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Due to technological needs, nanoscale heat management, energy conversion, and quantum thermodynamics
have become key areas of research, putting heat pumps and nanomotors center stage. The treatment of these
particular systems often requires the use of adiabatic expansions in terms of the frequency of the external driving
or the velocity of some classical degree of freedom. However, due to the difficulty of getting the expressions,
most works have only explored first-order terms. Despite this, adiabatic expansions have allowed the study
of intriguing phenomena such as adiabatic quantum pumps and motors, or electronic friction. Here, we use
nonequilibrium Green’s functions, within a Schwinger-Keldysh approach, to develop second-order expressions
for the energy, heat, and charge currents. We illustrate, through two simple models, how the obtained formulas
produce physically consistent results, and allow for the thermodynamic study of unexplored phenomena, such as
second-order monoparametric pumping.
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I. INTRODUCTION

The conversion of heat into work (either mechanical or
electrical) has been at the center of technological and scientific
interest since the first studies of steam engines [1]. In the
past decades, miniaturization has guided this interest toward
micro- and nanoscale heat-to-work conversion [2–10]. This
was not only due to the fundamental questions posed by the
new size scale [11,12] but also to practical reasons such as the
need for efficient heat management of nanodevices. However,
the nanoscale presents new challenges. On the one hand, the
regions of interest now involved a finite number of particles,
as opposed to classical thermodynamics. On the other hand,
the explicit treatment of quantum mechanical effects often
becomes unavoidable.

Importantly, nanoscale quantum machines (devices with
strong quantum effects) require appropriate and efficient com-
putational treatments. This is so, since processes with vastly
different timescales may coexist there. Therefore, without any
type of approximation, the calculations must then be carried
out with a temporal resolution given by the fastest degrees of
freedom (DOFs) but with total times determined by the slow-
est DOFs. This clearly makes numerical calculations highly
inefficient. Even worse, sometimes contrasting theoretical ap-
proaches may be needed for the different DOFs.

A successful strategy followed in the past consisted of
treating some slow DOFs classically (typically nuclear, me-
chanical, or external ones). In contrast, the fast DOFs are
treated fully quantum (typically electrons or optical phonons).
For nanoelectronic or nanoelectromechanical devices, the
timescale separation also drives the establishment of steady-
state currents which parametrically depend on the position
and velocity of the slow DOFs. This situation is amenable

to some kind of adiabatic approximation where the observ-
able of interest is expanded in terms of the frequency of
the external driving or the velocity of the classical DOFs.
In this context, different theoretical approaches have been
used including nonequilibrium Green’s functions (NEGF)
[13–17], real-time diagrammatic approaches [18–21] (or sim-
ilar approaches based on the adiabatic expansions of the
system’s reduced density matrix [22,23]), scattering formal-
ism [16,24,25], DFT-based calculations [26], and hierarchical
equation of motion approaches [27,28].

Within the context of quantum transport, adiabatic ap-
proximations up to the first order have allowed the treatment
of fascinating phenomena such as adiabatic quantum pump-
ing [29,30], adiabatic quantum motors [31], negative friction
coefficients [16,32], reciprocity breaking [33,34], hystere-
sis [34,35], current-noise induced by thermal oscillations
[36], etc. Regardless of the notable advances made, one
may wonder about the unexplored phenomena that may
await beyond first-order adiabatic treatments. In this sense,
Kershaw et al. [37,38] pioneered the second-order treatment
of electric currents within a NEGF approach. However, a ther-
modynamically consistent second-order treatment of quantum
machines necessarily requires addressing heat currents. More-
over, explicit expressions of the observables are desirable for
numerical calculations, instead of implicit expressions that
need to be developed for the cases of interest. In the present
manuscript, we present the complete and explicit expressions,
up to the second order of the adiabatic expansions of heat
and charge currents. Our results are based on NEGFs within a
Schwinger-Keldysh approach. The obtained formulas are gen-
eral and restricted only by the assumption of time-independent
self-energies. It is important to highlight that this quite com-
mon assumption is not a limitation for a wide class of systems.
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For example, in a tight-binding approach, one can redefine
the local system by adding the sites of the leads with time
dependence [39].

This manuscript is organized as follows. Section II presents
the general theory based on the NEGF formalism. Having
developed the theoretical tools, in Sec. III, we provide the
second-order adiabatic expansion for charge, energy, and heat
currents. Section IV contains two different models illustrating
how the corrections for each order work and the usefulness
of the expressions for thermodynamic analysis. In particular,
the last example treats second-order quantum pumping, a phe-
nomenon not previously described up to our knowledge. The
examples also include a numerical verification of our formu-
las through the first law of thermodynamics. Finally, Sec. V
comprises a summary and a brief discussion. In an effort not
to overload the readers, all the nonessential comments and
mathematical details lay in Appendixes A–I.

II. GENERAL THEORY

A. Generic Hamiltonian

To define the different parts of the system and their asso-
ciated creation (annihilation) operators, we introduce the total
Hamiltonian H that describes the total system. It consists of a
core region S connected to several macroscopic reservoirs α

(the leads). The core region, which typically has nanometric
dimensions, will be referred to as the local system. The total
Hamiltonian takes the form

H =
∑

α

Hα + HS +
∑

α

Vα,

where HS , in general, corresponds to a time-dependent local
system, Hα describes the time-independent α lead, and the
term Vα contains the time-independent interaction between
the local system and the α lead. The Hamiltonian of the local
system depends parametrically on time through a multidimen-
sional vector

−→
X , which describes the mechanical degrees of

freedom. The local system’s Hamiltonian assumes the follow-
ing form when the second quantization is applied,

HS =
∑
l,s

hl,s(
−→
X )d†

l ds. (1)

In the notation we have used, the operators d†
l and dl create or

annihilate, respectively, an electron within the local system.
The Hamiltonians of the leads can be written as

Hα =
∑

k

εαkc†
αkcαk, (2)

where εαk is the energy of the α lead in the state k, c†
αk creates

an electron in the α lead with the state k, whereas the cαk

annihilates it. For simplicity, the index k also includes the
electron’s spin. Finally, the tunneling interaction describes the
coupling between the local system and the α leads,

Vα =
∑
k,l

(tαk,l c
†
αkdl + t∗

αk,l d
†
l cαk ),

where tαk,l are the tunneling amplitudes between the leads and
the local system.

B. Dynamics of nonequilibrium open quantum systems

Within the context of the Schwinger-Keldysh approach
for the NEGF formalism [40–43] we define the elements of
the retarded and advanced Green’s functions, GR

l,s and GA
l,s,

respectively. For a system that evolves, not necessarily in an
equilibrium process, from t ′ to t times, they are

GR
l,s(t, t ′) = − i

h̄
�(t − t ′)〈{ds(t ), d†

l (t ′)}〉 (3)

and

GA
s,l (t

′, t ) = [GR
l,s(t, t ′)

]∗
, (4)

where {•, •} is the anticommutator and 〈•〉 is the quantum
expectation value.

For the states of the local system, the lesser Green’s func-
tion elements are given by

G<
l,s(t, t ′) = i

h̄
〈d†

l (t ′)ds(t )〉, (5)

whereas for the states that propagate between the local system
and leads, the lesser Green’s function elements are

G<
αk,l (t, t ′) = i

h̄
〈c†

αk (t ′)dl (t )〉. (6)

Furthermore, the retarded and advanced self-energies are
assumed to be stationary1. The elements of the retarded self-
energy for the α lead take the form

�R
α,l,s(t, t ′) =

∑
k

tl,αkgR
αk (t, t ′)tαk,s, (7)

where

gR
αk (t, t ′) = − i

h̄
�(t − t ′)e− i

h̄ εαk (t−t ′ ). (8)

Hence, the elements of total retarded self-energy comprise the
sum of all leads

�R
l,s(t, t ′) =

∑
α

�R
α,l,s(t, t ′). (9)

To obtain the advanced self-energy, we calculate the adjoint
of the retarded one

�A
α,s,l (t

′, t ) = [�R
α,l,s(t, t ′)

]∗
. (10)

Likewise, the elements of the lesser self-energy of the α lead
are given by

�<
α,l,s(t, t ′) =

∑
k

tl,αkg<
αk (t, t ′)tαk,s, (11)

where

g<
αk (t, t ′) = 2π i

h̄
fα (εαk )e− i

h̄ εαk (t−t ′ ). (12)

Here, fα is the α lead’s Fermi-Dirac distribution. To conclude,
the elements of the total lesser self-energy are

�<
l,s(t, t ′) =

∑
α

�<
α,l,s(t, t ′).

