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With the help of the numerical renormalization group method, we theoretically investigate the Josephson
phase transition and the Yu-Shiba-Rusinov (YSR) states in parallel-coupled double quantum dot (QD) Josephson
junctions. The interplay of competition and cooperation of multiple energy scales within the system results in
distinct impacts on the 0-π transition behavior and the evolution of YSR states when the QDs are in the half-filled
case. This arises from the relative variation in the strengths of the interdot antiferromagnetic correlation and the
Ruderman-Kittel-Kasuya-Yosida interaction. In addition, when the interdot coupling coefficient t12 is fixed, by
adjusting the phase difference between superconducting electrodes, we found that the magnetic order of two QDs
and the YSR subgap states can be controlled in a delocalized manner. Our research explores the complexities
of electron correlation effects in Josephson junctions, providing unique insights into the construction and
regulation of superconducting nanodevices and quantum bits in the future. Furthermore, the system’s spin and
orbital degrees of freedom can be manipulated to satisfy the SU(4) symmetry by adjusting the QD levels
and other parameters. An orbital YSR state is induced by a pseudospin-flip process involving pseudospins
and quasiparticles outside the superconducting gap. We provide a detailed analysis of the various physical
mechanisms underlying the emergence of spin and orbital YSR states through the application of an external
magnetic field.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) are artificial meso-
scopic systems widely used to study electron strong corre-
lation effects due to their strong Coulomb interaction and
adjustable system parameters [1–5]. The Kondo effect is a
typical many-body correlation effect, which was first dis-
covered in diluted magnetic alloys containing local magnetic
impurities. Below the Kondo temperature TK , it exhibits the
anomalous behavior of the low-temperature resistivity [6–9].
Unlike in traditional macroscopic metal hosts, Kondo physics
in QDs can be investigated in a controllable and precise way.

By embedding QDs between two superconductors (SCs), a
mesoscopic Josephson junction can be assembled. The strong
electron interaction within the system drives the well-known
Josephson phase transition [10–13]. If the Kondo temperature
TK is much larger than the superconducting-pairing poten-
tial �, the Josephson current follows the functional form of
I = ICsin(�ϕ), where IC is the critical current and �ϕ is
the inter-SC phase difference, leading to 0-junction behavior.
Alternatively, if the Josephson junction enters its π phase
[14], it exhibits a negative value in another functional form
of I = ICsin(�ϕ + π ).

In the QD-SC junction, a subgap excitation state known
as the Yu-Shiba-Rusinov (YSR) state can be induced
[15–22]. The excitation energies of the YSR states in this
setup can be tuned by gate voltages or other system parame-
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ters. During the 0-π phase transition, if the Kondo correlation
is weak, the ground state will be the standard BCS wave
function with all single-particle states forming Cooper pairs
accompanied by an unscreened impurity magnetic moment.
Conversely, increasing the Kondo correlation will destroy the
superconducting pairing potential due to impurity magnetic
moment. Under this condition, paired YSR states can appear
near the superconducting energy gap and undergo zero-energy
crossover near the quantum phase transition point where TK ∼
�, with singlet and doublet of different parities crossing at the
Fermi surface [18].

In the impurity and SC composite systems, another type
of subgap bound state is known as the Majorana bound
state (MBS) [23–28]. In recent years, due to its potential
applications in quantum fault-tolerant computation, it has
received much attention from researchers in both theoreti-
cal and experimental aspects. Previous studies have shown
that such novel topological-superconductor (TSC) electronic
states can be realized in quantum wires made of materials
with strong spin-orbit coupling in the proximity of an s-wave
superconductor. External magnetic fields are applied to break
time-reversal symmetry to produce effectively spinless elec-
trons with p-wave superconducting pairing, leading to the
effective realization of the one-dimensional Kitaev model, and
so MBSs can emerge at the end of the wire [26–28].

Recent reports have indicated that the MBSs can also be
realized by magnetic adatoms chains on the surface of s-
wave SCs, without the need for spin-orbit interaction [29–32].
When these adatoms are organized into one-dimensional
chains, their spins spontaneously align in a helical order due
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FIG. 1. Schematic diagram of a parallel DQD Josephson junction.

to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[33]. The polarized YSR states approach and hybridize with
each other to form a subgap band, mimicking anomalous p-
wave correlations and allowing for the possibility of forming
MBSs.

To understand the physical mechanism of the YRS state
and MBS transition, researchers have focused on studying
YSR states formed in a few magnetic atoms deposited on
superconducting substrates [34–39]. It was found that the
RKKY interaction strength between magnetic diatoms can be
altered, and the splitting and merging of a pair of spin-related
YSR states can be adjusted [38].

The parallel double quantum dot (DQD) molecules rep-
resent the smallest system with RKKY interaction among
various QD structures. The characteristic energies associated
with electron correlation effects in this system, such as the
Kondo temperature TK , superconducting-pairing potential �,
and characteristic temperature TF of RKKY interaction, give
rise to competition and cooperation mechanisms. Addition-
ally, aside from spin, the pseudospin resulting from orbital
degrees of freedom also plays a significant role in this sys-
tem. Therefore, the Kondo correlation involves both spin and
pseudospin-flip events, and their strong mixing results in spin-
orbit Kondo properties that are distinctly different from an
ordinary SU(2) spin-Kondo effect which only involves spin-
flip events [40–43].

Recently, Kürtössy et al. fabricated DQD molecules uti-
lizing the parallel InAs nanowires, which form a parallel
structure through the connection of each Ti/Al supercon-
ductor lead. They discovered the emergence of Andreev
molecular states. By independently adjusting the energy levels
of different QDs in the upper and lower arms, they observed
the shifts of the spectral line positions and the changes in the
shape of YSR states [44].

