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Spin-resolved nonlocal transport in proximitized Rashba nanowires
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Nonequilibrium transport in hybrid semiconductor-superconductor nanowires is crucial for many quantum
phenomena such as generating entangled states via cross Andreev reflection (CAR) processes, detecting
topological superconductivity, reading out Andreev spin qubits, coupling spin qubits over long distances, and
so on. Here, we investigate numerically transport properties of a proximitized Rashba nanowire that hosts
spin-polarized low-energy quasiparticle states. We show that the spin polarization in such one-dimensional
Andreev bands, extended over the entire nanowire length, can be detected in nonlocal transport measurements
with tunnel-coupled side leads that are spin polarized. Remarkably, we find an exact correspondence between
the sign of the nonlocal conductance and the spin density of the superconducting quasiparticles at the side lead
position. We demonstrate that this feature is robust to moderate static disorder. As an example, we show that
such a method can be used to detect spin inversion of the bands, accompanying the topological phase transition
(TPT) for realistic system parameters. Furthermore, we show that such effects can be used to switch between
CAR and elastic cotunneling (ECT) processes by tuning the strength of either the electric or the magnetic field.
These findings hold significant practical implications for state-of-the-art transport experiments in such hybrid
systems.

DOI: 10.1103/PhysRevB.110.115413

I. INTRODUCTION

Superconductor-semiconductor hybrid nanostructures
have been of central interest in condensed matter physics in
the last years since they hold significant promise as platforms
for a variety of quantum devices [1–4]. Such systems can be
used to fabricate Cooper pair splitters capable of efficiently
generating high-fidelity spatially separated spin-entangled
states via the crossed Andreev reflection (CAR) processes
[5–22]. Additionally, semiconductor nanowires with strong
Rashba spin-orbit interaction (SOI) proximitized by a
bulk superconductors offer a potential avenue for realizing
synthetic topological superconductors, hosting zero-energy
Majorana bound states [23–28]. Moreover, by appropriately
gating such nanowires, one can create arrays of quantum dots
coupled via superconducting sections, forming a platform for
realizing fine-tuned versions of topological superconductors,
known as minimal Kitaev chains [29–33], which host
“poor man’s” Majorana bound states. Furthermore,
superconductor-semiconductor hybrids can be used to
create spin qubits in quantum dots that could be manipulated
via coupling to superconducting leads [5,49,50] or to create
Josephson junctions, which can also host Andreev bound
states (ABSs) again suitable for encoding qubits [34–45].
Another quantum information related application of such
devices is to couple spin qubits hosted in quantum dot over
long distances [5,46–50]. The possibility of precise and
efficient control between the CAR and elastic cotunneling
(ECT) processes is crucial for realizing all aforementioned
devices.

Recent state-of-the-art experiments have demonstrated un-
precedented control over nanofabrication processes [51–59]

and precise tuning of the parameters of such devices [60–62].
One of the most accessible experimental methods to inves-
tigate and study properties of quasiparticles hosted in such
hybrid structures are quantum transport techniques. The local
transport spectroscopy techniques can provide some insight
about localized in-gap quasiparticle states, e.g., zero energy
Majorana fermions or nonzero energy ABSs via local con-
ductance peaks as predicted by theory [63–70] and tested
experimentally [71–82]. However, one has to keep in mind
that such local transport measurements can be inconclusive
in detecting topological superconducting phases since the
observed zero-bias peaks can have origins that are differ-
ent from Majorana fermions [83–102]. On the other hand,
multiterminal transport techniques can provide additional in-
formation about the system such as superconducting energy
gap anisotropy, nonlocal nature of the quasiparticles, their
effective charge associated with electron and hole compo-
sition, induced gap closing, and, potentially, about the TPT
[102–120].

Recently, significant tunability between the CAR and ECT
processes has been reported in nonlocal quantum transport
experiments in proximitized Rashba nanowires coupled to
quantum dots [62]. This a key step toward generating fine-
tuned topological superconducting phases within the minimal
Kitaev chain model [32,33] and generating Bell states in a
controllable manner via CAR [18].

Here, we investigate theoretically spin properties of
low-energy quasiparticles hosted in proximitized Rashba
nanowires using nonlocal quantum transport simulation tech-
niques. In contrast to previous works, we consider systems
with tunnel-coupled side leads that are also spin polarized.
We demonstrate a direct relationship between the sign of the
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nonlocal conductance and the sign of the quasiparticle spin in
systems where at least one side lead is spin polarized. This
relationship is observed over a wide range of system param-
eters. Moreover, since the spin density and its sign can be
nonuniform along the nanowire, the ECT and CAR processes,
which are correlated with the sign of the nonlocal conduc-
tance, depend on the positions at which the side-coupled
spin-polarized leads are attached. This could be used to detect
band inversion associated with the sign flip of spin and charge
of low-energy quasiparticles [121], which build a low-energy
Andreev band. Thus this property could serve as an additional
criterion for verifying topological superconductivity. We note
that the energy of these one-dimensional states, forming the
Andreev band, is limited from above by the superconducting
gap of the three-dimensional parent s-wave superconductor. If
the quasiparticle energy is above this value, the corresponding
state is no longer confined inside the nanowire and, instead,
gets delocalized over the entire system including the super-
conductor. Thus the detection scheme proposed here is only
applicable to states within the Andreev band but not to higher
energy quasiparticle states.

Moreover, we identify parameter regimes for which the
quasiparticle charge is nearly zero, indicating an equal
amount of electron and hole components even though the
system undergoes band inversion. In such a regime, the sign
of nonlocal conductance related to the quasiparticle spin are
particularly robust to onsite disorder. For completeness, we
also calculate the local conductance, which also depends
on the spin polarization of the probed quasiparticle states,
obtaining results consistent with the spin-selective Andreev
reflection process [122–130]. On the other hand, in setups
with two normal leads, we obtain a very good mapping
between the sign of nonlocal conductance and the sign of
quasiparticle charge as expected theoretically [20,110] and
verified experimentally [62].

