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Superdiffusive transport in two-dimensional fermionic wires
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We present a two-dimensional model of a fermionic wire which shows a power-law conductance behavior
despite the presence of uncorrelated disorder along the direction of the transport. The power-law behavior is
attributed to the presence of energy eigenstates of diverging localization length below some energy cutoff, Ec. To
study transport, we place the wire in contact with electron reservoirs biased around a Fermi level, E . We show
that the conductance scales superdiffusively for |E | < Ec and decays exponentially for |E | > Ec. At |E | = Ec,
we show that the conductance scales diffusively or with different subdiffusive power laws, depending on the sign
of the expectation value of the disorder and the parameters of the wire.
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Introduction of disorder in quadratic systems is known
to generically cause localization since the seminal work of
Anderson [1] and other subsequent works [2–5]. Thus, the
conductance decays exponentially with the system size in
disordered systems. On the other hand, the conductance in
disorder-free quadratic systems is ballistic. While these be-
haviors of the conductance are the two extremes of perfectly
conducting and insulating behaviors, respectively, conduc-
tance can also scale as a power law (1/Nα ) with the system
size, N . The scaling can be categorized into diffusive (α = 1),
superdiffusive (α < 1), and subdiffusive (α > 1) behaviors.
Diffusive scaling is generally expected on addition of interac-
tions to quadratic systems [6]. Superdiffusive and subdiffusive
are therefore considered anomalous. Subdiffusive transport
has been observed in disordered interacting spin systems
[7–10] and also at the band edges of quadratic fermionic sys-
tems [11,12]. Superdiffusive transport is observed in quadratic
systems by introducing certain types of correlated [13,14] or
aperiodic [15] disorders. Recent studies have shown superdif-
fusive transport in interacting spin systems [16–18] and also
in certain types of dephasing models [19].

The phenomenon of Anderson localization also occurs in
classical systems of harmonic wires [20–22]. Nevertheless,
certain peculiar systems are known to show power-law scaling
of energy current even in the presence of uncorrelated disorder
[23–25]. A simple example is a one-dimensional (1D) har-
monic wire with disordered masses, first studied in detail by
Casher and Lebowitz [23]. In this case, the localization length
of the normal modes of the wire diverges as the conducting
frequency approaches zero [20]. Therefore, low-frequency
modes contribute to the transport, effectively giving rise to
a power-law scaling of the energy current. The exact scaling
is determined by the behavior of the localization length as the
frequency, ω → 0, and the low-frequency behavior of the heat
transmission [25–30].

To our knowledge, such peculiar models have not been
discussed in the context of fermionic wires. In this work we
introduce a simple two-dimensional (2D) model for fermionic
wires that realizes physics analogous to 1D mass disordered
harmonic wires. Therefore, our model shows a power-law

scaling of the conductance in the presence of uncorrelated
disorder along the direction of the transport. This is in contrast
with the earlier studies of 1D fermionic wires where the disor-
der is either correlated [13,14] or aperiodic [15]. While in the
harmonic wires the localization length diverges only at a par-
ticular point in the energy spectrum, our 2D model contains
eigenfunctions of diverging localization lengths at energies
with absolute values less than some cutoff, Ec. Therefore, Ec

effectively behaves as a mobility edge.
To study electron transport, we consider a sample of the

wire of size L × W and place it in contact with metallic
leads along its vertically opposite edges. We then employ
the nonequilibrium Green’s function formalism (NEGF) to
look at the scaling of the conductance with L while the
leads are biased around a Fermi level E . We find that for
|E | < Ec, the conductance shows a superdiffusive behavior,
and for |E | > Ec the conductance scales exponentially with
the length of the wire. At the transition point |E | = Ec, the
conductance scales with different power laws for positive,
negative, or zero expectation value of the disorder. We present
heuristic arguments that explain all the numerically observed
power laws. However, the underlying assumption of these
arguments fails for the cases where |E | = Ec, and the expec-
tation value of disorder vanishes. In these cases the observed
power laws are underestimated by a factor of L by the the-
oretical arguments, opening up an interesting problem for
further studies.

This paper is structured as follows: In Sec. I we lay down
the details of the wire, leads, and the contacts between them.
We also discuss the eigenfunctions of the isolated wire and
illustrate why we expect diverging localization lengths for
certain range of energies. In Sec. II we set up the NEGF
formalism, which we use to look at the average behavior of
the conductance. We then consider the Lyapunov exponents,
the inverse of the localization length, in Sec. III for the wave
functions of the wire and present results for its asymptotic
behavior around the point where it vanishes. In the penulti-
mate section, Sec. IV, we use the NEGF expression for the
conductance and the knowledge of the Lyapunov exponents
to determine the different power laws for the conductance and
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also present numerical results for its behavior. We conclude in
Sec. V.