We are motivated by the aforementioned experimental
results, and it is a natural idea to incorporate an interdot
coupling coefficient in a parallel DQD system, as illustrated
in Fig. 1. We employ the numerical renormalization group
(NRG) method to investigate the Josephson current, spin
correlation function, and thermodynamic quantities such as
entropy in this system. The calculation results indicate that
adjusting the interdot coupling coefficient can not only alter
the interdot antiferromagnetic coupling between QDs, but also

impact the 0-π phase transition behavior of Josephson junc-
tions; furthermore, while keeping t12 unchanged, adjusting
parameters such as the phase difference of superconducting
electrodes can also alter the relative magnitudes of RKKY
interaction strength and the interdot antiferromagnetic corre-
lation strength in the system. Finally, we explore the potential
application of this phase transition mechanism in controlling
the magnetic order of QDs, which can be applied to construct
and regulate the superconducting nanodevices [45,46] and
quantum bits in the future.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model Hamiltonian of the system and the
method of calculation. The numerical results are presented
and discussed in Sec. III. Finally, we give the summary in
Sec. IV.

II. MODEL AND THEORY

The parallel Josephson junction that we consider is il-
lustrated in Fig. 1. Its Hamiltonian is written as H = HS +
HDQD + HT . The first term is the Hamiltonian of the SCs
within the standard BCS mean-field approximation. It takes
the form

HS =
∑
αkσ

εα,ka†
α,kσ

aα,kσ +
∑
αk

(�eiϕα aα,k↓aα,−k↑

+ �e−iϕα a†
α,−k↑a†

α,k↓). (1)

ϕα and � are superconducting phase and energy gap, respec-
tively, with α = L, R. a†

α,kσ
(aα,kσ ) is the operator that creates

(annihilates) an electron with energy εα,k for SC-α, where
k is the momentum quantum number of the free conduction
electrons. Next, HDQD, modeling the Hamiltonian for the two
QDs, reads as

HDQD =
2∑

σ, j=1

ε jd
†
jσ d jσ +

2∑
j=1

Ujn j↑n j↓

+
∑

σ

(t12d†
1σ d2σ + H.c.). (2)

d†
jσ (d jσ ) is the operator to create (annihilate) an electron with

energy ε j and spin σ in QD- j ( j = 1,2). t12 is the interdot
coupling coefficient, and Uj indicates the strength of intradot
Coulomb repulsion in the corresponding QD. The last term of
H denotes the coupling between the QDs and SCs. For our
considered system, it can be directly written as

HT =
∑

α,k, j,σ

(Vαk ja
†
αkσ

d jσ + H.c.). (3)

Vαk j describes the QD-lead coupling coefficient.
Due to the advancement of nanotechnology, the theoretical

model in our research can now be fabricated in the laboratory.
Recently, Vekris et al. have employed molecular beam epitaxy
to grow two closely spaced InAs nanowires on a Si/SiOx
substrate [47]. Subsequently, a scheme was employed to com-
bine in situ deposition of superconductor Al on the nanowires’
surface with partial chemical etching in order to connect the
nanowires into parallel mesoscopic Josephson junctions. QDs
are formed when the two bare nanowires are brought near
depletion with the use of the individual side-gate voltages.
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The side gates are also utilized as plunger gates for the QDs
to adjust their energy levels. Furthermore, the use of finger
gates array technology allows for convenient adjustment of
the strength of the interdot coupling coefficient in double
quantum dots [48].

When there is a certain phase difference between super-
conducting electrodes, a Josephson current will be driven in
the system. With respect to such a junction, the supercurrent
properties can be evaluated by the following formula:

IJ = 2e

h̄

∂〈H〉
∂ϕ

= 2e

h̄

∂F

∂ϕ
. (4)

ϕ = ϕL − ϕR is the superconducting phase difference between
the two SCs. F represents the free energy of the Josephson
junction. At the zero-temperature limit, F will be reduced into
the ground-state (GS) energy of this junction. Accordingly,
the zero-temperature current expression can be simplified to
be

IJ = 2e

h̄

∂EGS

∂ϕ
. (5)

Note that in such a structure, the GS determination is a
challenging task that usually requires one appropriate approx-
imation scheme, such as the mean-field approximation and
zero-bandwidth (ZBW) approximation [49,50]. However, in
comparison with these methods, the NRG method is more
accurate to reflect the properties of the GS energy [51–53].
Recently, Estrada Saldaña conducted a study on the 0-π tran-
sition phenomenon in serial DQDs. They combined several
theoretical methods such as NRG and ZBW approximation
to numerically calculate the current and phase diagrams, and
compared them with experimental results for validation [54].
Therefore, we will perform the NRG method to calculate the
ground-state energy and related physical quantities such as
current. For the convenience of calculation, we would like
to take some simplifications as follows. Assuming that the
two SCs are identical (εαk = εk and �α = �), except for a
finite phase difference ϕ. Without loss of generality, we put
ϕL = −ϕR = ϕ/2. For the dot-lead tunneling coupling Vαk j ,
we only consider the case of symmetric junction with Vαk j

= V , so the dot-lead coupling strength can be defined as
	=πV 2ρ0 (ρ0 is the density of states of the superconducting
electrode in normal state). In this paper, we take the value
	 = 0.04D, where D represents the bandwidth of the super-
conducting electrodes, we set D = 1 as the global energy unit.
In experiments, the strength of the coupling coefficient 	 ∼1
meV/h (h is Planck constant). As for the value of U , since we
are mainly concerned with the behavior of the system in the
Kondo region, specifically focusing on the superconducting
phase transition properties when U/	 �1, we set U/D = 0.8.
Additionally, different superconducting lead materials have
varying �. For example, in the case of double-layered Ti/Al
material � ≈ 0.14 meV, but for Pb electrodes � ≈ 1.3 meV
[55–57]. Therefore, unless otherwise specified, we assume
�/D = 0.06 throughout the entire study. With the NRG it-
erative diagonalization process, we retain the 3000 quantum
states with the lowest energy. To improve the accuracy of
the results, the z-averaging method is used to eliminate errors
between odd and even iterations [58].