Our findings describe a general phenomenon and can be
used to precisely detect the local spin density of quasiparti-
cles not only in proximitized Rashba nanowires but also in
other systems hosting spin-polarized quasiparticle states such
as Yu-Shiba-Rusinov states (YSR) [131–134], spin chains
[81,135–145], Andreev spin qubits [34,38,41–45], Caroli-de
Gennes-Matricorn and Majorana vortex states [24,124,146–
148], etc. Furthermore, our results offer insights for designing
devices functioning as Cooper pair splitters and for realizing
poor man’s Majorana fermions in minimal Kitaev chain mod-
els in which precise tunability over ECT and CAR processes
is crucial [32,33,62]. In our simulations, we employ realistic
parameters. It is noteworthy that the coupling of side-leads
to nanowires has already been experimentally demonstrated,
both for normal leads [119], for quantum dots [85,149,150],
and, notably, for ferromagnetic leads [18]. Hence, our predic-
tions are directly amenable to experimental verification.

II. MODEL

As an example of a system that can host spin polarized
low-energy one-dimensional Andreev band with quasiparticle
wave functions extended over the entire length of the
nanowire, we consider a Rashba nanowire proximitized by a
three-dimensional s-wave superconductor. It was shown that

FIG. 1. Schematics of Rashba nanowire (blue cylinder) proxim-
itized by an s-wave superconductor (brown). The magnetic field Bx

is applied in x direction (nanowire axis) and the Rashba spin-orbit
vector α points in y direction. Such systems can host low-energy
spin-down (up) polarized quasiparticle states in the trivial (topo-
logical) phase. The energy of these one-dimensional states is
limited above by the superconducting gap of the three-dimensional
s-wave superconductor. The vertical cones indicate tunnel-coupled
side probes (leads or STM tips) that are oppositely spin polarized
(blue and red arrows) and are placed at some distance away from the
nanowire ends.

low-energy quasiparticle states in such systems for certain
parameter ranges have a well-defined spin polarization
[121]. To be specific, we consider a one-dimensional Rashba
nanowire aligned along the x axis and placed on top of
an s-wave superconductor in the presence of an external
magnetic field applied along the nanowire axis (see Fig. 1).
The system can be modeled by the tight-binding Hamiltonian:

H =
N−1∑
j=0

[�†
j+1(−tτzσ0 − iα̃τzσy)� j + H.c.]

+
N∑

j=0

�
†
j [(2t − μ)τzσ0 + �scτyσy + �Zτzσx]� j, (1)

where � j = (c j↑, c j↓, c†
j↑, c†

j↓)T is given in standard Nambu

representation. The creation operator c†
jσ acts on an electron

with spin σ located at site j in a chain of N sites with lattice
constant a. The Zeeman energy �Z = gμBBx/2 is determined
by the strength of the external magnetic field applied along
the x-axis, Bx, and by the g-factor. The proximity effect by the
s-wave superconductor is responsible for inducing a uniform
superconducting pairing term �sc in the nanowire. The chem-
ical potential of the nanowire μ is calculated from the SOI en-
ergy and t = h̄2/(2m∗a2) is the hopping amplitude, where m∗
is the effective mass and a the lattice spacing used in the effec-
tive tight binding modeling. The Pauli matrices σi (τi) act on
spin (particle-hole) space and α̃ = α/(2a) is the spin-flip hop-
ping amplitude resulting from the Rashba SOI characterized
by the strength α and ESO = α̃2/t is the associated SOI en-
ergy. In order to find the energy spectrum En and correspond-
ing wave functions �n( j) labeled by the index n = 1, . . . , 4N,

we diagonalize the Hamiltonian H numerically. The quasi-
particle spin and charge density distribution for given energy
eigenstates En are defined, respectively, as follows:

Sx( j, En) = �†
n( j)τzσx�n( j), (2)

Q( j, En) = �†
n( j)τzσ0�n( j). (3)

Below, we show that the transport properties of the
investigated system strongly depends on these quantities.

115413-2



SPIN-RESOLVED NONLOCAL TRANSPORT IN … PHYSICAL REVIEW B 110, 115413 (2024)

In order to investigate the transport properties of the
system, we calculate numerically matrix elements of the
differential-conductance Gi j = dIi/dVj defined as derivative
of the total current Ii flowing into the nanowire from the lead i
with respect to the voltage bias Vj applied to the lead j as de-
scribed in detail in Refs. [110,114], while the superconductor
is grounded. To be specific we employ Blonder-Tinkham-
Klapwijk formalism [151] in which the zero-temperature
nonlocal conductance Gi j (E ) between leads i and j is
given by

Gi j (E ) = e2

h

[
T ee

i j (E ) − T he
i j (E )

]
(4)

and the local conductance by

Gii(E ) = e2

h

[
Ni − Ree

ii (E ) + Rhe
ii (E )

]
, (5)

where T ee
i j (E ) [Ree

ii (E )] and T he
i j (E ) [Rhe

ii (E )] are, respec-
tively, the amplitudes of the normal (electron-electron) and
Andreev (electron-hole) transmission [reflection] process for
the charge carriers with energy E injected in the system from
jth lead and transmitted towards the ith lead, where i, j =
L, R label the left and right leads. The number of modes in
the leads is denoted by Ni. For the system considered here,
the conductance Gi j (E ) is calculated numerically using the
KWANT [152] package and ADAPTIVE [153] for the optimal
parameter sampling. In all displayed results, the conductance
is expressed in units of e2/h. In our simulations, the leads are
modeled by the Hamiltonian Hlead(k) = (2t[1 − cos(ka)] −
μlead )τzσ0 + Mxτzσx, which for Mx = 0 describes the normal
(unpolarized) lead and for Mx < 0 (Mx > 0) the correspond-
ing spin up (down) polarized leads.

The corresponding band structure of the leads EL,R(k)
as a function of momentum k is schematically depicted in
Fig. 2 together with the band structure of the proximitized
Rashba nanowire ERNW (k) and quasiparticle spin Sx(k) =
�†(k)τzσx�(k) (see Appendix A for details). Again, the spin
quantization axis is assumed to be in the x direction, along the
applied magnetic field. The leads are tunnel-coupled to the
nanowire at the positions xL and xR, respectively, for the left
and the right lead with positive hopping amplitude t� (< t ).