I. THE MODEL

We consider the wire Hamiltonian, HW , to be given by a
tight-binding model defined on a rectangular lattice of size
L × W . Let us label the annihilation and creation operators,
satisfying usual anticommutation relations, at a site (x, y) as
(ψ (x, y), ψ†(x, y)) on the wire. The Hamiltonian of the wire
is then given by

HW =
L∑

x=1

εx�
†(x)H0�(x) +

L−1∑
x=1

[�†(x)�(x + 1) + H.c.],

(1)

where �(x) = (ψ (x, 1), ψ (x, 2), .., ψ (x,W ))T . εx is the dis-
order parameter chosen randomly at every x with expectation
value of 〈ε〉.

Let �(x) = U�(x) where U diagonalizes H0; then the
Hamiltonian in Eq. (1) can be rewritten as W decoupled
1D Hamiltonians in terms of the fermionic operators �k (x),
k = 1, 2, ...,W . We then have

HW =
W∑

k=1

[
L∑

x=1

εxλk�
†
k (x)�k (x)

+
L−1∑
x=1

[�†
k (x)�k (x + 1) + H.c.]

]
, (2)

where λk’s are eigenvalues of H0. Note that the decoupled
1D Hamiltonians are basically 1D Anderson insulators of
different disorder strength.

It is now straightforward to see that the eigenstates
of the wire are given by ψEkm (x, y) = χk (y)φk,m(x), where
m = 1, 2, 3, ..., L. χk is an eigenvector of H0 with eigenvalue
λk , and φk,m(x) satisfy

φk,m(x − 1) + λkεxφk,m(x) + φk,m(x + 1) = Ek,mφk,m(x).
(3)

Clearly, the solutions for φk,m(x) correspond to the wave
functions of a 1D Anderson insulator of length L with onsite
disorder of effective strength proportional to λk . Therefore,
the localization length of the eigenvectors depends on λk and
diverges if λk vanishes. Thus, if λk’s are banded and cross
the value zero, then in the limit W → ∞ there are extended
eigenstates with energies of absolute value less than Ec = 2.
So, a fraction of the eigenfunctions of the wire which corre-
spond to λk near zero contribute to the transport, giving rise
to a power-law scaling of the conductance. This power law
is determined by the behavior of the localization length near
λk = 0, which we discuss later. While this physics holds for
any choice of H0, we now fix, for the rest of the paper, a simple
choice of H0 corresponding to nearest-neighbor hopping with
an onsite chemical potential of μ, so that its spectrum is given
by λk = μ + 2 cos kπ

W +1 .
To probe the electron transport across the wire, we place

it in contact with metallic leads acting as electron reservoirs
at its two opposite edges along y direction. We then use the
NEGF formalism to study the conductance, with the reservoirs

FIG. 1. Power laws for the behavior of the conductance at differ-
ent Fermi levels and the parameter μ.

kept at zero temperatures and biased around a Fermi level,
E . The two reservoirs are themselves modeled as nearest-
neighbor tight-binding Hamiltonians on a square lattice with
hoppings along x and y directions given by ηbx and ηby,
respectively. The contacts are also modeled as tight-binding
Hamiltonians with hopping strength ηc. For details of the
reservoir and contact Hamiltonians, see Appendix A.

We obtain different behaviors of the conductance with
respect to E and μ that are summarized in Fig. 1. Inside
the shaded square and along its vertical edges in Fig. 1, we
see a superdiffusive scaling of the conductance. Along the
horizontal edges of the square and at the corners the con-
ductance scales subdiffusively, except for some cases where
it scales diffusively and shows an interesting dependence on
the sign of the expectation value of the disorder. Outside the
shaded square, the conductance scales as e−L. The behavior
of the conductance is determined by the behavior of electron
transmission at the Fermi level E and the localization length
near λk = 0. So, let us discuss the two separately.

II. NEGF CONDUCTANCE

The nonequilibrium steady state (NESS) of the wire can
be obtained using the NEGF formalism in terms of the ef-
fective nonequilibrium Green’s function for the wire defined
as [31,32], G+(E ) = [E − HW − 
L(E ) − 
R(E )]−1, where

L(E ) and 
R(E ) are the self-energy contributions due to the
reservoirs, and HW is the full hopping matrix of the wire. For
the reservoirs kept at zero temperatures and their chemical
potential biased around a Fermi level E , the conductance of
the wire, in units of e2/h = 1, is given in terms of G+(E ) as

T (E ) = 4π2Tr[G+(E )�R(E )G−(E )�L(E )], (4)

where G−(E ) = [G+(E )]† and �L/R = (
†
L/R − 
L/R)/(2π i).