III. NUMERICAL RESULTS AND DISCUSSIONS

Through calculations using the NRG method, we discov-
ered that certain fixed points of the QD system’s group flow
correspond to different numbers of electronic microscopic
states W . The relationship between the QD’s entropy SQD

of the whole system and its number of microstates is given
by SQD = lnW (assuming the Boltzmann constant kB is 1).
With the NRG iterative diagonalization progresses, the system
temperature gradually decreases, resulting in a decrease of the
corresponding degree of freedom (the number of microscopic
states). Therefore, we can study the changes of the number of
microscopic states through the curves of QD’s entropy. The
relationship between the QD’s contribution to the system’s
entropy and temperature can be expressed as

SQD(T ) = (E − F )

T
− (E − F )0

T
. (6)

Subscript 0 denotes the QD-absent situation, E = 〈H〉 =
Tr[He−H/(kBT )] with F = −kBT ln Tr[e−H/(kBT )] being the
system’s free energy. Because the YSR state in the supercon-
ducting gap can be reflected in the peak of corresponding QD
spectral function, so we consider the spectral function of QD
defined by

Ad (ω) = − 1

π
ImGd (ω). (7)

Gd (ω) represents the Fourier form of the retarded Green’s
function of QD.

A. 0-π phase transition and YRS states evolution caused
by multiple energy competition

In Fig. 2(a), we first plot the entropy of the system as a
function of the temperature for various t12. Since we focus on
the electron correlation effect when QD-1 and QD-2 are single
occupied, we define the QD energy level as the electron-hole
symmetry point, i.e., ε j = −U/2. It can be seen that with
the decrease of temperature, the entropy flow curves of the
system gradually decrease from 4 ln2. This is because when
the temperature is high, the QDs are independent, which we
call the free orbital region (FOR). Namely, the four states, i.e.,
empty occupied |0〉, single occupied |↑〉 or |↓〉, and double-
occupied |↑↓〉 appear with equal probability. So W = 42 states
exist in the two QDs and entropy approaches its initial value
SQD = ln W = 2 ln4. With the NRG iteration, the temperature
gradually decreases, it is found that corresponding to different
t12, the entropy curve evolves into two different horizontal
lines. Specifically, when t12 is relatively small (t12 = 0.01 and
0.04), the entropy curve finally reaches SQD = ln 3, and then
no longer decreases. From SQD = lnW = ln(2S̃ + 1), we can
see that the effective total spin of the DQDs S̃ = 1. At the
same time, we plot the curves of interdot spin correlation
〈S1S2〉 as a function of temperature in Fig. 2(b). It can be found
that when t12 is relatively small, 〈S1S2〉 has a positive value of
about 0.2. It can be shown that the spin correlation between
QDs is ferromagnetic. We can assume that this is due to small
JAF ≈ 4t2

12/U is much lower than exchange coupling coeffi-
cient JRKKY = 64	2/(π2U ) of the RKKY interaction. When
ε j = −U/2, the QDs are both half-filled and the electrons in
the two dots maintain a strong ferromagnetic tendency under
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FIG. 2. (a) Temperature dependence of the entropy and (b) the interdot spin correlation function 〈S1S2〉 with various t12. (c) Magnetic phase
diagram in the (t12, 	) plane for various �. (d) Spectral function curves of QDs for different values of 	. The system parameters are taken to
be ε j = −U/2, ϕ = π/2.

the RKKY mechanism caused by the external metal electrode.
When t12 gradually increases, the interdot antiferromagnetic
exchange becomes the dominant factor. It can be seen that
when t12 = 0.08 and 0.1, the final value of entropy curve of
the system is 0. So the effective total spin is S̃ = 0 and the
corresponding spin correlation curve 〈S1S2〉 has a value of
approximately −0.6. These results indicate that in this case
the QDs exhibit strong antiferromagnetic relationship, two
QDs form a local antiferromagnetic spin singlet.

From the above discussion, it can be inferred that the ferro-
magnetic and antiferromagnetic phase transition between QDs
is predominantly governed by a pair of competing energies,
namely, the interdot antiferromagnetic exchange coefficient
JAF and the RKKY interaction JRKKY. This competition be-
tween them induces a triplet-singlet transition at the critical
point. For our model, the two localized electrons in the paral-
lel QDs generate the RKKY interaction, which is mediated
by the itinerant electrons of the leads. Utilizing Rayleigh-
Schrödinger perturbation theory, to the fourth order in V , the
exchange coefficient of the RKKY interaction between QDs
can be expressed as [59,60]

JRKKY ∝ U (ρ0JK )2 = 64	2/(π2U ). (8)

Similarly, up to the second order in t12, the interdot an-
tiferromagnetic exchange coefficient can be expressed as
[see Eq. (A5)]

JAF = 2t2
12

[
1

U1 − U12 + (ε1 − ε2)
+ 1

U2 − U12 − (ε1 − ε2)

]
,

(9)

where U12 refers to the interdot Coulomb interaction. When
U12 → 0, Uj=U , and ε j = −U/2, then, Eq. (9) can be sim-
plified as

JAF ≈ 4 t2
12

/
U . (10)

Based on Eqs. (8) and (10), for the case of 	 = 0.04,
as t12 increases to 0.05, JRKKY ∼ JAF. Correspondingly, the
spin correlation curve 〈S1S2〉 will experience a ferromagnetic-
antiferromagnetic transition at the critical point, as plotted in
Figs. 2(a) and 2(b).

Due to the competitive relationship between � and JK ,
comparing Eqs. (8) and (10), � has an indirect inhibitory
effect on JRKKY but does not affect JAF. This new energy scale
� inevitably affects the AFM-FM phase transition process. To
understand this behavior, the schematic phase diagram in the
parameter space (t12, 	) is shown in Fig. 2(c). Additionally,
its inset illustrates the influence of different � values on the
AFM-FM phase transition boundary. Compared to the case
of � = 0, superconducting pairing potential can suppress the
RKKY interaction. It can be observed that, under the same
conditions of 	, increasing the value of � causes the phase
boundary to shift towards the direction with smaller t12.

In Fig. 2(d), we present the spectral functions of the QD for
different values of 	 when t12 = 0.04. When 	 � 0.02, there
is no YSR peak within the range of −� < ω < �. This can
be explained as follows. The position of peaks can be given
by the binding energy formula

E±
b = ±�

(1 − J̃2)

(1 + J̃2)
, (11)

where J̃ is the effective scattering potential in the Kondo
impurity model [61]. As 	 decreases to 0, J̃ → 0. So, one
can see that peaks gradually merge into the superconducting
gap edges. As 	 increases, the DQD transitions from anti-
ferromagnetic to ferromagnetic and, at the same time, two
YSR peaks gradually appear in the spectral function curves.
With further increase of 	, the Kondo temperature of the
system increases, causing the two YSR peaks to approach
each other and cross zero energy. This implies that the system
is undergoing a transition from doublet to Kondo singlet.
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FIG. 3. (a), (b) As t12 increases (decreases), the DQDs transition from ferromagnetic (antiferromagnetic) to antiferromagnetic (ferromag-
netic). (c) The evolution of spectral function curve of the QDs with increasing t12, the system parameters are the same as in Fig. 2.

