively simple, but nontrivial, representatives of statistical
systems undergoing this class of continuous transitions. How-
ever, the validity of our discussion extends to generic O(N )∗
transitions characterized by the absence of a local gauge-
invariant vector order parameter.

In vector systems with global O(N ) symmetry, continuous
transitions are characterized by the spontaneous breaking
of the O(N ) symmetry, driven by the condensation of the
N-component vector field. However, in Z2-gauge N-vector
models, the correlations of the local vector operator are trivial,
as a consequence of the Z2-gauge symmetry. Therefore, the
spontaneous breaking of the O(N ) symmetry can only
be observed by considering correlations of composite
gauge-invariant operators, the simplest one being an
operator that transforms as a spin-two tensor under O(N )
transformations. At O(N )∗ transitions, this operator, as
well as all gauge-invariant operators, have the same critical
behavior as in the conventional N-vector model without
gauge invariance. The equivalence of the gauge-invariant
correlations in O(N ) and O(N )∗ transitions implies that gauge
modes do not drive the critical behavior. As a consequence,
one should be able to describe these transitions in terms
of an effective Landau-Ginzburg-Wilson (LGW) �4 field
theory. The main issue here is the identification of the correct
fundamental field �. If one identifies � with a coarse-grained
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FIG. 1. Sketch of the phase diagram of the Z2-gauge N-vector
model for N � 2, in the space of the Hamiltonian parameters K and
J , cf. Eq. (1). For small J , there are two spin-disordered phases:
a small-K phase, in which both the spins and the gauge variables
are disordered (indicated by DD), and a large-K phase in which the
Z2-gauge variables order (DO). In the large-J phase, both spins and
gauge variables are ordered (indicated by O). The O(N )∗ transition
line is the one that separates the DO and O phase for sufficiently large
K . The three transition lines meet in a single point (K�, J�); (K� ≈
0.75, J� ≈ 0.23) for small values of N , N � 5, say; see Ref. [22] for
more details.

gauge-invariant spin-2 order parameter, the LGW theory is
not able to properly describe the phenomenology of the O(N )∗
transitions. Indeed, O(N )-symmetric transitions driven by the
condensation of a tensor spin-two field are characterized by a
different symmetry-breaking pattern, thus their nature differs
from that of the O(N ) vector transitions, see, e.g., Ref. [22].

The critical behavior is even less conventional in the
Z2-gauge Higgs model [5–7] (corresponding to a Z2-gauge
N-vector model with N = 1). In this case, there is no global
Z2 symmetry but, nonetheless, the transitions that occur for
small gauge couplings, i.e., for large K , see the phase dia-
gram sketched in Fig. 2, have the same universal features as
Ising transitions, which are characterized by the breaking of
a global Z2 symmetry in standard systems. We will refer to
these transitions as Ising∗ transitions. Because of duality, the
same Ising behavior is observed on the small-J line that starts
at J = 0 (Z2 gauge model). Also these transitions are some-
times referred to as Ising∗ transitions, although the relation is
obtained by the explicit use of duality; see, e.g., Refs. [23–26].

FIG. 2. Sketch of the phase diagram of the 3D Z2-gauge Higgs
model. The dashed line is the self-dual line of the model, the thick
line corresponds to first-order transitions along the self-dual line.
The two lines labeled Z2 are related by duality and correspond to
Ising continuous transitions. The transition lines meet at a multicrit-
ical point along the self-dual line, at [25–28] [K� = 0.7525(1), J� ≈
0.22578(5)], where the multicritical behavior is controlled by a mul-
ticritical XY fixed point [26,28,29]. The Ising∗ transition line is the
one ending at the Ising transition for K = ∞ and J = JIs.

A natural question concerning the O(N )∗ transitions is
whether it is possible to introduce a gauge fixing that allows
the emergence of a vector field that orders at the transi-
tion, so it can be identified as the order parameter for the
spontaneous breaking of the global O(N ) symmetry, as in
standard N-vector models. We can ask the same question
for Ising∗ transitions. In this case, the gauge fixing should
turn the local Z2 symmetry into a global one, which is bro-
ken at the transition by the condensation of a scalar order
parameter. We mention that the search for (typically nonlo-
cal) operators playing the role of a Z2 order parameter at
Ising∗ transitions has recently attracted much interest, see,
e.g., Refs. [25,28,30]. One possible operator is the so-called
Fredenhagen-Marcu order parameter [31] that is an appropri-
ate order parameter to characterize the Higgs phase in any
lattice gauge theory. A different proposal, tailored for the
Z2-gauge Higgs model, is presented in Ref. [25].

It is worth mentioning that there is another class of con-
tinuous transitions, in which critical vector modes cannot be
observed by using gauge-invariant correlators. We refer to
the transitions between the Coulomb and Higgs phases in
noncompact lattice Abelian Higgs (AH) models, in which a
complex N-vector field is minimally coupled with a noncom-
pact U(1) gauge field, see, e.g., Refs. [32–41]. An effective
description of these charged transitions is provided by the
AH field theory, in which a vector and a gauge field are the
fundamental variables that drive the critical behavior. How-
ever, in lattice models, the fundamental vector field does not
show critical correlations because of gauge invariance. The
puzzle was solved in Refs. [40,41], where it was shown that
the correct order parameter for these transitions is a nonlocal
gauge-invariant charged vector operator [33,34,40,41]. Equiv-
alently, a local critical vector field is obtained by using the
Lorenz gauge fixing [42].

In this paper, we show that, as in noncompact AH mod-
els, it is possible to identify a vector order parameter for
O(N )∗ transitions by means of an appropriate gauge-fixing
procedure. However, the approach needed here—we name it
stochastic gauge fixing— is more complicated than the Lorenz
gauge fixing working for noncompact lattice AH models. In
this approach, the gauge-fixed vector correlations show the
universal critical behavior expected at transitions belonging
to the standard O(N ) vector universality class. Analogously,
in the Z2-gauge Higgs model, we are able to observe the
universal critical correlations of an emerging Z2 order pa-
rameter. This shows that the O(N )∗ (Ising∗) universality class
is equivalent to the more standard O(N ) (Ising) vector uni-
versality class, characterized by the condensation of a vector
(scalar) order parameter. To validate the approach, we present
numerical finite-size scaling (FSS) analyses of Monte Carlo
(MC) data for N = 1 and 3. Some results for N = 2 were
already reported in Ref. [22].

The paper is organized as follows. In Sec. II, we introduce
the Z2-gauge N-vector models and the Z2-gauge Higgs model
corresponding to N = 1, and summarize the main features
of their phase diagrams. In Sec. III, we define the stochastic
gauge fixing, which allows us to uncover the critical vector
correlations along the O(N )∗ transition lines, and we discuss
the relation between the stochastic gauge-fixing scheme and
random-bond Ising systems. In Sec. IV, we report a numerical
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study of the O(3)∗ transitions and Ising∗ transitions. In par-
ticular, we show that vector correlation functions are critical,
in the stochastic gauge-fixing scheme. Finally, in Sec. V we
summarize and draw our conclusions.