While the above expression for the conductance holds for
arbitrary lattice models, Ref. [12] presents a simplification of
this expression for lattice models analogous to our model.
However, Ref. [12] examines transport behaviors when E is
set at a value corresponding to the band edges of the wire and
therefore does not consider any disorder along the direction of
the transport. Nevertheless, we will see that some of the results
of Ref. [12] are relevant here, and also we can adopt the same
formalism to simplify the expression for the conductance,
using which we see that it is approximated by

τ (E ) = T (E )

W
≈ 4

π

∫ π

0
dk|FL(λk )|2, (5)
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FIG. 2. Lyapunov exponents for the iteration equation, Eq. (6), for |E | < 2 and E = 2 with positive, negative, and zero expectation value
of the disorder. For E = −2, ζ (λ) ∼ λ for 〈ε〉 < 0 and ζ (λ) ∼ λ1/2 for 〈ε〉 > 0. The data presented is averaged over 103 realizations of the
disorder chosen uniformly from the intervals (−1, 0), (−1, 1), and (0,1) for negative, zero, and positive expectation value cases, respectively.

where FL(λk ) = γ 2/[pL(λk ) + iγ [pL−1(λk ) + qL(λk )] −
γ 2qL−1(λk )] and γ = η2

c
ηbx

, in the limit W → ∞ and
|ηbx| � |E | + |2ηby|, see Appendix B. The integral runs
over the spectrum of H0 in the limit W → ∞, given by
μ + 2 cos(k), k ∈ (0, π ). pL(λk ) and qL(λk ) are obtained
via the same iteration equations, which for pL(λk ) reads
pi+1(λk ) = (−E + εi+1λk )pi(λk ) − pi−1(λk ), but with
different initial conditions. Therefore, it suffices to consider
only one of the two. It is clear that the asymptotic behavior
of pL(λk ) with L eventually controls the behavior of the
conductance with L. Also, note that the iteration equation for
pi(λk ) is the same as the equation for φk,m(i). Therefore,
the asymptotic behavior of pL(λk ) also gives the localization
length of the eigenvectors of the wire. We now discuss
the behavior of pL(λk ) as λk → 0, which we later use to
determine the scaling of the conductance.

III. LYAPUNOV EXPONENTS

Let us consider the iteration equation for pL(λ); we have

pi+1(λ) = (−E + εi+1λ)pi(λ) − pi−1(λ). (6)

We have dropped the k subscript on λ for now, and we will
only consider λ > 0, as λ < 0 is equivalent to shifting the sign
of the disorder parameter. A theorem due to Furstenberg [33]
guarantees non-negativity and the existence of the Lyapunov
exponent, inverse of the localization length, defined as

ζ (λ) = lim
L→∞

1

L
〈log |pL(λ)|〉, (7)

for any initial condition, and therefore pL(λ) ∼ eLζ (λ).
For |E | � 2, ζ (λ) → 0 as λ → 0. Therefore, near-zero λ

values, such that Lζ (λ) < 1, contribute in Eq. (5). Thus, the
behavior of ζ (λ) near λ = 0 is crucial to the scaling of the
conductance. We present numerical results on this behavior at
different E in Fig. 2. We see that while for |E | < 2, ζ (λ) ∼
λ2 irrespective of the expectation value of the disorder, for
|E | = 2 the behavior of ζ (λ) is different for different signs
of the expectation value of the disorder. For E = 2, we find
ζ (λ) ∼ λ, ζ (λ) ∼ λ2/3, and ζ (λ) ∼ λ1/2 for positive, zero, and
negative expectation value of the disorder, respectively. For
E = −2 the behaviors are the same as E = 2, except that
ζ (λ) ∼ λ1/2 for positive expectation value and ζ (λ) ∼ λ for
negative expectation value of the disorder.

We outline the proof here and present the details in Ap-
pendix C. Let us consider the case of |E | < 2. We follow the
steps of Matsuda and Ishii in Ref. [20] as they considered the

iteration equation, Eq. (6), for E = −2 and 〈ε〉 < 0 in the
context of classical harmonic wires with mass disorder. We
start by making the change of variables

pn+1(λ)

pn(λ)
= cos (θn + h(λ, E ))

cos θn
, (8)

where 2 cos h(λ, E ) = −E + 〈ε〉λ, so that the iteration equa-
tion now becomes

θn+1 = arctan

[
tan (θn + h(λ, E )) + λ(ε − 〈ε〉)

sin h(λ, E )

]

= �̄[θn, λ]. (9)

The Lyapunov exponent in terms of the variable θ is given by

ζ (λ) = lim
L→∞

1

L

〈
L∑

n=1

log

∣∣∣∣cos (θn + h(λ, E ))
cos θn

∣∣∣∣
〉
, (10)

=
∫ π/2

−π/2
dθ P[θ, λ] log

∣∣∣∣cos (θ + h(λ, E ))
cos θ

∣∣∣∣. (11)

In the last step we have replaced the average over “time” in
the Marko process defined by the iteration equation, Eq. (6),
by the integral over the invariant distribution P[θ, λ] of the
Marko process in accordance with the ergodic hypothesis.
Expanding Eq. (11) in orders of λ we have

ζ (λ) =
∫ π/2

−π/2
dθ log | cos θ |[ζ0(θ, E ) + λζ1(θ, E )

+ λ2ζ2(θ, E ) + O
(
λ3

)
]. (12)

