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Modulation of radiative heat transfer by higher-order topological phonon polaritons
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Topological optical states are promising in waveguiding, sensing, and information processing which are local-
ized over the boundaries and robustly protected by the band topology. Topological phonon polaritons (TPhPs),
as a special type of topological optical states, have been shown to play a vital role in modulating radiative heat
transfer in many-particle systems. In this paper, we propose subwavelength lattices composed of identical SiC
nanoparticles (NPs) which support phonon polaritons to mimic the 2D Su-Schrieffer-Heeger (SSH) model. By
using the coupled-dipole model and taking all the near- and far-field dipole-dipole interactions into account, we
numerically calculate the band structures of the NP arrays under periodic boundary conditions (PBCs) and study
the topological properties of the NP arrays characterized by their 2D Zak phases. Subsequently, we confirm
the existence of edge states and high-order corner states in the topologically nontrivial 2D SSH lattices under
open boundary conditions (OBCs), which are protected by the nonzero 2D Zak phases and consistent with the
bulk-edge-corner correspondence. The radiative heat transfer between certain NPs is calculated based on many-
body radiative heat transfer theory. We demonstrate that these high-order TPhPs can considerably modulate
long-range radiative heat transport by constructing the topological “heat guiding” systems made of NP arrays
with different boundary conditions. Moreover, by decomposing the radiative heat flux into two parts according
to the polarization directions of dipoles, we find that the high-order TPhPs play different roles in the in-plane
and out-of-plane components. We further show the modulation effect can robustly exist in the topologically
nontrivial lattice by introducing defects and disorders. Our study provides an in-depth understanding on the
near-field radiative heat transfer in many-particle systems with high-order topological properties.
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I. INTRODUCTION

The discovery of topological phase of matter leads to
a new perspective on the understanding and classification
of condensed matter beyond the Landau’s approach which
characterizes states in terms of underlying symmetries [1].
In this paradigm, each gap in the band structure of matter
can be labeled by its topological invariant, which describes
the topological properties of matter [2,3]. One of the most
important properties in this perspective is the existence of
edge states at the interface between two systems with dif-
ferent topological invariants, which is immune against local
perturbations due to the global robustness of the topological
invariants. The novel edge states supported by the materials
with topologically nontrivial properties, dubbed as “topologi-
cally protected edge states,” provide potential applications in
quantum computing and quantum storage for the resilience
against control errors and perturbations [4–6], broadband and
high-performance detectors [7–9], efficient and energy-saving
field-effect transistors [10–12], etc. The relation between the
topological properties and the emergence of edge states can be
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characterized by the bulk-boundary correspondence [13], i.e.,
n-dimensional (nD) topological insulators (TI) have (n − 1)D
localized edge states. Recently, high-order topological insula-
tor (HOTI) has received growing interest as it supports edge
states localized in lower dimension which goes beyond the
conventional bulk-boundary correspondence [14–16]. To be
specific, the mth-order TIs have nD gapped bulk states and
(n − 1)D, (n − 2)D, . . . , (n − m + 1)D gapped edge states
while having (n − m)D gapless edge states [17].

The high-order topology has been extensively studied in
many other classical wave systems including acoustic [18,19],
mechanical [20], phononic [21] systems, etc. In particular,
the topological photonic system offers a fascinating platform
for investigating high-order topology in which the topologi-
cal behavior of electromagnetic wave can be well mimicked
and experimentally observed in a relatively easier and highly
controllable way. A number of studies regarding the high-
order topological optical states have been carried out more
recently. The topologically protected boundary states, which
are localized in lower dimensions than predicted by the con-
ventional bulk-boundary correspondence, can be supported in
well-designed dielectric photonic crystals [17,22–26], plas-
monic nanocavities [27,28] and nanoparticle arrays [29]. The
proposed topological photonic systems have shown great
capabilities in wave guiding [30,31], sensing [32,33], topo-
logical lasing [34], and information processing [35].
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Typical topological photonic systems are composed of
discrete arrangement of resonant elements, which provide
ideal platforms for investigating the role of topological op-
tical states in thermal radiation transport in the framework
of many-body radiative heat transfer [36–40]. In particular,
previous studies have revealed that the topological phonon po-
laritons (TPhPs) can considerably enhance near-field radiative
heat transfer (NFRHT) between nanoparticles (NPs) as they
may provide extra channels for NFRHT. Biehs and coworkers
[41] investigated radiative heat transfer and the scaling law
between the two ends of topologically trivial and nontrivial
Su-Schrieffer-Heeger (SSH) chains composed of plasmonic
InSb spherical NPs, they presented a dominant contribution
of the edge states in a topologically nontrivial SSH chain.
Two of the authors [42] proposed SiC NPs chains mimicking
the Aubry-André-Harper (AAH) model, which also exhibit an
enhancement in NFRHT in those chains with topologically
nontrivial configuration, and a semi-analytical explanation
was presented. However, except for a few studies which paid
their attention to topological optical states in 2D or quasi-2D
many-particle radiative heat transfer systems [42–45], most
of the previous studies have focus on NFRHT in 1D systems
[41,46–53]. More importantly, a thorough investigation of the
effects of high-order optical states on radiative heat trans-
fer, including how the long- and short-range dipole-dipole
interactions as well as the boundaries can affect the radiative
transport, is still lacking.

In this work, we propose subwavelength lattices com-
posed of identical SiC NPs which support phonon polaritons
to mimic the 2D SSH model. By employing the coupled
dipole approach, which takes into account the long-range
dipole-dipole interactions and retardation effects in the NP
arrays, we obtain the band structures of the lattices under
periodic boundary conditions (PBCs). The topological prop-
erties of the lattices are then characterized by the 2D Zak
phases of their energy bands, and the numerical results in-
dicate that the lattices with certain geometrical parameters
have nonzero 2D Zak phases as expected in electronic sys-
tems, which can be recognized as topologically nontrivial.
We confirm the existence of high-order TPhPs under open
boundary conditions (OBCs), which is consistent with the
principle of bulk-edge-corner correspondence. The radiative
heat transfer spectra between NPs are calculated based on
the many-body radiative heat transfer theory. We show that
the power spectra of the topologically nontrivial lattices are
appreciably modulated comparing to that of topologically
trivial lattices due to the existence of TPhPs. To further re-
veal the roles that TPhPs play in NFRHT, three kinds of
interfaces are constructed, and the contributions of in-plane
(IP) mode and out-of-plane (OP) are discussed separately.
The numerical results indicate that the high-order TPhPs
play dominant roles in radiative heat transfer between the
corner NPs while the edge states have negligible impact on
it. Moreover, we find that the TPhPs show a moderate ro-
bustness against perturbation by introducing random disorder
and defects in the lattice. Our study provides a comprehen-
sive understanding on the NFRHT in many-particle systems
with high-order topological properties and hence a new ap-
proach to modulate NFRHT on the perspective of high-order
topology.

(a) (b) (c)

FIG. 1. (a) Schematic of the lattice structure, (b) the unit cell
and geometrical parameters, (c) high symmetry points in the first
Brillouin zone.

II. MODEL

The 1D SSH model is abstracted from the electron hop-
ping in polyacetylene [54], which can be considered as a
dimerized chain, and the relative strength between inter- and
intracell hopping determines the topological properties of the
chain. The 2D SSH model is an extension of the 1D SSH
model, which can be constructed by SSH chains in two or-
thogonal directions. In this paper, we consider 2D arrays
composed of identical spherical α-SiC nanoparticles which
support strongly localized phonon polariton resonances in
the infrared region due to the excitation of transverse optical
phonons. All the NPs are confined in xy plane, as shown in
Fig. 1(a). To mimic the 2D SSH model, 4 NPs form a unit cell
in which the lattice constants in x and y direction are ax and ay,
as illustrated in Fig. 1(b). The first Brillouin zone (FBZ) of the
NP arrays and high symmetry points in FBZ are illustrated in
Fig. 1(c). The intracell hopping is denoted by the black solid
lines, while the intercell hopping is denoted by the red solid
lines. The hopping strength is regulated by the interparticle
distances in both x and y direction, which can be recognized
as dimerization in the 2D SSH model. Note that in addition to
the nearest-neighbor hopping, which is generally considered
in the conventional 2D SSH model, here we also take into
account the long-range interactions between the NPs in the
array.

We define βi = di/ai, i = x, y to describe the degree of
dimerization, the other parameters are set as ax = ay = 0.1λ0,
in which λ0 is the resonance wavelength of a single SiC NP
and the radii of the NPs are 78 nm. In this paper, we limit our
discussion under the condition that the degree of dimerization
is the same along x and y directions, i.e., βx = βy = β.

A. Derivation of the eigenfrequencies and eigenstates

The SiC NPs with radii R in the 2D array are located at
points ri = (xi, yi, zi ), i = 1, 2, 3, . . . , N . The permittivity of
SiC can be described by the Lorentz model as [55]

εp(ω) = ε∞

(
1 + ω2

L − ω2
T

ωT − ω2 − iωγ

)
, (1)

in which ω is the angular frequency of the driving electric
field, ε∞ = 6.7 is the high-frequency limit of permittivity,
ωT = 790 cm−1 is the angular frequency of transverse optical
phonons (cm−1 is used as the unit of angular frequencies
for brevity), ωL = 966 cm−1 is the angular frequency of
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longitudinal optical phonons and γ = 5 cm−1 is the nonradia-
tive damping coefficient (decay rate or linewidth) [55]. The
electrical response of each NP can be characterized by its
polarizability and can be expressed as [56]

α = 4πR3α0

1 − 2iα0(k0R)3/3
, (2)

where k0 = ω/c denotes the norm of the free-space wave
vector and α0 = (εp − 1)/(εp + 2). By substituting Eq. (1)
into Eq. (2), the resonance frequency of a single SiC NP can
be obtained, i.e., ωres = 928.5 cm−1.