The above discussion allows us to make the conclusion
that the magnetic order of QDs can be dynamically adjusted
by changing the coupling coefficient t12, and this goal can be
achieved by adjusting the gate voltage between QDs [22,48].
In Figs. 3(a) and 3(b), we draw a schematic diagram of differ-
ent spin correlation states between the QDs by adjusting the
coefficient t12. In order to investigate the evolution of YSR
states in the QDs system with the variation of spin correlation
states, in Fig. 3(c), we plot the spectral function curves of
the QD for various t12. It can be observed that when t12 is
relatively small, the spectral function exhibits four symmetric
peaks. The two outer peaks have relatively flat shapes and are
located at ω = ±�, indicating the value of the superconduct-
ing gap. Correspondingly, the two sharp inner peaks in the
gap correspond to the YSR states. This is due to the fact that
when t12 is small, the presence of the local magnetic moment
S of the QDs forms an equivalent magnetic field JS, thereby
suppressing the formation of superconducting Cooper pairs.
Meanwhile, the single-occupied electronic state of the QDs
and the quasiparticle states in the SCs form the subgap state,
namely, the YSR singlet. As t12 gradually increases, the two
single occupying electrons in DQDs tend to form localized
antiferromagnetic singlet instead of YSR singlet with the
quasiparticles in the superconducting electrode, resulting in
the disappearance of YSR state peaks, as shown in Fig. 3(c).
This physical mechanism is consistent with the evolution
trend reflected by the entropy and spin correlation curves in
Figs. 2(a) and 2(b).

Recently, Ding et al. manipulated multiple Gd atoms ar-
ranged on the surface of bismuth (Bi) superconducting thin
films using scanning tunneling microscopy (STM) probe tech-
nology, and observed the band structure of YSR states within
the superconductor gap [38]. By adjusting parameters such
as atomic distance, spin-orbit coupling strength, and surface
magnetic anisotropy, the researchers demonstrated the rela-
tionship between the tunability of spin-exchange interactions
and the precise control of YSR state hybridization. For par-
allel DQDs, the coefficient JAF can be adjusted using finger
gates array technology. By adjusting the relative strengths of

the exchange coefficients JRKKY and JAF, we can manipulate
the hybrid structure of YSR states, potentially leading to a
topological Kondo phase transition in a controlled system with
complex spin structures. Therefore, it can be inferred from the
above that in larger systems such as QD arrays, researchers
have the potential to utilize the high tunability of QD plat-
forms to create well-defined helical spin states and generate
MBSs at their ends. This will pave the way for future possi-
bilities in constructing TSC systems based on QDs [62,63].

Next, in order to investigate the effect of SCs on the
Josephson phase transition, we can adjust the value of
the superconducting gap � to induce the occurrence of
0-π transition phenomenon in this system. In Fig. 4, we
have investigated the effect of different � values on the
temperature-dependent curves of entropy and Josephson cur-
rent for different t12. In Figs. 4(a) and 4(c), we first consider
the case where the interdot coupling coefficient is relatively
small, i.e., t12 = 0.01. The solid black line in Fig. 4(a) shows
how the entropy of the system changes with temperature when
the electrode is in the normal metal state � = 0. It clearly
shows that SQD’s magnitude reduces in the stepwise manner,
following the decrease of temperature. And then, the corre-
sponding characteristic phase transition temperatures can be
defined. When the QD system is in the FOR, SQD = 2 ln4.
With the temperature decreasing, the system reaches the local
magnetic-moment regime. Herein, the empty states |0〉 and
double-occupied states |↑↓〉 are both suppressed, while the
two single-occupied states |↑〉 and |↓〉 appear with equal prob-
ability. As a result, the entropy is halved with SQD = ln4 =
2 ln2. At the step transition point between two entropy values,
we can define TU = (TS=2 ln4 + TS=ln4)/2. As the temperature
further reduces, the QD system enters ferromagnetic frozen
region (FFR) with total spin S = 1, due to the RKKY inter-
action. Consequently, the entropy further decreases to SQD =
ln(2S + 1) = ln 3. We can define a characteristic transition
temperature TF = (TS=ln4 + TS=ln3)/2. As the temperature
continues to drop, the total spin of the electrons in the DQDs
is screened by the free electrons in the electrode, the to-
tal spin of the QDs reduces from S = 1 to 1

2 , the system
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FIG. 4. (a), (b) The entropy of the system as a function of temperature for various � in the case of t12 = 0.01 and = 0.1, respectively. (c),
(d) The Josephson current as a function of temperature for different � in the cases of t12 = 0.01 and = 0.1, respectively. We take ε j = −U/2,
with other system parameters remaining the same as in Fig. 2.

enters strong coupling region, and the entropy decreases to
SQD = ln(2S + 1) = ln 2. The total spin of QDs is partially
screened, i.e., is an underscreening Kondo state composed of
a Fermi liquid with a residual spin 1

2 . Accordingly, we can
define a characteristic transition temperature TK = (TS=ln3 +
TS=ln2)/2, which corresponds to the Kondo temperature of the
system. When the temperature further decreases, the interdot
antiferromagnetic correlation mechanism gradually becomes
the dominant factor among the several competing correlation
mechanisms in the system. This results in the total spin of
the system being 0 and the entropy decreasing to 0. Corre-
spondingly, the characteristic temperature can be defined as
TAF = (TS=ln2 + TS=0)/2. When � gradually increases, the
entropy values of the QD stay on the different platforms,
which means that the system reaches different fixed points at
low temperatures. Specifically, when � = 0.0001 and 0.001,
the entropy flow curve of the QDs no longer reaches 0 at low
temperature, but remains constant after reaching a platform
with the value of ln2. However, with the � further increasing
(� = 0.01 and 0.1), the entropy remains constant, namely,
SQD = ln3, which means that the total spin S is unscreened at
low temperatures.