Assuming h(λ, E ) = ∑∞
i=0 hi(E )λi and P[θ, λ] = ∑∞

i=0 Pi

(θ )λi, the coefficients ζi(θ, E ) depend on θ and E via the
functions Pi(θ ) and hi(E ). Therefore, we need to determine
P[θ, λ] at least up to order λ2 to find ζ (λ). It can be shown that
the invariant distribution satisfies the self-consistent equation

P[θ, λ] −
∫

dε P[�[θ, λ], λ]∂θ�[θ, λ]p(ε) = 0, (13)

where p(εx ) is the probability distribution for εx, and

�[θ, λ] = arctan

[
tan θ − λ(ε − 〈ε〉)

sin h(λ, E )

]
− h(λ, E ) (14)

is the inverse of the function �̄[θ, λ]. Expanding the left-hand
side of Eq. (13) in orders of λ and setting each order to zero
gives ζ0(θ, E ) = 0, ζ1(θ, E ) = 0, and ζ2(θ, E ) 
= 0 for the
zeroth, first, and second order in λ, respectively. Hence, the
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zeroth-order and the first-order terms vanish in the expansion
of ζ (λ), and therefore ζ (λ) ∼ λ2 as λ → 0.

The proof relies on the fact that θ ∈ (−π/2, π/2) is
bounded, which is true as long as h(λ, E ) is real or, equiva-
lently, |−E + 〈ε〉λ| < 2. Therefore, considering only λ > 0,
it also works for the cases where E = −2, 〈ε〉 < 0 and E = 2,
〈ε〉 > 0. However, when |E | = 2, the expansion for h(λ, E ) is
different, as it now has half-integer powers of λ also. This
makes the leading contribution to the Lyapunov exponent,
ζ (λ) ∼ λ, for the two cases.

For |−E + 〈ε〉λ| � 2, the above proof does not work. The
cases where this happens are |E | = 2 with 〈ε〉 = 0, E = 2
with 〈ε〉 < 0, and E = −2 with 〈ε〉 > 0. Let us first consider
the latter two cases. For these cases the Lyapunov exponent is
finite even if the disorder is replaced by its average, 〈ε〉. In that
case the solution for Eq. (6) is given by pL(λ) = sin[(L+1)h(λ)]

sin h(λ) .

Therefore, in the limit L → ∞, pL(λ) ∼ e
√〈ε〉λL, which gives

ζ (λ) ∼ λ1/2. The disorder only contributes at higher orders
in λ. The case where 〈ε〉 = 0 is very subtle and requires
an elaborate proof. We point the reader to Ref. [25], which
considers Eq. (6) for E = −2 in the context of harmonic wires
with disordered magnetic fields. In this work the Lyapunov
exponents are determined by mapping Eq. (6) for E = −2
to a harmonic oscillator with noisy frequency, which is well
studied in literature [34]. It is shown that ζ (λ) ∼ λ2/3 for
〈ε〉 = 0, and also ζ (λ) ∼ λ1/2 and ζ (λ) ∼ λ for 〈ε〉 > 0 and
〈ε〉 < 0, respectively.

IV. SCALING OF THE CONDUCTANCE

We now determine the scaling of the average behavior of
the conductance. Let us assume ζ (λk ) ∼ |λk|a, where a is
known from our previous results. Therefore, the |λk| values
for which |λk|aL < 1 contribute in the integral for the conduc-
tance in Eq. (5). Hence, in the limit L → ∞, we can cutoff the
integral over k as follows:

〈τ (E )〉 ≈ 4

π
lim

L→∞

∫ k∗+kc

k∗−kc

dk
〈|FL(λk )|2〉, (15)

where k∗ is the point such that λk∗ = 0, and kc > 0 is a small
deviation from k∗ such that |λk∗+kc |aL ∼ 1. Let the Taylor
expansion of λk around k = k∗ be λk∗+kc = λ0kb

c + O(kb+1
c ),

where we then have kc ∼ 1/L1/(ab).
Within the range of integration in Eq. (15), the disorder

is effectively absent so we make an assumption by replacing
〈|FL(λk )|2〉 by |F o

L (λk )|2, which is the same quantity com-
puted with the disorder replaced by its average at every x. With
some simple algebra we can show

F o
L (λk ) = γ sin qk

sin qk(L + 1) + 2iγ sin qkL − γ 2 sin qk(L − 1)
,

(16)
where qk = arccos[(−E + λk〈ε〉)/2]. Using this assumption,
Eq. (15) reduces to

〈τ (E )〉 ≈ 4

π
lim

L→∞

∫ k∗+kc

k∗−kc

dk
∣∣F o

L (λk )
∣∣2

. (17)

For |E | < 2, the integrand in Eq. (17) is finite at k = k∗ and is
highly oscillatory with L around k∗. However, as L → ∞, it
approximately averages out to F̄ o(qk ) ≈ γ

2(1+γ 2 ) sin qk, under

the integral sign (see Appendix D). Using F̄ o(qk ) in Eq. (17),
we get 〈τ (E )〉 ∼ 1/Lab. Now, a = 2 for all values of |μ| � 2,
but b = 1 for |μ| < 2 and b = 2 for |μ| = 2. Therefore, we
expect 1/L1/2 and 1/L1/4 for these two cases, respectively, and
the numerical results shown in panels A1 and A2 of Fig. 3
are in good agreement. For |E | > 2 or |μ| > 2 the integrand
decays exponentially, and so does the conductance.