When the distance between the centers of the nearest NPs
is greater than 3R, each NP can be approximately treated as
an electric dipole [57]. The electric response of the entire NP
array can be calculated by a set of coupled equations which re-
late the incident electric field and the electric dipoles [58,59],
i.e.,

p j (ω) = α(ω)Einc(ω, r j )

+ α(ω)
ω2

c2

N∑
i=1,i �= j

Ĝ0(ω, r j, ri )pi(ω), (3)

where p j is the excited electric dipole moment of jth NP,
Einc is the incident external electric field and Ĝ0(ω, r j, ri ) is
the free-space Green’s tensor which describes the propagation
of field emitted from ith NP to jth NP. The electric-electric
Green’s function (GF) takes the form [60]

Ĝ0,i j : = Ĝ0(ω, r j, ri )

= eik0ri j

4πri j

[(
1 + i

k0ri j
− 1

k2
0ri j

2

)
I

+
(

−1 − 3i

k0ri j
+ 3

k2
0r2

i j

)
ri j ⊗ ri j

r2
i j

]
, (4)

where ri j = |ri − r j | is the distance between jth and ith NP.
In this scenario, we take both the near-field and the far-field
dipole-dipole interactions into account, which is beyond the
nearest-neighbor approximation [61] or next-nearest-neighbor
approximation [62] in conventional SSH models in electronic
system.

According to the polarization directions of the dipoles, we
decompose the modes into OP part and IP part. Since all the
NP lies in the xy plane, GF can be decomposed into the z
part (OP) and the xy part (IP), respectively. For OP mode, GF
degenerates to a scalar and can be expressed as

Ĝz
0,i j = eik0ri j

4πri j

[(
1 + i

k0ri j
− 1

k2
0r2

i j

)]
. (5)

For IP mode, GF degenerates to a 2 × 2 tensor which can be
expressed as

Ĝxy
0,i j = eik0ri j

4πri j

[(
1 + i

k0ri j
− 1

k2
0ri j

2

)
I

+
(

−1 − 3i

k0ri j
+ 3

k2
0r2

i j

)
ρ̂ i j⊗ρ̂ i j

|ρ̂ i j |2
]
, (6)

here ρ̂ is a two-dimensional vector satisfying r̂i j = ρ̂ i j +
(zi − z j )ẑ.

Consider

G0 =

⎡⎢⎢⎢⎣
0 Ĝ0,12 · · · Ĝ0,1N

Ĝ0,21 0 · · · Ĝ0,2N
...

...
. . .

...

Ĝ0,N1 Ĝ0,N2 · · · 0

⎤⎥⎥⎥⎦ (7)

as the interaction matrix and |P〉 = [p1, p2, p3, . . . , pN ]T

as the dipole moment distribution, |E〉 =
[Einc,1, Einc,2, . . . , Einc,N ]T as the incident electric field
vector. The coupled-dipole equations can be written in a more
compact form, i.e.,

|P〉 = α
[|E〉 + k2

0G0 · |P〉]. (8)

For the finite NP arrays, the eigenstates can be determined
by setting the incident field to be zeros. And the equation is
then simplified to an eigenvalue problem:

k2
0G0|P〉 = α−1(ω)|P〉. (9)

By solving the above equation, a series of complex eigen-
values can be obtained as ωi = ω̃i − i
i/2, in which ω̃i is
the eigenfrequency and 
i is the decay rate of ith state. The
corresponding eigenvector is the dipole moment distribution
of the state.

Notice that the topological protected eigenstates are highly
localized over the interfaces between topologically trivial and
nontrivial regions, we use the inverse participation ratio (IPR)
[47,63–65] to recognize these states and the IPR of a state is
defined as

IPR =
∑

N
i=1|pi|4

(
∑

i = 1N |pi|2)2
. (10)

The dipole moment distribution of an eigenstate with IPR =
1/M (M is a positive integer) can be equivalently regarded as
evenly distributed over M NPs [63]. Therefore, for a highly
localized topologically nontrivial state, its IPR will be much
larger than a bulk one.

To obtain the eigenstates and dipole moment distributions
for 2D arrays under PBCs, we apply Bloch theorem to Eq. (8),
and the dipole moment distribution takes the form

|P〉 = [. . . , p(m,n,1), p(m,n,2), p(m,n,3), p(m,n,4), . . .]
T, m, n ∈ Z. (11)

where p(m,n,i) is the dipole moment of the ith NP of (m, n)th cell. According to the Bloch theorem,

p(m,n,i) = eiRmn·(k+K)pi, i = 1, 2, 3, 4, and m, n ∈ Z, (12)
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where Rmn = m · ax + n · ay denotes the position vector of
(m, n)th unit cell, k is the Bloch wave vector in the FBZ
and K is the reciprocal lattice vector. The coupled dipole
equation can be expressed in terms of the Bloch part of the
dipole moment (|Pk〉 = [p1, p2, p3, p4]T)

k2
0Gk |Pk〉 = α−1(ω)|Pk〉, (13)

where

Gk =

⎡⎢⎢⎣
Ĝk,11 Ĝk12 Ĝk,13 Ĝk,14

Ĝk,21 Ĝk,22 Ĝk,23 Ĝk,24

Ĝk,31 Ĝk,32 Ĝk,33 Ĝk,34

Ĝk,41 Ĝk,42 Ĝk,43 Ĝk,44

⎤⎥⎥⎦ (14)

is the GF of the entire lattice under PBC. The diagonal terms
in Gk can be calculated as

Ĝk,ii(ω) =
∑

m,n∈Z,
Rmn �=0

Ĝ0(ω, Rmn, 0)eik·Rmn

=
∑

m,n∈Z,
Rmn �=0

eik0Rmn+ik·Rmn

4πRmn

[(
1 + i

k0Rmn
− 1

k2
0R2

mn

)
I

+
(

−1 − 3i

k0Rmn
+ 3

k2
0R2

mn

)
Rmn ⊗ Rmn

R2
mn

]
,

(15)

and the off-diagonal terms can be expressed as

Ĝk,i j (ω) =
∑

m,n∈Z
Ĝ0(ω, Rmn, si j )e

ik·Rmn =
∑

m,n∈Z
Ĝ0
(
ω, Si j

mn, 0
)
eik·Rmn

(
let Si j

mn = Rmn − si j
)

=
∑

m,n∈Z

eik0Si j
mn+ik·Rmn

4πSi j
mn

[(
1 + i

k0Si j
mn

− 1(
k0Si j

mn
)2
)

I +
(

−1 − 3i

k0Si j
mn

+ 3(
k0Si j

mn
)2
)

Si j
mn ⊗ Si j

mn

(Si j
mn)2

]
, (16)

where {i, j}i �= j ∈ {1, 2, 3, 4} and si j is the position vector from
ith NP to jth NP in a unit cell.

The eigenfrequencies and corresponding dipole moment
distributions of periodic NP array can be obtained by solving
the eigenvalue problem in Eq. (13). The 1/r term in the series
makes the GF converges slowly in real space, hence, we ap-
ply Poisson’s summation and Ewald’s summation method to
achieve a faster convergence, detailed derivation can be found
in Appendix B and also in Ref. [35].

B. Band topology

We plot the IP mode and OP mode band structures of 2D
SSH NP arrays under PBCs with β = 0.25 (0.75) and 0.5 re-
spectively in Fig. 2, where the color indicates the normalized
imaginary parts of the eigenstates via (
i − γ )/γ . As can be

FIG. 2. The IP mode (left column) and OP mode (right column)
band structures under β = 0.25, 0.5, and 0.75.

seen in the figure, the 2D SSH lattices with β = 0.75 and
β = 0.25 share the same band structure, since their geomet-
rical structures are exactly the same. For both the IP mode
and OP mode band structures, their energy bands are divergent
near the light line (the dash lines in the subfigures) due to the
strong coupling with free-space radiation from the long-range
dipole-dipole interaction as well as the retardation effect. For
the lattice under β = 1/2, the primitive cell contains only 1
NP, which results in the double and quadrupole degenerate
states at high symmetry points. Eight and four bands are
observed in IP mode and OP mode band structures respec-
tively, this is because the NPs can be polarized along x and
y directions in IP mode while can only be polarized along z
direction in OP mode. Besides, since the stronger near-range
dipole-dipole interaction in IP mode, the eigenfrequencies
cover a wider range than that of OP mode, and the discon-
tinuity of energy bands near light line is not that obvious as
in OP mode for the lack of 1/r term. It is worth mentioning
that the nonconvergence in both the IP mode and OP mode
band structures is obtained from rigorous calculation, which
is generally ignored by many of the derivations [41,66,67].

The 2D Zak phase (θi, i = x, y) can be used to reveal the
topological properties of the 2D SSH model [35,61,68,69].
The topological edge states are expected to emerge in the
lattices under OBCs when any of θx or θy is nonzero. Fur-
thermore, when a lattice features both nonzero θx and nonzero
θy, the corner states are expected to emerge in the lattice under
OBC. In this paper, the 2D Zak phase is numerically obtained
by means of Wilson loop (see details in Appendix A). We can
clearly observe that the Zak phase for the first and third gap in
OP mode is quantized as a function of βx and βy, and can be
expressed as:

θi =
{

0, 3R/ai � βi < 1/2

1, 1/2 < βi � 1 − 3R/ai
for i = x, y, (17)
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which is consistent as in the electron system considering
nearest-neighbor interaction. Hence, we can conclude that the
topological behaviors in the conventional 2D SSH model are
still valid in the photonic system composed of SiC NPs with
the consideration of long-range interactions.