II. THE Z2-GAUGE N-VECTOR MODEL

The lattice Z2-gauge N-vector model is defined on a 3D
cubic lattice. Its Hamiltonian is

H (J, K ) = Hs(J ) + Hσ (K ), (1)

Hs(J ) = −JN
∑
x,μ

σx,μ sx · sx+μ̂, (2)

Hσ (K ) = −K
∑

x,μ>ν

σx,μ σx+μ̂,ν σx+ν̂,μ σx,ν , (3)

where the site variables sx are unit-length N-component real
vectors, and the bond variables σx,μ (σx,μ is associated with
the bond starting from site x in the positive μ direction,
μ = 1, 2, 3) take the values ±1. The Hamiltonian parameter
K plays the role of inverse gauge coupling, therefore the
K → ∞ limit corresponds to the small gauge-coupling limit.
By measuring energies in units of the temperature T , we can
formally set T = 1 and write the partition function as

Z (J, K ) =
∑
{s,σ }

e−H (J,K ). (4)

For N = 1, the spin variables take the integer values sx = ±1,
and the model corresponds to the so-called Z2-gauge Higgs
model [5–7].

The Hamiltonian (1) is invariant under global SO(N ) trans-
formations sx → V sx with V ∈ SO(N ), and local Z2 gauge
transformations:

sx → wxsx, σx,ν → wxσx,νwx+ν̂ , wx = ±1. (5)

From the point of view of the symmetries, the model can
be interpreted as an N-vector model, which is O(N ) = Z2 ⊗
SO(N ) symmetric, in which the Z2 symmetry is gauged, i.e.,
becomes local. Due to the Z2 gauge invariance, the correlation
function of the vector variables sx,

Gs(x, y) = 〈sx · sy〉, (6)

trivially vanishes for x 
= y and any Hamiltonian parameter
K and J . For the same reason, any correlation function of
local operators defined as products of an odd number of spin
variables (such as a spin-3 local operator) vanishes as well.
These correlations, therefore, cannot characterize the O(N )∗
transitions occurring for large K ; see Figs. 1 and 2. For N � 2,
the spontaneous breaking of the global O(N ) symmetry is
instead signaled by the condensation of the gauge-invariant
bilinear spin-two operator:

Qab
x = sa

xsb
x − 1

N
δab. (7)

The Z2-gauge N-vector model is a paradigmatic model
relevant for transitions in nematic liquid crystal, see, e.g.,
Refs. [43,44], and for systems with fractionalized quantum
numbers, see, e.g., Refs. [10,11]. It shows different phases
characterized by the spontaneous breaking of the global

SO(N ) symmetry and by the different topological properties
of the Z2-gauge correlations, see, e.g., Refs. [4,6,22]. Its phase
diagram for N � 2 is sketched in Fig. 1. Two spin-disordered
phases are present for small J: a small-K phase, in which both
spin and Z2-gauge variables are disordered (DD), and a large-
K phase in which the Z2-gauge variables order (DO). For large
J , there is a single phase in which both spins and gauge vari-
ables order (O). These phases are separated by three transition
lines. The transitions along the DD-DO line, departing from
the J = 0 axis at [45,46] Kc(J = 0) = 0.761413292(11), are
continuous, at least for small enough values of J , and belong
to the Z2-gauge universality class [4–6] for any N . Instead,
the main features of the DD-O and DO-O transitions crucially
depend on N and are discussed in Ref. [22]. Here, for the
convenience of the reader, we summarize the main charac-
teristics of the DO-O transition line, which is the one relevant
for the present study. The transitions along the DD-O line are
more conventional. They can be associated with an effective
LGW theory in which the fundamental field is obtained by
coarse-graining the order parameter defined in Eq. (7). The
three transition lines meet at one point, see Fig. 1, located
at [K� ≈ 0.75, J� ≈ 0.23] for sufficiently small values of N ,
N � 5, say.1

The transitions along the DO-O line are expected to belong
to the O(N )∗ universality class. This is due to the stability
of the O(N ) vector transition occurring for K → ∞ against
gauge fluctuations. Indeed, for K → ∞ the plaquette term in
the Hamiltonian (1) converges to 1. In infinite volume, we can
just set σx,μ = 1 modulo gauge transformations, obtaining the
partition function of the standard N-vector model. Therefore,
for K → ∞ the model (1) undergoes a continuous transition
at a finite Jc(K = ∞) belonging to the O(N ) vector universal-
ity class (estimates of Jc(K = ∞), i.e., of the critical point of
the standard N-vector models, can be found in Refs. [47–53]).
The O(N ) transition is expected to be stable against small
gauge fluctuations for sufficiently large but finite values of
K [22] due to the discrete nature of the gauge variables,
whose fluctuations are suppressed in the large-K topologically
ordered phase. Therefore, the continuous DO-O transitions
are expected to belong to the O(N )∗ universality class. Note
that gauge fluctuations are instead relevant in models with
continuous Abelian and non-Abelian gauge symmetries. In
that case, gauge interactions destabilize the vector critical
behavior, leading to transitions of different natures, see, e.g.,
Refs. [39–41,54,55]. If the DO-O transitions belong to the
O(N )∗ universality class, we expect the presence of critical
vector modes. But, because of gauge invariance, they cannot
be directly identified; for instance, the correlation function
Gs defined in Eq. (6) is not critical. They, however, emerge
if an appropriate gauge-fixing procedure is considered, as we
discuss below.

The phase diagram for N = 1 is shown in Fig. 2, see,
e.g., Refs. [23,25,39]. Unlike the multicomponent N � 2
models, only two phases are present, separated by two

1Since Kc(J ) ≈ Kc(J = 0) − NJ4 [22] for small J and J� is only
slightly larger than Jc(K = ∞) = JO(N ) � 0.25 (JO(N ) is the critical
point of the standard N-vector model), we expect K� ≈ 0.761 −
0.003N for sufficiently small values of N .
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Z2 lines that are related by duality [56] and correspond
to Ising continuous transitions. They end at [46] [J =
JIs = 0.221654626(5), K = ∞] and at [J = 0, K = Kc =
0.761413292(11)] and meet in a multicritical XY point
along the self-dual line, located at [K� = 0.7525(1), J� ≈
0.22578(5)], see, e.g., Refs. [23,25,27,28,39]. The endpoint
of the first-order transition line, at [K ≈ 0.688, J ≈ 0.258], is
expected to be an Ising critical endpoint. Transitions along the
large-K transition line, running almost parallel to the K axis,
belong to the Ising∗ universality class. This is analogous to
what occurs along the DO-O line for N � 2, where transitions
belong to the O(N )∗ universality class. However, for N = 1
there are no gauge-invariant spin correlations. Critical scalar
correlations emerge only after implementing the stochastic
gauge fixing that we will outline in the next section.

