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High-symmetric homobilayer transition metal dichalcogenides (TMDs) are important members of the bilayer
(BL) van der Waals material family. Here we present a systematic study of the electronic band structure in
low-energy regime in homo-BL TMD structures by using the standard k · p method. Six types of BL TMD
stacking configurations, which satisfy the C3 symmetry are considered and they are HM

M, HM
X , HX

X, RM
M, RM

X , and
RX

M. The intrinsic spin-orbit coupling (SOC) in the conduction and valence bands and the phase of interlayer
hopping matrix elements are included in our investigation. Taking BL MoS2 as an example, we examine the
electronic energy spectra, the electron density of states, and the Fermi energies in these BL structures. We
find that the electron energy dispersions in high-symmetric BL TMDs are not parabolic-like, where the band
parameters (such as the energy gap, the effective electron band mass and the fourth-order correction coefficient in
different subbands) depend markedly on the stacking configurations. Interestingly, the spin splitting in H-stacked
BL TMDs is suppressed because of center-inversion symmetry and time-reversal symmetry. Importantly, the
phase of the interlayer hopping matrix element affects significantly the electronic properties of HX

X and RM
M

stacked BL TMDs. The methodology and the results presented in this study can foster further exploration of the
basic physical properties of BL TMDs for potential applications in electronics and optoelectronics.

DOI: 10.1103/PhysRevB.110.115410

I. INTRODUCTION

Since the discovery of graphene [1], the fabrication and
investigation of atomically thin two-dimensional (2D) elec-
tronic systems (2DESs) have quickly become the main
focusing point in scientific research due to their potential
applications in next-generation nanoelectronic and optoelec-
tronic devices [2–4]. In particular, monolayer (ML) transition
metal dichalcogenides (TMDs) have attracted immense at-
tention for both experimental and theoretical investigations
because of their novel electronic and optical properties [5–10],
which can be utilized for the realization of the spintronic
and valleytronic devices to be applied in, e.g., informa-
tion technology [7,11]. Moreover, since the discovery of
superconductivity in twisted bilayer (BL) graphene [12], the
investigation of BL-based 2DESs has become a hot and
fast-growing field of research in condensed matter physics,
electronics and optoelectronics [11,13,14]. In a BL 2DES,
the interactions between two layers with specific stacking
order can significantly modify the physical properties of the
electronic system [6,7,15,16] and, thus, provide one more
freedom for the modification and control of the corresponding
electronic devices.

In recent years, BL TMD systems have been realized
via, e.g, fabricating two ML TMDs bonded by the van der

*Contact author: wenxu_issp@aliyun.com
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Waals (vdW) force [6,17]. Therefore, the twistronic features
of the BL systems can be observed by tuning the vdW
heterostructure from normal to the inverted type-II regime
through, e.g., taking different stacking orders (i.e., tuning
the interlayer coupling) and/or applying an interlayer bias
voltage [18]. The BL TMD structures have demonstrated a lot
of interesting and important physical properties such as spin,
valley, and orbital Hall effects [19–21], Nernst effect [22],
magnetoelectric effect [23], spin-layer locking effect [24],
etc. They have been considered as advanced materials not
only in spintronics and valleytronics but also in twistronics. It
is known that both translation and twisting of two TMD MLs
are practical and feasible approaches to prepare and define the
microscopic structure of a BL 2DES [25]. To date, the major
research attention has been focused on the physical properties
of BL TMDs as a consequence of sliding or twist of two TMD
MLs in order to achieve the topological mosaics in moiré
superlattices [13]. From a viewpoint of condensed matter
physics, the translation of two TMD layers can also result in
high-symmetric BL electronic configurations. For example,
two same or homogenous TMD MLs can form the basic 2H
or 3R stacking order, which can be exfoliated from the bulk
phases of TMD materials [26,27]. By translating a ML with
2H or 3R stacking order, one can achieve the other high-
symmetric stacking configurations in homo-BL TMDs. Up to
now, most of the research has been focused on the 2H and 3R
stacking BL TMD structures [6,26–28]. For the application
of BL TMDs as advanced electronic and optoelectronic mate-
rials, it is of great significance to examine the basic electronic
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properties of BL TMDs with other high-symmetric lattice
structures. This becomes the prime motivation of this study.

Electronic band structure is the central feature of physics
to describe an electronic material. At present, the theoretical
studies of the electronic band structure of BL TMD systems
have been mainly conducted using ab initio calculations [6],
which is a numerical and CPU consuming approach. The
tight-binding (TB) model has also been applied to calculate
the electronic band structures of ML and BL TMD structures
[10,29,30], which, however, is also nontrivial to obtain the
analytical solutions when dealing with the BL TMD systems.
It is known that k · p method can provide simple, transparent,
and insightful solutions to the band structure of an electronic
material in low electronic energy regime [31]. This can benefit
greatly the further calculations of, e.g., the electronic trans-
port and optical coefficients of the material. Normally, the
electron Hamiltonian of a high-symmetric BL TMD system
can be simplified as a 4 × 4 matrix using the k · p approach
[32], which is easy to solve and to get the general analytical
solutions of the electronic energy spectrum and wavefunc-
tions. This approach has been successfully applied to study
the electronic transport coefficients [33], orbital Hall effect
[21], and magneto-optical properties [34] of 2H BL TMDs.
The basic k · p Hamiltonian for high-symmetric BL TMDs
has been proposed and examined by Tong et al. [32] in 2017
through introducing the interlayer hopping matrix elements.
The theoretical principle and approach to derive the hopping
matrix elements according to the symmetry of the stacking
configuration in homogenous BL (or homo-BL) TMDs have
also been developed [35,36]. These published studies have es-
tablished the basis for studying the electronic band structures
in BL TMD systems. However, there is a lack in studying the
electronic band structure in all six types of high symmetric
homo-BL TMDs more systematically and comprehensively.
In this study, we attempt to fill in this gap so that one can
compare the features of these band structures not only quali-
tatively but also quantitatively. It should be pointed out that
in previous studies, the elements of the interlayer hopping
matrix in high-symmetric BL TMDs were taken as the real
values in the k · p calculations. The effect of the phase angle
during the interlayer hopping has often been ignored. The
phase and phase change during the electronic transition and
interaction are important characteristics for a quantum system.
For example, the discovery of the Ising superconductivity in
gated MoS2 in 2015 [37] indicates that the in-plane mirror
symmetry can be broken in both ML and BL TMDs. Thus,
the phase angles in the allowed hopping matrix elements in
high-symmetric BL TMDs may not be zero. It is therefore
necessary to examine the influence of the phase angle of the
interlayer hopping matrix elements on the electronic band
structure of high-symmetric BL TMDs, which is another im-
portant aspect of our present study. Furthermore, it would
be significant and important to evaluate the band parame-
ters of high-symmetric homo-BL TMDs, such as the energy
gap in the BL system, the effective electron mass and the
nonparabolicity in different subbands. These parameters are
normally experimentally measurable and have not yet been
examined specifically.