1For our purposes, stationary implies that the self-energies only
depend on the time difference t − t ′, which means that both Vα and
Hα are independent of the mechanical degrees of freedom.
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Given the essential operators, the next step is to delve into
the quantum dynamics, which in Schwinger-Keldysh formal-
ism is expressed by the integrodifferential Dyson equation in
terms of the retarded Green’s function

−ih̄∂t ′GR(t, t ′) = δ(t − t ′)I + GR(t, t ′)HS (t ′)

+
∫

GR(t, t1)�R(t1, t ′)dt1. (13)

For practical purposes, we have introduced the matrix repre-
sentation where the elements of the Hamiltonian of the local
system, retarded Green’s function and self-energy are given
by Eqs. (1), (3), and (9), respectively.

At this point, we can apply many techniques to solve
Eq. (13). One way is to use numerical methods [44]. Another
one is to develop an adiabatic expansion of the observables. To
carry out the latter technique, we must decompose the defined
operators and Dyson’s equation into two timescales, which is
done through the use of a Wigner transform.

C. Adiabatic expansion for retarded Green’s function

The idea is to separate the fast microscopic dynamics, fol-
lowed by the electrons, from the slow macroscopic changes,
determined by the classical mechanical degrees of freedom.
Once the timescales have been distinguished, a gradient ex-
pansion will be carried out on the slow variables. First of all,
we have to define the following transform of time variables

T = t + t ′

2
, (14)

τ = t − t ′. (15)

The timescale T is called the slow variable, while τ is the
fast variable. The Wigner transform for the retarded Green’s
function is defined as

G̃R
(T, ε) =

∫
GR(t, t ′)e

i
h̄ ετ dτ,

whereas its inverse transformation is

GR(t, t ′) = 1

2π h̄

∫
G̃R

(T, ε)e− i
h̄ ετ dε.

For the elements of the retarded self-energy described in
Eq. (7), �R(t, t ′) ≡ �R(τ ), the Wigner transform becomes a
Fourier transform, where

�R(ε) =
∫

�R(τ )e
i
h̄ ετ dτ

and

�R
α,l,s(ε) = �α,l,s(ε) − i�α,l,s(ε). (16)

Here, the level-width functions �α,l,s are given by 2

�α,l,s(ε) = π
∑

k

δ(ε − εαk )tl,αktαk,s.

2The definitions of the level-width functions may differ from that
of other authors [38,41]. Here, we followed the convention used in
Refs. [16,17,39].

The level-shift functions �α,l,s can be calculated from �α,l,s

using the Kramers-Kroning relation [41]. After applying the
adjoint operator to Eq. (16) we get the advanced self-energy
�A

α,l,s. For the elements of the lesser self-energy given in
Eq. (11), their Wigner transform gives

�<
α,l,s(ε) = 2i fα (ε)�α,l,s(ε). (17)

Given the operators in the energy domain, we must apply the
Moyal product to Eq. (13), yielding (see Appendix A)

I = − 1

2
ih̄∂T G̃

R
(T, ε) + εG̃R

(T, ε)

− G̃R
(T, ε)e

ih̄
2 (

←−
∂ ε

−→
∂ T −←−

∂ T
−→
∂ ε )�R(ε)

− G̃R
(T, ε)e

ih̄
2 (

←−
∂ ε

−→
∂ T −←−

∂ T
−→
∂ ε )HS (t ). (18)

The above expression implies that the unknown retarded

Green’s function G̃R
can be expressed as an infinite sum

over its derivatives, which are also unknown in principle. To
solve this, we have to implement an iterative approach (see

Appendix B) which starts at zero-order by approximating G̃R

by the adiabatic Green’s function GR, defined as

GR = [εI − HS (t ) − �R(ε)]−1. (19)

The above adiabatic (or frozen) Green’s function GR is
formally equal to G̃R

(T, ε) in the limit of infinitely slow
mechanical degrees of freedom, which constitute a form of
the Born-Oppenheimer approximation.

By the chain rule, the slow-time T derivatives of the
Hamiltonian of the local system, up to the second order, are

∂T HS =
M∑

ν=1

�ν Ẋν, (20)

∂2
T HS =

M∑
μ,ν=1

�μνẊμẊν +
M∑

ν=1

�ν Ẍν . (21)

Here, Ẋν and Ẍν are the time derivatives of the mechanical de-
gree of freedom ν, ∂T Xν and ∂2

T Xν , respectively. Additionally,
the elements of the matrices �ν and �μν are given by

[�ν]l,s = ∂hl,s

∂Xν

, [�μν]l,s = ∂2hl,s

∂Xμ∂Xν

.

Then, applying the iterative method twice to second-order
terms, the resulting retarded Green’s function takes the form

G̃R 	 GR(T, ε) + ih̄

2

M∑
ν=1

�R
1,ν (T, ε)Ẋν

+
(

ih̄

2

)2
⎧⎨⎩

M∑
μ,ν=1

�R
11,μν ẊμẊν +

M∑
ν=1

�R
2,ν Ẍν

⎫⎬⎭. (22)

To make the notation more compact, we have defined the
following operators

�R
1,ν = �1[GR,�ν, GR],

�R
11,μν = �11

[
GR, KR

μν, GR
]
,

�R
2,ν = 1

2�2[GR,�ν, GR],

115409-3



DEGHI AND BUSTOS-MARÚN PHYSICAL REVIEW B 110, 115409 (2024)

where we have also introduced the definitions

KR
μν = �μGR(T, ε)�ν + 1

2�μν,

and

�1[A, B, C] = (∂εA)BC − AB(∂εC),

�2[A, B, C] = (∂2
ε A
)
BC − 2(∂εA)B(∂εC) + AB

(
∂2
ε C
)
,

�11[A, B, C] = �2[A, B, C] − A
(
∂2
ε B
)
C.

Take into account that the order to which the Planck’s con-
stant is elevated is consistent with the order of the adiabatic
expansion. In this sense, it can be used as a “bookkeeping”
parameter to keep track of the expansion order for a given
term.

Finally, to calculate the advanced Green function, we use
the relation

G̃A = [G̃R
(T, ε)]†.

D. Adiabatic expansion for lesser Green’s function

To find the Wigner’s transform of the lesser Green’s func-
tions, Eqs. (5) and (6), we start with the relation [41]

G̃<
(t, t ′) =

∫∫
G̃R

(t, t1)�<(t1, t2)G̃A
(t2, t ′)dt1dt2.

After applying the Wigner transform to both sides of the above
formula and, afterwards, the Moyal product, we arrive at the
expression

G̃< = G̃R
(T, ε)e

ih̄
2 (

←−
∂ ε

−→
∂ T −←−

∂ T
−→
∂ ε )�<(ε)

× e
ih̄
2 (

←−
∂ ε

−→
∂ T −←−

∂ T
−→
∂ ε )G̃A

(T, ε). (23)

As we discussed for the retarded Green’s function, G̃<
takes

the form of a set of infinite sums (see Appendix C), where the
elements of �< are given in Eq. (17). To solve this, we first
insert in Eq. (23) the second-order expansion of the operators

G̃R
and G̃A

derived before, and then we truncate the series at
second order. This yields

G̃< 	 G<(T, ε) + ih̄

2

M∑
ν=1

�<
1,ν (T, ε)Ẋν

+
(

ih̄

2

)2
⎧⎨⎩

M∑
μ,ν=1

�<
11,μν ẊμẊν +

M∑
ν=1

�<
2,ν Ẍν

⎫⎬⎭, (24)

where the adiabatic lesser Green function is

G< = GR(T, ε)�<(ε)GA(T, ε),

and the remaining operators are defined by

�<
1,ν = �1[GR,�ν, G<] + �1[G<,�ν, GA],

�<
11,μν = �11

[
GR, KR

μν, G<
]+ �11

[
G<, KA

μν, GA
]

+ �11[GR,�μG<�ν, GA],

�<
2,ν = 1

2 {�2[G<,�ν, GA] + �2[GR,�ν, G<]}.