III. STOCHASTIC GAUGE FIXING

A. General considerations on the standard
gauge-fixing approach

In lattice models with noncompact Abelian variables, it is
relatively easy to define a consistent gauge fixing procedure,
see, e.g., Refs. [40–42] and references therein. In these mod-
els, indeed, the lattice gauge variables take values in R, and
gauge fixing can be introduced just like in continuum theo-
ries; in particular, gauge fixing procedures defined by linear
functionals (like the Lorenz gauge) are particularly straight-
forward to implement. In models with discrete or compact
bond variables, instead, due to the intrinsic nonlinear structure
of the gauge fixing, several additional problems arise, even for
Abelian gauge groups. We discuss here this issue for the Z2

gauge group but the discussion can easily be extended to any
Abelian gauge group.

Since our aim is to use gauge fixing to expose the criticality
of non-gauge-invariant quantities (and, in particular, of the
would-be order parameter), two different problems must be
tackled. The first problem is the definition and consistency of
the gauge-fixing procedure, which means that we must show
that expectation values of gauge-invariant quantities are the
same in the original theory and in the gauge fixed one. The
second problem concerns the existence of a nontrivial critical
behavior of the gauge-variant modes in the gauge fixed theory,
which is by no means guaranteed. Examples of gauge-fixing
procedures which are not useful in studying the critical prop-
erties of noncompact Abelian gauge models are discussed in
Refs. [40,42].

Let us start investigating the first of these two problems. In
general, a gauge fixing is defined by a local function of the
gauge fields Fx(σ ) and by the requirement that Fx(σ ) = 0 for
all lattice points x. To avoid the problem of the Gribov copies
[57,58], we assume that the gauge fixing is complete, i.e., that
for each configuration {σx,μ} there is a unique configuration
{σ ′

x,μ}, related to {σx,μ} by a gauge transformation, such that
Fx(σ ′) = 0. Although the relation between {σx,μ} and {σ ′

x,μ}
is unique, the gauge transformation that relates the two con-
figurations is not. However, if w(a)

x and w(b)
x are two gauge

transformations that both relate {σx,μ} with {σ ′
x,μ}, it is trivial

to show that w(a)
x = c w(b)

x , where c = ±1. This result implies
that the completeness of the gauge fixing does not imply a

unique definition of the gauge-fixed spin. In the gauge fixing
procedure that relates {σx,μ} with {σ ′

x,μ}, the new spin s′
x is

only defined up to a sign (the constant c defined above). This is
not a limitation, if we only consider correlation functions with
an even number of spins, for instance, the two-point function.
Moreover, the previous result implies∑

w

1

2

∏
x

δ[Fx(σ ′)] = 1, σ ′
x,μ = wxσx,μwx+μ̂, (8)

independently of σx,μ, which is just the formalization of the
previous statement that two different lattice gauge fields al-
ways correspond to the gauge-fixed {σ ′

x,μ} gauge field. This
is just a discrete version of the standard Faddeev-Popov pro-
cedure [59] used to properly define gauge fixing in continuum
field theories, and in the most general case a weight depending
on σ ′

x,μ appears instead of the constant factor 1/2 in Eq. (8),
which is typically rewritten by using auxilliary field variables
(the so-called Faddeev-Popov ghosts). By inserting the iden-
tity Eq. (8) in the sum in Eq. (4) defining the partition function,
it immediately follows that correlation functions of gauge-
invariant operators computed in the gauge-fixed theory and in
the original theory are the same. We have thus shown that in a
Z2 lattice gauge theory any complete gauge fixing defined by
a local functional Fx(σ ) can be used, without having to worry
about complications related to ghosts fields.

A standard way of fixing the gauge consists of setting the
bond variables on a maximal lattice tree equal to the identity
[60,61]. A particular case is the axial gauge, in which all
bonds in a given lattice direction are set equal to the identity,
paying attention to the boundary conditions and adding some
additional constraints on the boundaries. Another possibility
that we considered is the gauge fixing obtained by using the
gauge function

fx ≡ −1 +
∏
μ

σx−μ̂,μσx,μ, (9)

which somehow generalizes the Lorenz gauge of noncompact
Abelian gauge theories. If we define Fx = fx on the whole
lattice, then the gauge fixing is not complete. It is, however,
possible to make it complete by changing the gauge-fixing
function on a lattice boundary (we do not report details, as
this approach turns out to fail).

These types of gauge fixings do not, however, allow us
to identify the critical vector modes that characterize the
O(N ) vector universality class. For instance, the gauge-fixed
correlation function 〈s′

x · s′
y〉 [the fields s′

x are those obtained
imposing the gauge-fixing constraint (9)] is not critical along
the O(N )∗ transition line. The absence of criticality can be
traced back to the fact that the gauge-fixing procedure is
strictly nonlocal. As a consequence, a local change of the
initial configuration σx,μ may give rise to a nonlocal change
of the gauge-fixed configuration σ ′

x,μ, which prevents the
spins sx from acquiring a nonvanishing polarization. This
phenomenon is easy to understand in the axial gauge defined
by σ ′

x,3 = 1, but the same occurs when using the gauge-fixing
constraint (9). If the original (i.e., not gauge fixed) config-
uration is σx,μ = 1 on the whole lattice, then we also have
σ ′

x,μ = 1; the gauge-fixed spins s′
x thus behave as in the O(N )

vector model and, in particular, they are ferromagnetically
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ordered for large J . If, however, the original configuration
has a single bond misaligned in the axial direction in the
bulk of the lattice, i.e., σy,3 = −1 for a single y value in
the bulk, in the gauge fixed configuration σ ′

x,μ = −1 on a
number of links of order L3. As a consequence, s′

x does not
order ferromagnetically for large J . Thus, even when K is
very large, typical configurations {s′

x} are not related with the
typical configurations of the O(N ) vector model. Therefore,
〈s′

x · s′
y〉 does not show any ferromagnetic order for large J .

B. A new approach

In this paper, we pursue a different approach that allows
us to uncover critical gauge-dependent order-parameter cor-
relations. The basic idea is to average nongauge invariant
quantities over all possible gauge transformations with a prop-
erly chosen, nongauge invariant, weight. We introduce Z2

fields wx = ±1 defined on the lattice sites [associated with
the local gauge transformations, see Eq. (5)], and an ancillary
Hamiltonian Hw that generally depends on wx, sx, and σx,μ. If
A(sx, σx,μ) is a function of the fields, we define its weighted
average over the gauge transformations as

[A(sx, σx,μ)] =
∑

{w} A(ŝx, σ̂x,μ)e−Hw∑
{w} e−Hw

, (10)

where ŝx and σ̂x,μ are defined as

ŝx = wxsx, σ̂x,μ = wxσx,μwx+μ̂, (11)

and correspond to the fields obtained by performing a
gauge transformation with gauge function wx. The average
[A(sx, σx,μ)] is then averaged over the fields sx and σx,μ using
the original Hamiltonian (1), i.e.,

〈[A(sx, σx,μ)]〉 =
∑

{s,σ }[A(sx, σx,μ)]e−H∑
{s,σ } e−H

. (12)

Gauge-invariant observables are invariant under the proce-
dure. Indeed, if A(sx, σx,μ) is a gauge-invariant observable,
then

A(ŝx, σ̂x,μ) = A(sx, σx,μ) = [A(sx, σx,μ)]. (13)

In this approach, we define a vector correlation function as

GV (x, y) = 〈[sx · sy]〉. (14)

A crucial point in the procedure is the choice of the Hamilto-
nian Hw. To unveil O(N ) vector correlations, we would like to
work in a gauge which maximizes the number of bonds with
σ̂x,μ = 1. Indeed, this implies that the Hamiltonian for the
gauge-transformed fields ŝx is almost ferromagnetic. There-
fore, these fields display the same critical behavior as vector
fields in the O(N ) model.