For the purpose of this study, we choose system param-
eters that are within experimental reach and for regimes
where one can get a substantial number of extended quasi-
particle states forming the one-dimensional Andreev band
inside the superconducting gap of the three-dimensional s-
wave superconductor (long nanowire limit L = 10 µm). To
be specific, we choose the following parameters for Rashba
nanowires: effective mass m∗ = 0.014m0, g-factor g = 50,
�sc = 0.25 meV, and α = 50 meV nm (ESO = 0.23 meV).
In case for spin up (down) polarized leads μlead = 0 and
Mx = −0.3 meV (Mx = 0.3 meV) and for the normal lead
μlead = 0.3 meV and Mx = 0. For the purpose of numerical
efficiency we set a = 100 nm corresponding to t ≈ 0.27 meV
and N = 100. However, we have checked that for a = 10 nm
(t ≈ 27 meV) and N = 1000 the key results are very similar
(see Appendix C for details). To study the dependence on the
Zeeman energy, we set μ = 0, and vary �Z between 0 and
2�sc = 0.5 meV. To study the dependence on the chemical
potential μ, we fix the Zeeman energy to �Z = 0.4 meV

FIG. 2. Energy bands of the left spin up polarized lead EL (k),
the proximitized Rashba nanowire ERNW (k) and the right lead which
is either (a) spin-down, (b) spin-up polarized, or (c) normal ER(k).
The x component (along B-field) of the spin polarization of quasi-
particles from the Andreev band, Sx (k), is indicated by the colorbar.
Shaded gray areas mark an energy window �i < E < �ex in which
spin sensitive transport occurs. Among many possible scattering
processes, we denote the dominant ones contributing to the nonlocal
conductances (a) GL(+)R(−), (b) GL(+)R(+), and (c) GL(+)R(N ), which are
either CAR (negative conductance) or ECT (positive conductance)
processes. The strength of the corresponding signal (high or low)
is reflected in the line thickness. Empty circles denote holes while
filled ones denote electrons and half-filled ones correspond to quasi-
particles in the nanowire. We set the following parameters for the
nanowire: μ = 0, t = 0.27 meV, �sc = 0.25 meV, �Z = 0.2 meV
(nontopological phase), α = 50 meV nm (ESO = 0.23 meV). For
the spin up (down) polarized leads, we set μlead = 0 and Mx =
−0.3 meV (Mx = 0.3 meV) and, for the normal lead, we set μlead =
0.3 meV and Mx = 0.

and change μ between −0.6 and 0.6 meV. In most cases the
leads are attached symmetrically around the nanowire center
at the positions xL = (1/4)L and xR = (3/4)L, unless stated
otherwise. However, as shown for disordered systems and in
Appendix B, as long as the leads are attached sufficiently
far away from the nanowire ends the main features of the
spin-dependent nonlocal conductance are not affected. Here,
we work in the tunneling regime with t� < t , so individual
quasiparticle states can be resolved in transport simulations
and compared with the local spin and charge densities of the
quasiparticels from the Andreev band obtained from finite-
size calculations. Furthermore, the weak coupling regime
between the spin polarized lead and the nanowire can be
advantageous in suppressing its potentially diminishing ef-
fects on superconductivity in case of spin polarized leads.
Here, we choose parameters for InAs in order to demon-
strate that the conductance inversion (spin-dependent nonlocal
conductance) can be observed for realistic parameter values.
However, we would like to emphasize that the spin-dependent
behavior—switching of the conductance sign—has a rather
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universal character and can be used for quasiparticle spin
detection in other systems and for other parameter regimes.

III. RESULTS

A. Schematic picture of nonlocal transport

We present first a schematic (physical) picture of the
dominant processes contributing to the nonlocal conductance
GLR for three different configurations of the leads, which is
then followed by the presentation of exact numerical results
in subsequent sections Regarding the proximitized Rashba
nanowire, the extended Andreev band quasiparticles with en-
ergies ERNW (k) < �sc have a certain sign of the spin if the
exterior gap exceeds the interior one, �i < �ex, which for
μ = 0 is satisfied if 0 < �Z < 2�sc. In the topologically triv-
ial state (here, �Z < �sc for μ = 0), the quasiparticle states
with the lowest positive energy around k ≈ 0 have negative
spin polarization Sx(k) as illustrated in Figs. 2(a)–2(c) (middle
panels).

When the left lead is spin-up (+) and the right lead spin-
down polarized (−), the spin of the injected charge carrier
with positive energy matches the negative spin of quasi-
particles in the proximitized region. However, due to spin
mismatch it cannot enter the left lead as an electron and has
to be transformed into hole which is spin-down polarized [see
Fig. 2(a) for details]. This leads to a strong CAR dominated
nonlocal conductance GL(+)R(−) signal characterized by a neg-
ative sign.

Next, we consider the case with two spin-up polarized
leads. Here, even though the injected spin-up polarized charge
carrier with positive energy does not match the spin direction
of the spin-down quasiparticle in the proximitized region,
transport can still occur due to the presence of SOI, however,
with low probability transfer amplitude giving rise to a small
CAR signal. However, when we look at negative energies,
the spin polarizations of electrons in both leads and of the
quasiparticle in the nanowire are the same. Thus the injected
electron can easily enter the proximitized region and leave it
as an electron with the same spin. In such a scenario, nonlocal
transport is dominated by strong ECT as depicted in Fig. 2(b)
with a positive sign of the nonlocal conductance GL(+)R(+).

Finally, we consider the case with the left lead being spin-
up polarized while the right lead is normal (unpolarized). Due
to spin degeneracy in the right lead, the electron can freely
enter the proximitized region regardless of the quasiparticle
spin polarization and enter the left lead as spin-down (up)
hole (electron). This supports strong CAR (ECT) dominated
nonlocal conductances for positive (negative) energies [see
Fig. 2(c) for details]. In the following sections, we support
the picture presented here by exact numerical simulations of
the spin-dependent quantum transport.

B. Quasiparticle spin detection

We next study numerically the low-energy states and
their spin and charge densities for Rashba nanowires and
the corresponding local and nonlocal conductances. In these
calculations, we tune either the Zeeman energy �Z or the
chemical potential μ symmetrically around given critical
values corresponding to the TPT. To study the spin-dependent

transport, like before, we consider different configurations
of the leads attached to the system: (i) leads with the same
spin polarization (either up or down), (ii) leads with opposite
spin polarization, and (iii) a setup where the left lead is spin
polarized while the right lead is normal (unpolarized).