In the above expressions we have introduced the following
term to compact the notation:

KA
μν = �μGA(T, ε)�ν + 1

2�μν.

III. OBSERVABLES

We have already developed explicit formulas for evaluating
up-to-second-order corrections to the adiabatic Green’s func-
tions. In the following section, we will apply these results
to obtain close expressions for the second-order adiabatic
corrections of three observables of interest within quantum
transport: charge, energy, and heat currents.

A. Charge current

For an α lead, the average charge current through it can be
written as the mean value of the time derivative of the number
operator Nα ,

Iα = −e〈Ṅα (t )〉, (25)

where

Nα =
∑

k

c†
αkcαk,

and e is the modulus of the electron charge. Then, applying
Ehrenfest’s theorem, the commutation relations for fermions,
and using Eqs. (5) and (6) in Eq. (25), we get a formula for
the charge current in terms of the lesser Green’s function,

Iα = 2eRe

⎧⎨⎩∑
k,l

tαk,lG<
l,αk (t, t )

⎫⎬⎭. (26)

To evaluate the time-dependent current Iα , we must pro-
ceed in accord with the Langreth’s rules [41,45], yielding

Iα = 2e
∫

Re
{
tr
{
GR(t, t ′)�<

α (t ′, t )

+ G<(t, t ′)�A
α (t ′, t )

}}
dt ′. (27)

The next step is to insert the Wigner transform of the
Green’s functions into Eq. (27) and make a gradient expan-
sion, the resulting expression reads (see Appendix D)

Iα = 2e

h

∞∑
N=0

(−1)N

N!

∫
Re
{
tr
{
CI

α,N

}}
dε, (28)

where

CI
α,N =

(
ih̄

2

)N(
∂N

T G̃
R
∂N
ε �<

α + ∂N
T G̃

<
∂N
ε �A

α

)
.

It is important to highlight that, although this expression
is exact, its explicit evaluation necessarily requires approxi-
mations. For this purpose, we will use the up-to-second-order
adiabatic expansion of the Green’s functions found previously.
After some algebra, one can find the up-to-second-order adia-
batic expansion of the charge current, giving

Iα 	 I (0)
α + I (1)

α + I (1,1)
α + I (2)

α . (29)

The first two terms of the above expression are well
known. The former, I (0)

α , is equivalent to Landauer’s formula,
while the second one, I (1)

α , is the quantum pumping
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contribution to the charge current [16,29]

I (0)
α = −eN (0)

α , (30)

I (1)
α = −e

∑
ν

N (1)
α,ν Ẋν . (31)

Here, we have introduced the terms

N (0)
α =

∫
K(0)

α (T, ε)dε, N (1)
α,ν =

∫
K(1)

α,ν (T, ε)dε.

We acquire the preceding definition for practical purposes,
which will be useful later, being the kernel’s integrals defined
as

K(0)
α = −2

h
Re
{
tr
{
�(0)

α

}}
,

K(1)
α,ν = 1

π
Im
{
tr
{
∂εGR�ν�

(0)
α + ∂εG<�ν�

(1)
α

}}
,

where

�(0)
α = GR�<

α (ε) + G<�A
α (ε), �(1)

α = GA�A
α (ε).

The remaining terms in Eq. (29) constitute the second-
order adiabatic terms of the charge current. These formulas
can be written as

I (2)
α = −e

∑
ν

N (2)
α,ν Ẍν, (32)

I (1,1)
α = −e

∑
μ,ν

N (1,1)
α,μν ẊμẊν . (33)

The current derivatives N (2)
α,ν = − 1

e
∂Iα
∂Ẍν

and N (1,1)
α,μν =

− 1
e

∂2Iα
∂Ẋμ∂Ẋν

are

N (2)
α,ν =

∫
K(2)

α,ν (T, ε)dε, N (1,1)
α,μν =

∫
K(1,1)

α,μν (T, ε)dε.

The above kernels of integrals are

K(2)
α,ν = h̄

2π
Re
{
tr
{
∂2
ε GR�ν�

(0)
α + ∂2

ε G<�ν�
(1)
α

}}
,

K(1,1)
α,μν = h̄

π
Re
{
tr
{
�(2)

μν�
(0)
α + �(3)

μν�
(1)
α

}}
,

where

�(2)
μν = ∂ε

(
∂εGRKR

μν

)
,

�(3)
μν = ∂ε

(
∂εGR�μG<�ν + ∂εG<KA

μν

)
.

B. Energy current

Analogous to the charge current, the energy current flowing
in the α lead Ėα is defined as the mean value of the time
derivative of the Hamiltonian of the α lead Hα ,

Ėα = 〈Ḣα (t )〉. (34)

As we proceeded in the previous section for the charge cur-
rent, we will apply Ehrenfest’s theorem, the commutation
relations for fermions, and Eqs. (5) and (6) into Eq. (34). This
gives

Ėα = −2Re

⎧⎨⎩∑
k,l

εαktαk,lG<
l,αk (t, t )

⎫⎬⎭. (35)

Note that the essential difference between Eqs. (26) and (35)
are the energy weights. This suggests employing a method
akin to the charge currents strategy. However, despite using
the same assumption, there are some subtle deviations from
the reasoning for load currents, as illustrated in Appendix E.
The final formula is

Ėα = − 2Re

{
ih̄
∫

tr
{
GR(t, t ′)∂t ′�<

α (t ′, t )

+G<(t, t ′)∂t ′�A
α (t ′, t )

}}
dt ′. (36)

Unlike Eq. (27), the energy current formula shown above
contains time derivatives over self-energies. Up to this point,
the expression for energy current seems to be similar to the
charge current. By applying the Wigner transform and the
gradient expansion to Eq. (36) we arrive at (see Appendix F)

Ėα = − 2

h

∞∑
N=0

(−1)N

N!

∫
εRe
{
tr
{
CI

α,N

}}
dε

+ 2

h

∞∑
N=0

(−1)N

N!

∫
Re
{
tr
{
CE

α,N

}}
dε. (37)

The additional term CE
α,N is given by 3

CE
α,N =

(
ih̄

2

)N+1(
∂N+1

T G̃R
∂N
ε �<

α + ∂N+1
T G̃<

∂N
ε �A

α

)
.

After introducing the second-order adiabatic expansion of
the retarded and lesser Green’s functions into Eq. (37), we get
the adiabatic expansion up to the second order of the energy
current

Ėα 	 Ė (0)
α + Ė (1)

α + Ė (1,1)
α + Ė (2)

α . (38)

The adiabatic energy current is

Ė (0)
α = Ė (0)

α =
∫

εK(0)
α (T, ε)dε, (39)

and its first correction Ė (1)
α takes the form

Ė (1)
α =

∑
ν

Ė (1)
α,ν Ẋν, (40)

where

Ė (1)
α,ν =

∫
εK(1)

α,ν (T, ε)dε.

These terms are equivalent to those found previously by
other authors; see, for example, Ref. [46]. However, the last
two terms of Eq. (38) represent original expressions, to our
knowledge. They read as

Ė (2)
α =

∑
ν

Ė (2)
α,ν Ẍν, (41)

Ė (1,1)
α =

∑
μ,ν

Ė (1,1)
α,μν ẊμẊν, (42)

3Each of the CI
α,N functions are dimensionless, whereas the CE

α,N

functions have energy units.
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where the energy fluxes take the form

Ė (2)
α,ν =

∫
εK(2)

α,ν (T, ε)dε,

Ė (1,1)
α,μν =

∫
εK(1,1)

α,μν (T, ε)dε.

Note that, by comparing the adiabatic expansion of the
charge current Eq. (29) with the energy one [given by
Eq. (38)], we recover, order-by-order, the straightforward
interpretation of the energy current. It comes from the inte-
gration of all particles entering and leaving a given lead, but
multiplied by the energy each particle carries. Mathematically
this is a consequence of a subtle cancellation of the second
term of Eq. (37).