For |E | = 2 the integrand requires a bit more attention
as qk∗ = 0, π , which means F o

L (λk∗ ) vanishes. Therefore, its
behavior around k∗ matters in the scaling of the conductance.
This behavior around k∗ is different for real and imaginary
qk. Let us first consider qk to be real. Then from Eq. (16),
F o

L (λk ) is highly oscillatory with L and once again averages
out to F̄ o(qk ) ∼ |k̄|b/2, k̄ = k − k∗. Using this in Eq. (17),

we have 〈τ (E )〉 ∼ ∫ L1/(ab)

0 dk̄ k̄b/2 = 1/L
b+2
2ab . This power law

is valid only if qk is real; equivalently, | − E + λ0〈ε〉k̄b| < 2,

within the range of the integration. Therefore, the sign of
the term λ0〈ε〉k̄b is important as |E | = 2. Depending on the
sign of 〈ε〉 and the corresponding values of b and a, we find
several different cases. These cases have E , μ values which
correspond to 1/L marked corners of the shaded square and
its horizontal edges in Fig. 1(a) for 〈ε〉 < 0 as well as in
Fig. 1(c) for 〈ε〉 > 0. At those corners b = 2, a = 1 giving
a diffusive scaling 〈τ (E )〉 ∼ 1/L, and at the horizontal edges
b = 1, a = 1 giving 〈τ (E )〉 ∼ 1/L3/2, respectively. We show
a comparison between numerical computations and the pre-
dicted power laws in panels A3, A4 of Fig. 3, and once again
we see a good agreement.

Let us now consider qk to be imaginary, which means
|−E + λ0〈ε〉k̄b| � 2. This happens for the cases which cor-
respond to the horizontal edges (B1) and the corners (B2)
of Fig. 1(b) for 〈ε〉 = 0 and to the 1/L3 marked corners
(B3) of Figs. 1(a) and 1(c). For B1 and B2 〈ε〉 = 0, which
means |E | = 2, it can be shown that F o

L (λk ) ∼ 1/L, see
Ref. [12]. A quick way to see this for E = −2 is to con-
sider the limit, limL→∞ limqk→0 F o

L (λk ), which gives 1/L.
For the case B3, 〈ε〉 
= 0 but kc ∼ 1

L as a = 1/2 and b = 2,
and for large L, F o

L (λk ) ∼ 1/L for k < kc, see Ref. [12].
Using this behavior of F o

L (λk ) and the corresponding values
of a and b, we get 1/L7/2, 1/L11/4, and 1/L3 for B1–B3,
respectively.

Panels B1–B3 in Fig. 3 show a comparison with the nu-
merically calculated conductance for these cases. We see
that the theoretical arguments underestimate the power law
approximately by a factor of L for B1 and B2. While the
theory predicts 1/L7/2 and 1/L11/4 for the two cases, nu-
merical data agrees with 1/L5/2 and 1/L7/4, respectively.
The reason being that the approximation that |F o

L (λk )|2 =
〈|FL(λk )|2〉 for λk → 0 fails, and in fact it underestimates
〈|FL(λk )|2〉. This can be seen in panel X of Fig. 3, where
we plot a comparison between |F o

L (λk )|2 and 〈|FL(λk )|2〉 for
the parameter values corresponding to the case B1. It is not
clear how to estimate 〈|FL(λk )|2〉 and predict the observed
power laws for these two cases, and therefore our work opens
up an interesting question for further studies. A similar is-
sue has also been pointed out for harmonic wires in the
presence of disordered magnetic fields [25]. For the case
B3, we see a perfect agreement between the theory and the
numerical computations.
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FIG. 3. Numerically observed power laws for different Fermi levels and the parameter μ. We see a good agreement with the predicted
values as the width of the wire is increased, except for the cases B1 and B2. For these two cases the theoretical arguments predict 1/L7/2 and
1/L11/4, respectively. The theoretical arguments predict slower transport as these arguments underestimate 〈|FL (λk )|2〉, as can be seen from
panel X. The data presented is averaged over 103 disorder realizations. Parameter values for X, W = 104, L = 103, E = 2, μ = 0, and 〈ε〉 = 0.

V. CONCLUSIONS

In conclusion, we looked at a model of a disordered
fermionic wire in two dimensions and studied the scaling
of conductance with the length of the wire along the di-
rection of transport. In particular, we find that despite the
presence of uncorrelated disorder along the direction of the
transport, the conductance shows a superdiffusive scaling.
This is attributed to the presence of eigenstates with di-
verging localization lengths at energies with absolute values
less than a cutoff Ec. Using heuristic arguments we deter-
mined the superdiffusive behavior to be 1/L1/2, which agrees
with the numerical computations. We also showed that at
|E | = Ec and at some special values of the parameters of
the wire, the conductance shows various subdiffusive scal-
ings and also diffusive scaling. The subdiffusive power laws
are sensitive to the sign of the expectation value of the dis-
order and are also different if the expectation value of the
disorder vanishes.