These interesting phenomena stem from the competition
among the characteristic energy scales of several electron
correlation effects in the this system. When t12 is relatively
small, JRKKY � JAF, which of the two fixed points is reached
by entropy flow depends on the competition between � and
TK . When � � TK , the stable Kondo fixed point entropy of
the DQD is ln2, indicating that the total spin S is under-
screened. The Josephson junction is in the 0-phase regime,
and the current amplitude is greatly suppressed, as shown in
Fig. 4(c). However, with further increase of �, it will have
the capability to suppress the Kondo effect when � � TK ,
and the entropy SQD = ln 3, indicating that the total spin S
is unscreened. Therefore, the current turns negative and its

absolute value significantly increases, indicating the presence
of a 0-π junction phase transition phenomenon.

When the interdot coupling coefficient is larger, i.e., t12 =
0.1, then JAF � JRKKY. As the temperature decreases, the
entropy SQD decreases to 0 for all values of �, as shown
in Fig. 4(b). However, there are several differences between
the curves for different �. First, when � = 0, the DQD is
in the antiferromagnetic singlet because the JAF becomes the
dominant mechanism among the several competing energies.
The RKKY mechanism is severely suppressed at this time.
Therefore, the entropy of the system is directly reduced from
ln4 to 0, and the platform with entropy equal to ln3 disap-
pears. However, when � �=0, the entropy curves experience
an obvious plateau SQD = ln3 in the process of temperature
reduction. It means that the temperature of the system is in
TF > T , and TF is the dominant characteristic temperature.
And then we can see that at even lower temperatures, SQD

goes to 0. This indicates that although the presence of the
� can facilitate the formation of RKKY, TAF is the dominant
characteristic temperature when the temperature is sufficiently
low. Second, all curves in Fig. 4(b) tend to have zero entropy at
almost the same temperature value. This is because when t12 is
large, the antiferromagnetic interaction becomes the dominant
mechanism, and the magnitude of � has little influence on
it. Therefore, with the increase of �, the Josephson current
of the system continuously increases from small to large and
maintains the positive current. There is no 0-π transition phe-
nomenon characterized by the reverse direction of Josephson
current, as shown in Fig. 4(d).

B. Delocalized control of YSR state and magnetic order of DQD

In Figs. 5(a) and 5(b), we plotted the Josephson current
and the interdot spin correlation 〈S1S2〉 as functions of the
superconducting phase difference ϕ. It can be seen from
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FIG. 5. (a) The Josephson current as functions of ϕ with various t12. (b) Spin correlation 〈S1S2〉 as functions of ϕ with various t12. (c)–(f)
The evolution of spectral function curve of the QDs with increasing ϕ for various t12. Other system parameters are set as ε j = −U/2.

Fig. 5(a) that the system gradually changes from π junction
to 0 junction when t12 increases. At the same time, the spin
correlation 〈S1S2〉 shows a gradual transition from ferromag-
netic to antiferromagnetic, as shown in Fig. 5(b). Interestingly,
in the two cases of t12 = 0.045 and t12 = 0.055, the system
is in the transition phase π ′ and 0′, and the current curves
present the kinklike feature. Additionally, when t12 = 0.045
(or t12 = 0.055), by adjusting the phase difference within
the range of 0.4π � ϕ � 1.6π (or 0.6π � ϕ � 1.4π ), the
value of 〈S1S2〉 changes from positive to negative, with a
magnitude of approximately −0.6. It means that there will
be a transition from ferromagnetic to antiferromagnetic be-
tween the single-occupied electrons located in the two QDs.
More importantly, this triplet-to-singlet transition is caused
by delocalized adjustment of the external electrode phase dif-
ference. In comparison to the manipulation of 0-π transition
through superconducting phase difference here, Ryzanov et al.

reported a thermally induced 0-π phase transition mechanism
[64,65]. In S/F/S Josephson junctions, the variation in tem-
perature can lead to a change in the coherence length due to
the relatively weak intermediate ferromagnetic layer, thereby
enabling the phase of the superconducting order parameter
in the ferromagnet to switch from 0 to π . Therefore, it is
believed that future theoretical and experimental studies may
reveal more sophisticated means of modulating Josephson
phase transitions.

In order to investigate the evolution of the YSR state in
the π -0 junction transition, in Figs. 5(c)–5(f), the spectral
functions of the QDs are presented with increasing ϕ under
various values of t12. When t12 = 0.01, as ϕ increases from 0
to π , the YSR state peaks gradually emerge within the gap,
and the heights of peaks increase. The position of the peak ex-
hibits a symmetry about ω = 0 and gradually approaches the
symmetry point, indicating that the YSR states will undergo
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FIG. 6. (a), (c) The Josephson current and the number of electrons in DQD as a function of the energy level δ, respectively. (b), (d) The
spin correlation functions 〈S1SL〉 and 〈S1S2〉 as a function of the energy level δ, respectively. Other system parameters are set as ϕ = π/2.

zero-energy crossover. Subsequently, as ϕ increases from π to
2π , the height and position of YSR peaks exhibits an opposite
trend compared to the previous situation, and gradually return-
ing to the shape of ϕ = 0. With t12 increasing from 0.045 to
0.1, as depicted in Figs. 5(d)–5(f), it can be observed that not
only does the YSR peak gradually transform from symmetric
about ω = 0 to asymmetric, but the parameter range with YSR
peaks also gradually diminishes and finally disappears com-
pletely in Fig. 5(f). This outcome is attributed to the gradual
formation of bonding and antibonding states of electrons in
QDs under the influence of t12 [36,66]. As discussed above,
the magnetic order and current direction in a DQD Josephson
junction can be adjusted by system parameters, such as t12.
Moreover, when t12 is fixed, we can manipulate the magnetic
order and YSR state in a “remote” manner by adjusting the
superconducting phase difference ϕ. This provides us with
an approach to delocalized control of YSR states, which is
different from STM probe technology [38].