C. Heat current

The heat current flowing through the α lead is the last
observable we will study up to the second order. We can
determine the expectation value of heat current based on the
first law of thermodynamics [4,11]. The total energy gained
or lost by a lead α is the sum of the heat and the work done
by the particles being exchanged with the local system. In this
way, the heat current Jα is given by

Jα = Ėα − μα〈Ṅα (t )〉. (43)

The formal definition of Eq. (43) contains two mean values
that we developed in Secs. III A and III B. Using the previous
results, we can straightforwardly write the adiabatic expan-
sion, up to the second order, of the heat current, just as we
have done before,

Jα 	 J (0)
α + J (1)

α + J (1,1)
α + J (2)

α .

Employing Eqs. (30)–(33) and (39)–(42), we found

J (0)
α = J (0)

α , J (2)
α =

∑
ν

J (2)
α,ν Ẍν,

J (1)
α =

∑
ν

J (1)
α,ν Ẋν, J (1,1)

α =
∑
μ,ν

J (1,1)
α,μν ẊμẊν,

where

J (0)
α = Ė (0)

α − μαN (0)
α , J (2)

α,ν = Ė (2)
α,ν − μαN (2)

α,ν,

J (1)
α,ν = Ė (1)

α,ν − μαN (1)
α,ν, J (1,1)

α,μν = Ė (1,1)
α,μν − μαN (1,1)

α,μν .

Likewise, the above results can be written as integrals,
giving

J (0)
α =

∫
(ε − μα )K(0)

α (T, ε)dε,

J (1)
α,ν =

∫
(ε − μα )K(1)

α,ν (T, ε)dε,

J (2)
α,ν =

∫
(ε − μα )K(2)

α,ν (T, ε)dε,

J (1,1)
α,μν =

∫
(ε − μα )K(1,1)

α,μν (T, ε)dε.

Thus far, we have offered a complete set of quantum
transport observables to understand how the second-order
corrections work. These results became a starting point to

FIG. 1. Representation of a bidimensional atomic rotor attached
to two leads.

explore thermodynamic properties from a quantum point of
view.

IV. MODELS

In the previous sections, we formulated the theory of
adiabatic expansions up to the second order for a set of funda-
mental observables. Now, we will evaluate the charge, energy,
and heat currents for two different time-dependent devices. In
studying these examples, we have three goals in mind. First,
we want to illustrate the usage of the developed formulas and
their utility for the thermodynamic analysis of nanomachines.
Second, we want to test their validity by showing that the
results they produce are physically reasonable. In particular,
we will show that energy and particle number are conserved
at all times and for all parameters in the order-by-order expan-
sions [4]. This involves the comparison of proven first-order
formulas with the above-derived second-order terms. The first
two points are shown in the first analyzed device, an atomic
rotor in contact with two fixed leads (see Fig. 1). The sec-
ond example consists of an oscillating quantum point contact
(see Fig. 3). There we want to illustrate the kind of phe-
nomena that can arise from the second-order terms of the
observables. In this sense, we should recall that traditional
adiabatic quantum pumping [29], requires the movement of at
least two out-of-phase parameters. Instead, the studied device
shows monoparametric pumping thanks to the second-order
terms of charge currents, without requiring anharmonicities
[47] or quantum interference effects mediated by magnetic
fields [48].

Here, a comment is in order. The mentioned monoparamet-
ric pumping refers to the case where only one parameter of the
Hamiltonian is being moved, which is not the same as having
a single physical parameter that moves several Hamiltonian
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parameters. For example, it has been shown that charge pump-
ing can occurs in nanomechanical devices composed of a
long stationary inner carbon nanotube and a shorter outer
tube which slowly rotates [30]. However, in such a case,
the slow motion of the single mechanical degree of freedom
induces the adiabatic change of many Hamiltonian param-
eters. This case can be safely described by some of the
diverse formalisms developed for adiabatic quantum pumping
[16,18,29]. For this reason, we do not consider it monopara-
metric pumping. In this regard, the example of Sec. IV A is
not nonparametric, whereas the example of Sec. IV B is.

A. Driven atomic rotor

To model the atomic rotor we assume a minimal tight-
binding model consisting of a one-site system attached to two
identical conduction channels (the leads) through which an
electrical current can flow. We will name each of them as
L and R. The isolated site is linked to the rotor and repre-
sents a quantum dot with a site energy εd . Two semi-infinite
tight-binding chains set up the leads, where tL and tR are the
tunneling between them and the rotor [17], as sketched in
Fig. 1.

To keep matters simple, we assume only the hopping terms
change with time, having a linear dependence on the distance
between the rotor and the respective leads. Furthermore, we
force the atomic rotor to follow a circular trajectory with a
fixed radius R0 and a given angular frequency ω. Based on
this outline, we arrive at (see Appendix G)

tL = tmax(1 + a − a
√

1 + β[1 − sin(ωt )]), (44)

tR = tmax(1 + a − a
√

1 + β[1 − cos(ωt )]), (45)

where tmax is the maximum (in absolute value) tunneling am-
plitude, a sets the decay of the hopping terms with the distant
between the dot and the leads, and

β = 2
R0L

(L − R0)2
.

The description of the local system requires at least a
three-site Hamiltonian, which includes the site energy of the
central dot and the first sites of the leads. In this way, we cir-
cumvent the limitation mentioned earlier of time-independent
self-energies �R,A,<(ε). The resulting adiabatic Green’s func-
tions GR,A,<, whose explicit forms can be found in Ref. [17],
do not commute, in general, with each other or �ν , as would
be the case for a single sitelocal system; see the example of
Ref. [37]. Thus, despite its simplicity, the analyzed example
provides a challenging test for the developed formulas.

Once we set up the model, we apply the charge current for-
mulas. For this purpose, we rewrite Eq. (29) (see Appendix G)
for the current over the L lead as

IL = Ψ
(0)

IL
+ Ψ

(1)
IL

ω + (Ψ (1,1)
IL

+ Ψ
(2)

IL

)
ω2. (46)

The term Ψ
(0)

IL
is the adiabatic contribution given by Eq. (30),

Ψ
(1)

IL
is the first-order correction dictated by Eq. (31), and

Ψ
(1,1)

IL
and Ψ

(2)
IL

stand for the second-order corrections of the
charge current, given by Eqs. (32) and (33), respectively.

The procedure used for the charge current can be extended
to the remaining studied observables. For example, the heat

current formula takes the form

JL = Ψ
(0)

JL
+ Ψ

(1)
JL

ω + (Ψ (1,1)
JL

+ Ψ
(2)

JL

)
ω2. (47)

Despite their complexity, our goal is to ensure the validity
of the formulas. To achieve this point, we will use the order-
by-order energy conservation formulas for quantum transport
[4]. For our model, it reads

Q(n)
JL

− δμL

e
Q(n)

IL
+ Q(n)

JR
− δμR

e
Q(n)

IR
+ W (n−1) = 0, (48)

where

δμL = μL − μ0,

δμR = μR − μ0.

Here, μ0 is the reference chemical potential. We have chosen
it as the following average value:

μ0 = δμL + δμR

2
.

The above formula holds for any integer n, where n rep-
resents the order of the adiabatic expansion of the quantity
of interest, W (n−1) is the n − 1 order of the work done by
the rotor in a single cycle (see Appendix I), Q(n)

Jα
is the heat

pumped per revolution of the rotor to the α lead, and Q(n)
Iα

is
the pumped charge in a cycle. These quantities are evaluated
as

W (n−1) =
∫ τ

0

−→
F (n−1) · −̇→

X dt, (49)

Q(n)
Jα

=
∫ τ

0
J (n)
α dt, (50)

Q(n)
Iα

=
∫ τ

0
I (n)
α dt . (51)

Here, J (n)
α and I (n)

α are defined in Sec. III, τ is the period of

the movement, and
−→
F (n−1) is the n − 1 order of the adiabatic

expansion of the electronic force
−→
F . Note that the mechanical

work per cycle involves the integration of a certain order of the
force, (n − 1), times Ẋ . Therefore, the whole term is of order
n, despite coming from the (n − 1) term of its expansion [49].
This explains why different orders of the adiabatic expansion
are involved in Eq. (48). The electronic force

−→
F is a vector

whose components are defined by

Fν (t ) = −ih̄tr{�νG<(t, t )}.
It is important to highlight that the fulfillment of Eq. (48)

with second-order corrections of the heat and charge cur-
rents involves the comparison of developed formulas with the
well-known expressions for the zero and first-order electronic
forces,

−→
F (0) and

−→
F (1), which can be found in Refs. [16,17].