First, we calculate numerically the energy spectrum for
finite-size nanowires as a function of �Z together with the
local quasiparticle spin Sx( j, En) [see Fig. 3(a)] for selected
positions xL or xR at which the leads will be attached in the
transport simulations. This will allow us to compare and relate
the sign of the local quasiparticle spin with the sign of the
nonlocal conductance. We note that for the uniform system
without disorder the spin density profile of selected bulk states
are symmetric with respect to the center of the nanowire:
Sx(x) = Sx(L − x) as presented in Fig. 3(d). We observe that
the quasiparticle spin Sx(xL ) of the low-energy quasiparticles
at position xL (which should be sufficiently far away from the
nanowire end) changes its sign when the system undergoes the
TPT as the Zeeman energy passes the critical value �c

Z = �sc

for μ = 0.
We start the discussion with presenting results from trans-

port simulations for systems with two leads that have the
same spin polarization either up (+) or down (−). We observe
a strong positive nonlocal conductance GL(±)R(±)(�Z , EF ) =
GR(±)L(±)(�Z , EF ), if the spin of the probed ABS is the same
as the spin of the electrons in the leads. In this case, the
transport is dominated by ECT processes. For example, when
the leads are spin up (spin down) polarized one can observe
strong positive nonlocal conductance signals as depicted in
Fig. 3(b′) [Fig. 3(b′′)] for energies corresponding to the lowest
bulk states and values of the Zeeman energies for which cor-
responding quasiparticle states also have positive (negative)
sign of the local spin density at the positions of the leads. The
appearance of weak negative nonlocal conductance signals
(CAR) is due to the presence of SOI in the nanowire that
allows for normally forbidden spin-flip transport processes.
On the other hand, by analyzing plots of the local conductance
shown in Figs. 3(c′) and 3(c′′), we notice that conductance
peaks are more (less) pronounced when the spin polarization
in the leads matches (does not match) the spin polarization of
the probed quasiparticles. This observation is consistent with
so-called SSAR processes [122,124–129]. We obtain analo-
gous results with ECT dominated signals when the chemical
potential deviates from μ = 0 while �Z is fixed (see Fig. 4).
In this case, there are two TPTs at μ±

c = ±
√

�2
Z − �2

sc . Still,
we again can identify these TPTs by simply looking at the
sign of the nonlocal conductances.

Next, we study setups in which the left and right leads
have opposite spin polarizations. Strong nonlocal conduc-
tance signals GL(+)R(−)(�Z , E ) are observed in Fig. 5(a) and
GL(+)R(−)(μ, E ) in Fig. 6(a) [GR(−)L(+)(�Z , E ) in Fig. 5(b)
and GR(−)L(+)(μ, E ) in Fig. 6(b)] when the spin of the injected
carriers in the right (left) lead matches the local spin polariza-
tion of ABSs in the nanowire at a given bias. We note that
sgn[GLR(�Z , E )] = −sgn[GRL(�Z , E )]. In such a setup, the
nonlocal transport is dominated by CAR processes, a fact that
can be advantageous for realization of Cooper pair splitters.
The nonlocal conductance has a small positive value when
the injected carriers have spin opposite to the probed ABS
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FIG. 3. (a) Energy spectrum of proximitized Rashba nanowire as a function of Zeeman energy �Z induced by the magnetic field Bx applied
along the nanowire axis, which also defines the spin quantization axis. The color bar represents the x component of the spin density, Sx ( j, En),
for a given energy eigenstate En at position j = xL/a and xR/a with xL/a = 25 or xR/a = 75 (here the spin density is symmetric with respect
to the nanowire center). In (a′), the color bar represents the quasiparticle charge Q( j, En). The vertical dashed line indicates the critical value
of �c

Z = �sc at which the system undergoes a gap closing and reopening at the TPT point characterized by spin inversion of the lowest-energy
states. The nonlocal conductance GLR(�Z , E ) = GRL (�Z , E ) for systems with (b) normal - spin unpolarized (degenerate) leads, (b′) both
spin-up and (b′ ′) spin-down polarized leads. The colored arrows on the insets denote the spin polarization of the leads. The corresponding
local conductance GLL,RR(�Z , E ) is plotted in (c)–(c′ ′). The corresponding strength of local conductance signals (c′, c′ ′) is consistent with the
spin-selective Andreev reflection. Quasiparticle (d) spin Sx (x, En) and (e) charge density for the two lowest nonzero energy ABSs in the trival
(�Z = 0.2 meV) and topological (�Z = 0.3 meV) phase with negative and positive spin density, respectively, and almost zero charge density
in both cases. In (b′) and (b′ ′), one can observe strong positive (weak negative) nonlocal conductance signal related with dominant ECT (CAR)
process when the spin of the leads matches (are opposite to) local spin polarization of ABS. In contrast to spin, we note that we do not observe
any correlations between (b) nonlocal conductance and (a′) quasiparticle charge for the system with normal leads as the quasiparticle charge is
almost zero [(a′) and (e)]. The nanowire-lead coupling is set to t� = 0.4t ≈ 0.1 meV while the rest of the parameters are as in Fig. 2.

states, which is possible, again, due to SOI in the proximitized
nanowire. We have also considered the case when the left
lead is spin polarized and the right one is normal - spin
unpolarized (spin degenerate). In such a setup, the nonlocal

conductance GL(±)R(N ) has a strong positive (negative) value
when the polarization of the left lead is the same as (opposite
to) the spin polarization of the low-energy quasiparticles from
the Andreev band. Such gate configurations make the system

FIG. 4. Same as for Fig. 3 but now as a function of chemical potential μ while the Zeeman energy is set to �Z = 0.4 meV. (a′) For a
wide range of μ, one can clearly see nonzero values of the quasiparticle charge. As a consequence, the sign of the nonlocal conductance
GL(N )R(N )(μ, E ) for systems with normal leads in (b) corresponds quite well to the quasiparticle charge shown in (a′). Again, there is a strong
positive nonlocal conductance signal for the case when the spin of the probed ABSs is the same as the spin polarization of the leads.
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FIG. 5. Nonlocal conductance maps (a) GL(+)R(−)(�Z , E ) and
(b) GR(+)L(−)(�Z , E ) for the same parameters as in Fig. 3 but here
leads have opposite spin polarizations as indicated in the inset to
the panel (a) for the clean system: the left (right) lead is spin-up
(down) spin polarized. When the spin of injected charge carriers
from the lead is the same as (opposite to) the spin polarization of
the probed ABS, there is a strong negative (weak positive) nonlocal
conductance. This means that now nonlocal transport is dominated
by CAR process. This behavior can be used to tune the amplitude of
CAR processes, being essential for generating entangled states via
Cooper pair splitting processes. Results for systems with moderate
disorder |δμ j | � �sc are depicted in (a′) and (b′) and show that the
observed behavior of spin-dependent conductance is robust against
disorder.

