
PHYSICAL REVIEW B 110, 115403 (2024)

Corner modes in non-Hermitian next-nearest-neighbor hopping model

Arnob Kumar Ghosh ,1,2,3 Arijit Saha ,1,2,* and Tanay Nag 4,†

1Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

3Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
4Department of Physics, BITS Pilani-Hyderabad Campus, Telangana 500078, India

(Received 8 March 2024; revised 20 July 2024; accepted 20 August 2024; published 3 September 2024)

We consider a non-Hermitian (NH) analog of a second-order topological insulator, protected by chiral
symmetry, in the presence of next-nearest-neighbor hopping elements to theoretically investigate the interplay
beyond the first-nearest-neighbor hopping amplitudes and topological order away from Hermiticity. In addition
to the four zero-energy corner modes present in the first-nearest-neighbor hopping model, we uncover that the
second-nearest-neighbor hopping introduces another topological phase with 16 zero-energy corner modes. Im-
portantly, the NH effects are manifested in altering the Hermitian phase boundaries for both of the models. While
comparing the complex energy spectrum under open boundary conditions, and bi-orthogonalized quadrupolar
winding number in real space, we resolve the apparent anomaly in the bulk boundary correspondence of the
NH system as compared to the Hermitian counterpart by incorporating the effect of the non-Bloch form of
momentum into the mass term. The above invariant is also capable of capturing the phase boundaries between
the two different topological phases where the degeneracy of the corner modes is evident, as exclusively observed
for the second-nearest-neighbor model.

DOI: 10.1103/PhysRevB.110.115403

I. INTRODUCTION

The systems with topological band properties are iden-
tified with gapless boundary modes that are characterized
by symmetry-protected topological invariants. This is known
as bulk boundary correspondence (BBC) [1,2]. The conven-
tional BBC, being an integral part of the first-order (n =
1) topological phase [1,3–5], is generalized for higher-order
(n > 1) topological phases in d � 2 dimensions, where there
exist nc = (d − n)-dimensional boundary modes [6–40]. For
example, the second-order topological insulator (SOTI) in
two dimensions hosts zero-dimensional (0D) localized corner
modes at zero energy, while this bulk phase is characterized
by nested polarization or quadrupolar moment. Very recently,
it has been reported that the number of boundary modes in a
topological phase can be tuned by considering next-nearest-
neighbor hopping terms [41–45], as well as by implementing
periodic Floquet drive [39,46]. Once the extended model
continues to preserve the chiral symmetry (CS), one can char-
acterize the new topological phase by winding numbers in
odd spatial dimension [47–49]. The number of degenerate
zero-energy states at each boundary increases according to
the enhancement of the range of the hopping amplitudes, as
indicated by the winding number ensuring the BBC [50,51].
It is noteworthy that the one-dimensional winding number
for the first-order topological systems becomes passive in the
case of even-dimensional generalizations [52]. In contrast, the
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higher-order topological (HOT) phase in even spatial dimen-
sion can be characterized by an appropriately defined winding
number, preserving CS as a constraint [53].

In recent years, thanks to the practical realization of
higher-order topological phases in metamaterials [54–57]
where energy conservation no longer holds [58,59], the do-
main of topological quantum matter can be extended to
the non-Hermitian (NH) systems. With the coupling to the
environment [60–62], disorder/interaction-mediated quasi-
particles with finite lifetime [63–65] can effectively induce
complex self-energy that is modeled by an NH effective
Hamiltonian [59,66–72]. Interestingly, the non-Bloch nature
of the wave function for the NH systems renormalizes the
topological mass term, thus enriching the BBC such that
topological phase transitions perceived with open-boundary
conditions can be explained by an appropriate bulk invari-
ant [73–80]. The NH topological systems showcase various
intriguing features such as the skin effect where the bulk states
accumulate at the boundary [73,74,76,81], and exceptional
points where eigenstates, corresponding to the degenerate
bands, coalesce [82,83].