A further magnitude of significance is the total energy
pumped to the α lead, which reads

Q(n)
Ėα

= Q(n)
Jα

− δμL

e
Q(n)

Iα
.

Rewriting Eq. (48) using the above formula, we obtain a
version of the first law of thermodynamics which relates the
total energy of electrons flowing between leads and the me-
chanical work. However, in this version electron energy and
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FIG. 2. (a) Charge current (in units of et0/h̄) calculated up to
different orders as function of ωt . The different lines are: I (0) for blue,
I (0) + I (1) for cyan, and I (0) + I (1) + I (2) + I (1,1) for the black dashed
line. (b, c) Pumped charge per cycle [in units of et0/(h̄ω)] for the
first and second orders. Red and blue dashed lines are Q(n)

IR
and Q(n)

IL
,

respectively, and the solid gray line is their sum. (d, e) Fulfillment
of the order-by-order energy conservation (in units of t0). The blue
and red lines are Q(n)

Ėα
for α = L and α = R, respectively, the green

line is W (n−1), and the gray line shows the fulfillment of Eq. (48). For
all calculations, the temperatures are kBTL = kBTR = 0.01, the chem-
ical potentials are δμL = 0.1 and δμR = −0.1, R0 = 0.5, a = 0.44,
L = 1 and tmax = 1. For panel (a), we fixed the quantum dot energy
as εd = 0.01 and ω = 0.1.

mechanical work are related through the different orders of
their adiabatic expansion.

Finally, charge conservation is another property that must
be satisfied for every order and can easily be tested in the
present model

Q(n)
IL

+ Q(n)
IR

= 0.

Figure 2(a) illustrates how the different orders of the charge
current add up over one period of the rotor. Figures 2(b) and
2(c) verify that the studied model satisfies charge conservation
at every order for different values of the dot’s energy εd .
Figures 2(d) and 2(e) show, for different values of the dot’s
energy εd , order-by-order energy conservation for the first and
second adiabatic corrections of the heat and charge currents.

FIG. 3. Scheme of two possible physical systems described by
the model of Sec. IV B: (a) An oscillating quantum point contact and
(b) an oscillating tip of a scanning tunneling microscope.

We can also use the present example to highlight the im-
portance of the developed formulas for the thermodynamic
analysis of systems. For example, in Fig. 2 we can see that
there is charge pumping in both orders [see Figs. 2(b) and
2(c)] but energy pumping only occurs at first order. Note that
for n = 1 [Fig. 2(d)] and at εd close to 0, energy is on average
going out of the left lead (blue line below zero) and entering
into the right lead (red line above zero). On the contrary, at
second order of the currents [n = 2; see Fig. 2(e)], energy
coming from the external driving just dissipates through both
leads (red and blue curves are always positive). Here, W (1)

[green line of Fig. 2(e)] is the mechanical energy being dis-
sipated by the electronic friction, see Sec. I and Ref. [4]. The
negative value of W (0) in Fig. 2(d) (the work per cycle done by
CIFs) is due to the sign choice of Ẋν , which in the present case
implies that the system is being forced to act as a pump, not as
a motor; see Ref. [4]. As a final remark, we note that for the
present example second-order pumping points in a different
direction than the first-order one. This implies that even small
deviations from the adiabaticity should diminish the efficiency
of adiabatic quantum pumps.

B. Oscillating QPC or STM’s tip

The system studied in this section consists of two conduc-
tors (not necessarily of the same materials) close enough to
let charge particles tunnel from one to the other. Furthermore,
the distance between the conductors oscillates at a given fre-
quency ω. This may represent different physical situations,
which are in principle within experimental possibilities [50].
Some of them are depicted in Fig. 3.

We modeled the different leads L and R using two dis-
tinct semi-infinite homogeneous tight-binding chains, as in the
previous example, each characterized by a site energy and a
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hopping. The site energy of the lead L (R) is ε0L (ε0R) and
its hopping is t0L (t0R). The hopping between the leads tLR

depends on their distance, exhibiting an exponential behavior
(see Appendix H)

tLR = tmaxe
a
(

1− x
xmin

)
, (52)

where tmax is the maximum tunneling amplitude, a is the decay
factor, x is the distance between the leads, and xmin is the
minimum value of x. Assuming a forced oscillatory movement
and taking δx + xmin as the maximum length, the distance
between leads yields

x = xmin + δx

2
[1 − cos(ωt )]. (53)

For the calculation of charge and heat currents, we rewrite
the corresponding formulas just as we did in Eqs. (46) and
(47). Moreover, for evaluating the fulfillment of the order-by-
order energy conservation in the present model, we will also
resort to the same definitions given in Eqs. (48), (49), and (51).

In Fig. 4 we evaluate the current for a system in
equilibrium, i.e., (μL, TL ) = (μR, TR), with nonsymmetrical
leads, which in this case means different energy sites ε0L �=
ε0R. There, the zero-order heat J (0) and charge currents
I (0)(adiabatic contributions) are zero, as can be seen for I (0)

in Fig. 4(a) (blue solid line). Unlike the former example, the
present one has only one independent mechanical degree of
freedom. This implies a null contribution per cycle of the
first-order heat and charge currents, J (1) and I (1); see Ref. [29].
Note in Fig. 4(a) that the cyan curve, I (0) + I (1), is antisym-
metric with respect to I = 0. However, the second-order term
may allow particles and heat to pump through the leads, even
for a single-parameter system. Note that, the dotted black line
in Fig. 4(a), I (0) + I (1) + I (2) + I (1,1), is not antisymmetric for
I = 0 but has a shift toward negative values. In this example,
it is then clear that second-order terms comprise the leading
order for charge and heat pumping, exhibiting an unexplored
form of quantum pumping.

In Figs. 4(b) and 4(c), we showed that the second-order
term preserves, respectively, the total charge and energy of
the complete system (local system plus the electron’s leads).
From this figure, it is also interesting to note that, despite the
charge current being pumped due to the second-order terms
[see Fig. 4(b)], there is no heat pumping. In Fig. 4(c) we
can see that the heat per cycle Q(2)

Jα
is positive for left and

right leads, i.e., the external work (W ) is dissipated as heat
into the two leads. This mean that particles pumping from the
left lead [51], does not compensate for the external work (W )
being dissipated as heat to this lead. This highlight, as in the
previous example, the usefulness of the developed formulas
for thermodynamic analysis.

For a symmetrical system (identical leads), we found (not
shown in the manuscript) that no net particles move from
one lead to another in the former configuration, even for the
second-order correction. This behavior is expected since, due
to inversion symmetry, there is no reason for the current to go
in a preferential direction. In this sense, this also validates the
second-order formulas.

FIG. 4. (a) Charge current (in units of et0/h̄) calculated up to
different orders as function of ωt . The different lines are: I (0) for blue,
I (0) + I (1) for cyan, and I (0) + I (1) + I (2) + I (1,1) for the black dashed
line. (b) Second-order (n = 2) pumped charges per cycle [in units of
et0/(h̄ω)] as a function of δx/xmin. The blue dashed line belongs to
the L lead, the red one to the R lead, and the gray line is the sum
of both contributions. (c) Fulfillment of the order-by-order energy
conservation law (in units of t0) as a function of δx/xmin. The blue and
red lines are Q(n)

Ėα
for α = L and α = R, respectively, the green line

is W (n−1), and the gray line shows the fulfillment of Eq. (48). In all
the plots we used: kBTL = kBTR = 0.01, δμL = δμR = 0, t0L = 0.56,
t0R = 1, ε0L = 1, ε0R = 0, a = 0.5, and tmax = 0.99. In panel (a) we
fixed δx/xmin = 0.5 and ω = 0.1.

V. CONCLUSION

Throughout this work, we have presented expressions,
based on NEGFs within a Schwinger-Keldysh approach, for
the second-order adiabatic expansion of three different ob-
servables of quantum transport (energy, heat, and charge
currents). To our knowledge, NEGF second-order expan-
sions of heat and energy currents have not been treated
before. Moreover, the explicit formulas for the observables are
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general and ready to be used in a wide range of systems. We
only assumed that self-energies are time-independent, which
is naturally accomplished for most quantum transport prob-
lems.

