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Absence of Majorana oscillations in finite-length full-shell hybrid nanowires
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Majorana bound states (MBSs) located at the ends of a hybrid superconductor-semiconductor nanowire are
only true zero modes if their characteristic localization length is much smaller than the nanowire length, ξM � L.
Otherwise, their wave function overlap gives rise to a finite energy splitting that shows a characteristic oscillatory
pattern ∼e−2L/ξM cos(kF L) versus external parameters that modify the Fermi momentum kF . Detecting such
“Majorana oscillations,” measurable through low-bias conductance, has been proposed as a strategy for Majorana
detection in pristine nanowires. Here we discuss how this detection scheme does not work in full-shell hybrid
nanowires, an alternative design to partial-shell nanowires in which a superconductor shell fully wraps the
semiconductor core. Using microscopic models, we provide both numerical simulations for Al/InAs hybrids
as well as analytical approximations in terms of general nanowire parameters. We find that Majorana oscillations
with flux in full-shell nanowires are absent in a wide portion of parameter space. This absence is not a
signature of nonoverlapping left- and right-end MBSs, but a consequence of the Majorana oscillation period
being systematically larger than the flux window of odd Little-Parks lobes where Majorana zero-energy peaks
are predicted to appear. Our results demonstrate that split near-zero modes or individual zero-energy crossings
should not be dismissed as trivial even if they are found not to oscillate with flux.

DOI: 10.1103/PhysRevB.110.115417

I. INTRODUCTION

Majorana bound states (MBSs) are non-Abelian quasipar-
ticles that appear at the ends of one-dimensional topological
superconductors [1–4]. Among the various proposed plat-
forms that host MBSs [5–8], arguably the most studied one
is known as the Oreg-Lutchyn Majorana nanowire [9,10].
It is based on hybrid superconductor-semiconductor het-
erostructures with strong spin-orbit coupling (SOC), which
may undergo a topological transition in response to an ap-
plied Zeeman field. During the last two decades, several
measurement schemes of increasing complexity have been
pursued to unambiguously confirm the emergence of MBSs,
including tunneling [11,12], Coulomb [13,14], and quantum-
dot-assisted spectroscopies [15]. More recently, sophisticated
protocols [16] that combine local and nonlocal conductance
measurements using time-resolved interferometry and single-
shot parity readout [17] have also been implemented. Despite
such experimental efforts, interpreting the data is challenging
when taking into account all the phenomenology [18] that
arises in realistic hybrid systems beyond the predictions of the
ideal single-mode Majorana nanowire model. Generalizations
include, e.g., the effects of disorder [19–21] and material
inhomogeneities [22–29].

In pristine Oreg-Lutchyn nanowires, a way to iden-
tify MBSs was proposed already in 2012 [30], see also
Refs. [31,32]. The effective size of the MBS wavefunction

*Contact author: elsa.prada@csic.es

is called the Majorana localization length, ξM , defined in a
semi-infinite wire. In a finite-length nanowire whose length L
is not much larger than ξM , the left- and right-end MBS wave
functions spatially overlap, see Fig. 1. This gives rise to an
energy splitting ∼e−2L/ξM cos(kF L) of the zero-energy Majo-
rana mode that decays exponentially with L, just as the overlap
[33], but that also has a sinusoidal behavior with Fermi mo-
mentum kF . This in turn could be detected as a characteristic
oscillatory splitting with Zeeman field (or chemical potential)
of the zero-bias conductance peak in tunneling spectroscopy
measurements.

While Majorana oscillations have been studied in differ-
ent contexts in Zeeman-driven nanowires [34,35], including
critical current oscillations in Josephson junctions [36], they
have not yet been analyzed in a full-shell hybrid geome-
try. Full-shell hybrid nanowires are an alternative Majorana
nanowire design that came to the spotlight in 2020 [13] in
which the superconductor shell that induces superconductivity
into the semiconductor core is not limited to some facets of
the nanowire, but wraps it all around. The doubly connected
geometry of the superconductor has profound implications
in the response of these wires to an applied axial magnetic
field. It gives rise for instance to the Little-Parks (LP) ef-
fect [37,38], whereby the superconducting order parameter
oscillates with flux in a series of lobes characterized by an
integer number n of superconductor phase windings, called
fluxoids. It also enables the presence of a special type of
subgap Andreev states [39–43] that have been called Caroli-de
Gennes-Matricon (CdGM) analog states [44]. In the topo-
logical phase, one of those subgap states transforms into a

2469-9950/2024/110(11)/115417(14) 115417-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5709-2290
https://orcid.org/0000-0002-7920-5273
https://orcid.org/0009-0005-4965-478X
https://orcid.org/0000-0002-7464-7363
https://orcid.org/0000-0001-7522-4795
https://ror.org/02qqy8j09
https://ror.org/01cby8j38
https://ror.org/01cby8j38
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.115417&domain=pdf&date_stamp=2024-09-10
https://doi.org/10.1103/PhysRevB.110.115417


CARLOS PAYÁ et al. PHYSICAL REVIEW B 110, 115417 (2024)

FIG. 1. Full-shell hybrid nanwowire. (a) Sketch of a full-shell
nanowire with a tubular-core geometry. An insulating core (white)
is surrounded by a semiconductor tube (yellow) of external radius R
and thickness W , and is completely encapsulated in a thin supercon-
ductor shell (blue) of thickness d . In an applied axial magnetic field
B the hybrid wire is threaded by a nonquantized magnetic flux � =
π (R + d/2)2B. The chemical potential μ and the radial electrostatic
potential energy U (r) are schematically depicted inside. (b) Same as
(a) but for a semiconductor solid-core geometry. The conduction-
band bottom inside the semiconductor exhibits a domelike radial
profile with maximum value at the center, Umax, and minimum value
at the superconductor-semiconductor interface, Umin. (c) Sketch of a
full-shell nanowire of finite length L in the topological phase. In red
and green, Majorana bound state (MBS) wavefunctions at the left
and right ends of the nanowire along the longitudinal direction. ξM is
the Majorana localization length (defined in a semi-infinite wire).

Majorana zero mode, extending across a flux interval inside
odd-n LP lobes [13,45,46]. Importantly, the topological su-
perconducting properties are not driven by the Zeeman effect,
but by the orbital effect of the magnetic field, which among
other things permits operating these wires at much smaller
magnetic field that their partial-shell counterparts. The rich
phenomenology of these wires is being analyzed in recent
years [14,46–57], but there are still many basic questions that
need to be understood.

In this work, we consider the effect a of finite nanowire
length on the Majorana zero modes. We find that the expected
Majorana oscillations are absent for a wide (and realistic)
region of parameter space. This hinders the possibility of
using Majorana oscillations as a way to identify and charac-
terize MBSs in full-shell wires. We consider both microscopic
numerical simulations in perfect Al/InAs full-shell nanowires
as well as general analytical derivations as a function of the
hybrid parameters. The absence of oscillations is not a con-
sequence of the left and right-end MBSs not overlapping in
a finite-L nanowire. Actually, zero energy modes in full-shell
geometries still split as ∼e−2L/ξM cos(kF L) when the nanowire
length L is not much larger than the Majorana localization
length ξM . The reason is that, except for very narrow and
long wires, the Majorana oscillation period with flux, which
we show to be δ� = 2π/|L∂�kF (�)|, is systematically of
the order or larger than the lobe flux window. The practical

consequence is that a lack of oscillations around zero of a
near-zero mode or parity crossing cannot be used to rule out a
topological origin.

This paper is organized as follows. In Sec. II, we explain
the two different realistic models that we consider for the
full-shell hybrid geometry: the tubular-core nanowire, ana-
lyzed in Sec. II A, and the solid core nanowire, analyzed in
Sec. II B. In Sec. III, we provide a discussion of the results.
A summary of our findings and the conclusions of this work
are given in Sec. IV. In Appendix A, we provide the Hamil-
tonians employed to analyze these hybrid wires, including
the tubular-core approximation and the mapping to the Oreg-
Lutchyn model (Appendix A 1). An analytical expression for
the Majorana oscillation period in full-shell hybrid nanowires
is derived in Appendix B, together with an analysis of the
typical range of parameters for which there are no Majo-
rana oscillations. While the numerical results we present in
the main text correspond to a wire in the nondestructive LP
regime, the destructive one is considered in Appendix C.