With this idea in mind, we consider

Hw(γ ) = −γ
∑
x,μ

σ̂x,μ = −γ
∑
x,μ

wxσx,μwx+μ̂, (15)

where γ is a positive number that should be large enough—
this point will be discussed in detail below—to ensure that
the minima of Hw(γ ) dominate in the average over the gauge
transformations.

This procedure, which we call stochastic gauge fixing,
mimics what is done in random systems with quenched dis-
order, for instance, in spin glasses. The variables sx and σx,μ

are the disorder variables and e−H/Z represents the disor-
der distribution, while wx are the system variables that are
distributed with Gibbs weight e−Hw/Zw at fixed disorder. In
the language of disordered systems, the average [·] there-
fore represents the thermal average at fixed disorder, while
〈·〉 is the average over the different disorder realizations.2

This analogy allows us to use the wealth of available re-
sult for quenched random systems. In particular, the present
procedure is thermodynamically consistent and, when the
low-temperature (large γ ) phase is not a spin-glass phase,
it admits a local field-theory representation. Thus, we can
apply the standard renormalization-group (RG) machinery to
correlations computed in the gauge-fixed theory.

The resulting model with the added variables wx is a
quenched random-bond Ising model [62,63] with a particular
choice of bond distribution. Quenched random-bond Ising
models have various phases—disordered, ferromagnetic, and
glassy phases—depending on the temperature (whose role
is played here by 1/γ ), the amount of randomness of
the bond distribution, and its spatial correlations, see, e.g.,
Refs. [62–75]. In particular, we expect the present model to
undergo a quenched transition for γ = γc(J, K ). The tran-
sition separates a disordered phase for γ < γc(J, K ) from a
large-γ phase, which a priori can be ferromagnetic or glassy.
As we shall discuss, if J and K belong to the DO-O transition
line, the large-γ phase is ferromagnetic and the minimum
configurations are essentially unique modulo global symme-
tries. Thus, the long-distance behavior of the variables wx

is the same for all γ > γc(J, K ): The variables wx simply
make uncorrelated short-range fluctuations around the mini-
mum configurations obtained for γ → ∞. It is thus natural to
conjecture that γ is an irrelevant parameter, i.e., the critical
behavior of the gauge-fixed quantities is the same for any
γ > γc(J, K ) along the DO-O transition line. In RG language,
1/γ represents an irrelevant perturbation of the γ = ∞ fixed
point.

We expect the irrelevance of γ to be a general feature of
the stochastic gauge fixing, which holds for any N—the nu-
merical data we will present confirm this conjecture. Thus, for
numerical convenience, we will always implement the gauge-
fixing procedure using a finite value of γ . It is important not to
confuse this type of gauge fixing with the more standard soft
gauge fixing that is obtained by adding to the Hamiltonian a
term of the form λF 2

x involving a further parameter λ (where
the equation Fx = 0 represents the hard gauge fixing), which
in the language of random systems represents an annealed av-
erage over the gauge fixing. For example, in the noncompact
AH model, λ−1 is known to be a relevant perturbation of the
Lorenz gauge-fixed theory, see Refs. [40,42].

It is worth noting that the global theory including the
quenched stochastic gauge fixing is invariant under an ex-
tended set of local transformations with Z2-gauge parameter

2To avoid confusion, note that symbols [·] and 〈·〉 have typically
the opposite meaning in the random-system literature: The former
represents the disorder average and the latter the thermal average.
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vx = ±1 given by

sx → vxsx, σx,μ → vxσx,μvx+μ̂, wx → vxwx. (16)

Therefore, only observables that are invariant under this set
of transformations are relevant, such as ŝx and σ̂x,μ. Note
that this local extended symmetry prevents the wx variables
from acquiring a nonvanishing expectation value, and thus the
presence of a standard ferromagnetic phase in this random
quenched model.

We remark that there is much freedom in the choice of
the ancillary Hamiltonian Hw. The Hamiltonian (15) is quite
appealing, since it provides a direct connection with quenched
models already well investigated and is particularly simple.
However, other choices may work as well. It is important to
note that the critical behavior of the emerging vector critical
correlators is expected to be universal, i.e., independent of the
ancillary Hamiltonian Hw, provided that Hw has been properly
chosen to make the spin-spin interactions ferromagnetic. This
is essentially due to the fact that the critical behavior of all
gauge-invariant quantities—for instance, the spin-two oper-
ator Qx or the cumulants of the gauge-invariant energy—is
independent of Hw: they all behave as in the N-vector (Ising)
model. Therefore, along the DO-O line (or along the corre-
sponding transition line for N = 1), GV (x − y) should also
behave as in the N-vector (Ising) model, if it is critical.

It is interesting to verify the general ideas of the approach
in the limit K → ∞. In this limit, we have

σx,μ σx+μ̂,ν σx+ν̂,μ σx,ν = 1, (17)

which implies σx,μ = ρxρx+μ̂, with ρx = ±1, in the thermo-
dynamic limit. It follows that

HJ = −NJ
∑
x,μ

(ρxsx) · (ρx+μ̂sx+μ̂),

Hw = −γ
∑
x,μ

(ρxwx) · (ρx+μ̂wx+μ̂). (18)

Thus, if we redefine w′
x = ρxwx and s′

x = ρxsx [which are
invariant under the local transformations of Eq. (16)], the
partition function factorizes. Moreover, since ρ2

x = 1, GV (x)
can be written as

GV (x − y) = 〈s′
x · s′

y〉O(N ),J〈w′
x · w′

y〉Is,γ , (19)

where the two averages are performed in the standard O(N )
and Ising models, respectively. For any γ > γc,Is, the Ising
system is magnetized and therefore GV (x) has the same
critical behavior as in the N-vector model, confirming the
irrelevance of γ . On the other hand, for γ < γc,Is, GV (x) is
always disordered, irrespective of J .

Note that Eq. (17) also holds for J → ∞ for any value of
K . Thus, also in this case the partition function factorizes. The
gauge fields wx behave as in the Ising model and so does the
correlation function GV (x − y) as a consequence of Eq. (19).

We finally mention that the above ideas can be straightfor-
wardly extended to lattice gauge models with other discrete
groups or with continuous gauge U(1) variables, thereby al-
lowing one to uncover order-parameter correlations that are
not accessible using gauge-invariant operators.

