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Enantioselective optical forces and size-dependent sorting of
single chiral particles using vortex beams
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We put forward an approach to manipulate and enantioselect chiral microspheres using vortex beams that en-
code topological charges. Vortex beams with different topological charges transfer angular momentum to chiral
particles with opposite handedness in a different way. This process also depends on the incident polarization,
in a rich interplay that ultimately leads to enantioselective optical forces acting on single chiral particles with
selected, arbitrary sizes. Besides this scheme also depends on the order of the topological charge, which can also
be controlled experimentally. The resulting enantioselective optical forces are up to two orders of magnitude
larger than the existing chiral resolution methods based on optical forces, further demonstrating the unique
functionalities and applicability of the method.
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I. INTRODUCTION

The concept of chirality, introduced by Lord Kelvin to
designate any geometrical object or ensemble of points
that lack mirror symmetry, pervades the natural world [1].
Such nonsuperimposable mirror images, so-called left- and
right-handed chiral enantiomers [2–4], interact with elec-
tromagnetic fields in a different way [5,6]. Electromagnetic
manifestations of chirality have several technological and sci-
entific applications and hence distinguishing chiral materials
with opposite handedness is an important, sought-after goal
[1]. Different enantioselective strategies have been proposed
and constitute the focus of an extensive and multidisciplinary
research field. One of the most traditional strategies for
enantioselection is to exploit the optical response of chiral
materials, such as the optical rotatory power and circular
dichroism [7,8].

Recent advances in nanophotonics have enabled the design
of single nanoparticles with significantly enhanced optical
chiral response, when compared to natural chiral materials
[8–12]. However, traditional probes of chirality are inade-
quate for studying single chiral nanoparticles with unknown
properties [13,14]. To overcome this limitation, alternative
enantioselective optical methods have been proposed, such as
optical tweezing [15–24] and pulling forces [25–34], which
enable the enantioselection of nanoparticles by using optical
forces.

Previous studies have primarily utilized circularly polar-
ized (CP) Gaussian beams to exert chirality-dependent optical
trapping forces and pulling/pushing forces. However, these
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methods often require high laser power or numerical apertures
to exert oppositely directed forces on particles of specific
geometric and optical parameters. In this regard, flexibility
can be achieved by considering the beam that shows re-
configurable interaction with the chirality of the sphere. For
instance, CP vortex beam carries spin angular momentum
(SAM) with bounded values of ±h̄ per photon (h̄ is Planck’s
constant divided by 2π ), which is weaker compared to the
orbital angular momentum (OAM), defined by �h̄ per photon
[35,36], where � is the topological charge [37]. Such recon-
figurable light-matter iterations can provide fertile ground for
discussing the tunable optical forces on the sphere. Various
strategies have been employed to generate a helical wavefront
that carries both SAM and OAM simultaneously [36,38–41].
For example, Laguerre-Gaussian beams have been utilized to
create stronger trapping potentials by leveraging their heli-
cal wavefront, which carries a large OAM [37,42–47]. This
characteristic proves beneficial for trapping low-refractive-
index small particles [48]. Structured vortex beams have been
explored to achieve optical trapping [49] and to generate
enantioselective optical gradient forces [50,51]. However, the
latter scheme only applies to Rayleigh-sized chiral particles so
far [51].

In this work, we investigate the interplay between the chi-
rality parameter of microparticles and the OAM of a vortex
beam to achieve optical pulling and pushing forces on single
chiral spheres. Using this scheme we demonstrate the capa-
bility for enantioselection of arbitrarily sized chiral particles.
The proposed scheme using vortex beams allows for stronger
enantioselective optical pushing forces when compared to the
ones based on focused Gaussian beams [25]. Besides the
method enables efficient low-power optical traps that can be
tuned by changing the angular momentum of the incident
beam. Furthermore, we also show the vast applicability of
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vortex beams for the optical sorting of single chiral particles
with selected and arbitrary size ranges.