In this paper, we conduct a detailed theoretical in-
vestigation of the electronic band structure in six types

FIG. 1. Diagrammatic crystal structures of six types of high-
symmetric homo-BL TMDs. Here, the big green/blue dots denote
the metal atom (M) in upper/lower layer, the small orange/red dots
denote the chalcogen atom (X ) in upper/lower layer, and h marks the
hexagon center. The dashed lines between atoms are perpendicular
to the plane. a1 and a2 are the basic vectors of ML TMDs with
|a1| = |a2|.

of high-symmetric homo-BL TMD systems. The paper is
organized as follows. The theoretical approaches for the cal-
culations of the electronic energy spectra and wavefunctions,
the BL band gap, the effective band masses, the high-order
correction parameters of the energy spectra, the electronic
density-of-states (DoS), and the Fermi energy for BL TMDs
are developed in Sec. II. The numerical results of these prop-
erties for six types of high-symmetric BL MoS2 are presented
and discussed in Sec. III. The concluding remarks stemming
from this study are summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Bi-layer stacking configurations

The k · p Hamiltonian used in this study for BL TMDs is
constructed on the basis of the Hamiltonian for ML TMDs. It
is known that the ML TMDs, such as MX 2 with M = Mo or
W and X = S or Se, is a hexagonal crystal in which the metal
atom (M) is sandwiched between the chalcogen atoms (X ) on
both sides. In this study, we consider that the homo-BL TMD
structures with six types of high-symmetric stacking orders
are realized by two ML TMDs. They are HM

M, HM
X , or 2H , HX

X,
RM

M, RM
X , and RX

M structures. These stacking configurations
satisfy the C3 symmetry and their crystal structures are shown
in Fig. 1.

B. Electron Hamiltonian

It is known from the results obtained from, e.g., the ab
initio calculations [6] that the conduction and valence band
edges near K and K ′ points in ML TMDs are attributed mainly
to dz2 , dxy, and dx2−y2 orbits of the metal atoms. Namely, the
electron wave functions are mainly based on ψc = |dz2〉 and
ψτ

v = (|dx2−y2〉 + iτ |dxy〉)/
√

2, with τ = ± denoting the K or
K ′ valley. Thus, we can utilize the electron Hamiltonian for
ML TMDs to construct that for the BL TMD systems [23,32–
34,38]. In this study, we consider a two-layer system with
the same TMD material, i.e., the homo-BL TMD system.
A minimal band model for this kind of BL structure in the
neighborhood of the K/K′ points in the band structure can be
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constructed by adding the interlayer hopping to the k · p model of the ML TMDs [5]. As a result, the single electron Hamiltonian
for a homo-BL TMD system is composed of three basic parts, i.e.,

H = H0 + HSOC + Hhopping, (1)

where H0 stems from orbital interaction, HSOC is induced by intrinsic spin-orbit coupling (SOC), and Hhopping is attributed from
interlayer hopping. Here we have neglected the effects of the Rashba SOC and the proximity-induced exchange interaction in
ML TMDs [39]. The electron Hamiltonian for a homo-BL TMD structure can be written as a 4 × 4 matrix

H (k) =

⎛
⎜⎜⎜⎜⎜⎝

�/2 + ετ sλc Ak−
ετ tcc tcv

Ak+
ετ −�/2 + ετ sλv tvc tvv

t∗
cc t∗

vc �/2 + τ sλc Ak−
τ

t∗
cv t∗

vv Ak+
τ −�/2 + τ sλv

⎞
⎟⎟⎟⎟⎟⎠

. (2)

Here, k = (kx, ky) is the relative electron wavevector with respect to the K/K′ points, � is the band gap of ML TMDs, A = at
with a being the lattice constant of the ML TMD crystal and t the nearest-neighbor intralayer hopping coefficient, λc (λv) is
the strength of intrinsic SOC in conduction (valence) band in ML TMDs, s = ± denotes to spin-up or down state (which is
a good quantum number), k±

τ = τkx ± iky with τ = ±1 being the valley index, k±
ετ = τkx ± iεky with ε = −1 for H-stacking

orders (HM
M, HM

X , and HX
X) and ε = +1 for R-stacking orders (RM

M, RM
X , and RX

M) [32], tμμ′ = |tμμ′ |eiτφμμ′ is the element of the
interlayer hopping matrix with μ = (c, v) being an index regarding conduction or valence band, and φμμ′ is the phase angle of
the interlayer hopping matrix element.

C. Electronic band structure

The Schrödinger equation for an electron with the Hamiltonian given by Eq. (2) can be solved analytically. At the fixed ε, τ ,
and s, the four eigenvalues in six types of high-symmetric BL TMD are the solutions of the equation

E4 + b3E3 + b2E2 + b1E + b0 = 0, (3)

where E = Eγ
μν (k) with γ = τ s = ±. Four different solutions of Eq. (3) with the same ε and γ correspond to four eigenenergies,

two of them belong to the conduction band (μ = c) and the other two belong to the valence band (μ = v). We find that it
is convenient to introduce an index ν = (1, 2) to distinguish the higher/lower eigenenergy in conduction/valence band, i.e.
Eγ

μ1(k) > Eγ

μ2(k). This band splitting is induced by the presence of interlayer hopping (i.e., tμμ′) and the intrinsic SOC (i.e.,
λμ). After considering the C3 symmetry for high-symmetric stacking orders in homo-BL TMDs, only the products |tcc||tvv|
and |tcv||tvc| are possible and the other terms regarding |tμμ||tμμ′ |, |tμμ||tμ′μ|, and |tcc||tcv||tvc||tvv| are forbidden [32]. Thus,
we have

b3 = −(1 + ε)τ s(λc + λv ), (3a)

b2 = −2A2k2 − �2/2 − (1 + ε)τ s�(λc − λv )/2 + 2(1 + ε)λcλv + ε
(
λ2

c + λ2
v

) − |tcc|2 − |tcv|2 − |tvc|2 − |tvv|2, (3b)

b1 = A2k2(1 + ε)τ s(λc + λv ) + (1 + ε)τ s�2(λc + λv )/4 + ε�
(
λ2

c − λ2
v

)
− (1 + ε)τ s

(
λ2

cλv + λcλ
2
v

) − [� − (1 + ε)τ sλv]|tcc|2

+ τ s(λc + ελv )(|tcv|2 + ε|tvc|2) + [� + (1 + ε)τ sλc]|tvv|2, (3c)

b0 = A4k4 + A2k2�2/2 + A2k2(1 + ε)τ s�(λc − λv )/2 − 2A2k2λcλv

− 2A2k2(|tcc||tvv| cos φ1 + |tcv||tvc| cos φ2) + �4/16 + (1 + ε)τ s�3(λc − λv )/8

− (1 + ε)�2λcλv/2 + ε�2
(
λ2

c + λ2
v

)
/4 − (1 + ε)τ s�

(
λ2

cλv − λcλ
2
v

)
/2 + λ2

cλ
2
v

+ (1 + ε)τ s�(λv|tcc|2 − λc|tvv|2)/2 + τ s�(λc − ελv )(|tcv|2 + ε|tvc|2)/2

−(
�2/4 + ελ2

v

)|tcc|2 + (�2/4 − ελcλv )(|tcv|2 + |tvc|2) − (
�2/4 + ελ2

c

)|tvv|2

+ |tcc|2|tvv|2 + |tcv|2|tvc|2. (3d)

Here we define φ1 = φcc − φvv and φ2 = φcv − φvc. From
Eq. (3), we notice the following features. (i) The electron
energy spectrum depends only on k, namely Eγ