Our heuristic arguments predict the different power laws
at |E | = Ec, except when the disorder average vanishes. For
this case, the assumptions underlying the heuristic arguments
break down and underestimate the numerically observed
power law by a factor of L. This case therefore requires further
study in order to correctly predict the numerically observed
power laws.

Finally, we comment on the possibility of experimen-
tal systems where our model could be realized. It seems
difficult to find a material system with the hopping pa-
rameters of our model. However, with the developments in
synthesizing arbitrary lattice models using degenerate cavity
systems [35], it could be possible to realize our proposed
Hamiltonian and observe its rich transport behaviors. In
fact, such optical cavities have already been used to simu-
late 2D topological insulators and their edge-state transport
properties [36].
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APPENDIX A: THE RESERVOIR HAMILTONIANS

Let us label the annihilation and creation operators at a site
(x, y) as (ψ (x, y), ψ†(x, y)) and (φL/R(x, y), φ†

L/R(x, y)) on the
wire, the left lead and the right lead, respectively. These satisfy
the usual fermionic anticommutation relations. Free boundary
conditions are imposed at the horizontal edges of the reservoir
and the system at y = 1 and y = W , respectively. The contacts
between the wire and the reservoirs are themselves modeled
as tight-binding Hamiltonians, HW L and HW R. To write the
full Hamiltonian of the system, we define the column vectors
�(x) and �L/R(x) of W components, with the yth component
given by the operators ψ (x, y) and φL/R(x, y), respectively.
Therefore, we have the following for the full Hamiltonian of
the system,

H = HL + HLW + HW + HRW + HR, (A1)

where the individual Hamiltonians of the wire, the contacts,
and the reservoirs are given by

HW =
L∑

x=1

εx�
†(x)H0�(x) +

L−1∑
x=1

[�†(x)�(x + 1) + H.c.],

(A2)

HLW = ηc(�†(1)�L(0) + �
†
L(0)�(1)), (A3)

HRW = ηc(�†(L)�R(L + 1) + �
†
R(L + 1)�(L)), (A4)
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HL =
0∑

x=−∞
�

†
L(x)H ′

0�L(x) + ηbx

−1∑
x=−∞

�
†
L(x)�L(x + 1)

+ �
†
L(x + 1)�L(x), (A5)

HR =
∞∑

x=L+1

�
†
R(x)H ′

0�R(x) + ηbx

∞∑
x=L+1

�
†
R(x)�R(x + 1)

+ �
†
R(x + 1)�R(x). (A6)

Note that we have taken the reservoir Hamiltonians to be the
same, and the couplings at the contacts are assumed to be of
strength ηc.

APPENDIX B: SIMPLIFICATION
OF NEGF CONDUCTANCE

The NEGF formula for conductance for arbitrary lattice
models is given by

T (E ) = 4π2Tr[G+(E )�L(E )G−(E )�R(E )], (B1)

where G+(E ) = [E − HW − 
L(E ) − 
R(E )]−1 is the ef-
fective Green’s function of the wire and �L/R = (
†

L/R −

L/R)/(2π i). Since the contacts with the reservoirs are only
along the edges, i.e., at x = 1 and x = L, the trace in Eq. (B1)
can be computed as

T (E ) = 4π2Tr[G+
1L�G−

L1�], (B2)

where G+
1L is a W × W matrix with components given by

G+
1L[y, y′] = G+(E )[x = 1, y; x′ = L, y′] and G−

1L = [G+
1L]†. �

is the only nonzero block of �L/R given by �[y, y′] =
�R[L, y; L, y′] = �L[1, y; 1, y′].

Using the transfer matrix approach, it can be shown
that [12]

G̃+
1L = [PL + 
̃PL−1 + QL
̃ + 
̃QL−1
̃]−1. (B3)

The tilde over the Green function and self-energy matrices
denotes that these are written in the diagonal basis of H0, i.e.,
G̃+

1L[y, y′] = −UG+
1LU †. Similarly, 
̃[y, y′] = U
[y, y′]U † =

U
R[L, y; L, y′]U † = U
L[1, y; 1, y′]U † is the only nonzero
block of the matrices 
L and 
R. PL and QL are diag-
onal matrices with entries given by pL(λk ) and qL(λk ),
k = 1, 2, 3, . . . ,W , which are defined in the main text.