The proposed enantioselective scheme relies on the fact
that the OAM � index can assume any integer values ranging
from {+�,−�} associated with positive (left-handed helical
wave front) and negative optical vortices (right-handed heli-
cal wave front), respectively [52]. Indeed, we show that the
optical vortices with tunable OAM modes (+�,−�) play a
key role in the optical pulling force to probe the chiroptical
response. Physically, vortex beams with different OAM index
transfer angular momentum to chiral spheres with opposite
handedness in a different way, also depending on the incident
beam polarization, in a rich interplay that ultimately leads to
an enantioselective optical force. Since the order of integer
value of the OAM modes � can be experimentally controlled
[53–59], the proposed enantioselective scheme provides an
alternative mechanism for characterizing the chiral optical
response of isolated particles using optical pulling forces.

II. THEORETICAL FRAMEWORK

Laguerre-Gaussian beams have a well-defined forward mo-
mentum h̄kz, where kz is the wave number along the z axis, and
helical phase e(i�φ), where � is known as topological charge
and φ is the azimuthal angle [52,56–60].

To describe the spatial profile of Laguerre-Gaussian beams,
a rigorous theoretical framework is adopted. We consider a
circularly polarized vortex beam of helicity σ , topological
charge �, and vacuum wave number k0 = 2π/λ0, wavelength
in vacuum λ0, propagating along the +z direction

Ein = E0ei(k0z−ωt )ei�ϕ (x̂ + iσ ŷ), (1)

where E0 is the incident electric field amplitude. We con-
sider a collimated incident beam at the objective entrance
with a well-defined polarization state in this derivation. This
description is obtained in the paraxial limit where kz ≈ k0.
After impinging on an objective lens of focal length f , with a
narrow annular aperture on its entrance [37,61], the resulting
beam is a nonparaxial vortex beam with an aperture angle
θ . The nonparaxial beam in the focal region is described by
the formalism of the Richards and Wolf diffraction integrals
[62–64], which in physical terms means superimposing in the
reciprocal space the different Fourier components belonging
to the surface of a cone with aperture angle θ . The target chiral
particles are assumed to be located at the focal plane inside an
aqueous solution, as illustrated in Fig. 1.

We consider an objective of focal length f , with a narrow
annular aperture on its entrance [37,61]. This setup creates a
nonparaxial vortex beam with aperture angle θ focused onto
the sample chamber containing an aqueous solution and chiral
microsphere. The mathematical description of this conical-
shaped beam in the focal plane is described in terms of the
Richards and Wolf model; see details in Appendix A.

The interaction between the resulting field distribution [see
Eq. (A2)] and a Mie chiral microsphere: of radius a, electric
permittivity ε, chirality κ , and refractive index np = √

ε + σκ

can be described using the Debye potential formalism [65,66].
Due to the spherical symmetry of the scattering center,

the incident nonparaxial conic beam and scattered electro-
magnetic field distribution have been expanded in terms of

FIG. 1. Schematic illustration of incident conic beam: (a) circu-
larly polarized plane waves are entering the objective and forming a
hollow conical vortex beam carrying topological charge appearing
due to its helical wavefront. The resulting optical pulling (purple
arrow) and pushing force (green arrow) acting on the chiral sphere
to the incident beam are also shown. (b) Top view of the hollow
conic vortex beam showing (b) the left-handed helical wavefront
with topological order +� and right-handed helical wavefront with
topological order −�.