We have illustrated how the developed formulas produce
physically consistent results (including order-by-order energy
and particle conservation laws) using two simple models.
We must emphasize that order-by-order energy conservation
strictly involves the comparison of the here-developed
expressions (second-order heat and charge currents)
with a well-established first-order expression (first-order
current-induced force). Moreover, we have shown in
both examples how the developed formulas provide useful
thermodynamical information about the devices. Additionally,
in the second model, we have analyzed a phenomenon where
second-order monoparametric pumping takes place. This
provides a glimpse of the type of phenomenon that our
expressions allow one to describe.

There is an important point to be clarified here. In recent
years, there has been a controversy about the proper defini-
tion of heat currents for quantum systems. On the one hand,
some authors [11,52] consider the definition of this quantity
as that used in the present work Eq. (43). This coincides
with the definition for classical systems. On the other hand,
some authors [53,54] add a term that accounts for the energy
stored in the tunneling Hamiltonian coupling the system with
the reservoirs. The latter provides better agreement with the
Joule Law for time-dependent systems. Which definition is
the relevant one is yet to be proven by experiments. However,
for stationary systems with well-defined cycles, the mentioned
extra term vanishes once averaged. In the present manuscript,
we focused on applications involving some kind of cyclic ma-
chine (a pump or a nanomotor), and where the thermodynamic
quantities of interest are averaged over a cycle. In such a case,
there are no differences between the definitions of heat.

As for possible extensions of the present work, it would be
interesting a deeper exploration of second-order phenomena
and their potential use, as well as the development of similar
formulas for other observables like current-induced forces
(also known as electron wind forces [55]) or spin-transfer
torque [56–59].
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APPENDIX A: WIGNER TRANSFORM
OF DYSON’S EQUATION

Equation (13) is the equation of motion of the retarded
Green’s function, usually called Dyson’s equation of motion.
We can apply a Wigner transform to this expression. The first
term on the right-hand side of Eq. (13) is the Dirac δ, whose
Wigner transform is the identity. Before applying the Wigner

transform to the second term, we need to rewrite it as

A(t, t ′) = GR(t, t ′)HS (t ′)

=
∫

GR(t, t2)h(t2, t ′)dt2, (A1)

where

h(t2, t ′) = HS (t2)δ(t2 − t ′).

Now, we can apply the Wigner transform to A(t, t ′), by using
the Moyal product [41], yielding

Ã = G̃R
(T, ε)e

ih̄
2 (

←−
∂ ε

−→
∂ T −←−

∂ T
−→
∂ ε )HS (t ), (A2)

where we used h̃(T, ε) = HS (T ). The exponential operator is
interpreted as usual in terms of the Maclaurin series of the
exponential function, i.e., eO =∑n

On

n! The arrows in the ex-
ponential indicate the direction in which the derivatives should
be applied. For example, the symbol

−→
∂ ε means: derivative

with respect to ε of the function to the right, HS in the above
case, while

←−
∂ ε is the same but the derivative should be ap-

plied to the function to the left, G̃R
(T, ε) in the above case.

The third term of Eq. (13),

B(t, t ′) =
∫

GR(t, t1)�R(t1, t ′)dt1,

can also be Wigner transformed by using the Moyal product,
giving

B̃ = G̃R
(T, ε)e

ih̄
2 (

←−
∂ ε

−→
∂ T −←−

∂ T
−→
∂ ε )�R(ε). (A3)

To deal with the right-hand side of Eq. (13) we need to first
apply the chain rule,

∂t ′GR = 1
2∂TGR − ∂τGR,

where T and τ are defined in Eqs. (14) and (15), respectively.
Then, after Wigner transform it we obtained

˜∂t ′GR = 1

2
∂T G̃

R
(T, ε) + iε

h̄
G̃R

(T, ε),

where we used the fact that Green’s functions have compact
support in the energy domain. The final result of all the above
is Eq. (18) of the main text.

In Eqs. (A2) and (A3) we used a compact notation, based
on a exponential operator. However, the same equations can
also be written as two infinite sums

Ã =
∞∑

N=0

1

N!

(
ih̄

2

)N

CA
N (T, ε)

and

B̃ =
∞∑

N=0

1

N!

(
ih̄

2

)N

CB
N (T, ε),

where

CA
N =

N∑
j=0

(−1)N− j

(
N

j

)
∂

N− j
T ∂ j

ε G̃
R
∂

j
T ∂N− j

ε HS, (A4)

CB
N =

N∑
j=0

(−1)N− j

(
N

j

)
∂

N− j
T ∂ j

ε G̃
R
∂

j
T ∂N− j

ε �R. (A5)
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On the one hand, the slow time T only affects the local system,
according to our assumption. Therefore, the dynamics of the
leads only depends on the energy ε. On the other hand, the
Hamiltonian of the local system HS only depends on T and
not on ε. Then

∂N− j
ε HS = 0 ∀N − 1 > j � 0, (A6)

∂
j

T �R = 0 ∀N � j > 1. (A7)

This can be used in Eq. (18) of the main text to obtain a
simpler expression. The results is

I = − ih̄

2
∂T G̃

R + εG̃R −
∞∑

N=0

1

N!

(
ih̄

2

)N

CN , (A8)

where we have introduced Eqs. (A6) and (A7) into Eqs. (A4)
and (A5), respectively, and we have defined

CN = (−1)N∂N
T G̃

R
∂N
ε �R + ∂N

ε G̃
R
∂N

T HS.

The zero and first-order terms of last expression can be com-
pared with Eq. (20) of Ref. [60].

APPENDIX B: ADIABATIC EXPANSION
FOR RETARDED GREEN’S FUNCTION

The adiabatic retarded Green function, given in Eq. (19),
satisfies the condition

[GR(T, ε)]−1 = εI − HS (t ) − �R(ε). (B1)

Then, the derivative of GR with respect to ε gives

∂εGR = −Gr
{
I − ∂ε�

R
}
Gr, (B2)

where we used ∂D = −D∂[D−1]D.
Next, we have to change the sequence of the terms in

the Eq. (A8) to introduce the retarded Green’s function and
its derivative, given in Eqs. (19) and (B2). Then, using the
slow-time derivative, Eq. (20), and multiplying the adiabatic
retarded Green’s function on both sides of the obtained equa-
tion, the resulting expression takes the form

G̃R = GR + ih̄

2

M∑
ν=1

∂ε�
R�νGRẊν

− ih̄

2
∂T G̃

R
[GR]−1∂εGR +

∞∑
N=2

1

N!

(
ih̄

2

)N

CN . (B3)

Importantly, no approximations have been made in Eq. (B3).
Therefore, as long as the adiabatic expansion is valid (the
series is convergent), the equation provides the exact evolu-

tion of G̃R
along a path driven by the mechanical degrees

of freedom Xμ. However, note that G̃R
(the exact retarded

Green’s function) depends in turns on the time derivative

of G̃R
, which is not known. In principle, the only retarded

Green’s function known in advance is the adiabatic one, Gr .
To solve this, one applies the iterative method twice. This

consists of replacing G̃R
on the right-hand side by a first

approximation (Gr), then using the resulting Green function

to improve the approximation of G̃R
on the right-hand side,

and so on. During this iterative process one identify terms

of different orders given by the order of the derivatives with
respect to Xμ and cut the infinite series at a given order (second
order in our case). Note that the order also coincide with the
exponent of h̄ or the exponent of the driving frequency ω for
the case Xμ ∝ cos(ωt ). By using this method we arrive, after
some algebra, at Eq. (22) of the main text.

APPENDIX C: ADIABATIC EXPANSION
FOR LESSER GREEN’S FUNCTION

Starting from Eq. (23), which gives the lesser Green’s
function Wigner transforms in close notation, we can write
its gradient expansion as a double infinite sum

G̃< =
∞∑

N,K=0

1

N!K!

(
ih̄

2

)N+K

W<
N,K (T, ε), (C1)

where we have introduced the nested definition

W<
N,K =

N∑
j=0

K∑
l=0

(−1)N

(
N

j

)(
K

l

)
∂

N− j
T ∂ j

ε G̃
R
CN,K

j,l

and

CN,K
j,l = (−1) j+l∂

j
T ∂N− j

ε

{
∂K−l

T ∂ l
ε�

<∂ l
T ∂K−l

ε G̃A
}
.