II. MODELS AND RESULTS

A full-shell hybrid nanowire with a semiconductor core of
radius R and a thin superconductor shell of thickness d is
shown in Fig. 1. We consider two possible realistic models
for the semiconductor core [46]. In the first one, Fig. 1(a), the
interior is insulating around the axis and the semiconductor
has a tubular shape of thickness W . This is called the tubular-
core model. In the second one, Fig. 1(b), the semiconductor
completely fills the interior of the shell. This is dubbed the
solid-core model.

In our models we employ cylindrical coordinates, with
radial coordinate denoted by r, azimuthal angle by ϕ and axial
coordinate chosen along the z direction. For simplicity, we
assume that the hybrid wire has cylindrical symmetry. It has
been shown that this is a very good approximation for a more
realistic hexagonal-shaped nanowire [44,46]. The full-shell
nanowire is threaded by a magnetic field �B = Bẑ that gives
rise to a flux � = πR2

LPB, where we define the LP radius as
RLP = R + d/2, the mean radius of the shell.

The methodology to analyze these wires, both analyt-
ically and numerically, has been thoroughly described in
Refs. [13,44,46]. We provide a summary in Appendix A.
As discussed there, it is possible to arrive at an effective
Bogoliubov-de Gennes (BdG) Hamiltonian for the hybrid sys-
tem, see Eq. (A3). The Hamiltonian is expressed in terms
of the flux �, which, in units of the superconducting flux
quantum �0 = h/2e (where h is the Plank constant and e
the electron charge), defines the fluxoid n(�) = ��/�0�.
This is the number of times the superconductor phase winds
around the wire axis for a given flux. Other variables include
nanowire intrinsic parameters such as the effective mass m,
the chemical potential μ, the SOC α and the g factor, the geo-
metrical parameters (d , R, W ), the radial electrostatic potential
energy U (r), the decay rate from the semiconductor core into
the superconductor 	S, the shell superconducting gap at zero
field 
0, the diffusive superconducting coherence length ξd ,
and the radial and generalized angular momentum quantum
numbers (mr, mJ ) that label the different transverse subbands
of the wire.
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FIG. 2. Tubular-core nanowire of semi-infinite length. (a) Local density of states (LDOS) at the end of a semi-infinite d = 10 nm, R =
70 nm, and W = 20 nm tubular-core nanowire (in arbitrary units) as a function of energy ω and applied normalized magnetic flux �/�0,
displaying half of the n = 0, and the full n = 1, 2, 3 Little-Parks (LP) lobes. Majorana zero modes are visible in the n = 1 and n = 3 LP
lobes. The full-shell wire is in the nondestructive LP regime. Other subgap features are Caroli–de Gennes–Matricon (CdGM) analog states.
(b) Contribution of the subbands with mJ = 0 generalized-angular-momentum quantum number to the LDOS in (a) but suppressing the LP
modulation and fixing the fluxoid number to n = 1 for all the flux range displayed. The boundaries of the first LP lobe are marked with vertical
dashed lines. The Majorana localization length ξM (in nm) as a function of flux is shown above with a color bar. (c) Same as (b) but for the n = 3
fluxoid number. Minimum ξM inside lobe n = 1: ∼260 nm, inside lobe n = 3: ∼290 nm. Other parameters: α = 50 meV nm, μ = 18.1 meV,
g = 10, 	S = 10
0, 
0 = 0.23 meV, and ξd = 70 nm.

Previous results in Ref. [46] analyzed in detail the phe-
nomenology of a semi-infinite full-shell nanowire, including
the topological phase diagrams as a function of R, W , α,
μ and 	S, the local density of states (LDOS) at the end
of the wire, and the differential conductance through an
normal-superconductor junction. In this work, we consider the
phenomenology of these wires when they have a finite length
L so that, in the topological regime, left- and right-end MBSs
can overlap, see Fig. 1(c).

In our numerical simulations of the main text and the Ap-
pendix C, we will employ typical parameters for an Al/InAs
hybrid nanowire, since those are the most common materials
analyzed experimentally so far. We note that, recently, a prac-
tical theoretical proposal based on semiconductor hole bands
(instead of electron bands as here) was studied in Ref. [58] for
InP/GaSb core-shell nanowires. General analytical results for
the Majorana splittings can be found in Appendix B.

A. Tubular-core nanowire

We start by analyzing a full-shell hybrid nanowire with a
tubular core, see Fig. 1(a). This model could describe a multi-
shell nanowire with an insulating core and a semiconductor
shell (a so-called core-shell nanowire in the literature), fully
wrapped in a superconductor shell.

In Fig. 2(a), we can see the LDOS of a semi-infinite
tubular-core nanowire. It is represented against the flux �

through the LP section normalized to �0. This flux causes
the superconducting phase in the shell to acquire a quantized
winding n = 0,±1,±2, . . . around the nanowire axis. Wind-
ing number jumps are accompanied by a repeated suppression
and recovery of the superconductor shell gap, forming so-
called LP lobes as a function of flux, characterized by the
integer number n of fluxoids through the section. In Fig. 2(a),
we show half of the n = 0 and the full n = 1 − 3 lobes. We
observe a number of bright features below the parent gap
in the different lobes. These are the so-called CdGM analog
states analyzed in detail Refs. [44,46]. They are Van Hove

singularities that are induced by the superconductor shell on
the normal core bands. The geometrical parameters (core
radius R = 70 nm and shell thickness d = 10 nm) and the
superconductor parameters (gap at zero field 
0 = 0.23 meV
and diffusive superconducting coherence length ξd = 70 nm)
are such that the wire is in the nondestructive LP regime,
meaning that the parent gap does not close between lobes at
half integer values of �0. As a result, all the subgap features
change abruptly at fluxoids jumps between lobes. The transi-
tion from the nondestructive to the destructive LP regime [59],
analyzed in Appendix C, typically happens for smaller RLP

radius, see Eq. (A13).
In a full-shell nanowire that can be described with a cylin-

drical approximation, MBSs are predicted to appear at odd LP
lobes when the parameters of the wire are such that the system
is the topological phase, see Appendix A. When the thickness
of the tubular semiconductor, W , is small compared to its
radius R, it is possible to approximate the radial electrostatic
energy U (r) and the SOC α(r) as constants, see Fig. 1(a).
When the doping of the semiconductor wire is small, as it
is typically the case in depleted nanowires, only the low-
est radial subband is populated and the Hamiltonian of the
system can be approximated by Eq. (A14), given in terms
of the average radius Rav of electron wave functions inside
the semiconductor. In this case, for the subband with lowest
generalized angular momentum mJ = 0 there is a direct map-
ping to the single-mode Oreg-Lutchyn model, see Ref. [13]
and Appendix A 1. It is then straightforward to understand
the appearance of Majorana zero energy modes in odd lobes,
since these are the only ones where mJ can take a zero value.
This mapping is also very useful to appreciate that the topo-
logical phase transition in full-shell nanowires is driven by an
orbital effect, see the expression for the effective Zeeman field,
Eq. (A17).