The QD level is an important tunable parameter in our
model. Next, we will further determine the range of QD level
ε j , in which one can effectively adjust the magnetic order
mentioned above. In Figs. 6(a)–6(d), the curves of Josephson
current, the σ component of total number of electrons in the
QD molecule, and spin correlation functions are plotted as
functions of the QD energy level for various t12. The curves
of 〈S1SL〉 depicted here are analogous to 〈S1S2〉 in Fig. 2, and
it represents the spin correlation between QD-1 and the left
lead. Therefore, its thermodynamic expectation value can be
obtained by the formula [67] 〈S1SL〉 = 〈S1 · SL〉. Here, S1 =
1
2

∑
σ,σ ′ d†

1σ σ̂σ,σ ′d1σ ′ and SL = 1
2

∑
j,k,k′,σ,σ ′ a†

j,k,σ
σ̂σ,σ ′a j,k′,σ ′ ,

where σ̂ is a vector of Pauli matrices. Additionally, the value
of Nσ can be obtained using the following expression:

Nσ =
2∑

j=1

〈n jσ 〉, (12)

where 〈n jσ 〉 represents the σ component of particle number in
the QD- j. It can be obtained using standard Green’s function
techniques, as it is related to the lesser Green function:

〈n jσ 〉 = −i
∫

dω

2π
G<

jσ (ω). (13)

Here, we set δ = ε j + U/2. In Fig. 6(a), one can notice that
when t12 = 0.01, the shape of the current curve is almost
the same as that in the t12 = 0 case. When adjusting the
QD energy levels within the range of −0.2 � δ � 0.3, the
Josephson junction enters π phase, and the Josephson current
I is negative; correspondingly, the values of 〈S1SL〉 and 〈S1S2〉
are −0.04 and 0.2, respectively, as shown in Figs. 6(b) and
6(d). The results indicates that there is very weak antifer-
romagnetic correlation between QDs and electrodes, while
there is ferromagnetic arrangement between the electrons in
the QDs. This can be explained as follows: within this range
of δ, the Kondo effect is suppressed by the superconducting
correlation effect, and the local magnetic moment of the QDs
cannot be screened by the Kondo cloud. So, the curves of Nσ

(blue solid line) and Nσ̄ (blue dashed line) show a significant
difference, as shown in Fig. 6(c).

Now, let us shift our attention beyond this range, at δ ≈
±0.4, where the Josephson current curve in Fig. 6(a) has
two peaks. This is because the Kondo exchange coefficient
between the QD and the external electrode can be expressed
as [59]

JK = 2V 2
KF

(
1

|δ − U/2| + 1

|δ − U/2|
)

. (14)

When the QD energy level approaches δ = ±U/2, Kondo
temperature TK increases sharply. Therefore, the curve of
〈S1SL〉 in Fig. 6(b) has two small negative peaks and the value
of 〈S1S2〉 in Fig. 6(d) is suppressed at the same time. The
curves of Nσ and Nσ̄ in Fig. 6(c) tend to coincide, implying
that the local magnetic moment disappears.
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FIG. 7. (a), (b) Temperature dependence of the entropy with various t12 in the case of κ = 0.3 and κ = 0.4, respectively. (c) Temperature
dependence of the entropy with various κ in the case of t12 = 0.04. (d) Spectral function curves of the QD corresponding to (c). Other system
parameters remaining are taken to be ε j = −U/2, ϕ = π/2.

In contrast, when t12 increases to 0.1, the current curve
changes in two aspects: on the one hand, the π -phase region
around δ = 0 disappears; on the other hand, the shape of the
curve is no longer symmetrical. For the former change, the
underlying physical mechanism is not TK � �, instead, the
two single-occupied electrons in the QD form strong anti-
ferromagnetic correlation, resulting in the formation of local
spin singlet. However, the latter one is due to the presence
of bonding and antibonding states, which directly leads to
the loss of electron-hole symmetry in both current curves and
spectral function’s YSR states.

C. SU(4) Kondo effect and orbital YSR states

For real DQD systems, when the distance between two
dots is close, the interdot Coulomb interaction U12 may have
a significant modulating effect on the 0-π phase transition
and YSR states in the system. Additionally, it is challenging
to experimentally fabricate two QDs with precisely identical
properties, especially ensuring that both QDs have the same
onsite energy ε j . Therefore, we introduce new parameters κ

and U12 into the Hamiltonian HDQD in Eq. (2), representing
the onsite energy splitting and interdot Coulomb interaction,
respectively. Thus, the new form of the QDs Hamiltonian is
expressed as follows:

HDQD =
2∑

σ, j=1

ξ jd
†
jσ d jσ +

2∑
j=1

Ujn j↑n j↓ + U12n1n2

+
∑

σ

(t12d†
1σ d2σ + H.c.), (15)

where ξ1 = (ε1 + U1/2) + κ and ξ2 = (ε2 + U2/2) − κ . We
assume that the actual energy levels of two QDs are ξ j = ±κ ,
which means that the energy levels of the two QDs respect to
their respective electron-hole symmetric points ε j = −Uj/2

are shifted by ±κ . In Figs. 7(a)–7(c), we depict the entropy
of QDs as a function of temperature under various values of
κ and t12 when U12 = 0. First, by comparing Fig. 7(a) with
Fig. 2(a), it is evident that the introduction of level split-
ting κ can enhance the Kondo exchange coefficient JK when
U12 = 0. This results in the value of entropy flow at the low-
temperature fixed point decreasing from ln3 in Fig. 2(a) to ln2
here when t12 � 0.04. In other words, the total magnetic mo-
ment of the parallel DQDs transitions from unscreened state
to underscreened state. However, when t12 > 0.04, as shown
in Fig. 2(a), the QD molecule still forms an antiferromagnetic
singlet S = 0 due to the gradual dominance of antiferromag-
netic correlation energy. In Fig. 7(b), as κ increases to 0.4,
compared to Fig. 7(a), it is observed that at smaller values of
t12, specifically when t12 = 0.02, the magnetic order of the QD
molecule can enter the antiferromagnetic phase. Referring to
Eq. (A6) in the Appendix, it is noted that when κ is present, it
should be rewritten as follows:

JAF ≈ 4t2
12U

U 2 − 4κ2
. (16)