IV. NUMERICAL RESULTS

In this section we discuss the critical behavior of the O(3)∗
and Ising∗ transitions in the Z2-gauge model for N = 3 and
N = 1, respectively. In particular, we study the correlation
function GV (x) defined in Eq. (14) using the stochastic gauge
fixing approach. The numerical analysis of the data shows
that GV (x) behaves as the vector correlation function in stan-
dard N-vector models. This result provides the last piece of
evidence for the identification of the transitions as O(N ) (or
Ising) transitions driven by the condensation of a vector, but
gauge-dependent, order parameter.

A. Monte Carlo simulations

We perform simulations of the Z2-gauge model for N =
1 and N = 3, applying the stochastic gauge fixing. In both
cases, we perform runs at fixed K varying J around the critical
point J = Jc, where the model undergoes an O(3)∗ or Ising∗

transition for N = 3 and N = 1, respectively. We choose K =
1, which is larger than K� ≈ 0.75, the value of the meeting
point of the three transition lines, see Figs. 1 and 2. The
parameter γ of the ancillary Hamiltonian Hw should be large
enough to guarantee that the ancillary quenched system is in
the ferromagnetic phase, as discussed in Sec. III. For N = 3,
we find γc(Jc, K = 1) ≈ 0.23, and we thus fix γ = 0.3. Also,
for N = 1 the ancillary quenched system is in the ferromag-
netic phase when using γ = 0.3 at K = 1 and J = Jc, so we
use γ = 0.3 for both values of N .

MC simulations are performed as in systems with
quenched disorder, see, e.g., Refs. [62–75]. We simulate the
model with Hamiltonian H and every Ns update sweeps we
compute the quenched averages [A] over the gauge-fixing
variables for fixed values of sx and σx,μ (at fixed disorder in the
language of random systems). Simulations are performed by
using standard local Metropolis updates. For N = 3, we also
perform microcanonical updates of the sx variables. Quenched
averages are computed using 104 complete update sweeps of
the wx variables, at fixed σx,μ and sx.

Before presenting our results, we report the values of the
critical exponents for the 3D O(3) (Heisenberg) and Ising
universality classes that are used in our analyses. These expo-
nents are known with great accuracy, see, e.g., Refs. [76–82]
for N = 3 and Refs. [46,76,79,82–87] for N = 1. For the 3D
Heisenberg universality class, accurate estimates are reported
in Ref. [77]:

νH = 0.71164(10),

ηH = 0.03784(5),

ωH = 0.759(2). (20)

Here νH is the correlation-length exponent, ηH parametrizes
the behavior of the critical two-point function of the vector
field, and ωH is the leading scaling-correction exponent. In
our FSS analyses, we also need the RG dimension YQ of the
spin-two composite operator Qx for the Heisenberg universal-
ity class [80,87–89]:

YQH = 1.2094(3). (21)
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For the 3D Ising universality class, we report [85]

νI = 0.629971(4),

ηI = 0.036298(2),

ωI = 0.8297(2). (22)

B. Finite-size scaling

For N � 2, some relevant observables are obtained from
the correlations of the gauge-invariant bilinear operator Qab

x
defined in Eq. (7). Its two-point correlation function reads

GQ(x, y) = 〈Tr QxQy〉, (23)

from which one can also define the corresponding Fourier
transform

G̃Q(p) = 1

L3

∑
x,y

eip·(x−y)GQ(x, y), (24)

susceptibility and correlation length:

χq = G̃Q(0), (25)

ξ 2
q = 1

4 sin2(π/L)

G̃Q(0) − G̃Q(pm)

G̃Q(pm)
, (26)

where pm = (2π/L, 0, 0). In the FSS limit, varying J around
the critical point Jc at fixed K , χq, and ξq scale as

χq(J, L) ≈ L3−2YQ Cq(W ), (27)

ξq(J, L) ≈ L Rq(W ), (28)

where YQ is the RG dimension of the spin-two operator Qx and

W = (J − Jc)L1/ν . (29)

Scaling corrections decay as L−ω, where ω is the leading
correction-to-scaling exponent. The ratio

Rq = ξq

L
≈ Rq(W ) (30)

is RG invariant and can be used to determine Jc. Indeed, the
data for different lattice sizes L have a crossing point that
coincides with the critical point for large values of L.

In the case of the Z2-gauge Higgs model, there are no
gauge-invariant operators analogous to Qx. The transition may
be probed by studying the fluctuations of the gauge-invariant
energy density, see, e.g., Refs. [21,25,26]. For this type of
transition, the analysis of the critical gauge-dependent vector
correlations may provide an alternative method to determine
the critical point, besides confirming the Ising∗ nature of
the transition. It may also be numerically convenient, since
numerical studies based on the energy cumulants are quite
demanding.

We also analyze the gauge-dependent correlation function
GV (x, y) in the stochastic gauge-fixing approach. If it devel-
ops a nontrivial critical behavior, then it is expected to scale
as (assuming translation invariance for the sake of simplicity)

GV (x − y, J, L) = L−2YV [GV (X ,W ) + O(L−ω )], (31)

where ν is the length-scale critical exponent and YV is the
RG dimension of the vector operator, which is related to the

exponent η by

YV = d − 2 + η

2
= 1 + η

2
. (32)

The function GV is expected to be universal, apart from a mul-
tiplicative factor and a normalization of the scaling variables
W . It should only depend on the boundary conditions and lat-
tice shape. We also consider the corresponding susceptibility
χv and second-moment correlation length ξv ,

χv ≡ G̃V (0), ξ 2
v ≡ 1

4 sin2(π/L)

G̃V (0) − G̃V (pm)

G̃V (pm)
, (33)

where G̃V (p) is defined as in Eq. (24). Two RG invariant
quantities associated with GV (x, y) are the ratio

Rv ≡ ξv/L (34)

and the Binder parameter

Uv =
〈[

m2
2

]〉
〈[m2]〉2

, m2 = 1

L3

∑
x,y

ŝx · ŝy. (35)

If the correlation function GV is critical, then we expect Rv

and Uv to behave as Rq, in the FSS limit. For example,

Rv (J, L) = Rv (W ) + O(L−ω ). (36)

Actually, to avoid the nonuniversal normalization of the
argument W , one may rewrite the Binder parameter in
terms of Rv:

Uv (J, L) = Û (Rv ) + O(L−ω ). (37)

Finally, the vector susceptibility is expected to scale as

χv (J, L) ≈ L2−η Ĉv (Rv ). (38)

We also consider observables involving the variables wx

only. They allow us to check that the value of γ we con-
sider is sufficiently large for the quenched system to be in
the ferromagnetic phase. To define appropriate observables,
it is important to note that the gauge-fixed theory is gauge
invariant under the transformations (16). Therefore, we con-
sider the so-called replica observables, as commonly done in
the analysis of random quenched systems. If w(1)

x and w(2)
x

are two different system variables distributed with probability
e−Hw/Zw with the same disorder distribution (same σx,μ, sx

in the present context), we define the overlap variable as the
product

Ox = w(1)
x w(2)

x . (39)

The corresponding susceptibility is

χo = L−3

〈⎡⎣(∑
x

Ox

)2
⎤⎦〉

, (40)

while the Binder parameter is defined as

Uo =
〈[

n2
2

]〉
〈[n2]〉2

, n2 = L−3
∑
x,y

Ox Oy. (41)

In the ferromagnetic phase [γ > γc(K, J )], we expect the
finite-size behavior:

χo ∼ L3, Uo = 1 + O(L−3). (42)
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FIG. 3. Scaling plot of the ratio Rq for the Z2-gauge N = 3 vector
model at K = 1, with periodic boundary conditions. We plot Rq ver-
sus W = (J − Jc )L1/ν , with Jc = 0.23118(3) and ν = νH = 0.71164.
In the inset, we report Rq as a function of J .