Parities of lattices with β = 0.25(0.75) and β = 0.5 are
marked in Fig. 2, the two lattices share the same band structure
while opposite parities at X point in the FBZ. In the mean-
while, during the variation of β from 0.25 to 0.5 and then 0.75,
the band gap between the 3rd and 4th band is firstly closed at
Dirac point and then reopened, which indicates a topological
phase transition from trivial phase to nontrivial phase [26,70].

C. Calculation of heat transfer rate

Within the dipole approximation, the radiative heat transfer
rate between the NPs can be calculated based on fluctuation-
dissipation theorem (FDT) in the theoretical framework of
many-body radiative heat transfer theory [36–38,71–75]. The
coupled dipole model with fluctuating dipoles due to thermal
excitation can be expressed as [36]

|E〉 = μ0ω
2G0|Pfl〉 + k2

0G0|αE〉, (18)

in which |Pfl〉 is the fluctuating dipole moment. The physical
significance of the first term in the RHS of Eq. (18) is the
direct propagation of the dipole field from the source and the
second term indicates the scattering processes from the other
NPs due to the exciting electrical fields. The propagation of
electromagnetic waves can be considered from the fluctuat-
ing dipole by the total GF G which includes the many-body
scattering processes, which reads

|E〉 = k2
0G|Pfl〉 = k2

0

(
I − αk2

0G0
)−1

G0|Pfl〉. (19)

The total GF can be written as

G = (I − α k2
0G0

)−1
G0 =

⎡⎢⎢⎢⎣
0̂ Ĝ12 . . . Ĝ1N

Ĝ21 0̂ . . . Ĝ2N
...

...
. . .

...

ĜN1 ĜN2 . . . 0̂

⎤⎥⎥⎥⎦,

(20)

where Ĝi j, i �= j is the 3 × 3 composing matrix block of the
total GF.

By using FDT, the heat transfer rate from jth NP to ith NP
is given by

P j→i = 3
∫ ∞

0

dω

2π
�(ω, Tj )Ti, j (ω), (21)

in which �(ω, Tj ) = h̄ω
exp(h̄ω/kbT )−1 is the energy of Planck

oscillator with h̄ and kb being the Planck constant and Boltz-
mann constant respectively, and the transmission coefficient
(TC) is defined as:

Ti, j (ω) = 4

3

(ω

c

)4
χiχ jTr(Ĝi jĜ

†
i j ), (22)

where χi = Im(αi ) − k3
0 |αi|2
6π

is the susceptibility of the
isotropic NPs [72]. Since all the NPs are confined in xy plane,
the nonzero elements in Ĝi j can be decomposed into the xy

and z parts:

Ĝi j =
[

Ĝxy
i j 0̂2×1

0̂1×2 Ĝz
i j

]
(23)

and the total radiative heat transfer can be recognized as the
sum of radiative heat transfer through IP mode and OP mode.
The corresponding TC is given by

T IP
i, j (ω) = 4

3

ω4

c4
χiχ jTr

(
Ĝxy

i j Ĝ†,xy
i j

)
,

T OP
i, j (ω) = 4

3

ω4

c4
χiχ jTr

(
Ĝz

i j Ĝ
†,z
i j

)
. (24)

III. FINITE 2D SSH LATTICES

According to Eq. (17), the 2D Zak phase is (π , π ) for
lattice with β = 0.75 and (0, 0) for lattice with β = 0.25
under PBCs, which are considered to be topologically trivial
and nontrivial. According to the bulk-edge-corner correspon-
dence, the topological edge and corner states (TPhPs and
high-order TPhPs) are expected to emerge at the interface be-
tween topologically nontrivial and topologically trivial region
when applying OBCs to the lattices.

To study the effects of 2D Zak phases on the eigenstates
(dipole moment distributions) of the 2D SSH lattices under
OBCs, we construct finite 2D NP arrays with topologically
trivial and nontrivial properties in this section. The nontrivial
region can be realized by setting β = 0.75 in the finite 2D
SSH lattice. For the construction of trivial region, we have two
approaches, i.e., the vacuum whose 2D phase is naturally zero
and the 2D SSH lattice with β = 0.25. To study the influence
of these two kinds of trivial regions on eigenstate spectra and
radiative heat transfer, we consider the following three cases,
illustrated in Fig. 3, on the basis of the finite 2D SSH lattice
with β0 = 0.75: the individual 2D SSH lattice surrounded by
vacuum (Case I), the joint lattice which is constructed through
connecting one side of the original lattice to another 2D SSH
lattice whose β = 0.25 (case II), and the joint lattice which
is constructed through surrounding the original lattice with
another 2D SSH lattice whose β = 0.25 and forming a larger
nested square lattice (case III). In this paper, we call the con-
figurations of the lattices in these three cases “topologically
nontrivial,” and the configurations “topologically trivial” after
we substitute the nontrivial region in these cases with finite
lattice whose β = 0.25. Without causing ambiguity, we will
simply refer to them as nontrivial lattices and trivial lattices
respectively in the following discussion. NPs in the 4 corners
of the original finite 2D SSH lattice are labeled as NP A, B, C,
and D, as illustrated in Fig. 3.

A. Case I

Firstly, we focus on an individual finite lattice in vacuum
(the case I illustrated in Fig. 3). Since the 2D Zak phase of the
topologically nontrivial lattice is (π, π ), the localized edge
states are expected to emerge in both x and y direction accord-
ing to the bulk-edge correspondence. Furthermore, this set
of Zak phase also implies the existence of high-order corner
states according to the bluk-edge-corner correspondence [35].
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FIG. 3. Geometrical configuration of the three cases, lattices in
the left column have topologically nontrivial configurations, while in
the right column have trivial configurations.

The IP mode and OP mode eigenstate spectra of the topo-
logically nontrivial lattice are illustrated in Figs. 4(a) and 4(b),
respectively, in which the states are sorted in ascending order
according to the real part of the eigenfrequencies and the
color stands for the IPR of each eigenstates. The eigenstate
spectra of the corresponding topologically trivial lattice are
calculated and shown in Figs. 4(c) and 4(d). It can be seen
in the figure that the band structures of the topologically
nontrivial and trivial lattice are very similar, the band gaps
both appear in similar frequency ranges and the main gaps of
the two lattices appear at around the single-particle resonance
frequency (927.7–929.3 cm−1), which is due to the fact that
these two lattices share the same band structure under PBC.
However, in Figs. 4(a) and 4(b), states with high IPR (0.35
and 0.25) can be clearly recognized in the main gap of the
nontrivial lattice, which is different from the trivial lattice. We
plot the dipole moment distribution of these states in Figs. 4(e)
and 4(f). In Fig. 4(e), the IPR of the 575th state is 0.35 and the
dipole moment distribution is localized in the NPs at diagonal
corners. In Fig. 4(f), the dipole moment distribution is evenly

localized over the four corners in the nontrivial lattice, as
the IPR of this state (∼1/4) implies. Besides, the nontrivial
lattice also supports topological edge states stemming from
the bulk-edge correspondence. In Figs. 4(g) and 4(h), we also
plot the dipole moment distribution of the edge states which
have relatively higher IPRs than the bulk states. The dipole
moment distribution of the edge states show localized behav-
iors either over the opposite two sides or the four sides of the
square lattice. We also note that for the edge states, the dipole
moments tend to distribute mostly over the centers of the sides
and decay along the edge, resulting the dipole moments of the
corner NPs are comparable to that of bulk NPs.

The spectral net heat transfer rate between NP A and NP C
(pν

net (ω), ν = IP, OP or Total) is shown in Fig. 5. We assume
that the temperature of NP A is 310 K, and all the remaining
NPs are kept at room temperature, i.e., 300 K. This temper-
ature distribution is chosen to partially match the resonance
frequency of the SiC phonon polariton and avoid the radiative
heat transfer contribution from the NPs other than NP A.
The spectral radiative heat transfer contribution from the IP
mode and OP mode are plotted separately in Figs. 5(a) and
5(b), by taking summation of the two parts, the total spectral
radiative heat transfer rate is plotted in Fig. 5(c). A pro-
nounced difference in pν

net (ω) can be observed in the figures.
For the nontrivial lattice, the spectral radiative heat trans-
fer rates at ω = ωres = 928.5 cm−1 are pIP

net (ωres) = 6.46 ×
10−20 W cm, pOP

net (ωres) = 8.11 × 10−20 W cm, pTotal
net (ωres) =

1.46 × 10−19 W cm, which are 1.82, 1.68, and 1.74-fold
larger than that of topologically trivial lattice. By integrating
over the frequency range, we obtain radiative heat transfer
rate (pν

net, ν = IP, OP, or Total). For the topologically nontriv-
ial lattice, pIP

net = 2.91 × 10−17 W, pOP
net = 3.17 × 10−17 W,

and pTotal
net = 6.09 × 10−17 W. For the trivial lattice, pIP

net =
3.02 × 10−17 W, pOP

net = 2.53 × 10−17 W, and pTotal
net = 5.55 ×

10−17 W. Here we define the modulation ration, Rmod, to char-
acterize the degree of enhancement, which can be expressed as

Rmod =
∫

dω pν
net,Nontrivial (ω)∫

dω pν
net,Trivial(ω)

ν = IP, OP, or Total (25)

and Rmod for IP, OP, and Total are 0.96, 1.26, and 1.10. The
ration of modulation tells that the net radiative heat power
from NP A to NP B in nontrivial lattice is suppressed in IP
mode and enhanced in OP mode compare to the trivial lattice.