So, within a certain range, increasing κ can simultaneously
increase both JK and JAF. However, the higher the value of
t12, the faster JAF will increase. This is manifested that for
different t12 values, the system’s entropy flow corresponds to
different fixed points. In Fig. 7(c), we set t12 = 0.04 and con-
ducted a detailed investigation into the influence of different
strengths of κ on the system’s entropy flow, and plotted the
corresponding spectral function curves in Fig. 7(d). It is found
that even if t12 is fixed, as κ gradually increases, due to the
gradual increase in the Kondo temperature, the fixed points
of the entropy flow curve undergo some discontinuous transi-
tions from ln3 → ln2 → 0. The system also transitions from
the S = 1 triplet state to the S = 1

2 doublet state, and finally
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FIG. 8. (a) The Josephson current as a function of the QD energy level ξ1(2) with t12 = 0.04. (b) Schematic diagram of the energy levels
vary with κ for the isolated DQD system. (c) Schematic diagram of orbital YSR states arise from pseudospins and quasiparticles outside the
superconducting gap. (d) The evolution of spectral function curve of the QDs with increasing κ for U12 = 0.1. Other parameters are consistent
with those in Fig. 2.

to the S = 0 antiferromagnetic singlet state. Correspondingly,
the two symmetric YSR peaks within the superconducting gap
in Fig. 7(d) are gradually suppressed. Interestingly, at κ = 0.4,
two robust asymmetric new peaks reappear within the gap.

To investigate the physical mechanism behind the new
spectral peaks emerging within the superconducting gap, we
plotted a two-dimensional diagram of the Josephson current
as a function of the QD levels ξ1 and ξ2 under t12 = 0.04, as
shown in Fig. 8(a). It can be observed that with the variation
of the QD levels, there are a series of π -phase regions (dark
blue regions) divided by the current peaks. This is very similar
to the charge stability diagram divided by Coulomb peaks
when normal electrodes are connected [41]. In each hexagonal
region, the numbers of electrons (n, m) have been marked in
the diagram. Along this diagonal line ξ1 = −ξ2, there are three
regions with different electron filling configurations in the
diagram: (0,2), (1,1), and (2,0), corresponding to six different
electron states.

As κ increases, the spin singlet |S〉= 1√
2
[|↓1↑2〉−|↑1↓2〉]

and the spin triplet |T0〉= 1√
2
[|↓1↑2〉+|↑1↓2〉], |T−〉 = |↓1↓2〉,

|T+〉 = |↑1↑2〉 remain fourfold degenerate, with energy eigen-
values E0 = U12. But, the other two states |D1〉 = |↑1↓1〉,
|D2〉 = |↑2↓2〉 exhibit level splitting as κ increases, with en-
ergy levels E1(2) = U − U12 ± 2κ . When κ0 = U/2 − U12, as
indicated by the light red arrows in Figs. 8(a) and 8(b), a five-
fold degeneracy emerges within the DQD molecule, namely,
the four spin states associated with the (1,1) occupancy and
one orbital state of (0,2) occupancy form a fivefold degener-
acy, and the pseudospin-flip events for (1,1)↔(0,2) can lead to

a Kondo correlation effect. When the spin and orbital degrees
of freedom satisfy the SU(4) symmetry, their strong mixing
yields a SU(4) Kondo effect. At this time, the pseudospin
states in the DQD molecule can also form YSR states with
quasiparticles outside the superconducting gap, similar to gen-
uine localized spins, which are called the orbital YSR states,
as shown in Fig. 8(c). When there is interdot Coulomb interac-
tion between the DQDs, the degeneracy point κ0 will decrease
with the increase of U12. In Fig. 8(d), it can be observed that
when U12 = 0.1, as κ increases from 0.1 to 0.4, the spin YSR
states are gradually suppressed. However, when κ = 0.3, a pair
of asymmetric orbital YSR peaks appears. When κ increases
to 0.4, the spin YSR peaks gradually recover.

To further clarify that the two types of YSR peaks originate
from different physical mechanisms, we apply an external
magnetic field to the QDs, which can suppress the spin Kondo
effect but does not affect the orbital Kondo effect. We expect
that the orbital YSR peaks will remain fixed at the original
position κ0 = U/2 − U12. In Figs. 9(a) and 9(b), it can be ob-
served that along the diagonal line where ξ1 = ξ2, i.e., κ = 0,
the Josephson current peaks originally presented in Fig. 8(a)
have disappeared due to the effect of the magnetic field. On
the other hand, due to the Zeeman splitting of the triplet
energy levels, the energy level of the |T+〉 state becomes E+ =
U12 − 2EZ (where EZ represents the Zeeman energy), and
it undergoes singlet-triplet degeneracy with the energy level
E2 = U − U12 − 2κ of the |D2〉 state at κ0 = U/2 − U12 +
EZ . Therefore, a pair of new current peaks emerges at κ = 0.6,
as indicated by the light red arrow in Fig. 9(a). In Fig. 9(c),
it can be observed that at ε1 = ε2 = −U /2, i.e., κ = 0, the
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FIG. 9. (a) Josephson current as a function of the QD level ξ1(2) when Zeeman energy EZ = 0.2. (b) Schematic diagram of the energy
levels of an isolated DQD system as functions of κ . (c) Spectral function curves of the QD with various EZ in the case of κ = 0 and t12 = 0.04.
(d) The evolution of spectral function curve of the QDs with increasing κ for U12 = 0. Other parameters are the same as those in Fig. 8.

spin YSR peaks originally existing in the superconducting gap
gradually disappears with the increase of Zeeman energy EZ .
However, in Fig. 9(d), as κ is adjusted to the quantum phase
transition (QPT) point at κ = 0.4, the |D2〉 state degenerates
with the |S〉 and |T0〉 states, which also have a total spin S = 0.
As a result, the orbital YSR peaks still emerge as expected.

Recently, Xia et al. investigated the YSR states of the
molecular magnet Tb2Pc3 on a superconducting Pb(111) sub-
strate [39]. The experimental results reveal the presence of
two distinct YSR states with different physical origins in
the system. Moreover, as the tunneling current of the STM
tip varies, these two pairs of YSR resonance peaks exhibit
significantly different behaviors in terms of their energy-level
positions and intensities. The energy positions of a pair of
YSR peaks on the inner side strongly depend on the tip height
of STM, while another pair of peaks on the outer side only
shows slight movement. Theoretical calculations reveal that
these two sets of YSR states originate from ligand spin and
higher charge fluctuations in unoccupied molecular orbitals,
coexisting within a single molecule. Based on these experi-
mental reports, we believe that the theoretical research results
of this paper can provide unique insights into the different
mechanisms of YSR states in experiments.