Going beyond the scope of the first-nearest-neighbor (NN)
hopping, the second-NN or the next-nearest-neighbor hopping
elements in Hermitian systems are found to mediate versatile
topological phases where the number of zero-energy modes
increases [44,84–86]. In this context, the interplay between
the next-NN hopping elements and non-Hermiticity is still
in its infancy as far as HOT systems are concerned [75,87–
91]. Therefore, considering a two-dimensional (2D) NH SOTI
with next-NN hopping, we examine whether non-Hermiticity
induces exceptional SOTI phases, otherwise absent in the
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Hermitian case, and address the following interesting ques-
tions: How does the BBC change in the above NH phases?
Can we characterize these emerging exceptional topological
phases by bi-orthogonalized non-Bloch winding number?

We consider a CS-preserved generic model, hosting SOTI
phases in the presence of non-Hermiticity and next-NN
hopping terms. The first- (second-) NN Hermitian model
Hamiltonian can host four (four and 16) zero-energy corner
modes, while exceptional points, caused by the NH effects,
reshape topological phase boundaries as compared to the Her-
mitian case. As a result, we find that BBC is not only different
from its Hermitian counterparts, but is also nontrivially mod-
ified once second-NN hopping terms are included. The phase
boundaries between four (one) and one (zero) zero-energy
modes per corner in the second- (first-) NN model are revised
following the dressed mass term due to the non-Bloch nature
of the wave function for the NH Hamiltonian. We compute
the quadrupolar winding number (QWN) appropriately in
real space by exploiting the CS as well as implementing the

bi-orthogonalization and non-Bloch nature to lay out the
phase diagram, which is in accordance with the complex spec-
trum under open-boundary conditions (OBCs).

The remainder of the article is organized in the following
way. We discuss the details of the tight-binding Hamiltonian
in Sec. II, where both the NH first and second hopping models
are demonstrated. Section III is devoted to the main results
of this article. In particular, we discuss the result associated
with the first- and second-NN hopping models in Secs. III A
and III B, respectively. Next, we illustrate the exceptional
phase diagram in Sec. III C by examining the QWN. We
finally summarize and conclude in Sec. IV. In Appendices A
and B, we discuss the spatial symmetries of our model, the
effect of asymmetric hoppings, and the finite-size effect with
the NH second-NN hopping model.

II. MODEL HAMILTONIAN

We consider the SOTI model in the presence of the second-
NN hopping as follows [87]:

H0(k) = (
λs

1 sin kx + λs
2 sin 2kx

)
�1 + (

λs
1 sin ky + λs

2 sin 2ky
)
�2 + [

m0 − λh
1(cos kx + cos ky) − λh

2(cos 2kx + cos 2ky)
]
�3

+ [
λ

f
1 (cos kx − cos ky) + λ

f
2 (cos 2kx − cos 2ky)

]
�4, (1)

where �1 = σxsz, �2 = σys0, �3 = σzs0, and �4 = σxsx. We
consider the strengths of first- (second-) NN hopping, spin-
orbit coupling, and C4 symmetry-breaking mass terms as λh

1,
λs

1, and λ
f
1 , (λh

2, λs
2, and λ

f
2 ), respectively. Here, m0 is the stag-

gered mass term. In what follows, we refer to the case of λ1 �=
0 and λ2 = 0 (λ1,2 �= 0) as the first- (second-) NN model. In
the absence of the second-NN terms, i.e., λh

2, λ
s
2, λ

f
2 = 0 and

λh
1, λ

s
1, λ

f
1 �= 0, the Hamiltonian H0(k) exhibits bulk gap clos-

ing at m0 = ±2λh
1. One can show that the Hamiltonian H0(k)

exhibits four zero-energy corner modes arising within the
regime −2λh

1 < m0 < 2λh
1, manifesting a SOTI. Note that in

the absence of Wilson-Dirac mass terms λ
f
1,2 = 0, one obtains

gapless edge modes for −2λh
1 < m0 < 2λh

1 except for m0 = 0.
This indicates the fact that the first-order topological insulator
phase completely transforms into the second-order topologi-
cal insulator phase. Furthermore, the presence of second-NN
terms, i.e., λh