μν (k) = Eγ
μν (k),

suggesting that it is symmetric along the k plane; (ii) τ and
s appear always in the form of τ s so that Eγ

μν (k) does not
depend on τ , implying that the electron energies in K and K ′

valleys are degenerate but the electronic spins in two valleys
are just opposite due to time-reversal symmetry; and (iii) the
eigenenergies at the K/K ′ points (i.e., at k = 0) do not depend
on the phase angles of the interlayer hopping matrix element.
For a specific stacking configuration, the parameters bj , with
j = 0, 1, 2, and 3, can be further simplified (see Appendix).
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The corresponding eigenfunction for an electron at a state
(k,B) with B = (μ, ν, τ, s) in six types of high-symmetric
BL TMDs is

|k,B〉 = A

⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠eik·r, (4)

where

c1 = −A3k2k−
τ tcc + A2k2h+

c tcv + A2k−
ετ k−

τ hε
ctvc

+ Ak−
τ

(
A2k2 − hε

chε
v

)
tcc − Ak−

ετ h+
c hε

ctvv − hε
ctcv|tvc|2

− (
A2k2 − hε

chε
v

)
h+

c tcv, (4a)

c2 = A2k+
ετ k−

τ hε
ctcc − Ak+

ετ h+
c hε

ctcv − Ak−
τ hε

chε
ctvc

+ (
h+

c hε
c − |tcc|2

)
hε

ctvv, (4b)

c3 = Ak−
τ

(−A2k2 + hε
chε

v + t∗
cctvv + tcvt∗

vc

)
hε

c, (4c)

c4 = (
A2k2 − hε

chε
v

)
h+

c hε
c + hε

chε
v|tcc|2 + hε

chε
c |tvc|2, (4d)

and

A = (|c1|2 + |c2|2 + |c3|2 + |c4|2)−1/2 (4e)

is the normalization coefficient. Here, hε
c = �/2 + ετ sλc −

E , hε
v = −�/2 + ετ sλv − E , and h+

c = �/2 + τ sλc − E .
The specific forms of the eigenfunctions for the studied six
types of high-symmetric BL TMDs can be further simplified
and the results are shown in Appendix. We note that: (i) the
C3 symmetry for high-symmetric stacking orders in homo-BL
TMDs has also been considered here; (ii) although Eγ

μν (k)
depends only on k, |k,B〉 depends on kx and ky generally,
indicating that the electron wavefunction is not symmetric
along the k plane; and (iii) |k,B〉 depends generally on the
phase angle of the hopping matrix element.

D. Band parameters

In order to obtain the basic band parameters of BL
TMD systems, we examine the electronic energy spectrum
near each band edge, i.e., k → qγ

μν the minima/maxima for
each conduction/valence subband. From Eq. (3), the electron
energy can be expanded as

Eγ
μν (k) = Eγ

μν

(
qγ

μν

) + gγ
μν

(
k − qγ

μν

) + h̄2

2mγ
μν

(
k − qγ

μν

)2

+ αγ
μν

(
k − qγ

μν

)3 + βγ
μν

(
k − qγ

μν

)4 + · · · , (5)

and

gγ
μν = lim

k→qγ
μν

dEγ
μν (k)

dk
= lim

k→qγ
μν

k
Qγ

μν (E , k)

Lγ
μν (E , k)

,

h̄2

2mγ
μν

= 1

2!
lim

k→qγ
μν

d2Eγ
μν (k)

dk2
= 1

2!
lim

k→qγ
μν

Jγ
μν (E , k)

Lγ
μν (E , k)

,

αγ
μν = 1

3!
lim

k→qγ
μν

d3Eγ
μν (k)

dk3
= 1

3!
lim

k→qγ
μν

Sγ
μν (E , k)

Lγ
μν (E , k)

,

βγ
μν = 1

4!
lim

k→qγ
μν

d4Eγ
μν (k)

dk4
= 1

4!
lim

k→qγ
μν

Y γ
μν (E , k)

Lγ
μν (E , k)

, (6)

with

Lγ
μν (E , k) = 4E3 + 3b3E2 + 2b2E + b1, (6a)

Qγ
μν (E , k) = 4A2E2 − 2A2(1 + ε)γ (λc + λv )E − 4A4k2

− A2�2 − A2(1 + ε)γ�(λc − λv ) + 4A2λcλv

+ 4A2(|tcc||tvv| cos φ1 + |tcv||tvc| cos φ2), (6b)

Jγ
μν (E , k) = −2(6E2 + 3b3E + b2)

(
dE

dk

)2

− 2
[
2b(1)

2 E + b(1)
1

]dE

dk

− b(2)
2 E2 − b(2)

1 E − b(2)
0 , (6c)

Sγ
μν (E , k) = −6(6E2 + 3b3E + b2)

dE

dk

d2E

dk2

− 3
[
2b(1)

2 E + b(1)
1

]d2E

dk2
− 6(4E + b3)

(
dE

dk

)3

− 6b(1)
2

(
dE

dk

)2

− 3
[
2b(2)

2 E + b(2)
1

]dE

dk
− b(3)

0 ,

(6d)

Y γ
μν (E , k) = −8(6E2 + 3b3E + b2)

dE

dk

d3E

dk3

− 4
[
2b(1)

2 E + b(1)
1

]d3E

dk3
− 6(6E2 + 3b3E + b2)

×
(

d2E

dk2

)2

− 36(4E + b3)

(
dE

dk

)2 d2E

dk2

− 24b(1)
2

dE

dk

d2E

dk2
− 6

[
2b(2)

2 E + b(2)
1

]d2E

dk2

− 24

(
dE

dk

)4

− 12b(2)
2

(
dE

dk

)2

− b(4)
0 , (6e)

where Eγ
μν (qγ

μν ) is the band edge, mγ
μν is the effective band

quality or mass, α
γ
μν is the third-order correction, β

γ
μν is the

fourth-order correction, dnE/dkn represents dnEγ
μν (k)/dkn,

and b(n)
j = dnb j/dkn with j = 0, 1, 2, and 3.

E. Electron density-of-states

From electronic energy spectrum of a BL TMD, we can
calculate the Green’s function for a free electron in the system
through [40]

G(E ) = P

(
1

E − E (k)

)
− iπδ[E − E (k)], (7)

with P being the principal value and E the electron energy.
Thus, we can determine the electron density-of-states (DoS)
for BL TMD system from the imaginary part of the Green’s
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function, which reads

Dc(E ) =
∑
γ ,ν

Dγ
cν (E )

= gγ

2π

∑
γ ,ν

∑
i

�
[
E − Eγ

cν

(
qγ

cν

)] ki

|dEγ
cν (k)/dk| k=ki

,

Dv (E ) =
∑
γ ,ν

Dγ
vν (E )

= gγ

2π

∑
γ ,ν

∑
i

�
[
Eγ

vν

(
qγ

vν

) − E
] ki

|dEγ
vν (k)/dk| k=ki

,

(8)

for conduction and valence band respectively, where gγ = 2
because γ = + for (τ, s) = (±,±) and γ = − for (τ, s) =
(±,∓), �(x) is a unit step function, and ki is the ith solution
for k from the equation E − Eγ

μν (k) = 0.
Through Eqs. (6) and (8), it can be written as

Dc(E ) = D0
h̄2

m0

∑
γ ,ν

∑
i

�
[
E − Eγ

cν

(
qγ

μν

)]∣∣∣∣ Lγ
μν (E, ki )

Qγ
μν (E, ki )

∣∣∣∣,

Dv (E ) = D0
h̄2

m0

∑
γ ,ν

∑
i

�
[
Eγ

vν

(
qγ

μν

) − E
]∣∣∣∣ Lγ

μν (E, ki )

Qγ
vν (E, ki )

∣∣∣∣, (9)

where D0 = gγ m0/(2π h̄2) and m0 is the rest electron mass.