Since in Fig. 2(a) the values of α, μ and 	S have been
chosen so that the full-shell wire is in the topological regime,
we can observe a zero-energy peak (ZEP) in the n = 1 lobe
that emerges due to the presence of a MBS at the end of the
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 3. Tubular-core nanowire of finite length. (a) Local density of states (LDOS) at the end of a L = 500 nm, d = 10 nm, R = 70 nm,
and W = 20 nm tubular-core nanowire (in arbitrary units) as a function of energy ω and applied normalized flux �/�0, displaying half of
the n = 0, and the full n = 1, 2, 3 LP lobes. (b) Contribution of the lowest mJ quantum numbers to the LDOS in (a) (mJ = 0 for odd lobes,
mJ = ±1/2 for even lobes). (c) mJ = 0 contribution to the LDOS in (a) but suppressing the LP modulation and fixing the fluxoid number to
n = 1 for all the magnetic-flux range displayed. The boundaries of the first LP lobe are marked with vertical dashed lines. (d) Same as (c) but
for the n = 3 fluxoid number. (e)–(h) Same as (a)–(d) but for a L = 1000 nm full-shell nanowire. Other parameters like in Fig. 2.

semi-infinite wire at zero energy. It extends from the left end
of the lobe to an intermediate value of flux within the lobe,
as corresponds to a tubular-core nanowire. At the right end
of the ZEP, the topological band closing and reopening of
the mJ = 0 subband is visible. At the left end a CdGM state
crosses zero energy. Still, there is a region of fluxes where
the Majorana mode is spectrally separated from other subgap
states and is thus protected by a topological minigap. For
the parameters of this wire, there is also a ZEP in the n = 3
lobe that crosses the whole lobe. However, it coexists with a
finite LDOS background from the rest of the occupied CdGM
analogs, so it is unprotected.

For illustrative purposes, in Figs. 2(b) and 2(c), we show
the mJ = 0 contribution to the LDOS as a function of flux
by artificially fixing the fluxoid number to n = 1 and n = 3,
respectively. We moreover remove the LP modulation [by
taking ξd = 0 in Eq. (A12)] to observe more clearly the sub-
gap phenomenology. Only the magnetic flux region bounded
within vertical dashed lines (the actual lobe) corresponds to a
stable real solution, but we display a much larger flux range
to observe the whole interval of the Majorana zero-energy
anomaly, from its appearance (sometimes within the actual
lobe) to its disappearance (typically at large negative flux).
One could think of this plot as a metastable solution of the
full-shell wire if it were possible to quickly vary the magnetic
flux so that the system does not reach its ground state, thus
leading to a fixed fluxoid. While this is probably possible
for some flux range close to the actual lobe, it is clearly
impossible for the magnetic range shown. Still, this kind of
plots provide a useful view into the behavior of the Majorana
oscillations with flux in a finite-length wire and their absence
within the flux windows of odd lobes.

In Fig. 2(b), the ZEP within the n = 1 lobe is dominated
by the kz = 0 gap of the mJ = 0 subband (the so-called inner
gap that undergoes the topological inversion), whereas the one
at kz = kF (the outer gap) takes over for flux values outside
the lobe. The Majorana localization length ξM is an important
quantity to later understand Majorana overlap in the finite
length case. In Fig. 2, we compute ξM numerically [46] and
display it above the LDOS plots with a color bar (again,
only the part within the vertical dashes lines is physically
meaningful). In this case, ξM reaches a minimum of ξM ≈ 260
nm precisely at the left end of the n = 1 lobe. ξM is larger
in the third lobe (with a minimum of ≈290 nm) as the ZEP
is dominated there by a smaller mJ = 0 minigap, namely the
outer gap, which monotonically decreases until it closes for
negative �/�0. The behavior described above is typical for
tubular-core models.

If now we consider the same parameters as in Fig. 2 but for
a finite-length nanowire, we arrive at the behavior observed
in Fig. 3. The total LDOS for L = 500 nm can bee seen in
Fig. 2(a). This length is approximately twice the Majorana
localization length within the first lobe, so that the left an right
Majoranas overlap considerably. Two striking differences ap-
pear with respect to the semi-infinite case. On the one hand,
the smooth Van Hove signals that characterized the CdGM
analogs in Fig. 2(a) are now transformed into a series of
discrete levels for each mJ . These levels are longitudinally
confined CdGM states. On the other hand, the Majorana ZEP
splits into two trivial states, with a splitting that grows as the
length is reduced. To see this more clearly, in Fig. 3(b), we
plot the contribution to the LDOS of only the lowest |mJ |
subbands for each lobe, i.e., mJ = 0 (mJ = ±1/2) for odd
(even) lobes. Notice that the third lobe ZEP is also split. The
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(a) (b) (c)

FIG. 4. Solid-core nanowire of semi-infinite length. Same as Fig. 2 but for a solid-core nanowire with d = 10 nm and R = 70 nm. The
radial domelike electrostatic potential profile inside the semiconductor has Umin = −30 meV and Umax = 0, with μ = 2 meV. Other parameters
like in Fig. 2, except for 〈α〉 = 20 meVnm and 	S = 40
0. Minimum ξM inside lobe n = 1: ∼890 nm.

fixed-fluxoid mJ = 0 LDOS plots for n = 1 and n = 3 are
shown in Figs. 3(c) and 3(d), respectively. It is possible to
see that for large negative fluxes the ZEP does indeed oscil-
late with magnetic field, but this happens far away from the
measurable region within the lobe boundaries (vertical dashed
white lines).

Corresponding results for an L = 1000 nm wire are shown
in Figs. 3(e)–3(h). Since the wire is longer, the Majorana
oscillations in Figs. 3(g) and 3(h) have smaller amplitude and
shorter period, so that there is a larger number of oscillations
along the full flux range of the zero-energy anomaly. Still,
within the n = 1 and n = 3 lobes we just observe a split Ma-
jorana state, but not a full oscillation. The reason is twofold.
First, at least in the n = 1 lobe, we are accessing only the
beginning of the Majorana zero mode after the topological
phase transition, where the ZEP has not yet started to oscil-
late significantly because it is dominated by the kz = 0 gap,
see Figs. 3(c) and 3(g). Second, and more importantly, the
oscillation period of the Majorana is larger than the flux range
it occupies within the lobe. This can be seen for instance

in Fig. 3(h). One may ask whether the absence of Majorana
oscillations is a peculiarity specific to tubular-core models but
not to solid-core ones. The answer is negative. We analyze this
in the next section.

B. Solid-core nanowire

An equivalent study to Fig. 2 but for a semi-infinite solid-
core model is shown in Fig. 4. As before, R = 70 nm and d =
10 nm, but now we have a domelike electrostatic potential
profile within the semiconductor [60,61], see Fig. 1(b). The
chosen parameters correspond to nanowire in the topological
regime. Consequently, a Majorana ZEP extends throughout
the first lobe corresponding to the second (mr = 1) radial
momentum subband. There are no Majoranas in the third
lobe. In the n = 1 lobe there is no topological minigap since
many CdGM analogs cross zero energy at different fluxes.
As thoroughly analyzed in Ref. [46], this is a general trait
of solid-core nanowires and is an indirect result of the radial
profile of the wave function in this model, which may extend

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 5. Solid-core nanowire of finite length. Same as Fig. 3 but for a solid-core nanowire with d = 10 nm and R = 70 nm, and nanowire
length L = 500 nm in (a)–(d) and L = 2000 nm in (e)–(h). Other parameters like in Fig. 4.

115417-5



CARLOS PAYÁ et al. PHYSICAL REVIEW B 110, 115417 (2024)

(a) (b) (c)

FIG. 6. Tubular-core nanowire of semi-infinite length in the destructive Little-Parks regime. Same as Fig. 2 but for a tubular-core nanowire
with d = 10 nm, R = 30 nm, and W = 10 nm. The wire is in the destructive LP regime, so that there are gapless regions between lobes and
the n = 3 lobe is closed. Other parameters: α = 10 meVnm, μ = 39.1 meV, g = 10, 	S = 8
0, 
0 = 0.23 meV, ξd = 70 nm. Minimum ξM

inside lobe n = 1: ∼450 nm.

closer to the nanowire axis as compared to the tubular-core
case. Only in the presence of mode mixing perturbations is
it possible to open minigaps (as well as create MBSs in the
n = 0, 2 lobes). We ignore this possibility for simplicity, as
it does not affect the conclusions about Majorana oscillations
studied here.