an ideal platform for detecting the sign of the local spin
polarization of quasiparticles, which is directly linked to the
sign of the nonlocal conductance. Therefore, such setups are
very suitable for the detection of spin inversion of the one-
dimensional Andreev bands induced by the TPT. Furthermore,
such setups are optimal for switching between ECT and CAR
processes in Rashba nanowires either by tuning the magnetic
field [see Figs. 7(a) and 7(b)] or the chemical potential [see
Figs. 8(a) and 8(b)]. For this case, we have also calculated
GL(±)R(N )(xL ) as a function of the position of the left lead
while the position of the right one is fixed. We plot it together
with quasiparticle spin and charge densities for the system in
the topological as well as nontopological phase, see Fig. 9.
We note again that the sign of the nonlocal conductance is
correlated with the sign of the local spin density, which holds
across a wide range of lead attachment positions. We also note
that when the leads are attached to the ends of the system,
the sign of the nonlocal conductance does not change when
the system undergoes a TPT since the local spin den-
sity has the same sign at the ends of the nanowire (see
Fig. 9 for details) in both topological and nontopological
phases. Furthermore, we calculate nonlocal conductance maps
GL(±)R(N )(�Z , E ) (see Fig. 10) in case where the leads are
attached to the opposite ends of the nanowire. For such a

FIG. 6. The same as for Fig. 5 but now the chemical potential
μ is varied and the Zeeman energy is kept fixed to �Z = 0.4 meV.
Here, we can see again that the transport is dominated by CAR
processes (negative conductance), which can be controlled by tuning
μ (e.g., via backgate).

setup one can observe that the sign of the nonlocal con-
ductance in the trivial (�Z < �sc) and in the topological
(�Z > �sc) phase is the same. This highlights the impor-
tance of side coupling of the leads to the regions that are
away from the nanowire ends. Here, on purpose, we choose
shorter nanowires L = 3 µm to illustrate clearly the case
when the sign of the quasiparticle spin density Sx(x) is
position dependent [see orange curve on Fig. 9(b)]. The ob-
served spin density oscillations and spin density sign change
around the end of the nanowire, which occurs only in the
topological phase, is determined essentially by the spin-orbit
strength α, Zeeman energy �Z (more precisely by the in-
duced gap 2|�sc − �Z |), and the nanowire length L which
all affect the amplitude and frequency of oscillations and
corresponding lengthscales (see Appendix D for details). As
a consequence, in this case the sign of the nonlocal con-
ductances GL(±)R(N )(xL ) depends on the position of the left
lead [see solid and dashed black curves on Fig. 9(b)]. We
expect that such a position dependent nonlocal conductance
measurement of the quasiparticle spin (charge) density could
be more easily achieved experimentally in 2D systems hosting
spin polarized YSR states or vortex states using a pair of spin
polarized (normal) STM tips.

Finally, we show that our results are robust against dis-
order, by adding random on-site fluctuations to the onsite
chemical potential μi = μ + δμi in Eq. (1) with |δμi| � �sc

as shown in Fig. 11(d) with corresponding mean free path
lm f p � 685 nm (see Appendix C for details). One can see
that the presence of disorder affects the energy levels [see
Fig. 11(a)] compared to the clean system [see Fig. 3(a)],
however, the sign of the local spin density is very robust
to such disorder [see Figs. 11(a) and 11(e)]. Moreover, as
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FIG. 7. Nonlocal conductance maps GL(±)R(N )(�Z , E ) for sys-
tems where right lead is normal (spin unpolarized) and left lead
is either (a) spin-up or (b) spin-down polarized as indicated on
insets. Here, we observe the exact (anti) correspondence between
the sign of the local spin density of a given quasiparticle and non-
local conductance GL(±)R(N )(�Z , E ). When the left lead has same
(opposite) spin polarization as the probed quasiparticle, the nonlocal
conductance GL(±)R(N )(�Z , E ) has a large positive (negative) value.
For this case, the conductance signal is strongest and such a setup
would be most optimal for probing quasiparticle spin polarization
via nonlocal transport and tuning between ECT and CAR behavior.
For completeness, we plot GR(N )L(±)(�Z , E ) - the carriers are injected
from spin-up and spin-down polarized leads, respectively, in (a′) and
(b′). The signal is much weaker when the spin polarization of the
quasiparticles is opposite to that in the spin-polarized lead.

a consequence, our transport study shows that the sign of
the nonlocal conductance is also not affected by the disorder
[see Figs. 5(a), 5(b′), 6(a), 6(b′), 5(a), 5(b′), 11(b)–11(b′′),
11(c)–11(c′′)]. Importantly, in the charge neutrality regime
where μ = 0 and where the band inversion is driven by the
Zeeman energy, the spin-dependent nonlocal conductances
are clearly more robust to the onsite disorder [see Figs. 5(a′),

FIG. 8. The same as in Fig. 7 but now as a function of chem-
ical potential μ while the Zeeman energy is set to �Z = 0.4 meV.
One can again observe the perfect correspondence between the spin
polarization of the probed quasiparticles and the sign of the non-
local conductance GLR(μ, E ). Here, tunning between the CAR and
ECT dominating regimes can be realized by changing the chemical
potential.

5(b′), 11(b)–11(b′′), and 11(c)–11(c′′)] than in the case when
μ 	= 0 [see Figs. 6(a′) and 6(b′)]. As a summary, in Table I,
we list schematically all the considered spin configurations
of the left and right leads together with spin polarization of
the lowest nonzero energy states in the Rashba nanowire and
the corresponding information about the sign (distinguishing
between CAR or ECT dominating channels) as well as the
strength of the local and nonlocal conductance signals.

C. Quasiparticle charge detection

For the goal of detecting the quasiparticle charge, we con-
sider a setup with two normal (unpolarized) leads. First, we
start with calculating the local quasiparticle charge Q(En)
as a function of Zeeman energy �Z for states at a given

TABLE I. Summary of results obtained for different configurations of the spin polarization of the lowest nonzero energy state in a Rashba
nanowire, SRNW

x , and the spin polarization of the leads, SL,R
x , and their correspondence with the value of the local (Gii) and nonlocal conductance

(Gi j), i, j = L, R. The table also contains information about the leading processes contributing to the nonlocal conductance, being either ECT
or CAR, corresponding to the positive or negative sign of the nonlocal conductance, respectively.