C. Results for Z2-gauge N = 3 vector model

We now present our numerical FSS analyses for the Z2-
gauge model with N = 3. We consider periodic boundary
conditions and perform simulations along the line K = 1. For
J ≈ 0.23, the model undergoes a continuous O(3)∗ transition.
This is clearly demonstrated by the FSS behavior of ratio Rq

and of the susceptibility χq defined in Eqs. (30) and (25).
In Fig. 3, we show the results for Rq. Data have a clear
crossing point and show an excellent scaling if we set ν = νH ,
confirming the Heisenberg nature of the transition. Fits of the
data fixing ν = νH and ω = ωH provide an accurate estimate
of the critical point Jc = 0.23118(3). Note that Jc is quite
close to the critical value in the Heisenberg model (K → ∞)
JH = 0.2310010(7) [48,49], indicating that the transition line
is almost parallel to the K axis. The scaling behavior of χq,
see Fig. 4, is fully consistent with Eq. (27), using the RG

FIG. 4. Scaling plot of χq for the Z2-gauge N = 3 vector model
at K = 1, with periodic boundary conditions. We report L−3+2YQχq

versus Rq, using the RG dimension YQ for the Heisenberg universality
class: YQ = YQH = 1.2094.

FIG. 5. Ratio Rv = ξv/L for the Z2-gauge N = 3 vector model at
K = 1, using the stochastic gauge fixing with γ = 0.3. Plot of Rv as
a function of W = (J − Jc )L1/νH and as a function of J (see inset).
We fix ν = νH = 0.71164.

dimension YQ = YQH of the spin-2 operator at the O(3) vector
fixed point, again in agreement with the general scenario.

We now analyze the vector correlation GV , defined in
Eq. (14). As discussed in Sec. III, the parameter γ of the ancil-
lary Hamiltonian Hw must be chosen so the ancillary system
is in the ferromagnetic phase. This can be easily checked by
looking at the behavior of the overlap observables defined in
Eqs. (40) and (41). For γ = 0.3, with increasing L, we find
that χo/L3 ≈ 0.6755 and that the difference Uo − 1 vanishes
as L−3, as expected for a ferromagnetic phase. Therefore,
in the following we compute the vector observables fixing
γ = 0.3.

Results for Rv = ξv/L are reported in Fig. 5. The cor-
relation length increases as L, as expected for a critical
observable, and shows a crossing point at a value of J that
is very close to the critical point Jc obtained fitting the gauge-
invariant observable Rq. More precisely, fits of Rv give Jc =
0.23128(8), which is in good agreement with the estimate
Jc = 0.23118(3) determined above. The Rv data also show
excellent FSS behavior if we use the Heisenberg estimate of
the correlation length exponent; see Fig. 5. To obtain a robust
check that GV has the same critical behavior as the Heisenberg
correlation function, in Fig. 6 we report Uv versus Rv together
with the universal scaling function for the analogous vector
quantities computed in the Heisenberg model (the curve is
taken from Ref. [90]). Also in this case the agreement is ex-
cellent. Finally, we determine the scaling behavior of χv . The
vector susceptibility scales very nicely according to Eq. (38)
if we set η = ηH , where ηH is the Heisenberg exponent for
vector correlations, see Fig. 7.

In conclusion, the above FSS analyses demonstrate the
effectiveness of the stochastic gauge fixing outlined in Sec. III.
Indeed, it allows us to identify a critical gauge-dependent
vector field that orders at the transition, and therefore can be
taken as the order parameter for the spontaneous breaking of
the O(N ) symmetry to O(N − 1). In turn, this allows us to
obtain a complete mapping of the RG operators of the O(N )
and O(N )∗ transitions.
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FIG. 6. Uv as a function of Rv for the Z2-gauge N = 3 vector
model at K = 1, using the stochastic gauge fixing with γ = 0.3, for
different values of the lattice size L and of the coupling J . The data
follow the FSS behavior (37). Moreover, the asymptotic FSS curve is
consistent with the universal FSS curve for the standard O(3) vector
model with periodic boundary conditions (solid line). For the O(3)
curve, we use the parametrization reported in Ref. [90].

D. Results for the Z2-gauge Higgs model

We now present results for the Z2-gauge Higgs model.
We study the critical behavior at the Ising∗ transition along
the line K = 1, using the stochastic gauge fixing, to uncover
the gauge-dependent spin critical fluctuations. We use open
boundary conditions to avoid the long autocorrelation times
associated with the Polyakov lines.3 We fix γ = 0.3: χo and

3Note that definitions reported in Sec. IV B are valid both for open
and periodic boundary conditions.

FIG. 7. Vector susceptibility χv for the Z2-gauge N = 3 vector
model at K = 1, using the stochastic gauge fixing with γ = 0.3. The
excellent scaling of the ratio χv/L2−ηH with ηH = 0.03784 confirms
that along the O(3)∗ transition line the correlation function GV be-
haves as the vector correlation function in the O(3) vector model.

FIG. 8. Ratio Rv = ξv/L for the Z2-gauge Higgs model at K = 1,
using the stochastic gauge fixing with γ = 0.3. We plot Rv versus
W = (J − Jc )L1/νI using ν = νI = 0.629971 and the estimate Jc =
0.22185(10), obtained by biased fits of Rv using ν = νI . The inset
shows the same data versus J .

Uo close the transition behave as in Eq. (42), confirming that
the ancillary system is ferromagnetic for this value of γ .

The correlation GV behaves as the spin correlation function
at the standard Ising transition. This is confirmed by the data
of Rv = ξv/L shown in Fig. 8. The correlation length ξv shows
an excellent scaling if one uses the Ising critical exponent
νI . A fit of the data provides the accurate estimate Jc =
0.22185(10), which is again quite close to the critical value in
the K → ∞ limit, i.e., JIs = 0.221654626(5) of the standard
Ising model [46]. The critical nature of the gauge-dependent
correlations is further confirmed by the plot of Uv versus Rv

shown in Fig. 9. Data approach an asymptotic scaling curve,
as predicted by the FSS Eq. (37). Finally, the scaling behavior
of the susceptibility χv is definitely consistent with Eq. (38),
setting η = ηI , where ηI is the Ising exponent. Data reported
in Fig. 10 show an excellent scaling.

FIG. 9. Vector Binder parameter Uv as a function of Rv for the
Z2-gauge Higgs model at K = 1, using the stochastic gauge fixing
with γ = 0.3.
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FIG. 10. Vector susceptibility χv for the Z2-gauge Higgs model
at K = 1, using the stochastic gauge fixing with γ = 0.3. We set
η = ηI = 0.036298. The excellent scaling confirms that GV along
the Ising∗ transition line behaves as the standard Ising spin-spin
correlation function.