In Fig. 4(b), we observe the whole Majorana ZEP interval
for a fixed n = 1 fluxoid as before. Note that the mr = 1 ZEP
that spans the vertical dashed white lines disappears for a
magnetic flux of �/�0 ≈ −12. Subsequently, another ZEP
emerges for more negative flux values. This second anomaly
corresponds to the mr = 0 topological subband. In the n = 3
fixed-fluxoid case of Fig. 4(c), there is no ZEP in the third
lobe because only at very negative fluxes a mr = 0 Majorana
ZEP appears. The Majorana localization length is represented
above these plots as before, and is systematically dominated
by the outer gap. The minimum ξM within the first lobe is now
more than 3 times larger than in the tubular-core case of Fig. 2.

The finite-length version of solid-core nanowire is an-
alyzed in Fig. 5. Now we consider L = 500 nm in

Figs. 5(a)–5(d) and L = 2000 nm in Figs. 5(g) and 5(h). Once
more, even if Majorana oscillations are visible in the artificial
fixed-fluxoid panels, these oscillations have always a larger
flux period than the flux window of the first lobe. Thus, in
practice, Majorana splittings are observed in the LDOS of
Figs. 5(b) and 5(f), as corresponds to overlapping left and
right Majorana wave functions, but full oscillations have no
flux range to develop. On the other hand, the total LDOS of
Figs. 5(a) and 5(e) is covered around zero energy by many
longitudinally confined CdGM analog states, the more the
larger L, which hinders the observation of the Majorana peaks.

III. DISCUSSION

It is possible to understand the absence of Majorana os-
cillations observed in the previous section analytically for
the tubular-core model thanks to the mapping between the
single-mode Oreg-Lutchyn Hamiltonian and the mJ = 0 full-
shell nanowire Hamitonian. In Appendix B we derive the
Majorana oscillation period δ�, Eq. (B5), as a function of

FIG. 7. Tubular-core nanowire of finite length in the destructive Little-Parks regime. Same as Fig. 3 but for a tubular-core nanowire with
d = 10 nm, R = 30 nm and W = 10 nm. Other parameters like in Fig. 6.
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FIG. 8. Solid-core nanowire of semi-infinite length in the destructive Little-Parks regime. Same as Fig. 2 but for a solid-core nanowire with
d = 10 nm and R = 30 nm. The radial domelike electrostatic potential profile inside the semiconductor has Umin = −30 meV and Umax = 0,
with μ = 2 meV. Other parameters like in Fig. 6, except for 〈α〉 = 8.6 meVnm and 	S = 40
0. Minimum ξM inside lobe n = 1: ∼210 nm.

flux and the rest of the hybrid nanowire parameters. We then
compare it with the flux interval that contains Majoranas for
a particular lobe n in the topological phase, In

�, which we can
also derive analytically. By inserting numbers for Al/InAs,
it is possible to see that δ� � In

� and thus Majorana os-
cillation cannot fully develop in lobes n = 1 and n = 3 for
the typical range of parameters: m = 0.023me, ξd ∈ [40, 250]
nm, L < 1.5 µm, RLP � Rav > 40 nm, α > 5 meVnm and

0 > 0.05 meV. A marginal exception to this rule are long
(L > 2 µm) and narrow (RLP < 40 nm) nanowires, which may
develop around one oscillation within odd lobes. Obviously,
very long wires have the problem that they are more prone
to have disorder along the wire and thus Majoranas can be
easily destroyed. Even if disorder is sufficiently weak, the
amplitude of Majorana oscillations would be exponentially
suppressed with length, so that in practice the oscillations
would be unobservable. On the other hand, in very narrow
nanowires, even though the Majorana oscillation period de-
creases (with respect to wider ones), the lobe flux window

also decreases, again hindering the development of proper
Majorana oscillations.

We analyze this narrow regime in Appendix C. There, we
consider a hybrid nanowire with d = 10 nm and R = 30 nm,
both in the tubular-core (Figs. 6 and 7) and the solid-core
regimes (Figs. 8 and 9). Keeping ξd the same, the full-shell
hybrid enters the LP destructive regime when RLP decreases
sufficiently [59], see Eq. (A13). Two important differences
with respect to the nondestructive regime are: (a) there are
gapless regions between lobes and thus the flux window of
each lobe decreases as n increases; and (b) the minimum
SOC value to enter the topological phase in the tubular-core
model strongly decreases with smaller R [46]. Apart from
these differences, the conclusions with respect to the absence
of Majorana oscillations are similar to the ones in Sec. II. As
long as the hybrid nanowire parameters are within the ranges
mentioned above, the oscillation period with flux δ� is of the
order or larger than the Majorana flux interval In

�, or even the
full lobe width.

FIG. 9. Solid-core nanowire of finite length in the destructive Little-Parks regime. Same as Fig. 3 but for a solid-core nanowire with d = 10
nm and R = 30 nm. Other parameters like in Fig. 8.
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IV. CONCLUSIONS

In this work, we have analyzed full-shell hybrid nanowires
of finite length in the topological regime. On the one hand,
subgap CdGM analog states, which in semi-infinite nanowires
are Van Hove singularities induced by the superconductor
shell on the semiconductor mJ propagating subbands, get lon-
gitudinally confined by the finite L and give rise to a dense
collection of subgap levels that disperse with flux and that
can cross zero energy. On the other hand, Majorana ZEPs that
appear for a certain flux interval in the mJ = 0 sector within
odd lobes, split in energy due to the overlap between the left
and right MBSs forming at the ends of the finite-L wire.

We have focused on the fate of the Majorana splittings
versus magnetic flux. In microscopic numerical simulations
performed for Al/InAs hybrids, we have found that while
split Majorana ZEPs appear for a wide range of parameters,
there is typically no room for proper oscillations within the
flux window of actual odd LP lobes. At most, a single parity
crossing may occur inside the lobe. This has been confirmed
analytically in Appendix B, where we show that in full-shell
tubular-core nanowires δ� � In

�, where δ� is the Majorana
oscillation period and In

� is the flux interval that contains
Majoranas for a particular lobe n. Our prediction is compatible
with measurements of the lowest energy mode in full-shell
islands using Coulomb spectroscopy [13], where finite length-
dependent splittings in the first lobe were resolved, but not
oscillations.

While our focus in the main text has been the nondestruc-
tive LP regime, the corresponding study for a hybrid nanowire
in the destructive LP regime can be found in Appendix C. The
conclusions are similar in this case. In principle, the Majorana
oscillation period δ� decreases for narrower wires, but so
does the lobe width due to the gapless regions that appear
between lobes in the destructive LP regime. As a consequence,
the flux window available for Majorana oscillations decreases,
once more hindering their observation.

We have restricted our study to full-shell nanowires free
from all types of disorder or imperfections, since our moti-
vation is to establish the ideal baseline for the observation of
Majorana oscillations. Mode-mixing disorder (i.e., disorder in
the transversal direction only such as cross-sectional distor-
tions) was analysed before [13,45,46]. This type of disorder
can actually be beneficial for the protection of MBSs, since it
can open minigaps around zero energy by coupling different
CdGM analog states. Otherwise, this type of disorder would
not affect the conclusions about Majorana oscillations ana-
lyzed here. Strong disorder along the nanowire axis is however
more detrimental [19–21]. As in conventional Zeeman-driven
partial-shell nanowires, we expect this type of disorder
to destroy MBSs and/or create quasi-Majoranas [22–28],
which would complicate the interpretation of the subgap
phenomenology with local probes [18]. However, full-shell
nanowires should be less sensitive than their partial-shell
equivalent to some dominant types of disorder, such as trapped
charges in the dielectric environment [62,63], thanks to the
screening of the encapsulating superconductor [13].