F. The Fermi energy

From electron DoS, we can determine the Fermi energy
(EF ) or chemical potential in a BL TMD structure. For n-type
BL TMDs, after applying the condition of electron number
conservation, we have

ne =
∫ ∞

Eb

dEDc(E ) f (E ) = gγ

∑
γ ,ν,k

f
[
Eγ

cν (k)
]
, (10)

with ne being the electron density, f (E ) = [e(E−EF )/kBT +
1]−1 the Fermi-Dirac function, and Eb the bottom of the con-
duction band. At low-temperature limit (i.e., T → 0), we have
f (E ) → �(EF − E ) and, thus,

ne = gγ

∑
γ ,ν,k

f
[
Eγ

cν (k)
] = 2

∑
γ ,ν

k2
F (γ , ν)

4π
, (10a)

where kF (γ , ν) is the Fermi wavevector, which is the solution
for k from EF − Eγ

cν (k) = 0.

III. RESULTS AND DISCUSSIONS

In this study, we take BL MoS2 as an example to
discuss the electronic band structure in six types of high-
symmetric homo-BL TMD systems. The material parameters
for MoS2 used in the numerical calculation are [5,6,29,41]:
a = 3.193 Å, t = 1.10 eV, � = 1.66 eV, λc = −1.5 meV,
and λv = 75 meV. To conduct the numerical calculations, we
also need to know the values of the hopping matrix ele-
ments tμμ′ . We note the following points. (i) As been pointed
out [6,35], in order to satisfy the C3 symmetry some of the
interlayer hopping transitions are forbidden so that the corre-
sponding tμμ′ = 0 (see Appendix G). (ii) It is known that the

TABLE I. |tμμ′ | (in meV) in six types of high-symmetric BL MoS2.

HM
M HM

X HX
X RM

M RM
X RX

M

|tcc| 25 0 0 25 0 0
|tcv| 0 0 30 0 0 30
|tvc| 0 0 30 0 30 0
|tvv| 0 43 0 35 0 0

center-inversion symmetry can lead to Eγ
μν (k) = Eγ ′

μν (k) with
γ = τ s, and γ ′ = (−τ )s and the time-reversal symmetry can
result in Eγ

μν (k) = Eγ ′
μν (k) with γ ′ = (−τ )(−s). For the case

where both of them are satisfied, Eγ
μν (k) = Eγ ′

μν (k) with γ ′ =
τ (−s). Therefore, E+

μν (k) = E−
μν (k) in H-stacked BL TMDs,

which means γ does not affect Eγ
μν (k) and τ s disappears in

Eq. (3). Thereby, |tcv| = |tvc| in HX
X (see Appendix C). (iii) RM

X
is the case of operating the out-of-plane mirror symmetry on
RX

M, which means their band structures should be the same. As
a result, |tvc| for RM

X is equal to |tcv| RX
M (see Appendix F). And

(iv) the values of |tμμ′ | for HM
X [23] and RM

M [35] were already
obtained by the DFT calculations. It should be noted that the
actual values of |tμμ′ | are not easy to evaluate quantitatively
because they are affected by both the in-plane transitions [35]
and the out-of-plane interlayer hopping. Through referring to
the known |tμμ′ |, we take |tcc| = 25 meV for HM

M and |tcv| =
|tvc| = 30 meV for HX

X, RM
X and RX

M in the calculations. The
values of |tμμ′ | used in our calculations are shown in Table I.
The zero values of |tμμ

′ | shown in Table I are the consequence
of the C3 symmetry. From this Table and the first term in the
second line of Eq. (3d), we find φ1 only affects RM

M and φ2

only affects HX
X. At present, we do not know the values of φ1

and φ2 for BL MoS2 and we take them as input parameters.

A. Electronic band structure

In Fig. 2, we show the electronic energy dispersion in HM
M,

HM
X , RM

X , and RX
M stacking structures of BL MoS2, where

Eγ
μν (k) is independent upon the phase angle of the hopping

matrix elements and Eγ
μν (k) for RM

X and RX
M stacking orders

are the same. In Figs. 3 and 4, we show respectively the

(a) (b) (c)

FIG. 2. The electron energy spectra in four types of high-
symmetric BL MoS2, as indicated. Here (μ, ν, γ ) denotes E γ

μν (k).

115410-5



HENG ZHANG et al. PHYSICAL REVIEW B 110, 115410 (2024)

(a) (b) (c)

FIG. 3. The electron energy spectra in HX
X stacked BL MoS2, as

indicated. Here (μ, ν, γ ) denotes E γ
μν (k).

electron energy spectra in HX
X and RM

M stacking BL MoS2

for different phase angles φ2 and φ1 induced by the phases
of interlayer hopping matrix elements. In the presence of
intrinsic SOC in ML TMD and of the interlayer hopping in
BL TMD, one would think that the band splitting can be
observed in BL TMD structures. However, because a homo-
BL structure should satisfy the lattice symmetry, the band
splitting in some stacking structures can be suppressed. In
Figs. 2 and 3, each curve of energy spectrum for H-stacking
BL is fourfold degeneracy because of center-inversion sym-
metry and time-reversal symmetry so that Eγ

μν (k) = E−γ
μν (k)

with γ = sτ , whereas the subbands with different colors (or
ν) are not degenerate. For the case of R stacking, each curve in
Figs. 2 and 4 is twofold degeneracy because of time-reversal
symmetry only so that Esτ

μν (k) = E (−s)(−τ )
μν (k), whereas the

subbands with different colors (γ ) or curve styles (ν) are
not degenerate. For the case of tμμ′ = 0, the intrinsic SOC
causes Eγ

μ1(0) − Eγ

μ2(0) = 2|λμ| and E+
μν (0) − E−

μν (0) = 0 in
H-stacked BL, whereas Eγ

μ1(0) − Eγ

μ2(0) = 0 and |E+
μν (0) −

E−
μν (0)| = 2|λμ| in R-stacked BL. Therefore, the intrinsic

SOC can cause the band splitting. For the case of λμ = 0,
the intraband interlayer hopping causes E τ

μ1(0) − E τ
μ2(0) =

(a) (b) (c)

FIG. 4. The electron energy spectra in RM
M stacked BL MoS2, as

indicated. Here (μ, ν, γ ) denotes E γ
μν (k).

FIG. 5. The energy difference �γ
μ(k) in HX

X stacked BL MoS2 at
different φ2, as indicated. The dashed black curve shows �γ

c (k) for
HM

X stacking for comparison. The curves in the upper (lower) part of
the panel are the results for the valence (conduction) band.