spherical waves using the Debye potential formalism [65,66].
The electric (E) and magnetic (M) scattered Debye potentials,
describing outgoing waves, using Hankel functions h(1)

j (kr)
and spherical harmonics Yj,m(�,), are given by

�E
s = −σ

f nhE0

λ0k

∑
j,m

Ajγ jmYj,m(�,)h(1)
j (kr) (2)

and

�M
s = i

f nhH0

λ0k

∑
j,m

Bjγ jmYj,m(�,)h(1)
j (kr), (3)

with incident amplitudes γ jm

γ jm =
√

4π (2 j + 1)

j( j + 1)
2π (i) j (−i)(m−σ−�)e−i(m−σ−�)φs

× d j
m,σ+�(θ )Jm−σ−�(kρs sin θ )eikzs cos θ , (4)

coming from the focused electric field, Eq. (A2), after expand-
ing it in terms of spherical waves, with standard cylindrical
coordinates (ρs, φs, zs) representing the microsphere position
in relation to the focal point. The sums over multipole expan-
sions are explicitly given by

∑
jm(. . .) ≡ ∑∞

j=1

∑ j
m=− j (. . .).

The Wigner rotation matrices d j
m,m′ [67] define the rotation of

each plane wave that composes the conic beam with aperture
angle θ . The spherical coordinates (r,�,) describe a point
of the outgoing spherical wave fronts.

The coefficients Aj and Bj , appearing in Eqs. (2) and (3),
are effective Mie coefficients for the chiral sphere, which are
detailed in Appendix B.
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For future reference, one can define the scattered electric
Es and scattered magnetic Hs fields by the chiral sphere using
Eqs. (2) and (3) under the action of the appropriate vector
operators [66]. Once the total electric E = Ein + Es and total
magnetic H = Hin + Hs fields are found, we are able to obtain
the optical force imparted on the chiral sphere by integrating
the Maxwell stress tensor over a spherical Gaussian surface at
infinity:

F = lim
r→∞

[
− r

2

∫
r(εhε0E2 + μ0H2)d�

]
, (5)

where ε0 and μ0 are the vacuum permittivity and permeability,
respectively. The total optical force acting on the sphere has

two distinct force components, namely scattering force Fsz and
extinction force Fez being associated with the scattered field
Es · E∗

s and the interference between the incident and scattered
field Einc · E∗

s , respectively. Since the incident plane waves
have the same amplitude and polarization with well-defined
momentum in the forward direction, the net optical force will
point along the z axis by symmetry. Calculating the flux of
the Maxwell stress tensor, taking the total electromagnetic
field outside the microsphere, over a large Gaussian surface,
extending to infinity, we obtain the scattered axial (taking
ρs = 0) optical force so that only the far field distribution
contributes [25,68]

Fsz = −16π3E2
0

k2
Re

∑
j

√
j( j + 2)( j + σ + � + 1)( j − σ − � + 1)

j + 1

[
(AjA

∗
j+1 + BjB

∗
j+1)d j

σ+�,σ+�(θ )d j+1
σ+�,σ+�(θ )

]

− 16π3E2
0

k2
σ (σ + �)Re

∑
j

(2 j + 1)

j( j + 1)
AjB

∗
j

∣∣d j
σ+�,σ+�(θ )

∣∣2
(6)

and the extinction component

Fez = 8π3E2
0

k2
Re

∑
j

(2 j + 1)(Aj + Bj )
∣∣d j

σ+�,σ+�(θ )
∣∣2

cos θ.

(7)
The net force on the chiral sphere along z axes is given as

Fz = Fez + Fsz. (8)

III. RESULTS AND DISCUSSION

Based on our analytically derived expression for optical
force presented in Eq. (8), we analyze the optical force de-
pendence on the size of the sphere a, chirality parameter κ ,
the topological charge of the vortex beam �, and on param-
eters that can be externally controlled such as the incident
angle θ and polarization of the beam σ . In what follows, we
consider a chiral sphere of refractive index np = √

2.5 + κ ,
immersed in water of refractive index nh = 1.332 and chiral-
ity parameter κ , illuminated by the proposed vortex beam,
as shown in Fig. 1, of vacuum wavelength λ0 = 1064 nm.
In the numerical analysis, we normalize the optical force
to F0 = 2πnhI0/(k2c), where I0 = √

εhε0/μ0E2
0 /2 is the in-

tensity each incident plane waves. The incident angle θ is
related with objective numerical aperture NA through relation
θ = sin−1(NA/nw ). For instance, a typical aperture angle of
θ = 70◦ corresponds to a numerical aperture NA ≈ 1.25. In
the numerical calculations, we consider a beam with a large
waist, corresponding to the plane wave approximation used to
describe the incident beam on the objective.