Studies of Majorana oscillations, as the one performed in
this work, are important because these oscillations are often
a target in experiments, since they were predicted to be a

characteristic signature of topological Majorana modes [30].
Our results suggest that oscillations versus flux are however
not the signature to search for in tunneling spectroscopy
experiments on full-shell nanowires when trying to identify
potential Majorana peaks. A given, nonoscillating, near-zero
peak (or a parity crossing) in a sufficiently short full-shell
wire could be interpreted as a mere longitudinally quantized
CdGM analog or a quantum-dot-like state, both topologically
trivial. However, the wire could in fact be in the topological
phase, and the nonoscillating peak could correspond to a pair
of split Majoranas that would be stabilized to zero energy
by increasing the length of the device or reducing its dis-
order. These considerations should also be relevant beyond
tunneling spectroscopy experiments, e.g., in Josephson effect
devices [64].

All the numerical code used in this manuscript was based
on the Quantica.jl package [65]. The specific code to build
the nanowire Hamiltonian and to perform and plot the cal-
culations is available at Refs. [66] and [67], respectively.
Visualizations were made with the Makie.jl package [68].
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APPENDIX A: HAMILTONIAN

A detailed explanation of our models and methodology
for studying full-shell hybrid nanowire can be found in Ap-
pendix A of Ref. [46]. There, the reader can find a discussion
of the LP effect of the shell, the Bogoliubov-de Gennes (BdG)
Hamiltonian, the quantum numbers for a cylindrical full-shell
nanowire, the numerical methods for the Green’s functions,
and the expressions for the LDOS, differential conductance
dI/dV and Majorana localization length ξM . Here, we just
provide a summary of the main concepts and the Hamiltonian
employed in our calculations to establish the definitions of all
parameters. We refer the reader to Ref. [46] for further details.

The full-shell nanowire is a hybrid structure consisting of a
superconductor shell and a semiconductor core. In the Nambu
basis � = (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑ ), the BdG Hamiltonian is

given by

HBdG =
[

H0 
†


 −σyHT
0 σy

]
. (A1)

Here, H0 is the Hamiltonian of the hybrid system in the
normal state and 
 is the superconducting order parameter,
that is only nonzero inside the shell. In the presence of a
magnetic field �B = Bẑ applied along the wire’s axis, the vec-
tor potential in the symmetric gauge reads �A = 1

2 ( �B × �r) =
(−y, x, 0)Bz/2 = Aϕϕ̂, where Aϕ = Br/2. Here r is the radial
coordinate and ϕ denotes the azimuthal angle around ẑ, as we
want to work in cylindrical coordinates. The magnetic field
threads a flux through the cylinder, defined as � = πR2

LPBz,
with RLP = R + d/2, where R is the semiconductor radius and
d is the superconductor thickness. The flux � is thus defined
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at the mean radius RLP of the shell. σi, with i = (x, y, z), are
Pauli matrices in the spin sector. We take h̄ = 1 for simplicity.

The normal Hamiltonian H0 in Eq. (A1) is composed of
Hcore and the shell Hamiltonian in the normal state. In the
normal state, the shell is a dense diffusive metal, with much
smaller Fermi wavelength than the semiconductor. It is in
general quite demanding to include the superconducting shell
explicitly in the numerical solution of the Hamiltonian. We
then choose to write an effective BdG Hamiltonian H of the
proximitized nanowire by integrating out the shell degrees of
freedom. This procedure introduces a self energy �shell into
the Green’s function G(ω) = [ω − Hcore − �shell(ω)]−1. This
�shell acts on the core surface r = R. We thus define the effec-
tive BdG Hamiltonian for the system as H ≡ ω − G−1(ω) =
Hcore + �shell(ω), which is in general frequency dependent.

It is possible to define a generalized angular momentum
as Jz = −i∂ϕ + 1

2σz + 1
2 nτz, which is the sum of the orbital

angular momentum lz = −i∂ϕ , the spin momentum sz = 1
2σz

and the “fluxoid momentum” fz = 1
2 nτz (given in terms of the

fluxoid number n), all of them projected along the z direction.
For a hybrid wire with cylindrical symmetry, Jz commutes
with H , [Jz, H] = 0, so that the eigenvalues mJ = ml + ms +
mn of Jz are good quantum numbers of the eigenstates of H .
Since ml ∈ Z and ms ∈ ±1/2, the possible eigenvalues mJ

are [13]

mJ =
{
Z + 1

2 if n is even
Z if n is odd

. (A2)

We can thus apply a canonical transformation U =
e−i(mJ − 1

2 σz− 1
2 nτz )ϕ to reduce H to a ϕ-independent 4 × 4 effec-

tive Hamiltonian H̃ = UHU†, where

H̃ =
[

p2
z + p2

r

2m
+ U (r) − μ

]
σ0τz + VZσzτ0

+ 1

2mr2

(
mJ − 1

2
σz − 1

2
nτz + 1

2

�

�0

r2

R2
LP

τz

)2

σ0τz

− α(r)

r

(
mJ − 1

2
σz − 1

2
nτz + 1

2

�

�0

r2

R2
LP

τz

)
σzτz

+α(r)kzσyτz + �shell(ω). (A3)

Apart from the generalized angular momentum quantum
number mJ , this Hamiltonian is expressed in terms of
the longitudinal momentum operator pz = −i∂z, the radial
momentum operator pr = −i∂r , p2

r = − 1
r ∂r (r∂r ), the semi-

conductor effective mass m, the chemical potential μ, the flux
� and the superconducting flux quantum �0 = h/2e.

Even though it is not necessary for the appearance of the
topological phase, we also consider the Zeeman effect pro-
duced by the magnetic field,

VZ = 1
2 gμBBz, (A4)

where μB is the Bohr magneton and g is the semiconductor
Landé g-factor.

U (r) is the electrostatic potential energy inside the core.
This potential is a consequence of the band-bending imposed
by the epitaxial core/shell Ohmic contact, which in turn stems
from the difference of the Al work function and the InAs elec-
tron affinity [61,69]. We note that the degree of band-bending

and precise shape of U (r) depends on the microscopic details
of the interface and the self-consistent electrostatic screening.
We consider a simple model for U (r) of the form

U (r) = Umin + (Umax − Umin)
( r

R

)2
, (A5)

for the solid-core nanowire, see Fig. 1(b).
Concerning the SOC inside the core, we assume it is of

the Rashba type and produced by the inversion symmetry-
breaking created the core/shell interface. It is thus radial and
pointing outwards. For the solid-core nanowire and using a
standard approximation from the eight-band model [70], we
can write (see also Ref. [71])

α(r) = −α0∂rU (r), α0 = P2

3

[
1


2
g

− 1

(
soff + 
g)2

]
.

(A6)

Taking the Kane parameter P = 919.7 meV nm, the semicon-
ductor gap 
g = 417 meV and split-off gap 
soff = 390 meV,
relevant for InAs, one obtains α0 = 1.19 nm2. In our simula-
tions, we take α0 as a free parameter.

The form of the self energy for a diffusive shell in Eq. (A3),
expressed in terms of a decay rate 	S from the core into the
shell (in the normal state), has the expression [72]

�shell(ω) = 	Sσ0
τx − u(ω)τ0√

1 − u(ω)2
. (A7)

Here, the complex function u(ω) is obtained from the equation

u(ω) = ω


(�)
+ �


(�)

u(ω)√
1 − u(ω)2

, (A8)

where � is a pair breaking parameter (introduced by the
magnetic field in our case) and the superconductor pairing
amplitude 
 furthermore obeys

ln

(�)


(0)
= −P

(
�


(�)

)
,

P(λ � 1) = π

4
λ,

P(λ � 1) = ln
(
λ +

√
λ2 − 1

)
+ λ

2
arctan

1√
λ2 − 1

−
√

λ2 − 1

2λ
, (A9)

where 
(0) ≡ 
0 is the pairing of a ballistic superconductor,
i.e., for � = 0. Note that � has energy units and is bounded by
0 � � � 
0/2. The equation for 
(�) has to be solved self-
consistently. Equation (A8) can be rewritten as a fourth-order
polynomial with root u(ω). We choose the solution that leads
to the adequate continuity and asymptotic behavior of the re-
tarded Green’s functions. As a consequence, u(ω → 0) → 0.