SRNW
x Sx < 0 Sx > 0 Sx < 0 Sx > 0 Sx < 0 Sx > 0 Sx < 0 Sx > 0

← → ← → ← → ← →
Lead: L, R: L, R: L, R: L, R: L: R: L: R: L: R: L: R:
Gi j/Slead

x Sx > 0 Sx > 0 Sx < 0 Sx < 0 Sx > 0 Sx < 0 Sx > 0 Sx < 0 Sx > 0 Sx = 0 Sx > 0 Sx = 0
→ → ← ← → ← → ← → � → �

GLL Low High High Low Low High Low High
GRR Low High High Low High Low ≈0 ≈0
GLR CAR/Low ECT/High ECT/High CAR/Low CAR/High ECT/Low ECT/High CAR/High
GRL CAR/Low ECT/High ECT/High CAR/High ECT/Low CAR/High CAR/Low CAR/High
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FIG. 9. Nonlocal conductance GL(±)R(N ) for the system with the
left lead being spin-up/down (±) polarized and the right lead being
normal (N) as a function of position of the left lead which changes
from xL = 0 to the nanowire center xL/a = L/2/a, while the right
lead is fixed to xR/a = 55. The energy of the injected charge carries
matches that of the lowest quasiparticles from the Andreev band
(smallest positive nonzero energy). Here, Q(x/a) and Sx (x/a) denote
quasiparticle charge and spin density profile, respectively, for the
system (a) in the nontopological phase for �Z = 0.3 meV and (b) in
the topological phase for �Z = 0.4 meV, while the TPT occurs at
�c

Z = �sc = 0.35 meV. The charge density is almost zero, while the
spin density is negative in the nontopological phase and positive
in topological one. Here, we show that the sign of the nonlocal
conductance GL(±)R(N ) perfectly matches with the sign and magnitude
of the spin density at a given point. Here, L = 3 µm, a = 30 nm(t ≈
3 meV), N = 100, α = 40 meV nm (ESO = 0.15 meV), and t� =
0.15t ≈ 0.45 meV.

energy. The energy spectrum of the finite-size system is
depicted in the Fig. 3(b) where the blue/red color indi-
cates the negative/positive sign of the quasiparticle charge
Q(En) for a given energy eigenstate at selected position at
which the normal lead will be attached in case of transport
simulations. Here, we consider the charge neutrality regime
where μ = 0. In such a case, both before (�Z < �sc) and

FIG. 10. Maps of nonlocal conductance GL(+)R(N )(�Z , E ) in the
case when the leads are attached at the opposite ends of the nanowire.
Results shown in (a) are obtained for the same parameters as in Fig. 7
with L = 10 µm and t� = 0.5t ≈ 0.14 meV, while (b) illustrates
results obtained for parameters from Fig. 9 with L = 3 µm t� =
0.5tc ≈ 1.5 meV. Importantly, one can see clearly that the sign of the
nonlocal conductance is the same for �Z < �sc and for �Z > �sc.
Thus it is independent of the spin density of the inner region of the
system and consequently of the topological phase of the system.

after (�Z > �sc) the TPT, the quasiparticle charge is very
close to zero. In addition, if one looks closely at the two
lowest energy quasiparticle, one finds that the correspond-
ing quasiparticle charge density along the nanowire is also
almost zero with some small oscillations at the nanowire
ends as depicted in the Figs. 3(e) and 9. This means that
the low-energy quasiparticles are composed of approximately
equal amount of particle and hole parts. This is also con-
sistent with the analytical predictions for k ≈ 0, Q(k) ≈
sign(�Z − �sc)[h̄2k2/(2m�sc)] (see Appendix A). In such
a scenario, when the two leads attached to the system are
normal (unpolarized), there is no visible change in sign of the
nonlocal conductance GL(N )R(N )(�Z , E ) = GR(N )L(N )(�Z , E )
[see Fig. 3(b)] before and after the TPT.

On the other hand, the system can be tuned away from
the charge neutrality point (μ = 0), e.g., when the TPT (the
band inversion) is driven by the change of chemical potential
μ while the Zeeman energy is fixed to a value that is greater
than the induced superconducting gap, i.e. �Z > �sc. Here, in
contrast to the previously considered regime, the quasiparticle
charge is generally nonzero for a wide range of parameters
and, more importantly, it changes its sign [see Fig. 4(a′)]
around the critical values of the chemical potential μ±

c =
±

√
�2

Z − �2
sc for which the energy gap in the spectrum closes

and the Andreev bands get inverted. As a consequence, the
sign of the nonlocal conductance GL(N )R(N )(μ, E ) is flipped
accordingly around the TPT points μ±

c [see Fig. 4(b)]. This
is in general agreement with theoretical [20,110] and experi-
mental studies [62].

IV. CONCLUSIONS

We analyzed in detail spin and transport properties of
a proximitized Rashba nanowire in a three-terminal setup
with grounded superconductor and with tunnel-coupled side
normal or spin polarized leads. We have considered several
configurations of the spin polarization of the leads, revealing a
distinct correspondence between the sign of the nonlocal con-
ductance and the sign of the local quasiparticle spin density.
In particular, in the setups featuring two leads with the same
or opposite spin polarizations, we observed a dominance of
either the ECT or CAR processes, if the spin of the probed
quasiparticle state matches the spin of the injected charge
carrier in the lead. Alternatively, employing one normal and
one spin-polarized lead facilitated the precise mapping be-
tween the sign of the nonlocal conductance and the spin
polarization of the probed quasiparticle state. Furthermore,
nonlocal conductances in setups with two normal leads pro-
vide information solely pertaining to the quasiparticle charge,
rather than spin. We showed that such a behavior can be
used to detect the TPT which involves band inversion and
a related sign inversion of spin and charge of the lowest
energy states. Moreover, we showed that a Rashba nanowire
with tunnel-coupled side leads can be a versatile platform for
tuning between CAR and ECT processes. This functionality
holds promise for applications such as Cooper pair splitters
and minimal Kitaev chain systems of quantum dots hosted
in proximitized Rashba nanowires. Importantly, our findings
highlight the importance of coupling leads to regions away
from the nanowire ends, which gives additional insight into
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FIG. 11. The same as in Fig. 3 but for system with static disorder |δμi| � �sc, the profile of which is depicted on panel (d). Comparing to
the clean system, the spin-dependent conductances are slightly affected, however, the main spin signature is still visible. (e) Even though the
spatial profile of spin densities is significantly affected, the overall sign is preserved. (e′) As expected, the biggest change can be seen in the
charge density that takes much higher values comparable to the spin polarization, however, they are strongly oscillating around zero, which
does not affect significantly the conductances.

the charge and spin density characteristics of quasiparticles.
We expect that our results will be particularly useful to exper-
imentalists working on hybrid superconductor-semiconductor
systems.