In Fig. 2, we calculate the optical force acting on the chiral
sphere of radius a = 500 nm as a function of cone angle for
different integer values of the topological charge (� = 0,±1)
and chirality parameter, where we take σ = +1 (−1) for the
left (right) column of Fig. 2. The results show that optical
force is always positive at an angle θ = 0◦, as illustrated in

Fig. 2, for all topological integer values. This is due to the
fact that a plane wave in the paraxial domain can never exert
negative optical force on a passive sphere as required by the
conservation of the total optical momentum. As we increase
the incident angle, Fig. 2(a) shows that the left-handed chiral
spheres of chirality parameter κ = 0.3 (with the same chiral
handedness as of the incident beam, i.e., σ = 1) are subjected
to an optical pulling force at an angle θ � 75◦. On the other
hand, the right-handed chiral spheres of chirality parameter
κ = −0.3 (opposite-handed particles with respect to the inci-
dent beam, i.e., σ = 1) experience optical pushing force for all

FIG. 2. Optical force acting on the chiral sphere of radius 500 nm
chirality parameter: κ = −0.3 (red), κ = 0 (dashed), and κ = 0.3
(black) as a function of cone angle θ . The forces in the left(right)
column are calculated by using σ = +1(−1). The optical forces
are pseudosymmetric and can be reverted to the opposite chiral
enantiomer by changing the incident polarization and sign of the
topological charge � simultaneously as illustrated by Figs. 2(c)–2(f)
and Figs. 2(d) and 2(e).
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angles. In order to exert the pulling force on the right-handed
chiral sphere one may revert the polarization of the incident
beam as illustrated by Fig. 2(c), where the right-handed chiral
spheres are attracted toward the source and left-handed parti-
cles are pushed away. Thus forces can be reversed on the chiral
enantiomers by changing the polarization of the beam for
� = 0 as required by symmetry. In addition, achiral particles,
i.e., κ = 0, are always pushed away for both polarization due
to weak interaction between the field and chiral sphere.

On the contrary, for � = ±1 optical force strongly depends
on topological charge as well as the polarization of the beam
and chirality parameter as illustrated in Figs. 2(c)–2(f). In
this case, the optical pulling force appears on a sphere with
matched handedness. For instance, in Figs. 2(c) and 2(f)
pulling forces appear around θ = 56◦ in the situation where
the handedness of the chiral sphere matches the handedness of
the incident polarization. Similar trends are seen in Figs. 2(d)
and 2(e) around angle θ = 53◦. For these particular config-
urations, the optical force can be reverted by changing the
incident polarization and the sign of � simultaneously as re-
quired by symmetry, i.e., F (σ, κ, �) = F (−σ,−κ,−�), and
shown in Figs. 2(c)–2(f).

Altogether, Fig. 2 demonstrates the nature of the optical
force acting on the chiral sphere is due to the structured
incident beam and is related to the spin-orbit interaction of
light. Indeed, when the vortex and helicity have the same
sign the net force can be pulling, whereas when they have
opposite signs the net optical force is always pushing. In
our approach, the additional, experimentally controllable de-
gree of freedom related to the topological charge and its
interplay with the polarization state of the incident beam pro-
vides an optimal way of controlling the direction of optical
forces, allowing for the enantioselective transport of chiral
spheres. It is also important to mention that a linearly polar-
ized vortex beam can distinctively interact with achiral/chiral
spheres but cannot distinguish the handedness of the chiral
spheres [25].