We also notice the differences in peak frequencies of the
heat transfer spectra between the trivial lattice and nontrivial
lattices. For the nontrivial lattice, the peak values in the power
spectra appear at 928.54 and 928.38 cm−1 for IP and OP
modes, which is close to ωres as well as the eigenfrequencies
of the topological corner states, indicating a dominant contri-
bution of the TPhPs supported by the nontrivial lattice. For
the trivial lattice, the peak value of pν

net (ω) appears at 926.17
and 929.42 cm−1 for IP and OP modes. The result shows that
radiative heat transfer is mainly contributed by the bulk states
below the main gap in IP mode, while by the bulk states above
the main gap in OP mode. This is even clearer by assumming
a low-loss circumstance of γ = 1 cm−1 for the permittivity
of SiC with other parameters unchanged to avoid the mixed
exciting. In Figs. 5(d)–5(f), we plot the spectral radiative heat
transfer rates between NP A and NP C under γ = 1 cm−1.
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(a) (c) (e) (g)

(b) (d) (f) (h)

FIG. 4. Band structures and dipole moment distributions of square lattices (case I). (a) the IP mode band structure and (b) the OP mode
band structure of the topologically nontrivial lattice, (c) the IP mode band structure and (d) the OP mode band structure of the topologically
trivial lattice. The dipole moment distributions of corner states [(e) and (f)] and edge states in IP mode [(g) and (h)].

In this scenario, the dominant states are clearly recognized.
Comparing to the condition of γ = 5 cm−1, the net radiative
heat transfer powers are enhanced owing to the larger polariz-
ability, detailed discussion can be found in [42]. At the same
time, the enhancing effect of TPhPs is more significant, Rmod

in IP and OP mode are 2.13 and 4.08, respectively, and 3.11
in total.

To further reveal the dominant states of radiative heat
transfer in nontrivial and trivial lattices. We focus on the
susceptibility term (χ ) in Ti j , which is strongly dispersive and
describes the material response to electrical field in frequency
domain. In Fig. 6, we plot the square of χ under the com-
plex eigenfrequencies of the trivial and nontrivial lattices. In
Figs. 6(a) and 6(b), χ2 at eigenfrequencies of corner states are
significantly higher than that of bulk states in the nontrivial
lattice. This can partially explain why high-order TPhPs can
dominate radiative heat transfer in topologically nontrivial
lattices [cf. Eq. (24)]. For the trivial lattice, as illustrated in
Figs. 6(c) and 6(d), χ2 at the eigenfrequencies of states below
the main gap in IP mode band structure and above the main
gap in OP mode have obviously higher values than others,
which is responsible for radiative heat transfer in respective
states.

To study the modulation effect of the corner/edge states
on the radiative heat transfer in the topologically nontrivial
lattice. We consider radiative heat transfer between one of
the four corner NPs (the lower left corner) and the remaining
NPs in the topologically trivial and nontrivial lattices and

calculate the corresponding modulation ration (Rmod) under
γ = 1 cm−1. The results are shown in Fig. 7, in which the
markers indicate the NPs in the topologically nontrivial lattice
and the colors are mapped from the values of Rmod. Note
that the values of Rmod have been subtracted by 1 from the
definition given by Eq. (25) to better distinguish between en-
hancement or suppression effects. For IP mode, the radiative
heat transfer rates between the corner NP and most of the other
NPs are suppressed (Rmod < 0) except the diagonal corner.
While for OP mode, radiative heat transfer between corner
NP and other NPs in the diagonal corner and the edge are
enhanced (Rmod > 0). The results indicate that TPhPs/high-
order TPhPs play vital roles in the modulation of radiative
heat transfer between the corner NP and edge/corner NPs.
Besides, we also note that for both the IP and OP mode, the
radiative heat transfer rate is strongly suppressed when the
other NP is chosen as the nearest neighbors of the corner NP
while strongly enhanced when the other NP is chosen as the
next-nearest neighbors, which is caused by the difference in
the distances of the NPs in topologically trivial and nontrivial
lattice.

B. Case II

In this case, we consider a joint lattice where the upper
side of the topologically nontrivial lattice is connected to a
topologically trivial one illustrated in Fig. 3. Each part has
15 periods along x direction and 5 periods along y direction.
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(a) (d)

(b) (e)

(c) (f)

1×10−20 1×10−18

1×10−20 1×10−18

1×10−19 1×10−18

FIG. 5. The radiation heat transfer spectra between NP A and NP
C in case I in (a) IP mode and (b) in OP mode, (c) the total power
spectrum of the trivial and nontrivial lattice. [(d)–(f)] Net power
spectra with decay rate γ = 1 cm−1 in IP mode, OP mode, and total.

For the lattice with nontrivial configuration, the boundaries
of the nontrivial region are all topologically trivial with Zak
phase being (0, 0). Hence, the topologically protected edge
states and corner states are expected to emerge according
to the bulk-edge correspondence and edge-corner correspon-
dence. However, since C4v symmetry no longer exists in the
lattice while the mirror symmetry is still preserved, the dipole
moment distribution should be different from the case I and
subsequently affects radiative heat transfer between NPs in
the lattice.

The eigenstates spectra of the IP and OP modes of the
nontrivial lattice are calculated and shown in Figs. 8(a) and
8(b), in which the colors stand for the IPR of each eigen-
states. Figs. 8(c) and 8(d) show the IP mode and OP mode
band structures of the trivial lattice. The band structures of
the nontrivial and trivial lattices are similar as expected. For
the IP mode band structures, the band gaps both appear in
similar frequency ranges and the main gap of each lattice
appears around ωres (927.6–929.5 cm−1). In Fig. 8(a), states
with high IPR (∼1/2) can be clearly recognized in the main
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−61
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−47
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−40
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−33
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0 500 1000
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0 200 400
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−56
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−49

10
−42

10
−35

χ2

0 200 400
State No.

(a)

(b)

(c)

(d)
Nontrivial, OP mode

Nontrivial, IP mode

Trivial, OP mode

Trivial, IP mode

FIG. 6. Susceptibility at complex eigenfrequencies. χ2 at eigen-
frequencies of (a) IP mode and (b) OP mode of topologically
nontrivial lattice, as well as (c) IP mode and (d) OP mode of topo-
logically trivial lattice.

gap of the nontrivial lattice, which is different from the band
structure of the trivial one. The midgap states with IPR close
to 1/2 implies that the dipole moment distribution is local-
ized over 2 NPs in the lattice. It can also be observed in
Fig. 8(a) that states with relatively higher IPR appear in the
gaps at 926.0 cm−1 � ω � 926.5 cm−1 and 929.6 cm−1 �
ω � 931.1 cm−1, these states are edge states whose dipole
moment distributions are localized over the interface between
the topologically nontrivial region and trivial region in the
nontrivial side and consistent with the prediction from the
bulk-boundary correspondence. Figure 8(e) gives the dipole
moment distribution of the 602th state lying in the main gap
which has an IPR of 0.47 and is expected to be a localized
corner state. The dipole moment is strongly localized over
NP A and B and decay rapidly in the surroundings, indicat-
ing the existence of high-order topological state. Figure 8(f)
gives the dipole moment distribution of the 909th state lying
in the gap at 929.6 cm−1 � ω � 931.1 cm−1, the IPR of this
state is 0.04, representing an equivalence localization over
∼25 nanoparticles. As seen in the figure, the dipole moment
demonstrates higher value along the boundaries of the topo-
logically nontrivial region of the nontrivial lattice especially
the interface between the trivial and nontrivial region, i.e., the
path from NP A to NP B, and hence the state can be recognized
as a topological edge state. For comparison, IPR of the 301th
state, which is a bulk state, of the nontrivial lattice in Fig. 8(g)
is 0.0023 and much lower than that of localized states.

Different from case I, IPRs of all the corner states in case II
range from 0.39–0.47. As a consequence, the dipole moment
distribution of all these states are localized over two of the
corners in the nontrivial region. The lattice sites where the
dipole moment distribution is localized are either NP A and
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(a) (b)

FIG. 7. Rmod [subtracting by 1 from the definition given by Eq. (25)] in (a) IP mode and (b) OP mode when one of the NP is fixed at corner
while the other is chosen from remaining NPs in the lattice.

NP B or NP C and NP D owing to the breaking of C4v

symmetry and the existence of mirror symmetry. Furthermore,
the degree of localization, in the perspective of IPR, in case
II is also stronger than that in case I, which suggests that
the finite 2D SSH lattice with zero Zak phase can better
assist in localizing dipole moment to the corner compare to
vacuum.

Figure 9 demonstrates the net radiative heat transfer be-
tween NP A and NP B in nontrivial and trivial lattice. The
temperature of NP A is set to be 310 K and other NPs are set
to be 300 K. For the trivial lattice, the spectral radiative heat
transfer rates at ωres = 928.5 cm−1 are pIP

net (ωres) = 1.18 ×
10−19 W cm and pIP

net (ωres ) = 3.39 × 10−20 W cm, respec-
tively. The spectral heat transfer rates at ωres for the

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 8. Band structures and dipole moment distributions of the single side connected lattices (case II). (a) the IP mode band structure and
(b) the OP mode band structure of the connected lattice with topologically nontrivial configuration, (c) the IP mode band structure and (d) the
OP mode band structure of the connected with topologically trivial configuration. The dipole moment distributions of (e) corner state, (f) edge
state, and (g) bulk state in IP mode.