2, λ
s
2, λ

f
2 �= 0 and λh

1, λ
s
1, λ

f
1 �= 0, substantially

modifies the phase boundaries. To be specific, the bulk gap
closes at m0 = −2λh

2, 0, 2λh
1 + 2λh

2. In this case, the system
harbors four zero-energy corner modes for −2λh

2 < m0 <

0, while 16 zero-energy corner modes for 0 < m0 < 2λh
1 +

2λh
2. Similar to the earlier case, in the absence of Wilson-

Dirac mass terms λ
f
1,2 = 0, one obtains the gapless edge

modes for −2λh
2 < m0 < 2λh

1 + 2λh
2 except for m0 = 0. Note

that this model also hosts a first-order topological insulator
phase for −2λh

1 < m0 < 2λh
1 and −2λh

2 < m0 < 2λh
1 + 2λh

2,
respectively, when (λ f

1 , λ
f
2 ) = ( �= 0, 0) and ( �= 0, �= 0). The

above model preserves CS C = σxsy such that CH0(k)C−1 =
−H0(k). Importantly, the time-reversal symmetry T = iσ0syK
is broken when λ

f
1,2 �= 0 such that T H0(k)T −1 �= H0(−k),

with K being the complex conjugation. Note that T 2 = −1

leads to the AII class with a Z2 classification of the first-order
topological phase.

Having demonstrated the physics of the Hermitian SOTI
model, we now focus on the NH version of the above.
We associate the NH effect to the spin-orbit-coupling part
of the above Hamiltonian: Hγ (k) = H0(k) + i(γx�1 + γy�2),
resulting in H†

γ (k) �= Hγ (k). We consider γx = γy = γ , un-
less mentioned otherwise. The non-Hermiticity considered
here can be thought of as an imaginary fictitious Zee-
man field [68,87]. The CS continues to be preserved as
CHγ (k)C−1 = −Hγ (k). We exploit the CS to define the NH
analog of the quadrupole moment in real space (see later text
for discussion). Note that for a NH Hamiltonian, the CS is
often also referred to as a sublattice symmetry [69]. In the rest
of the paper, we consider λh

1,2 = 1 for the sake of simplicity.

III. RESULTS

In this section, we discuss the main results of this
manuscript. We analyze the eigenvalue spectra and local
density of states (LDOS) corresponding to our NH model
with first- and second-NN hopping. Afterward, we define the
quadrupolar winding number for our system and demonstrate
the phase diagram.

A. NH model with first-NN hopping

We begin with the energy dispersion of the NH SOTI
model in the presence of the first NN, as shown in Figs.
1(a)–1(c) [Figs. 1(d)–1(f)], under the periodic boundary
condition (PBC) [(OBC)]. While employing PBC, we find
Re[E ] = 0 for 2 − γ̃ < m0 < 2 + γ̃ and −2 − γ̃ < m0 <

−2 + γ̃ , with γ̃ =
√

2γ 2 around m0 = ∓2, as depicted by the
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FIG. 1. The energy spectra under PBC and OBC are illustrated
as a function of the staggered mass term m0 in the upper and lower
panels, respectively, for first-NN hopping. The above panels corre-
spond to (a),(d) Re[E ], (b),(e) Im[E ], and (c),(f) |E |. The model
parameters are chosen as λs

1 = λh
1 = λ

f
1 = 1.0, and γ = 0.2. Here,

green lines correspond to the exceptional points obtained from the
PBC case m0 = ±2 ± γ̃ . The red lines, representing the exceptional
phase boundary under OBC, are given by m0 = ±(2 + γ 2

1 ).

gapless regions in Fig. 1(a), bounded by the green lines. These
exceptional boundaries around m0 = 2, −2, respectively, can
be understood from the twofold degeneracies of energy bands
at k = (0, 0) and (π, π ) such that |E (kEP)| = 0. Interestingly,
these bulk gapless exceptional points m0 = ±2 ± γ̃ are ex-
clusively noticed in |E | under the PBC case, as depicted in
Fig. 1(c) by the green lines.