The key finding of this work is the dependence of the
enantioselective force on the topological charge � and the po-
larization of the incident beam which singles out the proposed
approach in comparison to the existing chiral resolution meth-
ods based on optical forces. Physically, vortex beams with
different � distinctively transfer angular momentum to chiral
spheres which also depend on the incident polarization. This
interplay of the selective interactions of �, κ , and σ ultimately
leads to an externally tunable enantioselective optical force.
To further explore the implications of this finding, in Fig. 3 we
calculate the optical force as a function of the sphere radius
for fixed polarization σ = 1 and incident angle θ = 70◦ for
different integer values of the topological charge � and chiral
parameter. Figure 3 unveils the role of topological charge
on the optical pulling force. Indeed an incident beam with
different values of � is able to pull chiral spheres of same
handedness with a wide range of radii. For instance, a sphere
of radius 200 nm with chiral parameter κ = +0.3 (κ = −0.3)
experiences optical pulling (pushing) force due to a left circu-
larly polarized beam with topological charge � = 0 as shown
in 3(a). In comparison to other enantioselective approaches
based on optical forces, pulling force on such a small chiral
sphere cannot be achieved [25,69].
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FIG. 3. Optical force as a function of sphere radius with chirality
parameter: κ = −0.3 (blue), κ = 0 (dashed), and κ = 0.3 (red) at
fixed indent angle θ = 70◦. Here we take a left circular polarized
beam and different topological charge � as indicated in each figure.
The rest of the parameters are the same as we have taken in Fig. 2.

Figure 3 also unveils another aspect of this enantioselective
scheme: the possibility of chiral resolution for specific particle
size ranges. Indeed, beams with different values of � can be
used to selectively pull chiral spheres with a given size and
handedness. For instance, Fig. 3 shows that a left-handed
chiral sphere of chirality parameter κ = 0.3 and radii of ap-
proximately 600 nm, 700 nm, 850 nm, and 950 nm can only
be pulled by a left circularly polarized light with topological
charge � = 0, 2 [as shown in Figs. 3(a) and 3(c)], � = 1, 3
[as shown in Figs. 3(b) and 3(d)], � = 0, 2, 4 [as shown in
Figs. 3(a), 3(c) and 3(e)], and � = 5 [as shown in Fig. 3(f)],
respectively. It is worth noting that, in all these cases, only
left-handed spheres experience an optical pulling force due
to the fact that the chiral sphere enhances the light scatter-
ing when the polarization of the incident field has the same
handedness as that of the chiral sphere [34]. As a result of
this strong scattering, the interference between the different
scattering channels, and their relative phases, maximizes the
scattered momentum in the forward direction. Thus the par-
ticle experiences a significant restoring force. Therefore, a
net pulling force is achieved, which can be controlled by the
incident polarization helicity and topological charge. Thus,
using this scheme, one can not only perform enantioselection
of the chiral sphere but also perform size selection of the
chiral sphere, as shown in Table I, where the chiral selec-
tion of the desired size sphere can be carried out at will by
changing the integer value of the topological charge. This
result demonstrates the possibility of enantioselective sorting
of chiral particles according to their size, in contrast to other
chiral resolution mechanisms using vortex beams [51].

It is important to mention that the sphere immersed in
water should be subjected to Brownian motion and hence,
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TABLE I. Summary of the main functionalities that can be
achieved with the different orders of topological charge as discussed
in Fig. 4. The force is pulling on the 250 nm particle for � = 0,
750 nm can be pulled for � = −1, and sphere of radius 1000 nm
sphere can be pulled for � = −1. Thus the order of the topological
charge allows one to perform chiral section as well as size selection.