The aforementioned expression is obtained by straightfor-
wardly making use of the Moyal product twice.

The lesser self-energy is not time-dependent, since we have
assumed that the retarded self-energy is not controlled by the
slow time. This implies

∂K−l
T �< = 0 ∀N − l �= 0, (C2)

∂
j−m

T �< = 0 ∀ j − m �= 0. (C3)

Putting Eqs. (C2) and (C3) into Eq. (C1) results in the simpli-
fied expression

G̃< =
∞∑

Q=0

1

Q!

(
ih̄

2

)Q

W<
Q (T, ε), (C4)

where

W<
Q =

Q∑
q=0

q∑
s=0

Q−q∑
j=0

(−1)q

(
Q

q + j

)(
q + j

j

)(
q

s

)
CQ

q,s, j

and

CQ
q,s, j = ∂

q
T ∂ j

ε G̃
R
∂Q−( j+s)
ε �<∂s

ε∂
Q−q
T G̃A

.

The zeroth- and first-order terms of Eq. (C4) coincide with
Eq. (25) of Ref. [60] and Eq. (3) of Ref. [16], once the iterative
method explained in the previous section is applied. The result
up to the second order is shown in Eq. (24) of the main text.

APPENDIX D: ADIABATIC EXPANSION
FOR CHARGE CURRENTS

We start by rewriting Eq. (27) as

Iα = 2eRe{tr{Fα (t )}}, (D1)
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where the auxiliary operator Fα is defined by

Fα =
∫ {

GR(t, t ′)�<
α (t ′, t )

+ G<(t, t ′)�A
α (t ′, t )

}
dt ′. (D2)

Now, our goal is to transform the Fα operator to the energy
domain and then apply the inverse Wigner transform. This
allows us to recover the charge current in the time domain
written as an integral with a kernel in the energy domain. To
carry out his technique, we start with the relationship between
Fα and its Wigner transform F̃α , whose formula takes the form

Fα = 1

2π h̄

∫
F̃α (T, ε)dε. (D3)

The next step is to put the gradient expansion in effect over
Eq. (D2), leading to

F̃α =
∞∑

N=0

N∑
j=0

1

N!

(
− ih̄

2

)N(N

j

)
CF

α,N, j (T, ε), (D4)

where

CF
α,N, j = (−1) j∂

N− j
T ∂ j

ε G̃
R
∂

j
T ∂N− j

ε �<
α

+ (−1) j∂
N− j
T ∂ j

ε G̃
<
∂

j
T ∂N− j

ε �A
α.

As we have mentioned, we assumed that the leads are
unaffected by the slow time variation. For such reason, the
following rules hold:

∂
j

T �A
α = 0 ∀N � j � 1, (D5)

∂
j

T �<
α = 0 ∀N � j � 1. (D6)

Putting Eqs. (D5) and (D6) in Eq. (D4), the Wigner transform
of the Fα operator reads

F̃α =
∞∑

N=0

1

N!

(
− ih̄

2

)N

CF
α,N (T, ε), (D7)

where

CF
α,N = ∂N

T G̃
R
∂N
ε �<

α + ∂N
T G̃

<
∂N
ε �A

α.

To get the desired result, we must first plug the last equa-
tion into Eq. (D3) and then into Eq. (D1), leading to the
formula outlined in Eq. (28).

APPENDIX E: ENERGY CURRENT MAIN FORMULA

Taking Eq. (35) as a starting point, we intend to get an ex-
pression of the energy current in terms of self-energies, which
lets us identify the leads. The quoted formula can be read as
the product of the hooping between the local system and the
leads, with those elements of the lesser Green’s function that
connect the local system and leads, given by Eq. (6). However,
we want to express the energy current in terms of the Green’s
functions and self-energies of the local system only, Eq. (5).
For this purpose, we will use the Keldysh technique and the
Langreth theorem of analytic continuation to achieve this goal
[45]. The mean result is

Jα = −2Re

{∫
Jα (t, t ′)dt ′

}
,

where

Jα =
∑
l,s

(
GR

l,s(t, t ′) f <
α,s,l (t

′, t ) + G<
l,s(t, t ′) f A

α,s,l (t
′, t )
)
.

Here, GA
l,s are the elements of the retarded Green’s function

given in Eq. (3), and G<
l,s are the lesser Green’s function

specified in Eq. (5). In addition, we have introduced the fol-
lowing auxiliary functions:

f <
α,s,l =

∑
k

εαkts,αkg<
αk (t ′, t )tαk,l , (E1)

f A
α,s,l =

∑
k

εαkts,αkgA
αk (t ′, t )tαk,l . (E2)

As you can notice, these propagators satisfy the differential
equations: (

ih̄
∂

∂t ′ − εαk

)
g<

αk (t ′, t ) = 0, (E3)(
ih̄

∂

∂t ′ − εαk

)
gA

αk (t ′, t ) = δ
(
t ′ − t

)
. (E4)

Moreover, and following our assumptions, we also have

∂t ′ (ts,αktαk,l ) = 0.

Then, putting Eqs. (E3) and (E4) into Eqs. (E1) and (E2),
respectively, and using the previous condition, we arrive at

f <
α,s,l = ∂t ′�<

α,s,l (t
′, t ),

f A
α,s,l = ∂t ′�A

α,s,l (t
′, t ) +

∑
k

ts,αkδ(t ′ − t )tαk,l .

Note that we have used the definitions of the self-energies
given in Eqs. (10) and (11). The last equations allow us to
write the following:

Jα = J (A)
α (t, t ′) + J (B)

α (t, t ′),

where

J (A)
α = tr

{
GR(t, t ′)�0

α

}
δ
(
t ′ − t

)
,

J (B)
α = tr

{
GR(t, t ′)∂t ′�<

α (t ′, t )

+G<(t, t ′)∂t ′�A
α (t ′, t )

}
.

For compactness, we have defined above the operator

�0
α,s,l =

∑
k

ts,αktαk,l .

With this, the energy current takes the form

Jα = J (A)
α + J (B)

α ,

where

J (A)
α = −2Re

{∫
J (A)

α (t, t ′)dt ′
}
,

J (B)
α = −2Re

{∫
J (B)

α (t, t ′)dt ′
}
.

However, with the aid of the properties [G<]† = −G< and
[�0

α]† = �0
α , the following can be proved:

J (A)
α = 0.
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Therefore, the total energy current is set only by J (B)
α , resulting

in Eq. (36).

APPENDIX F: ADIABATIC EXPANSION
FOR ENERGY CURRENTS

In this section, we apply a method analogous to the one
used for the charge current. We start by defining the auxiliary
operator

Mα =
∫ {

GR(t, t ′)∂t ′�<
α (t ′, t )

+G<(t, t ′)∂t ′�A
α (t ′, t )

}
dt ′. (F1)

This enables us to write the energy current as

Jα = −2Re{ih̄tr{Mα (t )}}. (F2)

Once again, the procedure is to apply the Wigner transform
to the Mα operator and afterward the inverse transform. Then,
the gradient expansion of Eq. (F1) takes the form

M̃α =
∞∑

N=0

N∑
j=0

1

N!

(
− ih̄

2

)N(N

j

)
CM

α,N, j (T, ε), (F3)

where

CM
α,N, j = (−1) j∂

N− j
T ∂ j

ε G̃
R
∂

j
T ∂N− j

ε
˜∂t ′�<

α

+ (−1) j∂
N− j
T ∂ j

ε G̃
<
∂

j
T ∂N− j

ε
˜∂t ′�A

α,

where ˜∂t ′�α is the Wigner transform of ∂t ′�α (t ′, t ).
The charge current formula, shown in Eq. (D4), can be

compared with the above transform. The main difference
between both lies in the self-energies, where the one given
in Eq. (F3) implies the Wigner transform of the self-energy
time derivative. To find the expressions for these terms, we
just need to use the definitions of the Wigner coordinates,
given in Eqs. (14) and (15), followed by the chain rule. We
then apply the Wigner transform to the resulting expressions
and assume that the self-energies, which are solely energy-
dependent (�α (ε) ≡ �α), vanish at high and low energies.
The result is

˜∂t ′�<
α = 1

2
∂T �<

α − i
ε

h̄
�<

α , (F4)

˜∂t ′�A
α = 1

2
∂T �A

α − i
ε

h̄
�A

α. (F5)

Then, plugging the Eqs. (F4) and (F5) into Eq. (F3), to-
gether with the conditions of Eqs. (D5) and (D6), the Wigner
transform of Mα can be written as

M̃α = −1

2

∞∑
N=0

1

N!