2|tμμ| and the interband interlayer hopping causes E τ
c1(0) −

E τ
v2(0) − � ≈ 2|tμμ′ |2/�. Thus, the interlayer hopping can

also induce the band splitting. Because |tμμ′ | 
 �, the band
splitting induced by interband interlayer hopping is much
weaker than that induced by intraband interlayer hopping.
For HX

X stacking in Fig. 3, φ2 affects Eγ
μν (k) rather markedly

in the conduction band and a very weak effect of φ2 can
be seen in the valence band. For RM

M stacking in Fig. 4,
φ1 affects Eγ

μν (k) rather weakly. Furthermore, we find that
for RM

X and RX
M stacking orders, E−

v2(0) < E−
v1(0) < E+

v2(0) <

E+
v1(0) < E+

c2(0) < E+
c1(0) < E−

c2(0) < E−
c1(0).

To see more clearly the influence of phase angle of the
hopping matrix elements on Eγ

μν (k), in Figs. 5 and 6 we show
respectively the energy differences �

γ
μ(k) = Eγ

μ1(k) − Eγ

μ2(k)
in HX

X and RM
M stacked BL MoS2 for different φ2 and φ1 phase

angles. For HM
X and for HX

X with φ2 larger than ≈155o, �
γ
c (k)

are not monotonic, which decreases first then increases with
increasing k. When φ2 ≈ 155◦, �

γ
c (k) is almost unchanged

(≈3 meV) as k < 0.5 Å−1, implying that the optoelectronic

FIG. 6. The energy difference �γ
μ(k) in RM

M stacked BL MoS2

at different φ1, as indicated. The curves in the upper (lower) part
of the panel are the results for the valence (conduction) band. The
solid/dashed curves denote the spin-up/down states.
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TABLE II. �g (in meV) in six types of high-symmetric BL MoS2.

HM
M HM

X HX
X RM

M RM
X /RX

M

�g 23.6 11.5 –1.1 60 0

properties of this structure near the K/K′ valley are sensitive
to terahertz (THz) radiation ( f = 1 THz ⇔ 4.13 meV). We
see that φ2 affects �

γ
c (k) more strongly than �

γ
v (k) as shown

in Fig. 5. For RM
M stacking, due to the presence of spin-split

subbands (see Fig. 4), �+
μ (k) differs from �−

μ (k) and, as a
result, there are two curves with the same color in both con-
duction and valence bands in Fig. 6. The same figure further
shows that ∂[�+

μ (k) − �−
μ (k)]/∂φ1 < 0.

It should be noticed that ML TMD was often considered to
satisfy the in-plane mirror symmetry so that the six types of
high-symmetric homo-BL TMDs were thought to satisfy this
symmetry as well. Thus, φ1 and φ2 could be taken as zero [36].
However, the discovery of the Ising superconductivity in gated
MoS2 in 2015 [37] suggests that the in-plane mirror symmetry
can be broken in both ML and BL TMDs. Therefore, φ1 and
φ2 may not be zero in some high-symmetric homo-BL TMDs.
We find that the phase angles in the hopping matrix elements
can only affect the electronic band structures in RM

M and HX
X

stacked BL MoS2 due to the satisfaction of the structure
symmetry.

B. Band parameters

Our numerical results shown in Figs. 2–4 indicate that the
band edges in six types of high-symmetric stacking BL MoS2

are all located at k = 0, i.e. qγ
μν = 0 in Eq. (5). This can also

be proven by gγ
μν = limk→0 dEγ

μν/dk = 0. We define �SOC =
� + λc − λv as the band gap in ML MoS2 with SOC. In the
presence of interlayer hopping, the band gap for BL MoS2

with SOC becomes �BL, which is the difference between the
lowest conduction subband and the highest valence subband
at k = 0. The band gap difference is �g = �SOC − �BL. From
our numerical results for BL MoS2, we find: (i) �SOC > �BL

in HM
M, HM

X , and RM
M stacking orders, which means the red

shift of the main exciton peaks at the K/K′ valley in the
three BL stacking orders [15,16]; (ii) �SOC = �BL in RM

X and
RX

M stacking orders, which means the positions of the main
exciton peaks at the K/K′ valley are almost unchanged in the
two BL stacking orders [16,26]; and (iii) �SOC < �BL in HX

X
stacking order because of the efforts of the interlayer hopping
matrix elements tcv and tvc. The values of �g for six types
of high-symmetric BL MoS2 are summoned in Table II, for
facilitated visualization that different stacking configurations
have different BL band gaps.

From Eqs. (6d) and (3a)–(3d), we see that
limk→0 Sγ

μν (E , k) = 0. Thus, α
γ
μν = 0 so that there is no

third-order correction in Eq. (5) for BL MoS2. Using Table I,
we have Jγ

v1[Eγ

v1(0), 0] = Jγ

c2[Eγ

c2(0), 0] = 0 for RM
X and RX

M
stacking structures and

Lγ

v1

[
Eγ

v1(0), 0
] = −Lγ

c2

[
Eγ

c2(0), 0
]

= |tvc|2(� + γ λc − γ λv ), for RM
X ,

Lγ

v1

[
Eγ

v1(0), 0
] = −Lγ

c2

[
Eγ

c2(0), 0
]

= |tcv|2(� + γ λc − γ λv ), for RX
M, (11)

in Eq. (6). The values of mγ
μν/m0, with m0 being the rest

electron mass, and β
γ
μν in Eq. (5) are shown respectively

in Tables III and IV. On the basis of Eqs. (5) and (6),
we note the following points: (i) Because Jγ

v1[Eγ

v1(0), 0] =
Jγ

c2[Eγ

c2(0), 0] = 0 for RM
X and RX

M stacking structures,
h̄2/(2mγ

c2) → 0 and h̄2/(2mγ

v1) → 0, implying that mγ

c2 → ∞
and mγ

v1 → ∞ and the energy dispersion comes mainly from
the k4 term; (ii) comparing with the effective electron masses
m∗/m0 ∼ 0.5 at the edges of conduction and valence bands for
ML MoS2 obtained from DFT calculations [6], the effective
band masses for HM

M, HM
X and RM

M stacking BL MoS2 do
not differ significantly from this value; and (iii) for RM

M/HX
X

stacking, the dependence of mγ
μν and β

γ
μν upon φ1/φ2 can be

clearly seen.

C. The electron density-of-states

From Eq. (9), we can find the singular point in electron
DoS at K/K′ point (i.e., at k = 0) in BL MoS2. Letting
limk→0 Qγ

μν (E0, k) = 0, we can get E0 and then find the sin-
gular point when E0 = Eγ

μν (0). Since

lim
k→0

Qγ
μν (E0, k)/A2 = lim

k→0
4E2 − 2γ (1 + ε)(λc + λv )E − 4A2k2

− �2 − γ (1 + ε)�(λc − λv )

+ 4λcλv + 4(|tcc||tvv| cos φ1

+ |tcv||tvc| cos φ2) = 0, (12)

we find that there are two singular points at E0 = −�/2 +
γ λv = Eγ

v1(0) and E0 = �/2 + γ λc = Eγ

c2(0) for RM
X and

RX
M stacking structures so that Dc(�/2 + γ λc) = ∞, and

Dv (−�/2 + γ λv ) = ∞. There is no singular point in other
stacking orders.

In Figs. 7–9, we show the electron DoS in six types of
high-symmetric BL MoS2 as a function of the electron energy
E . It is known that for an ideal 2DES with a parabolic energy
spectrum, the electron DoS is a unit-step function [42]. In con-
trast, the electron DoSs in high-symmetric BL MoS2 do not
show this feature, indicating that the corresponding electronic
energy spectra are nonparabolic. Once again, the electron DoS
in (HX

X, RM
M) stacking order depends on the phase angle (φ2,

φ1).