115419-9



Z. GONG, B. X. WANG, AND C. Y. ZHAO PHYSICAL REVIEW B 110, 115419 (2024)

(a) (d)

(b) (e)

(c) (f)

1×10−20 1×10−19

1×10−20 1×10−18

1×10−19 1×10−18

FIG. 9. The radiation heat transfer spectra between NP A and
NP B in case II in (a) IP mode and (b) in OP mode, (c) the total
power spectrum of the trivial and nontrivial lattice. [(d)–(f)] Net
power spectra with decay rate γ = 1 cm−1 in IP mode, OP mode and
total.

topologically nontrivial lattice are pIP
net (ωres ) = 1.64 ×

10−19 W cm and pOP
net (ωres ) = 1.67 × 10−19 W cm−1 respec-

tively, which are 1.42-fold enhancement in IP mode and
4.84-fold enhancement in OP mode. The frequencies where
the peak pnet occur in both the IP mode and OP mode are close
to the eigenfrequencies of the corner states in the nontrivial
lattice [see in Fig. 9(a)] and the resonance frequency of the
phonon polaritons of a single SiC NP. The power spectra of
the topologically nontrivial lattice indicate that the excitation
of the topological protected high-order TPhPs is responsible
for radiative heat transfer between the NPs. For the trivial
lattice, radiative heat transfer is dominated by bulk states in
the lower-frequency band for IP mode and by bulk states in
the higher-frequency band for OP mode, which is consistent
with the numerical results obtained in the 1D SSH chain [41].

For the same purpose as in case I, here we artificially set
the decay rate of the SiC NPs to be γ = 1 cm−1. The real
parts of the eigenfrequencies under γ = 1 cm−1 are quite
close to that of the original one, while the imaginary parts

of the eigenfrequencies are mostly distributed near −γ /2 =
−0.5 cm−1 (not shown here). The radiative heat transfer spec-
tra are shown in Fig. 9(b). The shapes of the power spectra
are sharper due to the decrease in decay rate, and hence
the contribution from different states is clearly seen. For the
topologically nontrivial lattice, the corner states lying in the
main gap dominate radiative heat transfer in OP mode in a
topologically nontrivial lattice. For IP mode, two peaks appear
in the power spectra, the one at ω = 928.5 cm−1 is the leading
term originating from the topological corner states and the
other at ω = 926.5 cm−1 is mainly contributed by those states
right below the main gap. The spectral heat transfer rates be-
tween NP A and NP B at ω = ωres in the nontrivial lattice are
5.04 × 10−19 W cm−1 in IP mode and 1.62 × 10−18 W cm−1

in OP mode, which are 51.24 folds and 1.88 × 103 folds
stronger than the trivial lattice under γ = 1 cm−1. The severe
contrast in spectral heat transfer rate at resonance frequency
suggests the strong modulation of the heat transfer by high-
order TPhPs in the nontrivial lattice.

By taking summation of the power spectra in IP mode
and OP mode, the total net spectral radiative heat transfer is
shown in Fig. 9(c), and the total radiative heat transfer power
(integrated over the frequency range) is also calculated. The
net radiative heat transfer powers is 6.45 × 10−17 W for the
nontrivial lattice and 6.53 × 10−17 W for the trivial lattice,
which is slightly larger than that of the nontrivial lattice. Rmod

for IP and OP mode are 0.79 and 1.34 respectively and 0.98
in total under γ = 5 cm−1. When setting the decay rate of SiC
NP to 1 cm−1, the Rmod then becomes 0.47 in IP mode, 4.33 in
OP mode and 1.39 in total. Generally, radiative heat transfer
is suppressed in IP mode while enhanced in OP mode in the
topologically nontrivial lattice. This is because, the emergence
of TPhPs may suppress radiative heat transfer via the bulk
states, the final effect of TPhPs on radiative heat transfer is the
trade-off between the enhancing effects of extra TPhPs mode
and the suppressing effects on bulk states. To be specific, the
GF in OP mode involves a low-decay term (1/r term), which
allows high efficient radiative heat transfer between corner
NPs, and hence the radiative heat transfer rate is enhanced
in OP mode. While in IP mode, the GF decay in the power
law of r−3 and the high-order TPhPs can only propagate in a
relatively shorter range, resulting in a suppression in radiative
heat transfer.

C. Case III

To better understand the effect of topological localized
state as well as the topologically nontrivial boundaries in
radiative heat transfer between NPs, we also investigate a
nested lattice as illustrated in Fig. 3 (case III). In this case,
the nontrivial 12 × 12 square region (β = 0.75), which is the
same as in case I, is surrounded by a topologically trivial
region (β = 0.25) that together form a larger square NP array
(16 × 16). According to the bulk-boundary correspondence,
the topologically protected edge states will also appear in
the four sides in the inner square. At the same time, in the
nontrivial lattice, the high-order corner states are also ex-
pected to emerge. Similarly, we also numerically calculate the
properties of the corresponding trivial lattice.
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(a) (c) (e) (g)

(b) (d) (f) (h)

FIG. 10. Band structures and dipole moment distributions of the nested square lattices (case III). (a) the IP mode and (b) the OP mode
band structures of the lattice with topologically nontrivial configuration, (c) the IP mode, and (d) the OP mode band structures of the lattice
with topologically trivial configuration. [(e) and (f)] Dipole moment distributions of corner states in IP mode, (g) and (h) the dipole moment
distributions of the edge states in IP mode.

The band structures of the topologically nontrivial lattice
are shown in Figs. 10(a) and 10(b), and the band structures
of the topologically trivial lattice are shown in Figs. 10(c) and
10(d), the colors are mapped from the IPRs of the correspond-
ing states. Similar to the previous cases, the states with higher
IPRs can be observed in the gap of the band structures in
OP mode and IP mode of the topologically nontrivial lattice,
bulk bands in the band structure are almost consistent with
that of the topologically trivial lattice. In the main gap near
the resonance frequency, there are eight almost degeneracy
corner states in IP mode and four in OP mode. We take the
corner states in IP mode as an example for analysis, the state
No. of these states are 1020–1027 with IPRs being 0.24, 0.24,
0.47, 0.47, 0.23, 0.23, 0.25, and 0.25 respectively. These states
can be categorized into two groups, one with IPR ∼1/4 (No.
1020, 1021, and 1024–1027) implying the dipole moment
distributions are localized over 4 NPs and the other group of
states has IPR ∼1/2 (No. 1022 and 1023) implying the dipole
moment distributions are localized over 2 NPs. The dipole
moment distributions of the two kinds of states are plotted
in Figs. 10(e) and 10(f), in Fig. 10(e) the dipole moment
distribution is localized over the diagonal NPs in the topo-
logically nontrivial region and decay rapidly in space, and in
Fig. 10(f) the dipole moment distribution is localized over the
four corner NPs in the inner region. These states, beyond the
bulk-boundary correspondence, are topologically protected
high-order localized states. In Figs. 10(g) and 10(h), we also

plot two kinds of edge states, in one of which [Fig. 10(g)], the
dipole moment distribution is localized over two sides of the
square-shaped interface between the topologically nontrivial
and trivial region, and in the other kind the dipole moment
distribution is localized over all the four sides.

The radiative transfer rates from NP A to NP C are shown in
Figs. 11(a)–11(c). Rmod in this case are 0.92 in IP mode, 1.12
in OP mode, and 1.01 in total, the modulation ratios become
0.60, 1.91, and 1.27 respectively after setting the decay rate
to 1 cm−1. We can observe in Fig. 11(a) that there are two
peaks in the radiative power spectrum of the nontrivial lattice
(the red solid line in the figure), the corresponding frequen-
cies are 926.13 and 928.61 cm−1, respectively. Contribution
from the low-frequency bulk states is comparable and even
stronger than from the TPhPs, which essentially correspond
to the eigenstates lying at the edges of the lower bands with
high group velocity. In OP mode, radiative heat transfer is
also dominated by the corner states in main gap, but the
enhancement is weaker than in case II, owing to the split of
dipole moment in four NPs rather than two NPs in one of the
corner states. From the calculation, we can also find that the
edge states seem to have little effect on radiative heat transfer
between NP A and NP B. This phenomenon is reasonable
from the point of the dipole moment distributions of these
edge states, Figs. 11(f) and 11(g) suggest that for both of
the two kinds of edge states, the dipole moment distributions
are localized mostly over the center of the edges and decay
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(a) (d)

(b) (e)

(c) (f)
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FIG. 11. The radiation heat transfer spectra between NP A and
NP C in case III in (a) IP mode and (b) in OP mode, (c) the total
power spectrum of the trivial and nontrivial lattice. [(d)–(f)] Net
power spectra with decay rate γ = 1 cm−1 in IP mode, OP mode,
and total.

smoothly along the interface of the topologically nontrivial
and trivial region. In this manner, the dipole moments at the
corner NPs of edge states is not that strong as in corner states
and hence the radiative heat transfer contribution is negligible.