FIG. 12. Themaps of nonlocal conductance (a) GL(+)R(N )(�Z , E ),
(b) GL(−)R(N )(�Z , E ) for the nanowire of length L = 3 µm (N =
100, a = 30 nm, t ≈ 3 meV, t� = 0.15t ≈ 0.45 meV). The energy
spectrum of the nanowire together with (c) local quasiparticle spin
Sx (E , xL ) and (d) local quasiparticle charge Q(E , xL ) at xL = 45a.
Here, the superconducting gap in the nanowire is set to �sc =
0.35 meV and α = 40 meV nm (ESO = 0.15 meV). Again, there
is perfect correspondence between the sign of local spin of the
probed quasiparticles [see (c)] and the sign of nonlocal conductance
GLR(�Z , E ) [see (a) and (b)].

While our study focused on spin-polarized leads, we ex-
pect analogous outcomes for systems featuring spin-polarized
quantum dots [149,150]. However, this case can add complex-
ity in tuning dot levels to match the energy levels of the probed
quasiparticle states and taking into account Coulomb charging
physics in the quantum dots. In summary, our work presents
a novel avenue for detecting quasiparticle spin polarization
and studying CAR and ECT dominated regimes through mea-
suring the spin density profiles of the lowest energy Andreev
bound states with tunnel-coupled side normal or spin polar-
ized leads.
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APPENDIX A: HAMILTONIAN IN MOMENTUM SPACE

H(k) = [2t − 2t cos(ka) − μ + 2α̃ sin(ka)σy]τz

+ �scτx + �Zσx, (A1)
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FIG. 13. The same as Fig. 12 but for the length L = 1 µm (N =
100, a = 10 nm, t ≈ 27.21 meV, t� = 0.15t ≈ 4.1 meV). In a short
nanowire, in the topological phase, we also get an oscillating signal
around zero energy from two overlapping Majorana bound states.

and in the continuum limit ka � 1 [154], we get

H(k) =
(

h̄2k2

2m
− μ + αkσy

)
τz + �scτx + �Zσx. (A2)

The continuum model and its discretized tight binding
version are related by the hopping amplitude t = h̄2/(2ma2)
[69]. Regarding the parameters, we use the same notation
as in the main text. By diagonalizing H(k) [see Eq. (A1)
or (A2)], we obtain analytical expressions for the eigenval-
ues Eλη

RNW (k) and corresponding eigenstates �λη(k) whose
explicit forms can be found in the supplemental material
to Ref. [121]. As a results one gets four energy bands
[see ERNW (k) in the middle panels of Fig. 2], labeled by
λ and η, where λ = 1 (λ = 1̄) labels bands with positive
(negative) energy and η = 1̄ the bands closest to the Fermi
level. However, in the main text for the purpose of clar-
ity we skipped energy band labels λη. The corresponding
bulk quasiparticle spin and charge can be calculated as
follows:

Sλη
x (k) = �

†
λη(k)σx�λη(k), (A3)

Qλη(k) = −�
†
λη(k)τzσ0�λη(k), (A4)

which for k ≈ 0 take the approximate analytical forms [121]

Sλ1̄
x (k) ≈ λsign(�Z − �sc)

[
1 − (αk)2

2(�Z − �sc)2

]
, (A5)

Qλ1̄(k) ≈ λsign(�Z − �sc)
h̄2k2

2m�sc
. (A6)

FIG. 14. The comparison of the nonlocal conductance
GL(+)R(N )(�Z , E ) obtained for different lattice parameters for
the same nanowire length L = 10 µm. Results for a = 100 nm and
N = 100 [as in the main text, see Fig. 7(a)] and for a = 10 nm and
N = 1000 are presented in (a) and (a′), respectively. In the regime of
interest, |E | < �sc, the obtained results are almost identical. (b) and
(b′) illustrate nonlocal conductances for systems with disorder,
which is depicted correspondingly in Figs. 3(d) and 15(c).

APPENDIX B: SHORTER WIRE LIMIT

In this Appendix, we consider the setup with left lead
being spin up/down polarized and the right lead being normal.
The corresponding nonlocal conductances GL(±)R(N )(�Z , E )
for the nanowire of the length L = 3 µm (N = 100, a = 30
nm, t ≈ 3 meV, t� = 0.15t ≈ 0.45 meV, xL/a = 45, xR/a =
55) and L = 1 µm (N = 100, a = 10 nm, t ≈ 27.21 meV,
t� = 0.15t ≈ 4.1 meV, xL/a = 45, xR/a = 55) are presented
in Figs. 12(a), 12(b) and 13(a) and 13(b), respectively. Here,
we choose the distances between the gates as d = xR − xL =
300 nm and d = xR − xL = 100 nm. The corresponding en-
ergy spectrum calculated as a function of Zeeman energy
�Z for the proximitized nanowire is shown in Figs. 12(c),
12(d) and 13(c), 13(d). In panels labeled by (c) [(d)] of
Figs. 12 and 13, the color represents the sign and strength
of quasiparticle spin [charge]. There is again a perfect cor-
respondence between the sign of the nonlocal conductance
[panels (a) and (b)] and the sign of the local quasiparticle
spin [panel (c)]. Here, however, in the topological phase,
one notices the oscillations around zero energy resulting from
the overlap of two Majorana bound states localized at the
opposite ends of the nanowire. These oscillations manifests
themselve also in nonzero nonlocal conductance signal in
short Rashba nanowires in which the Majorana bound state
has nonzero support at points at which we attach the leads.