The superconductor energy gap is given by [72]

�(�) = (
(�)2/3 − �2/3)3/2. (A10)

It closes at � = e−π/4
0, while the pairing becomes zero at
� = 
0/2, yielding a gapless superconductor region between
these two values of the depairing. Notice that for such region
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our model is still valid, but for � > 
0/2, 
 vanishes and the
material becomes a metal, with the normal self-energy

�
�>
0/2
shell (ω) = −i	Sσ0τ0. (A11)

Assuming cylindrical symmetry, a standard Ginzburg-
Landau theory of the LP effect [59,73–76] provides an explicit
connection between depairing and flux,

�(�) = kBTc ξ 2
d

πR2
LP

[
4

(
n − �

�0

)2

+ d2

R2
LP

(
�2

�2
0

+ n2

3

)]
,

n(�) = ��/�0� = 0,±1,±2, . . . (A12)

where ξd is the diffusive superconducting coherence length
and Tc is the zero-flux critical temperature. At zero field
�(0) = 0 and kBTc ≈ 
0/1.76, where kB is the Boltzmann
constant. The way in which �(�) depends on � gives rise
to modulations of the shell gap with flux, defining different
regions called LP lobes with fixed fluxoid n. The shell gap
�(�) is maximum at the center of the lobes, for � = n�0,
and it decreases towards the lobe edges. In the nondestructive
LP regime, the shell gap does not close in between lobes, at
half-integer flux � = (n/2)�0. This is the case analyzed in
the main text. When the depairing at � = (n/2)�0 is larger
than � = e−π/4
0, the shell transitions into the destructive
LP regime; this is the case analyzed in Appendix C. The de-
structive LP regime, defined when a destructive region appears
between the n = 0 and n = 1 lobes, occurs for

C
R2

LP

ξ 2
d

− d2

4R2
LP

� 1, (A13)

where C = πe−π/4
0/kBTc ≈ 2.52. When d → 0, the de-
structive regime happens for RLP/ξd � 0.6 [59].

1. Tubular-core approximation

In the case of a tubular-core nanowire, when the semicon-
ductor thickness W is small as compared to R, see Fig. 1(a),
we can make some approximations to the Hamiltonian (A3).
For the lowest radial momentum subband, mr = 0, it is possi-
ble to concentrate all the wave function at an average radius
Rav within the semiconductor tube section, see Ref. [46].
We can thus substitute r = Rav in Eq. (A3). Defining μ̃ ≡
μ − U (Rav) − 〈p2

r〉/2m, where 〈p2
r〉/2m represents the radial

confinement energy, we can write the tubular-core BdG effec-
tive Hamiltonian as

H̃TC =
(

p2
z

2m
− μ̃

)
σ0τz + VZσzτ0

+ 1

2mR2
av

(
mJ − 1

2
σz − 1

2
nτz + 1

2

�

�0

R2
av

R2
LP

τz

)2

σ0τz

− α

Rav

(
mJ − 1

2
σz − 1

2
nτz + 1

2

�

�0

R2
av

R2
LP

τz

)
σzτz

+αkzσyτz + �shell(ω). (A14)

Note that μ̃ represents now the Fermi energy (or energy
difference between the highest and lowest occupied single-
particle states at zero temperature). Moreover, the SOC can
be approximated by a constant α. The form of the self energy

term remains unchanged, but it is now understood to act at
r = Rav (instead of at r = R like in the solid-core model). This
was dubbed the modified hollow-core approximation of the
Hamiltonian in Ref. [46].

It is possible [13] to rewrite Eq. (A14) as

H̃TC =
(

p2
z

2m
− μ̃φ

mJ

)
σ0τz + (

VZ + V φ

Z

)
σz + AmJ

+ CmJ σzτz + αkzσyτz + �shell(ω), (A15)

where

μ̃φ
mJ

= μ̃ − α

2Rav
− 1

8mR2
av

(
4m2

J + 1 + φ2), (A16)

V φ

Z = 1

2
φ

(
1

2mR2
av

+ α

Rav

)
, (A17)

AmJ = −mJ
1

2mR2
av

φ, (A18)

CmJ = −mJ

(
1

2mR2
av

+ α

Rav

)
, (A19)

with φ = n − �(Rav)/�0. For mJ = 0, AmJ = CmJ = 0 and it
is then possible to map this Hamiltonian to the conventional
single-band Oreg-Lutchyn nanowire model [9,10]. Note that
the effective Zeeman term V φ

Z has an orbital origin here, and
it is present even in the absence of semiconductor g factor.
Thanks to this mapping, it is possible to understand that when
the wire is threaded by an odd number of fluxoids n, the
mJ = 0 subband sector may undergo a topological phase tran-
sition and develop MBSs (if the parameters of the wire are
such that the topological phase falls within the corresponding
lobe).

APPENDIX B: PERIOD OF MAJORANA OSCILLATIONS

In a semi-infinite Majorana nanowire in the topological
phase, the wavefunction of the MBS is exponentially local-
ized around the end of the wire as ∼e−z/ξM , where ξM is the
Majorana localization length. In Ref. [30], it was shown that
the exponential decay, however, is also spatially modulated,
oscillating as ∼ cos(kF z), where kF is the (outer) Fermi wave
vector. When the wire has a finite length L � ξM , the Majo-
ranas at each end will overlap. As a result, they will hybridize
with a typical energy splitting of the form ∼e−2L/ξM cos(kF L).
The dependence of kF with wire parameters, such as e.g. the
chemical potential μ, the Zeeman splitting VZ or, in full-shell
wires, the flux �, leads to oscillations of the Majorana split-
ting as a function of said parameters.

The instantaneous period δx of the Majorana oscillations
as a function of any parameter x is given by

δx =
∣∣∣∣ 2π

L∂xkF (x)

∣∣∣∣. (B1)

This expression results from linearizing kF (x + δx)L ≈
kF (x)L + δx∂xkF (x)L, and equating the last term to a full
2π phase shift of the cosine. The above applies equally to
an Oreg-Lutchyn nanowire as to a full-shell nanowire. Here
we are interested in the latter, where in particular the tuning
parameter x is the flux �. We will derive the Majorana flux
period δ� in the particular case of the tubular-core model,
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for which we have the simple analytical mapping to the
Oreg-Lutchyn model explained in Appendix A 1, and can thus
derive a simple form for kF (�).

We proceed as follows. We first diagonalize the tubular-
core Hamiltonian (A15) but in the absence of the su-
perconductor and for mJ = 0, i.e., the normal single-band
semiconductor Hamiltonian

H̃TC
0 (kz ) = k2

z

2m
− μ̃φ + αkzσy + (

VZ + V φ
Z

)
σz, (B2)

where kz is the longitudinal wave vector and

μ̃φ = μ̃ − α

2Rav
− 1

8mR2
av

(1 + φ2) (B3)

is the same as Eq. (A16) but for mJ = 0. We then equate
the eigenvalues to zero to find solutions for kz = kF . These
come in two types: two solutions with high |kz| (called “outer”
solution), another two with small |kz| (“inner”), that actually
become zero at the helical transition |V φ

z | = |μ̃φ|. The Majo-
rana oscillations are controlled by the outer solution, which
takes the explicit form

kF =
√

2m
√

mα2 + μ̃φ + εφ,

εφ =
√(

VZ + V φ
Z

)2 + m2α4 + 2mα2μ̃φ. (B4)

Some authors have formulated alternative expressions for kF

(in the Zeeman-driven Oreg-Lutchyn model) that remain ac-
curate also for finite 
 at the expense of making α = 0, and
viceversa [30].