IV. ROBUSTNESS

In this section, we study the robustness of high-order
TPhPs and its role in radiative heat transfer. Again, we set
the decay rate of the SiC NPs to 1 cm−1 to exclude the effects
of the bulk states. Firstly, we create a defect in the lattice by
removing two NPs in the center of the connecting interface
as illustrated in Fig. 12(a) and labeled as No. 1. Four corner
states are maintained in the OP band structure of the nontrivial
lattice, and the power spectrum is almost the same as the
nondefected one. It is worth mentioning that there are extra
two highly localized states with IPRs also close to 1/2 in
the gap, however the dipole moment distributions of the two
states are localized over the adjacent NPs on the left and right
side of the missing NPs and hence have little contribution to

radiative heat transfer between the corner NPs. When the same
defect is introduced to the lattice with topologically trivial
configuration, the defect states also emerge in the band gap
and make negligible difference on the power spectrum.

We then create a stronger defect on the lattices by removing
the NP next to the corner NP (No. 2 in Fig. 12), which breaks
the mirror symmetry and partially the sublattice symmetry on
the lattices. In this manner, only three of the corner states are
preserved with two extra defect states generated in the band
gap. IPR of one of the corner states is 0.84, exceeding 1/2,
indicating that the dipole moment distribution is localized
mostly over one of the corner NPs (NP A). As aforementioned,
the dipole moment distributions of the defect states are mainly
localized over the NPs near the lattice site of the missing NP,
this makes radiative heat transfer between the corner NPs even
slightly enhanced compared to the nondefected lattice. It is
worth mentioning that the defect states in the topologically
trivial lattice also affects the net power and also a frequency
shift on the power spectrum, which is not observed in the
nontrivial lattice.

By randomly changing the positions of the NPs in the
lattice within the xy plane, disorder is then introduced
to the joint 2D SSH lattice. We consider the maximum
relative displacement to the average distance between the
NPs (ax/2) as an indicator of the degree of disorder, and
keep the maximum relative displacement lower than 3% to
ensure the validity of the coupled dipole model. Crucially,
the mirror symmetry and sublattice symmetry are broken
once the disorder is introduced, such that the IPRs of the
states may be larger than 1/2 and the degeneracies of the
corner states are lifted [76]. Figures 12(d) and 12(e) plot
a set of eigenfrequencies spectra under different maximum
disorders in OP and IP mode, every single column in the
figure has a corresponding lattice structure. Notice that the
eigenfrequencies spectra in each column is chosen from
100 realizations (not shown here) for the same level of
disorder as an instance. We can see in the figures that the
corner states lying near the resonance frequency remains
well isolated on the midgap despite the edge states merging
with the bulk states as the degree of disorder increasing, and
the eigenfrequencies of these corner states are always near
ωres. The robustness of the topologically nontrivial lattice can
also be confirmed in view of the total radiative heat transfer
rate pnet. By carrying out multiple calculations of pnet in the
topologically trivial and nontrivial lattices with the maximum
relative displacement being 1%, 2%, and 3% respectively
and averaging the results, the average spectral radiative
heat transfer rates are obtained, which show little difference
between the radiative heat transfer spectra of the topologically
trivial and nontrivial lattice. The radiative heat transfer spectra
under different degree of disorder are identical with that of the
corresponding ordered lattices. To better obtain the robustness
regarding the radiative heat transfer rate, in this manuscript we
consider the calculation of the radiative heat transfer rate as
an independent repeated trail with pnet being the independent
variable, and study the statistical characteristics regarding
pnet between the NPs in the topologically trivial and not rival
lattices. For topologically nontrivial lattices, the distributions
of pnet obtained in each numerical calculation tend to be less
fluctuated than the topologically trivial ones under the same
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(a)

(d) (e) (f)

(b) (c)

FIG. 12. (a) Schematic of defects by removing NPs in the lattice site, (b) OP mode band structure and (c) total radiative heat transfer rate
under different defects. (d) IP mode and (e) OP mode band structures with max relative disorder ranges from 0% to 3%, (f) RSDs of the net
radiative heat transfer rate in disordered topologically trivial and nontrivial lattice in case II, the maximum relative displacements are 1%, 2%,
and 3%.

degree of disorder (not shown here). To numerically study
the difference in the degree of fluctuation between the pnet

of the topologically trivial and nontrivial lattices, we calcu-
lated the relative standard deviations (RSDs) as the number
of repeated calculation increasing. The results are obtained
after carrying out 1000 realizations of independent repeated
trials and are illustrated in Fig. 12(f), in which the data
points in light colors are the results from topologically trivial
lattice and in dark colors are the results from topologically
nontrivial lattice. The results indicate that for the topologically
nontrivial lattice, the RSDs are much lower under the same
degree of disorder. To be specific, RSDs of the net radiative
heat transfer power between NPs in topologically nontrivial
lattice are ∼1/8 of that in the topologically trivial lattice.

V. CONCLUSIONS

In summary, we study the topological properties as well
as radiative heat transfer behavior in 2D NP arrays which
mimics the 2D SSH model. The band structures, which take
into account the near- and far-field dipole-dipole interactions,
of the 2D SSH lattices under PBC are calculated. We use
2D Zak phases to characterize the topological properties of
the lattices under PBCs and obtained the topological phases
as a function of β. By applying OBCs to the topologically
nontrivial lattices, we confirm the existence of TPhPs and
high-order TPhPs protected by the nonzero 2D Zak phases,
which are consistent with the bulk-edge-corner correspon-
dence. The roles of TPhPs paly in NFRHT between NPs are
revealed by constructing three cases of finite lattices with dif-
ferent interfaces between topologically trivial and nontrivial
regions, in which the power spectra are analyzed in IP and OP
modes separately. The results indicate that high-order TPhPs

show considerable capability in modulating NFRHT between
certain NPs in the 2D SSH lattices. We also find that the emer-
gence of high-order TPhPs as well as the modulation effects
show a moderate robustness by introducing perturbation into
the lattices.
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APPENDIX A: THE CALCULATION OF 2D ZAK PHASE

The 2D Zak phase can be used to characterize the topo-
logical feature of the infinite 2D SSH lattice, which can be
calculated as

θ j = −1

2

∫
FBZ

d2k Tr[Aj (k)], j = x, y, (A1)

where (Aj )mn(k) = i〈uL
mk|∂k j |unk〉 with |unk〉 denoting the pe-

riodic part of the Bloch function of the nth band. We apply
Wilson loop approach to numerically calculate it, the discrete
solution to the cumulative Berry phase can be expressed as

θi = ai

2π

∫
dk j v

n
i (k j ), {i, j}i �= j ∈ {x, y}, (A2)

where vn
i is the nth eigenvalue of the Wannier Hamiltonian

Hw,i(k) = −i log �M
q=0

[
Fi,k+q�ki

]
(A3)

115419-13



Z. GONG, B. X. WANG, AND C. Y. ZHAO PHYSICAL REVIEW B 110, 115419 (2024)

(a) (b)

(c) (d)

FIG. 13. Wannier bands vy(kx ) of the first band gap for the case
under (a) β = 0.25 and (b) β = 0.75, as well as the third band gap
for (c) β = 0.25 and (d) β = 0.75.

in which M satisfying (M + 1)�ki = 2π/d , and[
Fi,k+q�ki

]
mn = 〈uL

m,k

∣∣un,kR+�k j

〉
(A4)

for m, n ∈ {1, 2, 3, . . . , Nocc}, where Nocc is the number of the
bands below the band gap.

Here we take the OP mode band structure as a demonstra-
tion. The Wannier bands, i.e., vi as a function of k j , are shown
in Fig. 13. The numerical result indicates that the lattice with
β = 0.75 has topologically nontrivial phases (θy = π ) in first
and third band, while the lattice with β = 0.25 is topologically
trivial (θy = 0). θx for the 2 infinite lattices is exactly the same
as θx owing to the C4 symmetry. According to Eq. (A2), the
2D Zak phase is then obtained, for the topologically trivial
lattice θx = θy = 0 and for the nontrivial lattice θx = θy = π .

APPENDIX B: THE CALCULATION OF SLOW
CONVERGENCE TERMS IN GF

Here we take the OP component of the Gk as an example,
in which the diagonal terms can be expressed as

ĜOP
k,ii =

∑
m,n∈Z,
Rmn �=0

eik0Rmn+ik·Rmn

4π

[
−ik0

3∑
l=1

(
i

k0Rmn

)l
]

=
3∑

l=1

∑
m,n∈Z,
Rmn �=0

k0eik0Rmn+ik·Rmn

4π i

(
i

k0Rmn

)l

(B1)

and the off-diagonal terms can be written as

ĜOP
k,i j =

∑
m,n∈Z

eik0Smn+ik·Rmn

4π

[
−ik0

3∑
l=1

(
i

k0Smn

)l
]

=
3∑

l=1

∑
m,n∈Z

k0eik0Smn+ik·Rmn

4π i

(
i

k0Smn

)l

(B2)

For both the diagonal and off-diagonal terms, the series
can be regarded as the summation of three subseries, i.e.,
for l = 1, 2, 3. For the subseries of l = 2 and 3, the terms

in the subseries decay with 1/R2 and 1/R3, resulting in a
fast convergence in real space. Thus, these two subseries are
calculated in real space. We now consider the subseries of
l = 1. Let

Q(r, k) =
∑

m,n∈Z

eik0|r−Rmn|

4π |r − Rmn|eik·Rmn , (B3)

where r is a 3D vector in real space and r = |r|, the diagonal
and off-diagonal terms can be further written as,

ĜOP,l=1
ii = lim

r→0
Q(r, k) − lim

r→0

eik0r

4πr
, (B4)

ĜOP,l=1
i j =Q(si j, k). (B5)