D. The Fermi energy

We use Eq. (10) to evaluate the Fermi energy in n-type
BL MoS2 with six types of high symmetries at temperature
T → 0. In Figs. 10–12, we plot the Fermi energy as a function
of the electron density ne in n-type BL MoS2 respectively.
For H-stacking structures, because the subband energies are
spin degenerate [see Figs. 2(a), 2(b), and 3], (ν, γ ) = (2, γ )
states are occupied by electrons first and, with increasing
ne, the higher energy (1, γ ) can become populated. For RM

M
stacked BL TMDs, because of the spin splitting of the subband
energies (see Fig. 4), (2,+) states are occupied first and then
(2,−), (1,+), and (1,−) states become populated respec-
tively with increasing ne. In contrast, for RM

X and RX
M stacking

orders [see Fig. 2(c)], (2,+) states are occupied first and then
(1,+), (2,−), and (1,−) states become populated respec-
tively with increasing ne. These features are consistent with
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TABLE III. The effective band mass mγ
μν/m0 at the band edge in six types of high-symmetric BL MoS2. Here, (μ, ν, γ ) represents E γ

μν (k)
and the effect of (φ1, φ2) on mγ

μν for (RM
M, HX

X ) structure is indicated.

HX
X (φ2) RM

M (φ1)

HM
M HM

X 0 π/2 π 0 π/2 π RM
X /RX

M

(c, 1, +) 0.521 0.536 0.307 0.391 0.536 0.486 0.497 0.508 0.245
(c, 1, −) 0.521 0.536 0.307 0.391 0.536 0.533 0.544 0.555 0.268
(c, 2, +) 0.502 0.489 1.540 0.744 0.490 0.492 0.481 0.471 ∞
(c, 2, −) 0.502 0.489 1.540 0.744 0.490 0.539 0.528 0.518 ∞
(v, 1, +) −0.489 −0.486 −0.497 −0.493 −0.489 −0.486 −0.478 −0.471 ∞
(v, 1, −) −0.489 −0.486 −0.497 −0.493 −0.489 −0.533 −0.525 −0.518 ∞
(v, 2, +) −0.536 −0.540 −0.529 −0.533 −0.537 −0.492 −0.500 −0.508 −0.245
(v, 2, −) −0.536 −0.540 −0.529 −0.533 −0.537 −0.539 −0.547 −0.555 −0.268

the electron energy levels shown in Figs. 2–4. Moreover, we
find that EF increases with φ1 (φ2) up to ne ∼ 3 × 1013 cm−2

in RM
M (HX

X) stacked BL TMDs, as a consequence of the
dependence of the corresponding electron energies upon the
phase angles of the hopping matrix elements.

It is known that the dependence of the Fermi energy upon
the electron density directly reflects the features of the elec-
tron DoS [see Eq. (10)]. For a n-type BL MoS2, the DoS
Dc(E ) exists immediately when E � Eb the bottom of the
conduction band (see Figs. 7–9) so that the electrons are popu-
lated in the conduction band and the Fermi level is established.
In general, EF increases with ne because more electrons have
to occupy the higher-energy states. For six types of high-
symmetric homo-BL MoS2, the slope of the increase in EF

with increasing ne depends on the dependence of Dc(E ) upon
the electron energy. It is interesting to notice that in contrast to
a semiconductor-based quantum well system (QWS) in which
the DoS is the unit-step function like, the DoS for six types
of high-symmetric homo-BL MoS2 is the functional form of
electron energy E . Therefore, the dependence of EF upon ne

here differs from that in a semiconductor-based QWS.

IV. CONCLUSIONS

In this paper, we have systematically analyzed the elec-
tronic band structure of six types of high-symmetric BL
TMDs, namely HM

M, HM
X , HX

X, RM
M, RM

X , and RX
M ones, ex-

ploiting the practical and analytical convenience of the k · p
approach. The electron Hamiltonian for BL TMDs has been

constructed on the basis of ML TMDs in the presence of
interlayer hopping. The phase angle of the hopping matrix ele-
ments has been considered. In this way, we have conveniently
obtained the electronic energy spectrum, the electron wave
function, the band parameters, the electron density of states,
and the Fermi energy in the BL TMD structures of interest.
Furthermore, we applied the methodology specifically to BL
MoS2 as a useful example to evaluate and examine the fea-
tures of the above listed electronic properties. The main con-
clusions obtained from this study are summarized as follows.

(1) High-symmetric BL TMDs include three types of
center-inversion-symmetric H-stacked BL and three types of
R-stacked BL orders. They all maintain time-reversal sym-
metry. Among them, the electronic band structure only in
RM

M and HX
X stacking orders depends on the phase angle of

the interlayer hopping matrix elements. Furthermore, RM
X and

RX
M stacked BL TMDs are with the same electronic energy

spectrum but their electron wavefunctions are different.
(2) For the HX

X stacking order, φ2 affects significantly the
energy difference between electronic subbands, effective band
masses, fourth-order correction parameter, electron DoS, and
Fermi energy. In comparison, φ1 affects relatively weakly the
electronic band structure in RM

M stacked BL TMDs.
(3) Interestingly, although the intrinsic SOC can lead to

spin splitting in electronic band in ML TMDs, this band
splitting can be suppressed in H-stacked BL TMDs due to the
center-inversion symmetry and time-inversion symmetry.

(4) The electron energy dispersions in six types of high-
symmetric BL TMDs are not parabolic like. The effective

TABLE IV. The fourth-order correction parameter, βγ
μν in units of eVÅ4, at the band edge in six types of high-symmetric BL MoS2. Here

(μ, ν, γ ) represents E γ
μν (k) and the effect of (φ1, φ2) on βγ

μν for (RM
M, HX

X ) structure is indicated.

HX
X (φ2) RM

M (φ1)

HM
M HM

X 0 π/2 π 0 π/2 π RM
X /RX

M

(c, 1, +) −29.7 −16.8 −8153.2 −1793.7 −26.9 −39.1 −36.1 −34.3 −106860.3
(c, 1, −) −29.7 −16.8 −8153.2 −1793.7 −26.9 −29.6 −27.5 −26.2 −97433.3
(c, 2, +) −37.8 −50.9 8086.5 1726.7 −40.4 −37.6 −40.9 −43.0 106783.9
(c, 2, −) −37.8 −50.9 8086.5 1726.7 −40.4 −28.6 −30.8 −32.3 97375.4
(v, 1, +) 38.5 39.2 36.4 37.4 38.2 39.1 41.3 43.0 −106783.9
(v, 1, −) 38.5 39.2 36.4 37.4 38.2 29.6 31.1 32.3 −97375.4
(v, 2, +) 29.0 28.5 30.3 29.6 29.0 37.6 35.7 34.3 106860.3
(v, 2, −) 29.0 28.5 30.3 29.6 29.0 28.6 27.3 26.2 97433.3
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(a)

(b)

(c)

FIG. 7. The electron DoS in four types of high-symmetric BL
MoS2, as indicated. The legends are the same as in Fig. 8 and Fig. 9.
The inset shows the DoS around the conduction band edge.

electron band mass and the fourth-order correction coefficient
of the energy dispersion in different subbands depend strongly
on the stacking configurations.