IV. SUMMARY

In summary, by using the NRG technique, we have the-
oretically investigated the 0-π phase transition and the YSR
state in a parallel-coupled DQD Josephson junction. The cal-
culation results show that there are many kinds of competing
and cooperating electron correlation effects in this model.
By adjusting the interdot coupling coefficient t12, the relative
magnitude of the JRKKY and JAF can be changed, and the

0-π phase transition behavior of Josephson junction can be
affected.

First of all, when the value of t12 is relatively small,
JRKKY � JAF, the magnetic order of the QD molecular
exhibits ferromagnetic behavior. At low temperature, the en-
tropy of QDs is manifested as the residual entropy of ln2 or
ln3. It depends on the competition between the characteristic
energy scales � of superconducting pairing potential and the
Kondo temperature TK in the system. When TK � �, the
entropy of stable Kondo fixed point at low temperatures is
ln2, indicating that the superconducting electrodes are under-
screened with respect to the QD molecule. The Josephson
junction is in the 0-phase regime, and the current ampli-
tude is greatly suppressed. Conversely, when TK � �, the
low-temperature fixed point of the system corresponds to an
entropy of ln3, indicating that the superconducting electrodes
are in completely unscreened states with respect to the QD
molecule. The Josephson junction is in the π -phase regime,
and the critical Josephson current IC amplitude increases with
increasing �.

Second, when the value of t12 is relatively large, JRKKY �
JAF, the magnetic order of the QD molecule presents antifer-
romagnetic arrangement. In this case, the RKKY interaction
between the electrons is severely suppressed, and the entropy
of the system eventually approaches 0 when the temperatures
are sufficiently low. With the increase of �, the Josephson
current of the system gradually increases and remains consis-
tently positive, and there is no 0-π transition phenomenon in
the Josephson junction.

Third, we find that the transition between singlet and triplet
states can be controlled by adjusting the phase difference
ϕ of the superconducting electrode even if t12 is fixed. We
can use it to regulate the magnetic order and YSR states of
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the DQDs in a delocalized manner. This physical mechanism
can be applied to construct and regulate the superconducting
nanodevices and quantum bits.

Finally, by adjusting the QD energy level ξ1(2) = ±κ , when
the level detuning value κ is at the degeneracy point, the
spin and orbital degrees of freedom satisfy the SU(4) sym-
metry. Their strong mixing yields an SU(4) Kondo effect.
The spectral function of QDs will show YSR peaks in the
superconducting gap caused by different Kondo correlations.
By applying an external magnetic field, we have confirmed
the underlying physical mechanisms behind the emergence of
this orbital Kondo YSR peak.
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APPENDIX: DERIVE EXCHANGE COEFFICIENT JAF IN
THE DQD-SYSTEM USING THE PERTURBATION THEORY

Considering an isolated DQD system, the QDs are con-
nected by the interdot coupling coefficient t12, and the
Hamiltonian can be expressed as

HDQD =
2∑

σ, j=1

ε jd
†
jσ d jσ +

2∑
j=1

Ujn j↑n j↓ + U12n1n2

+
∑

σ

(t12d†
1σ d2σ + H.c.), (A1)

where U12 and Uj represent the interdot and intradot Coulomb
interactions in the DQD system, respectively. To investigate
the antiferromagnetic exchange coefficient JAF between QDs,
we consider the charge occupation configurations in the cou-
pled DQDs: (1,1), (0,2), and (2,0). These correspond to six
different basis vectors:

|1〉 = |S〉 = 1√
2

[|↓1↑2〉 − |↑1↓2〉], (A2a)

|2〉 = |T0〉 = 1√
2

[|↓1↑2〉+|↑1↓2〉], (A2b)

|3〉 = |T−〉 = |↓1↓2〉, (A2c)

|4〉 = |T+〉 = |↑1↑2〉, (A2d)

|5〉 = |D1〉 = |↑1↓1〉, (A2e)

|6〉 = |D2〉 = |↑2↓2〉. (A2f)

Exact diagonalization of the Hamiltonian in Eq. (A1) in
the basis of six states above enables us to obtain the effective
Hamiltonian matrix

Ĥ eff
D = Ê0 +

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −√
2t12 −√

2t12

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−√
2t12 0 0 0 E1 0

−√
2t12 0 0 0 0 E2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A3)

Here Ê0 = (U12 + ε1 + ε2)Î , E1 = U1 − U12 + ε̃, E2 = U2 −
U12 − ε̃, ε̃ = ε1 − ε2, and Î is the unit matrix.

In considering the relative magnitudes of parameters in
typical coupled QDs, where Uj � t12 and Uj � U12, we can
utilize Rayleigh-Schrödinger perturbation theory to calculate
second-order corrections in t12 to the energy of a state [60].
Up to the second order in t12, the energy correction for state
|n〉 of the DQD is

E (2)
n =

m∑
m �=n

〈n|Hc|m〉〈m|Hc|n〉
En − Em

. (A4)

We consider the second-order energy corrections between
the singlet state |S〉 = 1√

2
[|↓1↑2〉 − |↑1↓2〉] and the triplet

state |T 〉, denoted by E (2)
S and E (2)

T , respectively. We de-
fine the interdot antiferromagnetic exchange coefficient as
JAF = E (2)

S − E (2)
T . Thus, it can be expressed as follows:

JAF = E (2)
S − (

E (2)
T0

+ E (2)
T+ + E (2)

T−

)
= 2t2

12

[
1

U1 − U12 + (ε1 − ε2)
+ 1

U2 − U12 − (ε1 − ε2)

]

= 2t2
12

[
1

U1 − U12 + ε̃
+ 1

U2 − U12 − ε̃

]
, (A5)

where ε̃ = ε1 − ε2. If U12 � Uj and the parameters of the two
QDs are completely symmetric, namely, U1 = U2 = U and
ε1 = ε2. Then,

JAF ≈ 4t2
12

U
. (A6)
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