Inserting Eqs. (A17) and (B3) into Eqs. (B4) and applying
Eq. (B1) with x = � yields the Majorana oscillation period
with flux in the odd-n LP lobe

δ�

�0
= 8πεφkF R2

LP/L

(εφ+mα2)
[
n−(

n− 1
2

) R2
av

R2
LP

] − (
VZ + V φ

Z

)
(1+2mRavα)

.

(B5)

To assess whether at least one Majorana oscillation is visi-
ble within an odd lobe, one must compare δ� to the flux
interval In

� = �R − �L that contains MBSs for lobe n. Here
�L and �R are the minimum and maximum flux with MBSs
in the lobe, respectively. A Majorana oscillation will then be
visible within the lobe only if δ� < In

�. Assuming a Majorana
mode is indeed present within the n lobe, and approximating
the shell thickness by d ≈ 0, Eq. (A10) yields a simple form
for �L (i.e., the left side of lobe n), �L ≈ �0 max[n − 1

2 , n −
1.74RLP/ξd ]. �R, the highest flux in the lobe with a Ma-
jorana mode, similarly reduces to �R = �0 min[n + 1

2 , n +
1.74RLP/ξd ,�c/�0]. Here �c is the critical flux, namely the
� solution of the equation 
2 + (μ̃φ )2 − (V φ

Z )2 = 0.
The condition for full oscillations, δ� < In

�, is never
satisfied in lobes n = 1 and n = 3 for the typical range
of parameters of InAs full-shell nanowires (m = 0.023me,
ξd ∈ [40, 250] nm, L < 1.5 µm, RLP � Rav > 40 nm, α > 5
meV nm and 
0 > 0.05 meV). The choice of parameters
that maximizes the probability of satisfying the condition
and hence of fitting at least one oscillation within the lobe
corresponds to long (L > 2 µm) and narrow (RLP < 40 nm)
nanowires. The constraint on RLP is slightly relaxed for higher

lobes n � 5 if α � 20 meVnm, so that oscillations in RLP <

50nm wires becomes possible, as long as these higher lobes
remain open and measurable. This parameter window, how-
ever, is quite narrow.

APPENDIX C: DESTRUCTIVE LITTLE-PARKS REGIME

In the main text, we have considered a representative case
of an Al/InAs full-shell hybrid nanowire in the nondestructive
LP regime (d = 10 nm, R = 70 nm, and ξd = 70 nm). In this
Appendix we analyze a representative case in the destruc-
tive LP regime, a narrower full-shell hybrid nanowire (with
R = 30 nm but with the same shell thickness d = 10 nm and
coherence length ξd = 70 nm).

1. Tubular-core model

We first consider the tubular-core model for the full-shell
nanowire, with a semiconductor tube thickness W = 10 nm.
In analogy to Fig. 2 of the main text, in Fig. 6(a), we plot the
LDOS at the end of a semi-infinite nanowire as a function
of normalized flux. Since the wire is in the destructive LP
regime, now there are gapless regions between LP lobes for
fluxes around half-integer multiples of the superconducting
flux quantum �0. Note that the maximum lobe height de-
creases with the lobe number n (as corresponds to a wire
with finite d), as well as the lobe flux window. For these
parameters, the n = 3 lobe (and subsequent ones) is already
closed. The wire is in the topological regime and a Majorana
ZEP can be seen crossing the whole n = 1 lobe. Additionally,
low lying CdGM analog states disperse with flux and cross
zero energy in both the n = 1, 2 lobes. A topological minigap
at the right end of the first LP lobe can be observed. The
mJ = 0, n = 1 fixed-fluxoid simulation analogous to Fig. 2(b)
is presented in Fig. 6(b). We can observe that the Majorana
localization length ξM (depicted above the panel) is dominated
by the outer (kz = kF ) mJ = 0 gap. (A similar simulation for
n = 3 is presented in Fig. 6(c), although in this case it is
irrelevant since the third lobe is closed).

The case of a finite-length tubular-core hybrid nanowire is
analyzed in Fig. 7. For L = 500 nm, the mJ = 0 contribution
to the LDOS in the first lobe, Fig. 7(b), shows what appears to
be a couple of Majorana oscillations versus flux. By checking
the n = 1 fixed-fluxoid plot of Fig. 7(c), we can understand
that it is just a single Majorana parity crossing. The split
levels go to zero energy at the lobe edges in Fig. 7(b) as a
consequence of the LP parent gap closing. Thus, in this case
there are no complete Majorana oscillations within the lobe
either. Incidentally, we note that in Fig. 7(b) there are color
discontinuities at half integer �/�0 values. These are non
physical, just artifacts of selecting the lowest |mJ | contribution
to the total LDOS. The complete sum, Fig. 7(a), is continuous
(although not its first derivative with respect to flux). A similar
study for L = 1000 nm is shown on the right half of Fig. 7.
Although one could interpret that there are a couple of oscil-
lations in the first lobe of Fig. 7(f), in this case there is only
one true complete Majorana oscillation according to Fig. 7(g).

The possible presence of Majorana oscillations in the first
lobe of Figs. 7(a) and 7(e) is accompanied, and thus masked,
by the presence of zero-energy crossings and apparent
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oscillations of other subgap levels. Again, these apparent os-
cillations come from a combination of the dispersion with flux
of the CdGM levels and the parent-gap closing at the lobe
edges. In principle, one could distinguish between Majoranas
and CdGM states in dI/dV measurements because the Majo-
rana levels are states bound to the hybrid wire end, thus more
strongly coupled to the tunnel-contact probe, whereas the
CdGM states are delocalized along the length of the wire. This
should translate into different total peak weight in tunneling
spectroscopy. However, the Majorana localization length ξM

and the nanowire length L in realistic experiments are often
not that different, so the peak weight difference may be small.

We emphasize that the hybrid wire analyzed in this sec-
tion is a borderline case where the Majorana oscillation period
is comparable to or slightly smaller than the flux interval that
contains Majoranas for the n = 1 lobe, δ� ∼ In=1

� . In general,
for other (realistic) parameters, we find δ� � In

� as discussed
in the main text and Appendix B.

2. Solid-core model

Finally, we consider a solid-core full-shell hybrid nanowire
in the destructive LP regime. The case of a semi-infinite wire
can be seen in Fig. 8. As in the tubular-core case of Fig. 6(a),
there are gapless flux intervals between lobes and the third

and subsequent LP lobes have disappeared altogether. A Ma-
jorana ZEP is also present across the whole n = 1 lobe, but
now there is no topological minigap at any flux. As in the
solid-core case of Fig. 4 in the main text, the Majorana zero
mode coexists with a LDOS background coming from the rest
of the occupied CdGM analogs. This is the typical behavior
of solid-core full-shell nanowires. The Majorana localization
length is ξM ≈ 210 nm for the parameters selected in this
figure.

For a L = 500 nm hybrid nanowire we find that the Ma-
jorana modes split in energy, as corresponds to overlapping
left- and right-end MBSs, see Fig. 9(b), but there is not a
single Majorana oscillation inside the lobe, as can be checked
in Fig. 9(c). The closing of the split peaks at the lobe edges
in Fig. 9(b) is a consequence of the parent-gap closing at
the lobe edges in the destructive LP regime. In this case, the
CdGM levels do not cross zero energy and are in general at
higher energies than the Majorana states, as can be seen in
Fig. 9(a). For a longer hybrid nanowire, there could be in prin-
ciple more chances to observe Majorana oscillations within
the first lobe. However, this is not the case, see Fig. 9(e).
The Majorana splitting is so small, see Fig. 9(f), that it could
be mistaken with a true Majorana zero mode. In this case, only
the longitudinally confined CdGM levels reveal that the wire
has indeed a finite length.
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transport through 1e-periodic full-shell Coulomb islands, Phys.
Rev. B 109, L041302 (2024).

[53] G. Giavaras and R. Aguado, Flux-tunable supercurrent in full-
shell nanowire Josephson junctions, Phys. Rev. B 109, 024509
(2024).