Although limited in scope, the results obtained from this
study provide analytical insights lacking in the literature, and
thereby help one gain an in-depth understanding of BL TMDs
with different high-symmetric stacking structures. Moreover,
our paper provides important input for subsequent transport
and optical calculations, while opening further theoretical
challenges using a similar approach. The predictions made in
this paper are verifiable experimentally, and are relevant to any
further use of bilayer TMDs in electronic and optoelectronic
devices, for which these materials are among the prominent
vdW candidates.
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APPENDICES

To understand the results presented and discussed in this
work and for further application of these results in the
calculation of electronic transport and optical properties of

(a)

(b)

(c)

FIG. 8. The electron DoS in HX
X stacked BL MoS2. (μ, ν, γ )

denotes Dγ
μν (E ). The inset shows the DoS around the conduction

band edge.

high-symmetric BL TMDs, here we present the coefficients
regarding electron wavefunction in Eq. (4) and electron en-
ergy in Eq. (3) with specific stacking order. In these results, we
define (μ, ν, τ, s, k) as the corresponding electron state with
Eγ

μν (k) and γ = τ s.

APPENDIX A: HM
M STACKING ORDER

For energy spectrum Eγ
μν (k), we have

b3 = 0,

b2 = − 2A2k2 − �2/2 − (
λ2

c + λ2
v

) − |tcc|2,
b1 = − �

(
λ2

c − λ2
v

) − �|tcc|2,
b0 = A4k4 + A2k2�2/2 − 2A2k2λcλv + �4/16

− �2
(
λ2

c + λ2
v

)
/4 + λ2

cλ
2
v − (

�2/4 − λ2
v

)|tcc|2. (A1)

For wavefunction at (μ, ν, τ, s, k) states with Eγ
μν (k),

c1 = − A3k2k−
τ tcc + Ak−

τ (A2k2 − h−
c h−

v )tcc,

c2 = A2k−
τ k−

τ h−
c tcc,

c3 = Ak−
τ (−A2k2 + h−

c h−
v )h−

c ,

c4 = (A2k2 − h−
c h−

v )h+
c h−

c + h−
c h−

v |tcc|2. (A2)
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(a)

(b)

(c)

FIG. 9. The electron DoS in RM
M stacked BL MoS2. (μ, ν, γ )

denotes Dγ
μν (E ).

APPENDIX B: HM
X STACKING ORDER

For energy spectrum Eγ
μν (k), we have

b3 = 0,

b2 = − 2A2k2 − �2/2 − (
λ2

c + λ2
v

) − |tvv|2,
b1 = − �

(
λ2

c − λ2
v

) + �|tvv|2,

FIG. 10. The Fermi energy in four types of high-symmetric BL
MoS2, as indicated, as a function of electron density. Here (ν, γ ) is
the position of E γ

cν (0) and ↑ (↓) denotes γ = + (−). The inset shows
the EF around E−

c2(0) and E−
c1(0) in RM

X and RX
M stacking BL MoS2.

FIG. 11. The Fermi energy in HX
X stacking BL MoS2 as a func-

tion of electron density for different φ2 angles as indicated. (ν, γ ) is
the position of E γ

cν (0) and ↑ (↓) denotes γ = + (−). The inset shows
the details of φ2 dependence of EF around E γ

c1(0).

b0 = A4k4 + A2k2�2/2 − 2A2k2λcλv + �4/16

− �2
(
λ2

c + λ2
v

)
/4 + λ2

cλ
2
v − (

�2/4 − λ2
c

)|tvv|2. (B1)

For wavefunction at (μ, ν, τ, s, k) states with Eγ
μν (k),

c1 = − Ak+
τ h+

c h−
c tvv,

c2 = h+
c h−

c h−
c tvv,

c3 = Ak−
τ (−A2k2 + h−

c h−
v )h−

c ,

c4 = (A2k2 − h−
c h−

v )h+
c h−

c . (B2)

APPENDIX C: HX
X STACKING ORDER

For energy spectrum Eγ
μν (k), we have

b3 = 0,

b2 = − 2A2k2 − �2/2 − (
λ2

c + λ2
v

) − |tcv|2 − |tvc|2,
b1 = − �

(
λ2

c − λ2
v

) + τ s(λc − λv )(|tcv|2 − |tvc|2),

FIG. 12. The Fermi energy in RM
M stacking BL MoS2 for different

φ1 angles as indicated. Here (ν, γ ) is the position of E γ
cν (0) and ↑ (↓)

denotes γ = + (−). The insets are the details of φ1 dependence of
EF around E−

c2(0), E+
c1(0), and E−

c1(0).
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b0 = A4k4 + A2k2�2/2 − 2A2k2λcλv

− 2A2k2|tcv||tvc| cos φ2 + �4/16

− �2(λ2
c + λ2

v )/4 + λ2
cλ

2
v

+ τ s�(λc + λv )(|tcv|2 − |tvc|2)/2

+ (�2/4 + λcλv )(|tcv|2 + |tvc|2) + |tcv|2|tvc|2. (C1)

The H-stacked BL TMDs satisfy both center-inversion
symmetry and time-reversal symmetry, which means τ s dis-
appears in Eq. (C1). Thus, |tcv| = |tvc| (see the fourth line of
b0).

For wavefunction at (μ, ν, τ, s, k) states with Eγ
μν (k),

c1 = A2k2h+
c tcv + A2k2h−

c tvc − h−
c tcv|tvc|2

− (A2k2 − h−
c h−

v )h+
c tcv,

c2 = − Ak−
τ h+

c h−
c tcv − Ak−

τ h−
c h−

c tvc,

c3 = Ak−
τ (−A2k2 + h−

c h−
v + tcvt∗

vc)h−
c ,

c4 = (A2k2 − h−
c h−

v )h+
c h−

c + h−
c h−

c |tvc|2. (C2)

APPENDIX D: RM
M STACKING ORDER

For energy spectrum Eγ
μν (k), we have

b3 = − 2τ s(λc + λv ),

b2 = − 2A2k2 − �2/2 − τ s�(λc − λv ) + 4λcλv + (
λ2

c + λ2
v

) − |tcc|2 − |tvv|2,
b1 = 2A2k2τ s(λc + λv ) + τ s�2(λc + λv )/2 + �

(
λ2

c − λ2
v

) − 2τ s
(
λ2

cλv + λcλ
2
v

) − [� − 2τ sλv]|tcc|2 + [� + 2τ sλc]|tvv|2,
b0 = A4k4 + A2k2�2/2 + A2k2τ s�(λc − λv ) − 2A2k2λcλv + �4/16 − 2A2k2|tcc||tvv| cos φ1 + τ s�3(λc − λv )/4

+ �2
(
λ2

c + λ2
v

)
/4 − �2λcλv − τ s�

(
λ2

cλv − λcλ
2
v

) + λ2
cλ

2
v + τ s�(λv|tcc|2 − λc|tvv|2)

− (
�2/4 + λ2

v

)|tcc|2 − (
�2/4 + λ2

c

)|tvv|2 + |tcc|2|tvv|2. (D1)