The above FSS results show again the effectiveness of
the stochastic gauge fixing outlined in Sec. III, which allows
us to identify the universal gauge-dependent spin corre-
lations which characterize standard Ising transitions, see,
e.g., Ref. [76].

E. Transitions of the ancillary quenched model

In the previous subsections, we focused on the critical
behavior of the vector correlations defined by using the
stochastic gauge fixing at the transition point of the original
gauge-invariant lattice model. We now focus on the ancillary
quenched random-bond model. For any J and K , it undergoes
a quenched transition at γc(J, K ), which separates a small-γ
disordered phase from a large-γ ordered phase. Here we wish
to investigate the nature of this transition in the different
phases of the gauge-invariant lattice model. We only report
results for N = 3, but the general picture should be valid for
any N , including the gauge-Higgs model with N = 1. We
focus on the behavior along the line K = 1, considering three
values of J: (i) J = 0.2 < Jc in the DO phase; (ii) J = Jc ≈
0.2312, where the gauge-invariant model is critical; and (iii)
J = 0.26 > Jc, in the O phase.

For J = 0.2, in the DO phase, the overlap variables show
the presence of a transition for γ ≈ 0.222, with critical ex-
ponents that are definitely consistent with the Ising values.
This is clearly confirmed by the data shown in the lower panel
of Fig. 11, where we plot the overlap Binder parameter as
a function of (γ − γc)L1/νI , with Ising exponent νI (we use
γc = 0.22185(3) as obtained from the crossing point of the
overlap Binder parameter). Moreover, the data of the overlap
susceptibility χo at γc (not shown) are consistent with the
behavior χo ∼ L2−ηqI , where ηqI = 1 + 2ηI = 1.072596(4) is
the Ising exponent associated with the RG dimension of the
overlap variable. We expect these results to be the same in the
whole DO phase. This is confirmed by the results of Ref. [75],
that also observed a pure Ising critical behavior on the line
J = 0 in the DO phase.

FIG. 11. Overlap Binder parameter Uo for N = 3, K = 1 and
three different values of J as a function of (γ − γc )L1/νI , where
νI = 0.629971 is the Ising critical exponent. Results for (top) J =
0.26 > Jc (O phase) with γc = 0.22178; (middle) J = 0.23118 ≈ Jc

with γc = 0.22178; and (bottom) J = 0.2 < Jc (DO phase) with
γc = 0.22185.

These results indicate that the type of bond disorder that
occurs in the DO phase does not destabilize the pure Ising
fixed point. This is different from what occurs in generic
random-bond models with spatially uncorrelated bimodal or
Gaussian bond distributions. In that case, the Harris crite-
rion [62] predicts the instability of the pure Ising fixed point
against quenched disorder due to the positive value of the
3D Ising specific-heat exponent. Indeed, in the presence of
spatially uncorrelated quenched disorder, one expects that the
ferromagnetic critical behavior belongs to another universality
class, the so-called randomly diluted Ising universality class,
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FIG. 12. The length-scale ratio Rv = ξv/L defined in Eq. (33) as
a function of the stochastic gauge fixing parameter γ for N = 3, K =
1, and J = 0.26 > Jc. In the inset, we report a scaling plot using the
Ising critical exponent νI = 0.629971.

with critical exponents [70,76] νrI = 0.683(2) and ηrI =
0.036(1). The observed pure Ising critical behavior, i.e., the
apparent stability of the pure Ising fixed point, is related to the
different nature of the quenched disorder in the present model,
which corresponds to a topologically ordered phase.

In the DO phase, for J < Jc, we do not expect the stochastic
gauge fixing to lead to any ordering of the vector correlation
GV defined in Eq. (14), for any γ , because the condensation
of the gauge-dependent vector field should be accompanied
by the condensation of the gauge-invariant bilinear operator
Qx, which only occurs for J > Jc and is not affected by the
stochastic gauge fixing. Numerical data confirm this general
picture.

Let us now turn our attention to the O phase. For J → ∞,
the arguments reported at the end of Sec. III B indicate that the
wx variables behave as Ising variables. Therefore, for γ = γc,
overlap variables should behave as in the Ising case. Results
for J = 0.26 > Jc are fully consistent with this picture, as
demonstrated by the data reported in the top panel of Fig. 11.
The overlap Binder parameter shows the expected FSS if we
set ν = νI , where νI is the Ising critical exponent. In the plot,
we use γc = 0.22178(6), as obtained by biased fits of the
data setting ν = νI . For J → ∞, GV behaves as the spin-spin
correlation function in the Ising model; see Sec. III B. It is
natural to expect the same behavior in the whole ordered
phase. The critical nature of GV for γ = γc in the O phase
is demonstrated by the data for Rv computed for J = 0.26
reported in Fig. 12. There is a clear crossing point, indicating
that ξv ∼ L for γ = γc, at approximately the same value of γc

obtained from the analysis of the overlap variables. However,
in the ordered phase, scaling corrections are large. They are
probably related to the nearby presence of the critical point
J = Jc ≈ 0.23, where also the disorder is critical. We have
also investigated the behavior of the susceptibility χv , which is
expected to scale: χv ∼ L2−ηI ∼ L1.96. Data show significant
scaling corrections. Fits of χv versus Lκ at the critical point
γ = γc provide estimates of κ that increase as lower-L data are
discarded. If we consider only data with L � 16, this behavior
is consistent with η = ηI and the presence of large scaling

corrections parametrized by the exponent ω = ωI . These large
scaling corrections are probably due to the spin modes being
not fully magnetized, given the relatively small lattice sizes
we consider and the small distance between J = 0.26 and the
critical point.

Finally, let us consider the behavior for J = Jc. In this
case, we are dealing with a multicritical point, where both
the gauge-invariant observables and the ancillary variables wx

are critical. As we already discussed, both in the DO and O
phases, the variables wx show Ising criticality. Apparently, the
ordering of the spin degrees of freedom has little influence on
the behavior of the gauge variables wx. This is also supported
by the estimates of the critical point: γc = 0.22185(3) for
J = 0.2, γc = 0.22178(3) at J = Jc, and γc = 0.22178(6) at
J = 0.26. We thus expect a pure Ising behavior of the overlap
correlations along the whole line K = 1, from J = 0 [75] to
J = ∞, including the critical point J = Jc. More generally,
Ising behavior should occur in the DO and O phases, including
the DO-O transition line. This is in agreement with the exact
results for K = ∞ reported at the end of Sec. III B. Indeed,
in this limit the overlap variables behave as Ising variables for
any value of J , because of the factorization of the partition
function. Numerical results are fully consistent with this pic-
ture, as demonstrated by the data reported in the middle panel
of Fig. 11.