Radius Pulling force Pushing force Enantioselection

250 nm � = 0 � = ±1 Yes
750 nm � = ±1 � = 0 Yes
1000 nm � = 1 � = 0,−1 Yes

according to the fluctuation-dissipation theorem, the sphere
should be subjected to the Brownian force, which can be
expressed as FB = √

12πηakβT [70]. Here, a is the sphere
radius, η is fluid viscosity, kβ is Boltzmann constant, and T is
room temperature (300 K). For the case of a subwavelength
particle, say a = 500 nm, immersed in the water of viscosity
η = 7.9 × 10−4 Pa s [70,71], the Brownian force acting on the
sphere is FB ≈ 6 fN [71,72]. However, the results of Figs. 2
and 3 show that the optical forces acting on the sphere are
larger than the Brownian force even for weak incident inten-
sities I0 = 1 mW/μm2. Thus the optical pulling and pushing
forces are stable and elongated toward and away from the laser
source, respectively.

In order to further understand the dependence of the pro-
posed enantioselective mechanism on the topological charge,
in Fig. 4 the optical force is calculated as a function of
sphere radius and chirality parameter κ , where we take the
LCP incident beam with incident angle θ = 70◦. Here col-
ored regions illustrate the parameter space where the spheres
experience the optical pulling force. Figure 4 highlights two
major characteristics of this enantioselective mechanism that
singles it out with respect to existing ones. First, in all cases,
chiral particles with a given handedness are subjected to op-
tical pulling force while other ones experience pushing force,
allowing for chiral resolution for arbitrary small chiral param-
eters. Second, Fig. 4 shows that the conic vortex beam can not
only selectively pull and push the chiral spheres with selected
sizes but also one can achieve pulling forces for particles
with arbitrarily small chiral indexes by varying the topological
charge. This latter finding suggests that one could achieve
enantioselection of spheres made of a naturally occurring
material by varying the topological charge. To put in evidence
these results, let us consider different cases in Figs. 4(a), 4(c),
and 4(f) indicated by blue stars: a sphere of radius a = 250 nm
with chirality parameter κ = 0.2 is subjected to negative opti-
cal forces for � = 0 and pushing force for � = |1|. In contrast,
a sphere of radius a = 750 nm with chirality parameter κ =
0.2, as indicated by a black cross, is subjected to positive
optical force for � = 0 and negative force for � = |1|. Simi-
larly, a sphere of radius a = 550 nm with chirality parameter
|κ| = 0.05 is subjected to pushing force when � = 0 and to
pulling force for � = 1, hampering enantioselection as shown
in Figs. 4(a) and 4(c), respectively. However, for � = −1 the
sphere with κ = 0.05 and κ = −0.05 are subjected to optical
pulling and optical pushing forces, respectively, as shown in
Fig. 4(e) and indicated by blue arrows.

FIG. 4. Optical force as a function of the radius of the sphere
and chirality parameter for fixed incident angle θ = 70◦. The forces
in the left(right) column are calculated by using σ = +1(−1), where
the topological charge is taken as (a), (b) � = 0, (c), (d) � = 1, and
(e), (f) � = −1. The other parameters are the following: refractive
index of the particle and surrounding medium are np = 1.58 + κ and
nh = 1.332, respectively.

The incident optical field is composed of multiple plane
waves with well-defined propagation directions in the for-
ward direction, e.g., along the z axis. Thus the analysis of
the z components of the force is sufficient for investigat-
ing long-range manipulation. By controlling the polarization
and topological charge one can selectively accelerate a chiral
sphere with a given handedness due to the long-ranged pulling
force towards the laser source (negative z direction), while
chiral particles with opposite handedness can be accelerated
towards the propagation direction (positive z axis), allowing
us to perform enantioselection of chiral sphere with small
chirality parameter. Indeed, in this case, particles with nega-
tive chirality parameters can be collected toward the source
by using the right circularly polarized plane waves, as can
be seen in Figs. 4(b), 4(d), and 4(f). In addition to chiral
separation, this approach also provides an opportunity for size
sorting of the chiral sphere by varying topological charges, as
Fig. 4 confirms.