For wavefunction at (μ, ν, τ, s, k) states with Eγ
μν (k),

c1 = − A3k2k−
τ tcc + Ak−

τ (A2k2 − h+
c h+

v )tcc − Ak−
τ h+

c h+
c tvv,

c2 = A2k2h+
c tcc + (h+

c h+
c − |tcc|2)h+

c tvv,

c3 = Ak−
τ (−A2k2 + h+

c h+
v + t∗

cctvv )h+
c ,

c4 = (A2k2 − h+
c h+

v )h+
c h+

c + h+
c h+

v |tcc|2. (D2)

APPENDIX E: RM
X stacking order

For energy spectrum Eγ
μν (k), we have

b3 = − 2τ s(λc + λv ),

b2 = − 2A2k2 − �2/2 − τ s�(λc − λv ) + 4λcλv

+ (
λ2

c + λ2
v

) − |tvc|2,
b1 = 2A2k2τ s(λc + λv ) + τ s�2(λc + λv )/2 + �

(
λ2

c − λ2
v

)
− 2τ s

(
λ2

cλv + λcλ
2
v

) + τ s(λc + λv )|tvc|2,
b0 = A4k4 + A2k2�2/2 + A2k2τ s�(λc − λv ) − 2A2k2λcλv

+ �4/16 + τ s�3(λc − λv )/4 − �2λcλv

+ �2
(
λ2

c + λ2
v

)
/4 − τ s�

(
λ2

cλv − λcλ
2
v

) + λ2
cλ

2
v

+ τ s�(λc − λv )|tvc|2/2 + (�2/4 − λcλv )|tvc|2. (E1)

For wavefunction at (μ, ν, τ, s, k) states with Eγ
μν (k),

c1 = A2k−
τ k−

τ h+
c tvc − h+

c tcv|tvc|2,
c2 = − Ak−

τ h+
c h+

c tvc,

c3 = Ak−
τ (−A2k2 + h+

c h+
v )h+

c ,

c4 = (A2k2 − h+
c h+

v )h+
c h+

c + h+
c h+

c |tvc|2. (E2)

APPENDIX F: RX
M STACKING ORDER

For energy spectrum Eγ
μν (k), we have

b3 = − 2τ s(λc + λv ),

b2 = − 2A2k2 − �2/2 − τ s�(λc − λv ) + 4λcλv

+ (
λ2

c + λ2
v

) − |tcv|2,
b1 = 2A2k2τ s(λc + λv ) + τ s�2(λc + λv )/2 + �

(
λ2

c − λ2
v

)
− 2τ s

(
λ2

cλv + λcλ
2
v

) + τ s(λc + λv )|tcv|2,
b0 = A4k4 + A2k2�2/2 + A2k2τ s�(λc − λv ) − 2A2k2λcλv

+ �4/16 + τ s�3(λc − λv )/4 − �2λcλv

+ �2
(
λ2

c + λ2
v

)
/4 − τ s�

(
λ2

cλv − λcλ
2
v

)
+ λ2

cλ
2
v + τ s�(λc − λv )|tcv|2/2 + (�2/4 − λcλv )|tcv|2.

(F1)

Through replacing |tvc| in Eq. (E1) with |tcv|, we can get
Eq. (F1). If |tcv| = |tvc|, the band energies of RM

X and RX
M are

the same. As RM
X is the result of operating out-of-plane mirror

symmetry on RX
M, their band energies should be the same.

Hence, |tvc| of RM
X is equal to |tcv| of RX

M.
For wavefunction at (μ, ν, τ, s, k) states with Eγ

μν (k),

c1 = A2k2h+
c tcv − (A2k2 − h+

c h+
v )h+

c tcv,

c2 = − Ak+
τ h+

c h+
c tcv,

c3 = Ak−
τ (−A2k2 + h+

c h+
v )h+

c ,

c4 = (A2k2 − h+
c h+

v )h+
c h+

c . (F2)
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APPENDIX G: THE ALLOWED tμμ′ IN SIX TYPES OF
HOMO-BL TMDS

Following Refs. [6,35], here we present the derivations to
evaluate interlayer hopping matrix element given as tμμ′ =
〈�u

μ(r)|Hint |� l
μ′ (r)〉, where Hint is the interlayer hopping

Hamiltonian between the two layers and is invariant under
the C3 rotation for six symmetric configurations of H and R
staking. �u(l )

τμ (r) denotes the Bloch states at the K/K′ points
and u (l) denote the upper (lower) layer, which are eigenstates
of Ĉ3,

Ĉ3�
u
τμ(r) = eiετϕu

γ u
m�u

τμ(r),

Ĉ3�
l
τμ(r) = eiτϕl

γ l
m� l

τμ(r), (G1)

where γmu(l ) = e−i2mu(l )π/3 is the eigenvalue of Ĉ3 operating on
atomic orbits, mu(l ) = 0 for �u(l )

τc (r), mu = 2ετ for �u
τv (r),

and ml = 2τ for � l
τv (r). ϕu(l ) depends on rotation centers at

M atom (M), X atom (X) or hollow center (h),

ϕu(l ) =

⎧⎪⎨
⎪⎩

0, for M,
2π
3 , for X,

− 2π
3 , for h.

(G2)

Thus,

tμμ′ = 〈
�u

τμ(r)
∣∣Ĉ3

−1
Ĉ3HintĈ3

−1
Ĉ3

∣∣� l
τμ′ (r)

〉
= 〈

Ĉ3�
u
τμ(r)

∣∣Hint

∣∣Ĉ3�
l
τμ′ (r)

〉 = eiτ (ϕl −εϕu )γ ∗
mu

γml tμμ′ .

Consequently, tμμ′ �= 0 can only exist as eiτ (ϕl −εϕu )γ ∗
mu

γml =
1. For example, for HM

X stacking (ε = −1), its rotation cen-
ter of upper (lower) layer is M (X), corresponding to ϕu =
0 and ϕl = 2π/3. Therefore, eiτ (ϕl −εϕu )γ ∗

mu
γml = e−2π iτ = 1

can only be satisfied by �u
τv (r) and � l

τv (r), namely only tvv is
allowed in this stacking order.
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[41] K. Kośmider, J. W. González, and J. Fernández-Rossier, Large
spin splitting in the conduction band of transition metal
dichalcogenide monolayers, Phys. Rev. B 88, 245436 (2013).

[42] W. Xu, Electron density of states in terahertz driven two-
dimensional electron gases, Semicond. Sci. Technol. 12, 1559
(1997).

115410-13

https://doi.org/10.1038/nphys2848
https://doi.org/10.1038/s43586-022-00139-1
https://doi.org/10.1002/adma.201701486
https://doi.org/10.1038/s41467-021-27213-8
https://doi.org/10.1103/PhysRevB.99.035443
https://doi.org/10.1103/PhysRevB.88.085433
https://doi.org/10.1103/PhysRevB.91.235145
https://doi.org/10.1038/nphys3968
https://doi.org/10.1103/PhysRevB.98.075429
https://doi.org/10.1103/PhysRevB.98.155402
https://doi.org/10.1103/PhysRevB.95.115429
https://doi.org/10.1126/science.aab2277
https://doi.org/10.1103/PhysRevB.100.235423
https://doi.org/10.1103/PhysRevB.101.245412
https://doi.org/10.1103/PhysRevB.95.115436
https://doi.org/10.1103/PhysRevB.88.245436
https://doi.org/10.1088/0268-1242/12/12/003