1. The calculation of slowly convergent series
in the diagonal terms

According to the Poisson’s summation formula, the sum-
mation in Eq. (B3) can be written in the form of summation in
reciprocal space, i.e.,

Q(r, k) = 1

�

∑
m,n∈Z

F (k + qmn)ei(qmn+k)·r, (B6)

where qmn is the reciprocal lattice vector, � = axay is the area
of the unit cell in real space, and F (k + qmn) is the 2D Fourier
transform of the function eik0|r−Rmn|/|r − Rmn|, which gives

F (k + qmn) =
∫∫

dr e−(k+qmn )·r eik0|r−Rmn|

|r − Rmn| = 2π ieikzz

kz
,

(B7)

where z is the z component of r and kz =
√

k2
0 − |k + qmn|2 ,

Im(kz ) > 0. Putting Eqs. (B7) and (B6) into Eq. (B4), we have

ĜOP,l=1
ii = 1

4π
lim

z→0+

⎛⎝2π i

�

∑
m,n∈Z

eikzz

kz
− eik0z

z

⎞⎠. (B8)

When k = 0, the real part of ĜOP,l=1
ii is a finite value under the

limit of k0 → 0 and z → 0+, which gives [77]

D = Re
(
ĜOP,l=1

ii

)
k=0

= lim
z→0+

1

4π

⎛⎝2π

�

∑
m,n∈Z

e−z|qmn|

|qmn| − 1

z

⎞⎠, (B9)

where D = −3.9002/(4πd ) for square lattice (in this paper
d = ax = ay), representing a geometrical effect which is in-
dependent of r and k [78].

Subtracting the RHS of Eq. (B9) and adding the value of D
in Eq. (B8), we have

ĜOP,l=1
ii = 1

2�

∑
m,n∈Z,
Rmn �=0

(
1√

|qmn + k|2 − k2
0

− 1

|qmn|

)

+ D + i

2�

√
k2

0 − |k|2
− ik0

4π
. (B10)

The subseries now realize a quick convergence within a small
circle with radius a few hundred reciprocal-lattice constant.
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2. The calculation of slowly convergent series in the off-diagonal terms

Since all the NPs are aligned in xy plane, the z component of si j is also 0. We now consider Eq. (B3) in 2D space in the form
of Hankel function:

Q(r, k) =
∑

m,n∈Z

ik0h0(k0|r − Rmn|)
4π

eik·Rmn , (B11)

in which Rmn is the 2D lattice vector in real space, r = si j is a nonzero 2D vector coplanar with Rmn, and h0[·] is the spherical
Hankel function of order 0. By making use of the integral identity for h0(k0|r − Rmn|) and the introducing of splitting parameter
of E , Q(r, k) can be split into two parts, i.e.,

Q(r, k) = 1

4π

∑
m,n∈Z

eik·Rmn
2√
π

∫ ∞

0
ds exp

[
−|r − Rmn|2s2 + k2

0

4s2

]

= 1

4π

∑
m,n∈Z

eik·Rmn
2√
π

∫ E

0
ds exp

[
−|r − Rmn|2s2 + k2

0

4s2

]
(denoted as Q1(r, k))

+ 1

4π

∑
m,n∈Z

eik·Rmn
2√
π

∫ ∞

E
ds exp

[
−|r − Rmn|2s2 + k2

0

4s2

]
(denoted as Q2(r, k)), (B12)

in which the first term converges fast in reciprocal space while the second terms converges fast in reciprocal space.
The integral in Q2(r, k) can be further simplified and calculated in the form of complementary error functions (erfc):

Q2(r, k) = 1

8π

∑
m,n∈Z

eik·Rmn

|r − Rmn|
[

eik0|r−Rmn|erfc

(
|r − Rmn|E + ik0

2E

)
+ c.c.

]
, (B13)

where c.c. stands for the complex conjugate.
Q1(r, k) can be calculated in reciprocal space by applying the Poisson’s summation formula [35,77]. To be exact,

Q1(r, k) = 1

4π

∑
m,n∈Z

eik·Rmn
2√
π

∫ E

0
ds exp

[
−|r − Rmn|2s2 + k2

0

4s2

]

= 1

4π

2√
π

∫ E

0
ds ek2

0/4s2+ik·r ∑
m,n∈Z

1

�
F (k + qmn)eiqmn·r, (B14)

in which F (k + qmn) denotes the 2D Fourier transform of e−|r−Rmn|2s2
, which can be calculated as

F (k + qmn) =
∫∫

dr e−ik·re−|r−Rmn|2s2 = π

s2
exp

(
−|k + qmn|2

4s2

)
. (B15)

Thus we have

Q1(r, k) = 2

�
√

π

∑
m,n∈Z

ei(k+qmn )·r
∫ E

0

ds

s2
exp

(
k2

0 − |k + qmn|2
4s2

)

= 2

�
√

π

∑
m,n∈Z

ei(k+qmn )·r
∫ ∞

1/E
ds exp

(
k2

0 − |k + qmn|2
4

s2

)
(let s → 1/s). (B16)

Equation (B16) is now similar to Q2(r, k) in Eq. (B12) and can be manipulated similarly to be in the form of complementary
error function,

Q1(r, k) = i

4�

∑
m,n∈Z

ei(k+qmn )·r√
k2

0 − |k + qmn|2

⎡⎢⎣erfc

⎛⎜⎝−i
√

k2
0 − |k + qmn|2

2E

⎞⎟⎠+ c.c.

⎤⎥⎦. (B17)
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The splitting parameter E is optimally chosen such that
Q1 and Q2 do not differ by more than several orders of

magnitude. In this paper, we choose E = √ π
�

according to
Ref. [77].
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servation of unidirectional backscattering-immune topological
electromagnetic states, Nature (London) 461, 772 (2009).

[31] F. Yi, M. Q. Liu, N. N. Wang, B. X. Wang, and C. Y.
Zhao, Near-field observation of mid-infrared edge modes in
topological photonic crystals, Appl. Phys. Lett. 123, 081110
(2023).

[32] X. Zhang, Y. Zhou, X. Sun, X. Zhang, M.-H. Lu, and Y.-F.
Chen, Reconfigurable light imaging in photonic Higher-Order
Topological Insulators, Nanomaterials 12, 819 (2022).

[33] M. Chao, Q. Liu, W. Zhang, L. Zhuang, and G. Song, Mutual
coupling of corner-localized quasi-BICs in high-order topolog-
ical PhCs and sensing applications, Opt. Express 30, 29258
(2022).

[34] J. Wu, S. Ghosh, Y. Gan, Y. Shi, S. Mandal, H. Sun, B.
Zhang, T. C. H. Liew, R. Su, and Q. Xiong, Higher-order
topological Polariton corner state Lasing, Sci. Adv. 9, eadg4322
(2023).

115419-16

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.90.041002
https://doi.org/10.21468/SciPostPhys.3.3.021
https://doi.org/10.1126/science.1231473
https://doi.org/10.1063/1.2337825
https://doi.org/10.1039/C5NR02953H
https://doi.org/10.1039/C6TC01453D
https://doi.org/10.1103/PhysRevB.82.245107
https://doi.org/10.1063/1.4833315
https://doi.org/10.1021/acsnano.5b04611
https://doi.org/10.1149/06417.0051ecst
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1038/s41377-020-0331-y
https://doi.org/10.1103/PhysRevB.104.195437
https://doi.org/10.1103/PhysRevResearch.2.043012
https://doi.org/10.1103/PhysRevLett.122.233903
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1103/PhysRevLett.122.204301
https://doi.org/10.1088/1361-6463/ab94e2
https://doi.org/10.1103/PhysRevLett.122.233902
https://doi.org/10.1038/s41566-019-0452-0
https://doi.org/10.1103/PhysRevApplied.15.034053
https://doi.org/10.1103/PhysRevB.104.155421
https://doi.org/10.1103/PhysRevA.106.013510
https://doi.org/10.1103/PhysRevB.101.041109
https://doi.org/10.1364/OPTICA.6.000786
https://doi.org/10.1515/nanoph-2019-0451
https://doi.org/10.1038/nature08293
https://doi.org/10.1063/5.0157868
https://doi.org/10.3390/nano12050819
https://doi.org/10.1364/OE.457274
https://doi.org/10.1126/sciadv.adg4322


MODULATION OF RADIATIVE HEAT TRANSFER BY … PHYSICAL REVIEW B 110, 115419 (2024)

[35] B. X. Wang and C. Y. Zhao, High-order topological quantum
optics in ultracold atomic metasurfaces, arXiv:2108.01509.

[36] P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Many-body radia-
tive heat transfer theory, Phys. Rev. Lett. 107, 114301 (2011).

[37] J. Dong, J. Zhao, and L. Liu, Radiative heat transfer in many-
body systems: coupled electric and magnetic dipole approach,
Phys. Rev. B 95, 125411 (2017).

[38] J. Dong, J. Zhao, and L. Liu, Near-field radiative heat trans-
fer between clusters of dielectric nanoparticles, J. Quant.
Spectrosc. Radiat. Transfer 197, 114 (2017).

[39] J. Chen, B. X. Wang, and C. Y. Zhao, Near-field radiative heat
transport between nanoparticles inside a Cavity Configuration,
Int. J. Heat Mass Transf. 196, 123213 (2022).

[40] J. Chen, B. X. Wang, and C. Y. Zhao, Scattering-type
multi-probe scanning thermal microscope based on near-field
thermal radiation, Int. J. Heat Mass Transf. 181, 121869
(2021).