It can be shown that 
 = UL
DU †
L , where 
D is a diagonal

matrix with components given by [31]


D[k, k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η2
c

ηbx

[
zk + i

√
1 − z2

k

]
; |zk| < 1,

η2
c

ηbx

[
zk −

√
z2

k − 1
]
; zk > 1,

η2
c

ηbx

[
zk +

√
z2

k − 1
]
; zk < −1,

(B4)

where zk = E−λ′
k

2ηbx
. UL is the unitary transformation that diag-

onalizes the intrachain hopping matrix H ′
0 of the reservoirs

and its eigenvalues are given by λ′
k . We consider the limit

where |ηbx| � |E − λ̃k| for all k. Note that if H ′
0 is chosen to

correspond to a nearest-neighbor hopping model with hopping
ηby, then λ′

k = 2ηby cos[ kπ
W +1 ], and the limiting condition reads

|ηbx| � |E | + 2|ηby|. In this limit, 
̃ ≈ 
 ≈ 
D ≈ iγ I and

� ≈ γ

π
I , where γ = η2

c/ηbx. Thus, Eq. (B2) reduces to

T (E ) ≈

4
W∑

k=1

γ 2

|pL(λk ) + iγ [pL−1(λk ) + qL(λk )] − γ 2qL−1(λk )|2
(B5)

= 4
W∑

k=1

|FL(λk )|2. (B6)

The sum over k in Eq. (B6) sums over the eigenvalues of
H0, and in the limit W → ∞, this sum can be replaced by
an integral over the spectrum of H0 given by μ + 2 cos(k),
k ∈ (0, π ):

τ (E ) = T (E )

W
≈ 4

π

∫ π

0
dk|FL(λk )|2, (B7)

where τ (E ) is the conductance per unit width of the wire.

APPENDIX C: LYAPUNOV EXPONENT PROOF

We begin rewriting Eq. (11) as

ζ (λ) =
∫ π/2

−π/2
dθ P[θ, λ] log

∣∣∣∣cos (θ + h(λ, E ))
cos θ

∣∣∣∣ (C1)

=
∫ π/2

−π/2
dθ (P[θ − h(λ), λ] − P[θ, λ]) log | cos θ |.

(C2)

We have used the fact that P[θ, λ] is periodic, as the iteration
equation, Eq. (9), is itself periodic in the variable θ . We Tay-
lor expand Eq. (C2) around λ = 0 to obtain the coefficients
ζ0(θ, E ), ζ1(θ, E ), and ζ2(θ, E ) as

ζ0(θ, E ) = P0(θ − h0(E )) − P0(θ ) (C3)

ζ1(θ, E ) = − h1(E )∂θP0(θ − h0(E ))

+ P1(θ − h0(E )) − P1(θ ) (C4)

ζ2(θ, E ) = − h2(E )∂θP0(θ − h0(E ))

+ h1(E )2

2
∂2
θ P0(θ − h0(E )

− h1(E )∂θP1(θ − h0(E ))

+ P2(θ − h0(E )) − P2(θ ). (C5)

Let us now Taylor expand the self-consistency equation of
P[θ, λ], Eq. (13). For the zeroth, first, and second order, we
have

P0(θ ) − P0(θ − h0(E )) = 0, (C6)

P1(θ ) − [∂θP0(θ − h0(E ))〈�1〉 + P1(θ − h0(E ))

+ ∂θ 〈�1〉P0(θ − h0(E ))] = 0, (C7)

P2(θ ) − [
P2(θ − h0(E )) + ∂θP0(θ − h0(E ))〈�2〉

+ 1

2
∂2
θ P0(θ − h0(E ))

〈
�2

1

〉 + ∂θP1(θ − h0(E ))〈�1〉
+ P0(θ − h0(E ))∂θ 〈�2〉 + (∂θP0(θ − h0(E ))〈�1〉
+ P1)(∂θ 〈�1〉)

] = 0, (C8)
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where we assumed �[θ, λ] = θ − h0(E ) + ∑∞
i=1 �i(θ )λi.

Equation (C6) immediately gives ζ0(θ, E ) = 0. To show
that ζ1(θ, E ) = 0, we consider the expansion of functions
〈�[θ, λ]〉 and h(λ, E ) around λ = 0,

h(λ) = h0(E ) − 〈ε〉λ
(4 − E2)1/2

+ E〈ε〉2λ2

2(4 − E2)3/2
+ O

(
λ3

)
,

(C9)

〈�[θ, λ]〉 = θ − h0(E ) + 〈ε〉λ
(4 − E2)1/2

−
[

E〈ε〉2 + 8
√

4 − E2σ 2 cos3 θ sin θ

2(4 − E2)3/2

]
λ2

+ O
(
λ3

)
, (C10)

where σ 2 = 〈(εx − 〈ε〉)2〉 and h0(E ) = arccos[−E/2]. Note
that 〈�1〉 = −h1(E ) and ∂θ 〈�1〉 = 0. Using these two in
Eq. (C7) we get

P1(θ ) + h1(E )∂θP0(θ − h0(E )) − P1(θ − h0(E )) = 0,

(C11)

and therefore ζ1(θ, E ) = 0. Let us now compute ζ2. For this
note that Eq. (C6) implies that P0(θ ) is a constant, as the
equation holds for arbitrary |E | < 2. Fixing P0(θ ) using nor-
malization to 1