Let us finally discuss the behavior of GV at the critical
point. In the limit K → ∞, the correlation function factorizes
as indicated in Eq. (19). In infinite volume at fixed J = Jc, we
can rewrite it as

GV (x) = Z

r1+ηH
GIs(x), (43)

where GIs(x) is the Ising correlation function and r = |x|. We
thus predict that ξv behaves as an Ising correlation length,
while the susceptibility χv is expected to scale as L2−ηHI , with
ηHI = 1 + ηH + ηI = 1.07414(10). We expect these results
to hold on the whole DO-O transition line. This is is fully
supported by the numerical data. For instance, see the lower
panel of Fig. 13, where we observe an excellent scaling if we
plot Rv in terms of W = (γ − γc)L1/νI , using the Ising critical
exponent. Analogously, the susceptibility χv scale as L2−ηHI

with ηHI = 1.07414(10); see the upper panel of Fig. 13.
It is interesting to observe that, since the point J = Jc,

γ = γc(Jc) is a multicritical, it is characterized by two dif-
ferent length scales with exponents νI and νH , respectively.
The Heisenberg length scale can be identified, for instance,
by varying J and correspondingly fixing γ = γc(J ). Along
this line, vector observables computed from GV (x) would
scale in terms of W = (J − Jc)L1/νH , i.e., with the Heisenberg
length-scale exponent.

V. CONCLUSIONS

In this paper, we address the nature of the so-called O(N )∗
and Ising∗ universality classes that differ from the standard
3D O(N ) vector and Ising universality classes because of
the absence of critical vector correlations. These transitions
occur, for example, in generalized lattice Z2-gauge models,
i.e., the 3D Z2-gauge N-vector models, where all gauge-
invariant quantities develop critical behaviors analogous to
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FIG. 13. Scaling of the Rv = ξv/L and of the susceptibility χv ,
see Eq. (33), as a function of the stochastic gauge fixing parameter γ .
Results for N = 3, K = 1, and J = 0.2312 ≈ Jc. We plot Rv versus
(γ − γc )L1/νI with γc = 0.22178 (bottom), and χv/L2−ηHI versus Rv

with ηHI = 1 + ηI + ηH = 1.07414 (top).

those of the standard N-vector or Ising (for N = 1) model,
without exposing critical order-parameter vector correlations.
The fundamental spin field is not gauge invariant and therefore
its correlation functions are trivial. This apparently precludes
interpreting these transitions as the result of the conden-
sation of a vector order parameter that breaks the O(N )
symmetry [in the gauge model, the global symmetry group
is SO(N )] down to O(N − 1), as in the standard N vector
model. O(N )∗ transitions occur in 3D Z2-gauge N-vector
models with Hamiltonian (1), along the line between the spin-
disordered and spin-ordered phase for sufficiently large values
of the inverse gauge coupling K ; see Fig. 1. Analogous Ising∗

transitions, see Fig. 2, occur in the one-component model
(N = 1), which is also known as the 3D Z2-gauge Higgs
model.

We extend the characterization of the O(N )∗ transitions,
showing that one can define a proper gauge-fixing procedure,
which does not change gauge-invariant correlations but allows
one to define vector correlations that behave as in the N-
vector model. For this purpose, we propose a gauge-fixing
procedure, which we name stochastic gauge fixing, that is

quite different from the usual gauge-fixing procedures that
are used in field theory. Here, gauge-dependent quantities are
averaged over gauge transformations weighted by an ancil-
lary gauge-dependent Hamiltonian. This leads to an extended
quenched model, which can be interpreted as a random-bond
Ising model, in which the bonds are distributed according to
the Gibbs weight associated with the original gauge-invariant
Hamiltonian. The random-bond Ising model we consider
differs from those typically studied in the random-system lit-
erature. Indeed, one typically considers spatially uncorrelated
bond distributions, see, e.g., Refs. [62–74]. Instead, O(N )∗
(Ising∗) transitions separate two phases characterized by the
fact that the Z2-gauge variables show a topological order.

It is important to remark that, if the ancillary Hamiltonian
is chosen such that the gauge-fixed vector correlations are crit-
ical, then their critical behavior should necessarily coincide
with that of vector correlations in the standard O(N ) uni-
versality class (spin-spin correlations for N = 1), given that
all gauge-invariant observables—for instance, the spin-two
operator Qab

x defined in Eq. (7) or the cumulants of the gauge-
invariant energy—behave as in the N-vector model. By using
the stochastic gauge fixing, we are thus able to identify the
missing critical vector fields, obtaining a full correspondence
between O(N )∗/Ising∗ and standard O(N )/Ising universality
classes.

In this work, we define a simple ancillary system that
makes gauge-fixed vector correlations critical. Explicit nu-
merical results are obtained for N = 3 and N = 1. We show
that the stochastic gauge fixing procedure allows us to ob-
serve the missing vector field which orders at the transition,
characterizing the breaking of the O(N ) global symmetry.
Analogously, in the Z2-gauge model, we identify the scalar
field that breaks the global Z2 symmetry, which is absent in
the gauge-invariant model (it is gauged) but is restored by the
gauge-fixing procedure.

Note that the use of the stochastic gauge fixing in the
Z2-gauge Higgs model may also turn out to be convenient
from a purely numerical point of view, since it simplifies (and
likely makes more accurate) the analyses required to investi-
gate the critical behavior of the model: In the gauge invariant
model, only cumulants of the energy can be studied, while
in the gauge fixed model we have access to all the standard
observables commonly used to study magnetic transitions.

The results presented in this paper show that the O(N )∗
transitions in Z2-gauge N-vector models can still be described
by an effective O(N )-symmetric LGW �4 theory, without
gauge fields. However, the fundamental field in the effective
theory is not gauge invariant. We remark that this behavior
shows some similarities and also significant differences with
respect to the one emerging at the Coulomb-Higgs transi-
tions in the lattice AH models with noncompact U(1) gauge
variables, which are associated with a stable charged fixed
point of the AH field theory, see, e.g., Refs. [32,39]. At vari-
ance with O(N )∗ transitions, at Coulomb-Higgs transitions
gauge modes play a fundamental role and therefore cannot
be integrated out. On the other hand, as in O(N )∗ transitions,
the fundamental vector field is not gauge invariant and thus
critical vector correlations are only observed when the Lorenz
gauge fixing is used or, equivalently, if one considers nonlocal
gauge-invariant charged operators [35,40,41].

125109-12



UNCOVERING GAUGE-DEPENDENT CRITICAL … PHYSICAL REVIEW B 110, 125109 (2024)

It is finally important to remark that the stochastic
gauge-fixing method introduced in this paper to study the
O(N )∗ transitions of the Z2-gauge N-vector model can be
easily generalized and extended to generic statistical models
undergoing O(N )∗ transitions in the presence of an emerging
local discrete gauge symmetry. Actually, this approach can be
straightforwardly extended to continuous gauge groups, such
as the U(1) group. However, its utility within this extended
context of continuous gauge groups must be checked to
understand whether it allows us to expose further features
arising from gauge-dependent modes. This may provide a
convenient way of studying observables whose form is very

complicated (and, in general, nonlocal) when written in a
manifestly gauge-invariant form, going beyond the techniques
which use standard gauge-fixing approaches [33,34,40–42].
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