[41] A. Ott and S.-A. Biehs, Radiative heat flux through a topo-
logical Su-Schrieffer-Heeger chain of plasmonic nanoparticles,
Phys. Rev. B 102, 115417 (2020).

[42] B. X. Wang and C. Y. Zhao, Topological phonon polariton
enhanced radiative heat transfer in bichromatic nanoparticle
arrays mimicking Aubry-André-Harper model, Phys. Rev. B
107, 125409 (2023).

[43] A. Ott, Z. An, A. Kittel, and S.-A. Biehs, Thermal near-field
energy density and local density of states in topological one-
dimensional Su-Schrieffer-Heeger chains and two-dimensional
Su-Schrieffer-Heeger lattices of plasmonic Nanoparticles, Phys.
Rev. B 104, 165407 (2021).

[44] A. Ott and S.-A. Biehs, Topological near-field heat flow in
a Honeycomb Lattice, Int. J. Heat Mass Transf. 190, 122796
(2022).

[45] B. X. Wang and C. Y. Zhao, Radiative heat transfer mediated
by topological phonon polaritons in a family of quasiperiodic
nanoparticle chains, Int. J. Heat Mass Transf. 210, 124163
(2023).

[46] S. R. Pocock, X. Xiao, P. A. Huidobro, and V. Giannini, Topo-
logical plasmonic chain with retardation and radiative effects,
ACS Photonics 5, 2271 (2018).

[47] B. X. Wang and C. Y. Zhao, Topological phonon polaritons
in one-dimensional non-hermitian silicon carbide nanoparticle
chains, Phys. Rev. B 98, 165435 (2018).

[48] B. X. Wang and C. Y. Zhao, Topological photonic states in one-
dimensional dimerized ultracold atomic chains, Phys. Rev. A
98, 023808 (2018).

[49] B. X. Wang and C. Y. Zhao, Wideband tunable infrared topo-
logical plasmon polaritons in dimerized chains of doped-silicon
nanoparticles, J. Appl. Phys. 127, 073106 (2020).

[50] B. X. Wang and C. Y. Zhao, Topological quantum optical states
in quasiperiodic cold atomic chains, Phys. Rev. A 103, 013727
(2021).

[51] F. Herz and S.-A. Biehs, Thermal radiation and near-field ther-
mal imaging of a plasmonic Su–Schrieffer–Heeger chain, Appl.
Phys. Lett. 121, 181701 (2022).

[52] M. Nikbakht and F. Bahmani, Topological edge states in
nanoparticle chains: Isolating radiative heat flux, Phys. Rev. B
108, 064307 (2023).

[53] F. Bahmani and M. Nikbakht, Topological phase-dependent
thermalization dynamics in radiative heat transfer: Insights

from a one-dimensional Su-Schrieffer-Heeger model, Opt.
Express 32, 1257 (2024).

[54] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

[55] M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin,
and M. Mojahedi, Infrared magnetic response in a ran-
dom silicon carbide micropowder, Phys. Rev. B 79, 073103
(2009).

[56] E. Tervo, Z. Zhang, and B. Cola, Collective near-field ther-
mal emission from polaritonic nanoparticle arrays, Phys. Rev.
Mater. 1, 015201 (2017).

[57] M. Langlais, J.-P. Hugonin, M. Besbes, and P. Ben-Abdallah,
Cooperative electromagnetic interactions between nanoparti-
cles for solar energy harvesting, Opt. Express 22, A577
(2014).

[58] M. Lax, Multiple scattering of waves, Rev. Mod. Phys. 23, 287
(1951).

[59] B. X. Wang, C. Y. Zhao, Y. H. Kan, and T. C. Huang, Design of
metasurface polarizers based on two-dimensional cold atomic
arrays, Opt. Express 25, 18760 (2017).

[60] L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed.
(Cambridge University Press, New York, 2012).

[61] D. Obana, F. Liu, and K. Wakabayashi, Topological edge states
in the Su-Schrieffer-Heeger model, Phys. Rev. B 100, 075437
(2019).

[62] X.-W. Xu, Y.-Z. Li, Z.-F. Liu, and A.-X. Chen, General
bounded corner states in the two-dimensional Su-Schrieffer-
heeger model with intracellular next-nearest-neighbor hopping,
Phys. Rev. A 101, 063839 (2020).

[63] R. Wang, M. Röntgen, C. V. Morfonios, F. A. Pinheiro, P.
Schmelcher, and L. D. Negro, Edge modes of scattering chains
with aperiodic order, Opt. Lett. 43, 1986 (2018).

[64] B. X. Wang and C. Y. Zhao, Near-Resonant light transmission
in two-dimensional dense cold atomic media with short-range
positional correlations, J. Opt. Soc. Am. B 37, 1757 (2020).

[65] B. X. Wang and C. Y. Zhao, Interferences and localization
in disordered media with anisotropic structural correlations, J.
Appl. Phys. 130, 133101 (2021).

[66] Á. Buendía, J. A. Sánchez-Gil, and V. Giannini, Exploiting
oriented field projectors to open topological gaps in plasmonic
nanoparticle arrays, ACS Photonics 10, 464 (2023).

[67] Y. Zhang, R. P. H. Wu, L. Shi, and K. H. Fung, Second-order
topological photonic modes in dipolar arrays, ACS Photonics 7,
2002 (2020).

[68] F. Liu and K. Wakabayashi, Novel topological phase with a zero
berry curvature, Phys. Rev. Lett. 118, 076803 (2017).

[69] B.-Y. Xie, H.-F. Wang, H.-X. Wang, X.-Y. Zhu, J.-H. Jiang,
M.-H. Lu, and Y.-F. Chen, Second-order photonic topolog-
ical insulator with corner states, Phys. Rev. B 98, 205147
(2018).

[70] W. Feng, J. Wen, J. Zhou, D. Xiao, and Y. Yao, First-Principles
calculation of Z2 topological invariants within the FP-LAPW
formalism, Comput. Phys. Commun. 183, 1849 (2012).

[71] J. Chen, C. Zhao, and B. Wang, Near-field thermal radiative
transfer in assembled spherical systems composed of Core-
Shell nanoparticles, J. Quant. Spectrosc. Radiat. Transfer 219,
304 (2018).

[72] S.-A. Biehs, R. Messina, P. S. Venkataram, A. W. Rodriguez,
J. C. Cuevas, and P. Ben-Abdallah, Near-field radiative heat

115419-17

https://arxiv.org/abs/2108.01509
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/PhysRevB.95.125411
https://doi.org/10.1016/j.jqsrt.2016.10.015
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123213
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121869
https://doi.org/10.1103/PhysRevB.102.115417
https://doi.org/10.1103/PhysRevB.107.125409
https://doi.org/10.1103/PhysRevB.104.165407
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122796
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124163
https://doi.org/10.1021/acsphotonics.8b00117
https://doi.org/10.1103/PhysRevB.98.165435
https://doi.org/10.1103/PhysRevA.98.023808
https://doi.org/10.1063/1.5131185
https://doi.org/10.1103/PhysRevA.103.013727
https://doi.org/10.1063/5.0123515
https://doi.org/10.1103/PhysRevB.108.064307
https://doi.org/10.1364/OE.507241
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.79.073103
https://doi.org/10.1103/PhysRevMaterials.1.015201
https://doi.org/10.1364/OE.22.00A577
https://doi.org/10.1103/RevModPhys.23.287
https://doi.org/10.1364/OE.25.018760
https://doi.org/10.1103/PhysRevB.100.075437
https://doi.org/10.1103/PhysRevA.101.063839
https://doi.org/10.1364/OL.43.001986
https://doi.org/10.1364/JOSAB.382913
https://doi.org/10.1063/5.0061802
https://doi.org/10.1021/acsphotonics.2c01526
https://doi.org/10.1021/acsphotonics.0c00160
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1016/j.cpc.2012.04.001
https://doi.org/10.1016/j.jqsrt.2018.08.024


Z. GONG, B. X. WANG, AND C. Y. ZHAO PHYSICAL REVIEW B 110, 115419 (2024)

transfer in many-body systems, Rev. Mod. Phys. 93, 025009
(2021).

[73] F. Herz and S.-A. Biehs, Generalized coupled dipole method
for thermal far-field radiation, Phys. Rev. B 105, 205422
(2022).

[74] M. Nikbakht, Radiative heat transfer in fractal structures, Phys.
Rev. B 96, 125436 (2017).

[75] E. Tervo, M. Francoeur, B. Cola, and Z. Zhang, Thermal ra-
diation in systems of many dipoles, Phys. Rev. B 100, 205422
(2019).

[76] M. Proctor, P. A. Huidobro, B. Bradlyn, M. B. De Paz, M. G.
Vergniory, D. Bercioux, and A. García-Etxarri, Robustness of
topological corner modes in photonic crystals, Phys. Rev. Res.
2, 042038(R) (2020).

[77] L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of
Electromagnetic Waves: Numerical Simulations, 1st ed. (Wiley,
New York, 2001).

[78] Y.-R. Zhen, K. H. Fung, and C. T. Chan, Collective plasmonic
modes in two-dimensional periodic arrays of metal nanoparti-
cles, Phys. Rev. B 78, 035419 (2008).

115419-18

https://doi.org/10.1103/RevModPhys.93.025009
https://doi.org/10.1103/PhysRevB.105.205422
https://doi.org/10.1103/PhysRevB.96.125436
https://doi.org/10.1103/PhysRevB.100.205422
https://doi.org/10.1103/PhysRevResearch.2.042038
https://doi.org/10.1103/PhysRevB.78.035419