We find that the complex energy spectra obtained under
OBC and depicted in Figs. 1(d)–1(f) do not mimic the under-
lying PBC nature. One can observe SOTI modes for which
the real part of the energy vanishes according to −2 − γ 2

1 <

m0 < 2 + γ 2
1 , with γ1 = γ /λs

1, as depicted by the red lines
in Fig. 1(d). These boundaries can be anticipated by the
non-Bloch form of momentum ki → k′

i − iγ /λs
1, with i =

x, y, where the renormalized mass term m′
0 = m0 − 2 − γ 2

1 <

0 (> 0) determines the topological (trivial) phase of the NH
model [68,87]. Note that for Bloch momentum k = (0, 0)
[k = (π, π )], the exceptional phase boundaries extend until
m0 = ±(2 + γ 2

1 ), leading to the emergence of exceptional
SOTI phases beyond the Hermitian gapless phase boundaries
m0 = ±2. All the single-particle energy states under OBC
except the corner modes exhibit an imaginary component of
energy for |m0| < 2, as shown in Fig. 1(e). This is markedly
different from the PBC case, depicted in Fig. 1(b), where
single-particle states have a finite amount of imaginary energy
for |m0| > 2. This refers to a macroscopic degeneracy within
a certain range of m0 as far as the Im[E ] is considered. Since
such macroscopic degeneracy does not exist for Re[E ], the
|E | demonstrates the NH corner modes for |m0| < |2 + γ 2

1 |
under OBC [see red lines in Fig. 1(f)], while non-Hermiticity
mediated bulk gapless points are noticed for the PBC case [see
Fig. 1(c)].

Having understood the generation of the NH SOTI phase as
a function of the topological mass m0, we consider a slice with
m0 = 1 from Fig. 1 and analyze the results presented in Fig. 2.

FIG. 2. (a) The real part of the energy eigenvalue spectrum,
Re[Em], obtained under OBC is shown as a function of the state
index m. (b) The eigenvalue spectrum in the Re[E ]-Im[E ] plane
is illustrated. The eigenvalues corresponding to the corner state are
marked by the red dots. (c) The LDOS spectrum associated with the
Re[E ] = 0 is depicted in the 2D domain. Inset: The LDOS associated
with a bulk state with E = −2.052 543. We choose m0 = 1.0, while
the other model parameters remain the same as mentioned in Fig. 1.

In particular, employing OBC, we depict the real part of the
eigenvalue spectrum Re[Em] close to Re[E ] = 0 as a function
of the state index m in Fig. 2(a). We observe the appearance of
four states at Re[E ] = 0, which corresponds to localized cor-
ner states. In Fig. 2(b), we illustrate the eigenvalue spectrum in
the Re[E ]-Im[E ] plane. The corner modes are marked by the
red dot, which indicates that the corner modes have both real
and imaginary parts of the eigenvalue equal to zero. The CS of
the model is reflected in the symmetric profile of energy on the
positive and negative sides of the real energy. The corner states
(red) are clearly separated from the other states (blue) by a
line gap at Re[E ] = 0. Moreover, we show the site-resolved
LDOS distribution in Fig. 2(c). We find that the corner modes
are mostly localized at only one corner of the 2D domain. This
phenomenon of the localization of the corner modes limited to
only one corner of the system has been previously investigated
in NH higher-order systems where mirror symmetries play a
crucial role [75,87]. In particular, the localization of the states
at a single corner of the 2D domain can be attributed to the
mirror rotation symmetry Mxy. By changing the signs of the
NH terms γx and γy, we can change the location of the corner
states. By breaking the mirror rotation symmetry for γx �= γy,
we can localize the corner states at more than one corner. We
discuss different spatial symmetries of the system and shifting
of the corner modes in Appendix A. In the inset of Fig. 2(c),
we also show the LDOS distribution associated with a bulk
state. We observe that the bulk state is also localized at the
corner of the system, indicating the existence of a higher-order
skin effect [81].

B. NH model with second-NN hopping

To start with, we depict the energy dispersion of the NH
SOTI model in the presence of the second NN in Figs.
3(a)–3(c) [Figs. 3(d)–3(f)] under PBC [OBC]. We find a de-
generate eigenstate with Re[E ] = 0 under PBC for −2 − γ̃ <

m0 < −2 + γ̃ , −γ̃ < m0 < γ̃ , and 4 − γ̃ < m0 < 4 + γ̃ , as
depicted by the green lines in Fig. 3(a). These exceptional
boundaries around m0 = −2, 0, and 4, respectively, can be
understood from the twofold degeneracies of energy bands at
k = (±2π/3,±2π/3), (π, π ), and (0,0) such that |E (kEP)| =
0. Similar to the earlier first-NN model, these bulk gapless ex-
ceptional points m0 = −2 ± γ̃ , ±γ̃ , and 4 ± γ̃ are exclusively
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FIG. 3. The energy spectra under PBC and OBC are illustrated
in the upper and lower panels, respectively, as a function of m0,
for second-NN hopping. The panels correspond to (a),(d) Re[E ],
(b),(e) Im[E ], and (c),(f) |E |. We choose the model parameters as
λs