In order to elucidate the role of incident angle on the optical
pulling force, in Fig. 5 we calculate density plots of optical
force as a function of sphere radius a and the chiral parameter
κ for LCP incident field impinging at different cone angles
such as θ = 65◦ [Figs. 5(a) and 5(b)] and θ = 75◦ [Figs. 5(c)
and 5(d)]. Figures 5(a) and 5(c) (� = 0) show that the optical
pulling forces are large for large incident cone angle, e.g.,
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FIG. 5. Optical force as a function of the radius of the sphere
and chirality parameter for fixed incident polarization σ = 1. The
topological charge and cone angle are indicated in each figure, where
color areas show pulling force and gray color shows pushing force.

θ = 75◦, where the optical pulling forces can be exerted to
even the opposite-handed chiral spheres. It is important to
mention that the enantioselective forces can be tuned by re-
ducing the incident laser power so that the opposite-handed
sphere can be washed out due to the Brownian motion of
the particles. A similar trend is seen in Figs. 5(b) and 5(d)
where � = 1. Thus it has been demonstrated that the exter-
nally controllable variable θ can allow a pathway to exert
a selective optical pulling force on the one-handed chiral
sphere and allow one to perform enantioselection of the se-
lected sized chiral sphere on demand. We emphasize that
optical sorting of isolated chiral particles with a small chi-
ral response is a sought-after, challenging task that we can
address here. Indeed, in Fig. 5 we show that, by tuning
the cone angle, the crossover between pulling and push-
ing force can be tuned even for particles with very small
chirality parameter.

IV. CONCLUSION

We have put forward a mechanism that allows for optical
sorting and enantioselection of single chiral particles under
the illumination of conic vortex beams carrying topological
charges. Using the Wigner rotation matrix, we derive an ex-
plicit expression for the optical force on a chiral sphere of
arbitrary size, beyond the dipolar approximation. We show
that the proper combination of circularly polarized waves
carrying nonzero topological charge allows one to optimize
the optical enantioselective mechanism, as this leads to an
increase of the magnitude of the optical forces by two or-
ders of magnitude in comparison to previous works. Using
vortex beams, the proposed enantioselective scheme also
provides unprecedented control over the optical manipula-
tion of chiral spheres of different sizes, handedness, and
chiral strengths. Indeed, our findings demonstrate that the
proposed scheme can not only perform enantioselection but

also the sorting of chiral particles with different sizes and
chirality parameters, which solely depends on experimentally
controlled parameters such as polarization and order of the
topological charge.
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APPENDIX A: DESCRIPTION OF THE INCIDENT BEAM

We consider a circularly polarized field entering to the ob-
jective of focal length f as described by Eq. (1) and pictorially
illustrated in Fig. 1. The objective rotates the incident field to
a generic direction and creates nonparaxial vortex beam with
aperture angle θ that can be defined as [62,73,74]

E(r) = −i f nmE0

λ0

∫ 2π

0
dϕ eik·r ε̂′(θ, ϕ), (A1)

where ε̂′(θ, ϕ) = x̂′ ± iŷ′ defines the rotation of the plane
wave contained in a cone shell, with fixed aperture angle
θ , obtained by rotation with Euler angles. Integrating over
azimuthal angle ϕ gives the electric field distribution as a
function of cylindrical coordinates (z, ρ, φ), in relation to the
focal point:

E(ρ, φ, z) = −i f nmE0

λ0
[(I1(ρ, φ, z) + I2(ρ, φ, z))x̂

+ i(I2(ρ, φ, z) − I1(ρ, φ, z))ŷ + I0(ρ, φ, z)ẑ],
(A2)

where

I0(ρ, φ, z) = 2π (i)σ+�ei(σ+�)φ sin θ

× J−σ−�(kρ sin θ )eikz cos θ , (A3)

I1(ρ, φ, z) = π (i)σ+�+1ei(σ+�+1)φ (cos θ − σ )

× J−1−σ−�(kρ sin θ )eikz cos θ , (A4)

and

I2(ρ, φ, z) = π (i)σ+�−1ei(σ+�−1)φ (cos θ + σ )

× J1−σ−�(kρ sin θ )eikz cos θ . (A5)