(
− ih̄

2

)N−1

CM
α,N (T, ε), (F6)

where

CM
α,N = ∂N

T G̃
R
∂N
ε {ε�<

α } + ∂N
T G̃

<
∂N
ε

{
ε�A

α

}
.

We can apply the chain rule to ∂N
ε {ε�<

α }, giving

∂N
ε {ε�<

α } = ε∂N
ε �<

α + N∂N−1
ε �<

α , (F7)

∂N
ε

{
ε�A

α

} = ε∂N
ε �A

α + N∂N−1
ε �A

α. (F8)

These results allow us to rewrite the M̃α of Eq. (F6) in a closed
form

M̃α = − iε

h̄
F̃α − 1

2

∞∑
N=0

1

N!

(
− ih̄

2

)N

Cα,N (T, ε), (F9)

where the term F̃α is that defined for the charge current [see
Eq. (D7)], and

Cα,N = ∂N+1
T G̃R

∂N
ε �<

α + ∂N+1
T G̃<

∂N
ε �A

α.

Finally, we need to apply the inverse Wigner transform to
Eq. (F9) and then put this into the energy current definition
[Eq. (F2)]. The result is Eq. (37).

APPENDIX G: DRIVEN ATOMIC ROTOR MODEL

In Sec. IV A, we provide a brief account of the fundamental
constituents of the atomic rotor model. We will use two semi-
infinite tight-binding chains to represent the leads attached to
the quantum dot and include the first site of each chain as part
of the local system. Then, the Hamiltonian of the local system
reads

HS =
⎛⎝ ε0 −tL 0

−tL εd −tR
0 −tR ε0

⎞⎠.

The adiabatic retarded Green’s function, given by Eq. (19),
takes the form

Gr = [εI − HS − �R
L − �R

R

]−1
, (G1)

where the self-energies coming from the decimation of the left
and right leads (�R

L and �R
R, respectively) are given by

�R
L =

⎛⎝�R
0 (ε) 0 0
0 0 0
0 0 0

⎞⎠, �R
R =

⎛⎝0 0 0
0 0 0
0 0 �R

0 (ε)

⎞⎠.

Here, �R
0 is the self-energy (in the energy domain) of a semi-

infite tight-binding chain. It is often expressed as

�R
0 (ε) = �0(ε) − i�0(ε), (G2)

where

�0 = t0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε−ε0
2t0

−
√(

ε−ε0
2t0

)2 − 1 ε−ε0
2t0

� 1,
ε−ε0
2t0

1 � ε−ε0
2t0

� −1,

ε−ε0
2t0

+
√(

ε−ε0
2t0

)2 − 1 −1 � ε−ε0
2t0

,

�0 = t0

⎧⎪⎪⎨⎪⎪⎩
0 ε−ε0

2V0
� 1,√

1 − ( ε−ε0
2t0

)2
1 � ε−ε0

2t0
� −1,

0 −1 � ε−ε0
2t0

.

Above, ε0 and t0 are, respectively, the site energy and the
hopping between neighboring sites of the tight-binding chain.

In our model, the mechanical DOF affects only tL and tR,
which can be taken as generalized coordinates related to the
position of the rotor θ by some function. Then, the matrix
operator �θ can be written as

�θ = ∂tL
∂θ

�tL + ∂tR
∂θ

�tR .
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Here, the matrix operators �tL and �tR , necessary to calculate
the charge and heat currents (see Secs. III A and III C), as well
as the electronic force (see Sec. I), are

�tL = −
⎛⎝0 1 0

1 0 0
0 0 0

⎞⎠ and �tR = −
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠.

So far, we have provided a general tight-binding model
for a quantum dot connected with two leads. The next stage
requires the specification of the geometric parameters of the
atomic rotor. Typically the dependence of hopping parameters
with the distance are modeled by exponential functions. In our
case, that would mean taking

tL = tmea(1− �rL
r0L

)
, (G3)

tR = tmea(1− �rR
r0R

)
, (G4)

where �rL and �rR are the spatial distances between the
quantum dot and the closest chain sites to the L and R leads,
respectively, while r0L and r0R are the smallest values of �rL

and �rR along the trajectory. Using polar coordinates, we
have

�rL =
√

L2 + R2
0 − 2R0L sin(θ ), (G5)

�rR =
√

L2 + R2
0 − 2R0L cos(θ ), (G6)

where θ , L, and R0 are defined in Fig. 1, and r0L and r0R satisfy
the condition

r0L = r0R = L − R0. (G7)

Plugging Eqs. (G5), (G6), and (G7) into Eqs. (G3) and
(G4) makes the model available to evaluate charge and heat
currents. However, since our purpose is to outline typical
behaviors of the currents and not to focus on the particularities
of the used models, we decided to use a linearized version of
Eqs. (G3) and (G4). In this way, we arrive at Eqs. (44) and
(45).

Taking into account the model, we are now able to put the
charging current calculation into action. For a fixed radius and
angular position given by θ = ωt , we rewrite Eqs. (30), (31),
(32), and (33) as

I (0)
L = Ψ

(0)
IL

, I (1,1)
L = Ψ

(1,1)
IL

ω2,

I (1)
L = Ψ

(1)
IL

ω, I (2)
L = Ψ

(2)
IL

ω2,

where

Ψ
(1)

IL
= −e

(
N (1)

L,tL

∂tL
∂θ

+ N (1)
L,tR

∂tR
∂θ

)
,

Ψ
(2)

IL
= −e

(
N (2)

L,tL

∂2tL
∂θ2

+ N (2)
L,tR

∂2t2
R

∂θ2

)
,

Ψ
(1,1)

IL
= −e

(
N (1,1)

L,tLtL

(
∂tL
∂θ

)2

+ N (1,1)
L,tRtR

(
∂tR
∂θ

)2
)

− e
(
N (1,1)

L,tLtR
+ N (1,1)

L,tRtL

)∂tL
∂θ

∂tR
∂θ

.

Similar expressions can be obtained for the heat currents,
see Secs. III B and III C.

APPENDIX H: DRIVEN QUANTUM
POINT CONTACT MODEL

In Sec. IV B, we discussed the physical behavior of this
kind of device and provided a brief introduction to its model-
ing via two tight-binding semi-infinite chains with tunneling
between them. From this starting point, our next step is to give
the Hamiltonian of the local system, which reads

HS =
(

ε0L −tLR

−tLR ε0R

)
.

The adiabatic retarded Green’s function assumes the same
form as Eq. (G1). The self-energies in this case are

�R
L =

(
�R

0L(ε) 0

0 0

)
, �R

R =
(

0 0

0 �R
0R(ε)

)
,

where �r
0L (�r

0R) is given by Eq. (G2) but replacing the site
energy ε0 with ε0L (ε0R) and the hopping t0 by t0L (t0R).

Since in this system only one parameter moves with time,
we have a single �ν matrix given by

�tLR = −
(

0 1
1 0

)
.

Finally, the dependence of the hopping with the separation
between leads is given in Eqs. (52) and (53).

APPENDIX I: ELECTRONIC FORCES

To verify the order-by-order energy conservation, the eval-
uation of the work done by the electronic forces at a given
order n is necessary. The work W at a given order n is

W (n) =
∫ τ

0

(∑
ν

F (n)
ν Ẋν

)
dt,

where Ẋν is the slow time derivative of the classical mechani-
cal degree of freedom ν, F (n)

ν is the nth order of the adiabatic
expansion of the electronic force Fν . The expressions for
F (n)

ν up to first order are well known (see, for example,
Refs. [17,60]). They read

F (0)
μ = − 1

2π i

∫
tr{�μG<}dε,

F (1)
μ = −

∑
ν

γμνẊν,

where

γμν = h̄

2π

∫
tr{G<�μ∂εGR�ν − G<�ν∂εGA�μ}dε.
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