APPENDIX C: LATTICE SPACING, NUMERICAL CHECK

As we mentioned in the main text, for the purpose of
numerical efficiency, we set the effective tight binding lattice
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FIG. 15. The nonlocal conductance maps for various configurations of spin polarization in the leads are shown in (a) GL(+)R(−)(�Z , E ), (a′)
GL(−)R(+)(�Z , E ), (a′ ′) GL(+)R(+)(�Z , E ), and (a′ ′ ′) GL(−)R(−)(�Z , E ). The corresponding local conductance maps GL(±)L(±)(�Z , E ) are shown
on the lower (b)–(b′ ′ ′). The onsite disorder is presented in (c), while the spin and charge densities for selected states, marked by blue and red
symbols, are depicted in (d) and (e), respectively, similar to Fig. 11 in the main text.

spacing to a = 100 nm in order to study the long wire limit
(L = 10 µm with N = 100). Here, we show that, for 10 times
smaller lattice spacing a = 10 nm (L = 10 µm with N =
1000, t ≈ 27.21 meV, t� = 0.2t ≈ 5.45 meV), the key results
are almost identical. As an example, we consider the setup
with left lead being spin-up polarized and right lead being
unpolarized and compare directly the corresponding nonlocal
conductance map GL(+)R(N )(�Z , E ) for the parameters a =
100 nm (N = 100) and a = 10 nm (N = 1000), see Fig. 14.

FIG. 16. The x component of spin the density Sx (x) as a function
of position along the nanowire for the lowest and second positive
energy states are shown in (a) and (b), respectively. The primed
panels (a′) and (b′) show a zoom-in of the Sx oscillations at the left
end of the nanowire. Colors denote different values of the spin-orbit
strength α (as indicated by the legend), which affects the amplitude
and frequency of oscillations, as well as the position where the spin
density changes sign from positive to negative. Here, we set L =
9 µm, a = 30 nm, N = 300, �Z = 0.4 meV, and �sc = 0.35 meV.

Furthermore, we investigate whether the presence of disorder
affects the results similarly when using two different lattice
constants: a = 100 nm (N = 100) and a = 10 nm (N = 1000)
while keeping the nanowire length constant at L = 10 µm. In
the latter case we set even stronger disorder |δμi| � 1 meV
(Gaussian distribution with σ = 0.3 meV) to have similar
mean free paths in both cases (see appropriate comment at the
end of this Appendix). It can be observed in Figs. 14(b) and
14(b′) that the nonlocal conductance signature of the Andreev
band spin remains clearly visible also for the smaller lattice
constant. For completeness, we also calculate maps of local
GLL(�Z , E ) and nonlocal conductance GLR(�Z , E ) for other
configurations of spin polarized leads: L(+)R(−), L(−)R(+),
L(+)R(+), L(−)L(−) which are illustrated in Fig. 15 for

FIG. 17. Same as Fig. 16 but for larger Zeeman energy set to
�Z = 0.45 meV which results in a larger induced gap (�i = 2|�sc −
�Z | = 0.2 meV). This larger induced gap suppresses the amplitude
of spin density Sx (x) oscillations at the nanowire ends.
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FIG. 18. Similar to Figs. 16 and 17 but for different values of
Zeeman energy ranging from �Z = 0.38 meV to �Z = 0.52 meV.
The spin-orbit strength is fixed at α = 40 meV nm. The colors
corresponds to the spin densities Sx (x) plotted for different values
of Zeeman energy �Z (as indicated by legend).

lattice spacing a = 10 nm (L = 10 µm with N = 1000, t ≈
27.21 meV, t� = 0.2t ≈ 5.45 meV) and disorder amplitude
|δμi| � 1 meV. In order to estimate the mean free path lm f p

induced by the onsite electrostatic disorder δμi one can use
Fermi’s golden rule which gives [120,155,156]:

lm f p = vF τ � 3h̄vF

2πaN1D(0)W 2
, (C1)

where N1D(0) = 2/(π h̄vF ) is the 1D density of states, and
W the disorder strength corresponding to the amplitude of
fluctuations of the onsite chemical potential −W < δμi < W .
This yields the following estimates for the mean free path:
lm f p � 685 nm (lm f p � 617 nm) for a = 100 nm and W =
0.3 meV (a = 10 nm and W = 1 meV).

APPENDIX D: SPIN DENSITY PROFILE
AT NANOWIRE ENDS

Here, we examine how the system parameters: Zeeman
energy �Z , spin-orbit strength α, and length of the system L
affect the spin density profile Sx(x) at the ends of the nanowire
for the two lowest positive energy bulk states. To be specific,
we first set the parameters to L = 9 µm, a = 30 nm, N = 300,
�sc = 0.35 meV, and �Z = 0.4 meV such that the system
is near the TPT and the induced gap is small. We then plot
the spin densities Sx(x/ax ) along the wire for the first two
energetically lowest states (with positive energy) varying the
spin-orbit strength from α = 35 meV nm to α = 60 meV nm
(see Fig. 16). One can observe that both the amplitude and
frequency of the spin density oscillations increase with α.

FIG. 19. Similar to previous figures Figs. (17-18) but for differ-
ent lengths of the system ranging between L = 4.5 to 12 µm. The
spin-orbit strength is fixed at α = 40 meV nm and the Zeeman en-
ergy to �Z = 0.45 meV. The colors corresponds to the spin densities
Sx (x) for these different system lengths. One can clearly see that the
amplitude of spin density oscillations decreases as the length of the
system increases.

Next, we increase the Zeeman energy to �Z = 0.45 meV
which moves the system further away from the TPT and
makes the induced gap larger. As shown in Fig. 17 the am-
plitude of Sx(x) oscillations is smaller than in the previous
case. In the subsequent analysis, we fix the spin-orbit strength
to α = 40 meV nm and vary the Zeeman energy between
�Z = 0.38 meV and �Z = 0.52. The corresponding Fig. 18
demonstrates that the amplitude, frequency, and the position
where the spin density changes sign are strongly dependent
on �Z . We expect that the oscillation and sign change of the
spin density, which occur only in the topological phase, reflect
the presence of a zero-energy Majorana state in the system’s
energy spectrum, whose wave function oscillates around zero
at the nanowire end. Most likely, these oscillations arise from
the interplay between interior and exterior energy gaps [154].
Finally, we investigate how the length of the system affects
spin density oscillations. Figure 19 shows that the length
of the system L primarily influences the amplitude of the
oscillations: the amplitude increases as the length decreases.
This effect is likely related to the hybridization of Majorana
states, which becomes more pronounced with a shorter wire.
The observation that the spin density changes sign near the
end only in the topological phase is probably due to the pres-
ence of Majorana states in the energy spectrum, which also
affects the spin density of other energy states. This behavior
could potentially serve as a new hallmark of the topological
superconducting phase, however, a more detailed analysis is
beyond the scope of this work and could be a topic for future
research.
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