APPENDIX B: LIGHT SCATTERING BY A CHIRAL
CHIRAL SPHERE

Consider an electromagnetic field Ein illuminating a chiral
particle of radius a, immersed in a nonmagnetic dielectric host
medium of refractive index nh. By following the Bohren de-
composition method [75,76], we express the electromagnetic
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field in terms of the linear combinations of the vector wave
functions in spherical coordinates as

Ein = E0

∞∑
�=1

i�
2� + 1

�(� + 1)

(
M (1)

o1� − iN (1)
e1�

)
, (B1)

Hin = H0

∞∑
�=1

i�
2� + 1

�(� + 1)

(
M (1)

e1� + iN (1)
o1�

)
, (B2)

where Me1�, Mo1�, Ne1�, and No1� are the vector spherical
harmonics [75] with H0 = k

ωμ
E0. Inside the chiral media the

electric E and magnetic H fields are coupled through a phono-
logical constant κ called chirality parameter. Therefore, the
electromagnetic fields inside the chiral media can be described
by the following modified constitutive relations as [75]

D = ε0εE + iκ
√

ε0μ0 H,

B = −iκ
√

ε0μ0 E + μμ0H, (B3)

where D and B are the electric displacement and the mag-
netic field, respectively. Furthermore, ε0 (μ0) is the vacuum
permittivity (permeability). By using these constitutive rela-
tions in Maxwell’s equations in the frequency domain, the
coupling between the E and H can be removed through a
linear transformation [20]. In addition, the decoupling process
also suggests that the wave vector k inside the chiral media is
modified which can be defined as k± = (

√
ε ± κ )k0, where

k0 = 2π/λ0 with vacuum wavelength λ0. Finally, one can de-
fine the scattered field by the chiral sphere in the surrounding
medium as [75]

Es = E0

∞∑
�

(i)�
2� + 1

�(� + 1)

(
ia�N3

e1�−b�M3
o1�+c�M3

e1�−id�N3
o1�

)
,

Hs = H0

∞∑
�

(i)�
2� + 1

�(� + 1)

(
a�M3

e1�+ib�N3
o1�−ic�N3

e1�−d�M3
o1�

)
,

(B4)

where a�, b�, c�, and d� are commonly known as Mie coeffi-
cients. Applying the boundary conditions on the microsphere
surface, one can obtain [76]

a� = V�(−)A�(+) + V�(+)A�(−)

W�(+)V�(−) + V�(+)W�(−)
,

b� = W�(+)B�(−) + W�(−)B�(+)

W�(+)V�(−) + V�(+)W�(−)
,

c� = −d� = i
W�(−)A�(+) − W�(+)A�(−)

W�(+)V�(−) + V�(+)W�(−)
, (B5)

with

W�(σ ) = mψ�(yσ )ξ ′
�(x) − ξ�(x)ψ ′

�(yσ ),

V�(σ ) = ψ�(yσ )ξ ′
�(x) − mξ�(x)ψ ′

�(yσ ),

A�(σ ) = mψ�(yσ )ψ ′
�(x) − ψ�(x)ψ ′

�(yσ ),

B�(σ ) = ψ�(yσ )ψ ′
�(x) − mψ�(x)ψ ′

�(yσ ), (B6)

where m = m+m−/2(m+ + m−), m± = √
ε ± κ , and ψ�

and ξ� are the Riccati-Bessel functions that are eval-
uated either at the size parameter x = √

εhk0a defined
with respect to the wavelength in the nonmagnetic achi-
ral host medium (relative electric permittivity εh) or
at yσ = mσ x/

√
εh.

For the sake of convenience, we can write the effective Mie
coefficients [used in Eqs. (2) and (3)] in terms of standard Mie
coefficients for chiral sphere a j, b j, c j , and d j and express
them as [17,77]

Aj = a j + iσ d j, (B7)

Bj = b j − iσ c j . (B8)
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