π
, and substituting in Eq. (C5) and Eq. (C8),

we get

ζ2(θ, E ) = −h1(E )∂θP1(θ − h0(E ))

+ P2(θ − h0(E )) − P2(θ ), (C12)

− P2(θ ) + P2(θ − h0(E ))

− h1(E )∂θP1(θ − h0(E )) + 1

π
∂θ 〈�2〉 = 0. (C13)

Comparing these two equations, we get ζ2(θ, E ) =
− 1

π
∂θ 〈�2〉, where �2 is given by Eq. (C10). Therefore,

the Lyapunov exponent is given by

ζ (λ) = −λ2

π

∫ π/2

−π/2
dθ log | cos θ |∂θ 〈�2〉 + O(λ3)(C14)

= σ 2

2(4 − E2)
λ2 + O(λ3). (C15)

Note that the prefactor of λ2 is positive only in the domain
of the applicability of the solution, |E | < 2. At |E | = 2 it
diverges, reminiscent of the fact that at this point the behavior
is different.

APPENDIX D: DERIVATION OF F̄o(qk )

If εx = 〈ε〉 for all x, then it is straightforward to see that
pL(λk ) = sin[qk(L + 1)]/ sin[qk], which gives

F o
L (λk ) = γ sin qk

sin qk(L + 1) + 2iγ sin qkL − γ 2 sin qk(L − 1)
.

(D1)
We rewrite this expression for F o

L (λk ) as follows:

F o
L (λk ) = γ sin qk

A(qk ) sin Lqk + B(qk ) sin qk cos Lqk
, (D2)

FIG. 4. Convergence of τ0(E ) to τ̄0(E ). Parameter values: W =
104, 〈ε〉 = 1, and γ = 0.25.

where A(qk ) = (1 − γ 2) cos qk + 2iγ and B(qk ) = (1 + γ 2).
Therefore, for a disorder-free chain we have

τ0(E ) = 4γ 2

π

∫ π

0
dk

sin2 qk

|A(qk ) sin Lqk + B(qk ) sin qk cos Lqk|2
(D3)

= 8γ 2

π

∫ π

0
dk sin2 qk

[|A(qk )|2 + |B(qk )|2 sin2 qk]−1

1 + R(qk ) sin[2Lqk + θ (qk )]

(D4)

≈ 8γ 2

π

∫ π

0
dq

∣∣∣∣dk
dq

∣∣∣∣ sin2 q
[|A(q)|2 + |B(q)|2 sin2 q]−1

1 + R(q) sin[2Lq + θ (q)]
,

(D5)

where R(qk ) and θ (qk ) are defined via the relations

R(qk ) cos[θ (qk )] = 2�[A(qk )B∗(qk )] sin qk

|A(qk )|2 + |B(qk ) sin qk|2 , (D6)

R(qk ) sin[θ (qk )] = |A(qk )|2 − |B(qk ) sin qk|2
|A(qk )|2 + |B(qk ) sin qk|2 . (D7)

Note that while changing the integration variable from k to qk,
we kept the limits of the integration the same. This approxi-
mation loses some irrelevant details of τ0(E ) but helps to take
the limit L → ∞. We will discuss what details are lost when
we present some numerical results by the end of this section.
In the limit L → ∞, we have

τ̄0(E )

= 8γ 2

π
lim

L→∞

∫ π

0
dq

∣∣∣∣dk
dq

∣∣∣∣ [|A(q)|2 + |B(q)|2 sin2 q]−1 sin2 q

1 + R(q) sin[2Lq + θ (q)]
(D8)

= 8γ 2

π

∫ π

0
dq

∣∣∣∣dk
dq

∣∣∣∣ [|A(q)|2 + |B(q)|2 sin2 q]−1 sin2 q√
1 − R2(q)

,(D9)

where the last step follows from the identity [37],

lim
N→∞

∫ π

0
du

g(u)

1 + h(u) sin[2uN + r(u)]
=

∫ π

0
du

g(u)√
1 − h2(u)

.

(D10)

Converting the integral in Eq. (D9) back from q to k
and then substituting 1√

1−R2(qk )
= |A(qk )|2+|B(qk ) sin qk|2

2�[A(qk )B∗(qk )] sin qk
, we
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have

τ̄0(E ) = 8γ 2

π

∫ π

0
dk

sin qk

2�[A(qk )B∗(qk )]
(D11)

= 4

π

∫ π

0
dkF̄ o(qk ). (D12)

We show in Fig. 4 the convergence of τ0(E ) to τ̄0(E ) as L is
increased. Note that in Fig. 4(a), the parameters are such that

qk = k, so the change of limits from Eq. (D4) to Eq. (D5) is
exact, and we see a smooth convergence to the expected value
from the theory. When the parameter values are such that the
change of limits is not exact, Fig. 4(b), we see highly oscillat-
ing behavior around the theoretically expected value in the nu-
merical calculation. Though the oscillations are not captured
by the approximation, they are irrelevant for the scaling of the
conductance.
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