[54] K. O. Klausen, A. Sitek, S. I. Erlingsson, and A. Manolescu,
Flux-periodic oscillations in proximitized core–shell
nanowires, Nanotechnology 34, 345001 (2023).

[55] A. Ibabe, M. Gómez, G. O. Steffensen, T. Kanne, J. Nygård,
A. L. Yeyati, and E. J. H. Lee, Joule spectroscopy of hybrid
superconductor–semiconductor nanodevices, Nat. Commun.
14, 2873 (2023).

115417-13

https://doi.org/10.1103/PhysRevResearch.2.013377
https://doi.org/10.1103/PhysRevB.103.195158
https://doi.org/10.1038/s41567-022-01900-9
https://doi.org/10.1103/PhysRevB.86.100503
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.88.020502
https://doi.org/10.1103/PhysRevB.96.075161
https://doi.org/10.1103/PhysRevB.98.235406
https://doi.org/10.21468/SciPostPhys.7.5.061
https://doi.org/10.1103/PhysRevB.101.195421
https://doi.org/10.1103/PhysRevB.86.220506
https://doi.org/10.1103/PhysRevB.86.085408
https://doi.org/10.1103/PhysRevB.86.121103
https://doi.org/10.1103/PhysRevB.97.155425
https://doi.org/10.1103/PhysRevLett.122.147701
https://doi.org/10.1103/PhysRevB.96.205425
https://doi.org/10.1103/PhysRevLett.9.9
https://doi.org/10.1103/PhysRev.133.A97
https://doi.org/10.1016/0031-9163(64)90375-0
https://doi.org/10.1016/0375-9601(68)90931-6
https://doi.org/10.1134/S1063783420090164
https://doi.org/10.1103/PhysRevB.101.054515
https://doi.org/10.1103/PhysRevB.107.155423
https://doi.org/10.1103/PhysRevResearch.2.023171
https://doi.org/10.1103/PhysRevB.109.115428
https://doi.org/10.1103/PhysRevB.99.161118
https://doi.org/10.1103/PhysRevB.101.060507
https://doi.org/10.1126/science.abf1513
https://doi.org/10.1038/s41598-021-97780-9
https://doi.org/10.1103/PhysRevB.105.045418
https://doi.org/10.1103/PhysRevB.109.L041302
https://doi.org/10.1103/PhysRevB.109.024509
https://doi.org/10.1088/1361-6528/acd6a5
https://doi.org/10.1038/s41467-023-38533-2


CARLOS PAYÁ et al. PHYSICAL REVIEW B 110, 115417 (2024)

[56] Á. Ibabe, G. O. Steffensen, I. Casal, M. Gómez, T. Kanne, J.
Nygård, A. Levy Yeyati, and E. J. H. Lee, Heat dissipation
mechanisms in hybrid superconductor–semiconductor devices
revealed by Joule spectroscopy, Nano Lett. 24, 6488 (2024).

[57] M. Valentini, R. S. Souto, M. Borovkov, P. Krogstrup,
Y. Meir, M. Leijnse, J. Danon, and G. Katsaros,
Subgap-state-mediated transport in superconductor–
semiconductor hybrid islands: Weak and strong coupling
regimes, arXiv:2407.05195.

[58] A. Vezzosi, C. Payá, P. Wójcik, A. Bertoni, G. Goldoni, E.
Prada, and S. D. Escribano, InP/GaSb core-shell nanowires: a
practical proposal for Majorana modes in a full-shell hybrid
geometry with hole bands, arXiv:2405.07651.

[59] G. Schwiete and Y. Oreg, Fluctuation persistent current
in small superconducting rings, Phys. Rev. B 82, 214514
(2010).

[60] A. E. Antipov, A. Bargerbos, G. W. Winkler, B. Bauer, E. Rossi,
and R. M. Lutchyn, Effects of gate-induced electric fields on
semiconductor Majorana nanowires, Phys. Rev. X 8, 031041
(2018).

[61] A. E. G. Mikkelsen, P. Kotetes, P. Krogstrup, and K.
Flensberg, Hybridization at superconductor-semiconductor in-
terfaces, Phys. Rev. X 8, 031040 (2018).

[62] B. D. Woods, S. Das Sarma, and T. D. Stanescu, Charge-
impurity effects in hybrid Majorana nanowires, Phys. Rev.
Appl. 16, 054053 (2021).

[63] B. B. Roy, R. Jaiswal, T. D. Stanescu, and S. Tewari,
Stabilizing topological superconductivity in disordered spin-
orbit coupled semiconductor-superconductor heterostructures,
arXiv:2402.18549.

[64] C. Payá et al. (unpublished).
[65] P. San-Jose, Pablosanjose/Quantica.jl: V1.1.0, Zenodo (2024).
[66] C. Payá, CarlosP24/SP38_Finite_Length: 24_07 ArXiv,

Zenodo (2024).

[67] C. Payá, CarlosP24/FullShell.jl: Full-shell semi-infinite
nanowire Hamiltonian builder - destructive LP improved,
Zenodo (2024).

[68] S. Danisch and J. Krumbiegel, Makie.jl: Flexible high-
performance data visualization for Julia, JOSS 6, 3349 (2021).

[69] C.-X. Liu, S. Schuwalow, Y. Liu, K. Vilkelis, A. L. R.
Manesco, P. Krogstrup, and M. Wimmer, Electronic properties
of InAs/EuS/Al hybrid nanowires, Phys. Rev. B 104, 014516
(2021).

[70] R. Winkler, Spin—Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems, Springer Tracts in Modern Physics
(Springer, Berlin, Heidelberg, 2003), Vol. 191.

[71] S. D. Escribano, A. L. Yeyati, and E. Prada, Improved effective
equation for the Rashba spin-orbit coupling in semiconductor
nanowires, Phys. Rev. Res. 2, 033264 (2020).

[72] S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Properties
of superconducting alloys containing paramagnetic impurities,
Phys. Rev. 136, A1500 (1964).

[73] A. V. Lopatin, N. Shah, and V. M. Vinokur, Fluctuation con-
ductivity of thin films and nanowires near a parallel-field-tuned
superconducting quantum phase transition, Phys. Rev. Lett. 94,
037003 (2005).

[74] N. Shah and A. Lopatin, Microscopic analysis of the supercon-
ducting quantum critical point: Finite-temperature crossovers in
transport near a pair-breaking quantum phase transition, Phys.
Rev. B 76, 094511 (2007).

[75] V. H. Dao and L. F. Chibotaru, Destruction of global coher-
ence in long superconducting nanocylinders, Phys. Rev. B 79,
134524 (2009).

[76] I. Sternfeld, E. Levy, M. Eshkol, A. Tsukernik, M. Karpovski,
H. Shtrikman, A. Kretinin, and A. Palevski, Magnetoresistance
oscillations of superconducting Al-film cylinders covering InAs
nanowires below the quantum critical point, Phys. Rev. Lett.
107, 037001 (2011).

115417-14

https://doi.org/10.1021/acs.nanolett.4c00574
https://arxiv.org/abs/2407.05195
https://arxiv.org/abs/2405.07651
https://doi.org/10.1103/PhysRevB.82.214514
https://doi.org/10.1103/PhysRevX.8.031041
https://doi.org/10.1103/PhysRevX.8.031040
https://doi.org/10.1103/PhysRevApplied.16.054053
https://arxiv.org/abs/2402.18549
https://doi.org/10.5281/zenodo.11068257
https://doi.org/10.5281/zenodo.12689024
https://doi.org/10.5281/zenodo.12687837
https://doi.org/10.21105/joss.03349
https://doi.org/10.1103/PhysRevB.104.014516
https://doi.org/10.1103/PhysRevResearch.2.033264
https://doi.org/10.1103/PhysRev.136.A1500
https://doi.org/10.1103/PhysRevLett.94.037003
https://doi.org/10.1103/PhysRevB.76.094511
https://doi.org/10.1103/PhysRevB.79.134524
https://doi.org/10.1103/PhysRevLett.107.037001