1 = λh
1 = λ

f
1 = 1.0, λs

2 = λh
2 = λ

f
2 = 1.0, and γ = 0.2. The green

lines correspond to the exceptional points m0 = 4 ± γ̃ , ±γ̃ , and
−2 ± γ̃ under PBC. The red lines, representing the exceptional
phase boundary under OBC, are given by m0 = 4 + 5γ 2

2 , 3γ 2
2 , and

−2 − γ 2
2 .

observed in |E | for the PBC case, as depicted in Fig. 3(c) by
green lines.

We now examine the energy spectrum for the second-
NN model in Figs. 3(d)–3(f) employing OBC. Similar to
the first-NN case, the momentum takes the following non-
Bloch form: ki → k′

i − iγ2 with γ2 = γ /(λs
1 + 2λs

2), and i =
x, y. This leads to the renormalized mass term m′

0 = m0 −
4 − 5γ 2

2 < 0 (> 0) for the topological (trivial) phase with
zero-energy (finite-energy bulk) modes considering the Bloch
momentum k = (0, 0). On the other hand, another topolog-
ical (trivial) phase with zero-energy (finite-energy) modes
appears for −m′

0 = m0 + 2 + γ 2
2 > 0 (< 0) while exploiting

energy around the Bloch momentum k = (±2π/3,±2π/3).
Our analysis indicates the existence of four (16) corner modes
for 3γ 2

2 < m0 < 4 + 5γ 2
2 (−2 − γ 2

2 < m0 < 3γ 2
2 ), yielding

Re[E ] = 0 under OBC. However, the numerical findings
shown in Fig. 3(d) and the topological regime highlighted
by the red lines do not fully match with the exceptional
boundaries predicted analytically. This can be attributed to
the finite-size effect in the second-NN case, which is substan-
tially small for the first-NN case. In particular, the rightmost
boundary in Fig. 3(d) is more affected due to the finite-size
scaling as there exists a significant mismatch between the an-
alytical prediction m0 = 4 + 5γ 2

2 and real zero-energy modes
obtained under OBC. To this end, we discuss the finite-size
scaling around the phase transition point at the rightmost part
of Fig. 3(d) in Appendix B. Note that the finite-size effect
is expected to become more substantial in the case of OBC,
rather than for PBC. For this reason, we choose the phase
boundary at m0 = 4 + 5γ 2

2 for the finite-size analysis. We
find macroscopic degeneracies at Re[E ] = 0 around m0 =
0, unlike the previous case. The complex energy spectrum
Im[E ] does not manifest any noteworthy features, as shown
in Figs. 3(b) and 3(e), irrespective of the PBC and OBC

FIG. 4. (a) The real part of the energy spectrum, Re[Em], ob-
tained under OBC is shown as a function of the state index m. (b) The
eigenvalue spectrum in the Re[E ]-Im[E ] plane is demonstrated. The
corner state eigenvalues are indicated by the red dot. (c) The LDOS
associated with the Re[E ] = 0 is depicted in the 2D lattice. Inset: The
LDOS associated with a bulk state with E = −3.291 226. We choose
m0 = −1.0, while the other model parameters remain the same as
mentioned in Fig. 3.

cases. The absolute value of energy is expected to vanish,
i.e., |E | = 0 under OBC for −2 − γ 2

2 < m0 < 4 + 5γ 2
2 . How-

ever, numerical results suffer from finite-size effects as far as
the exceptional boundaries are concerned [see the red lines in
Fig. 3(f)]. The finite value of γ (NH effect) thus extends the
Hermitian topological phase beyond its boundaries, leading to
exceptional topological phases.

Moreover, we also analyze the eigenvalue spectrum, choos-
ing a fixed value of m0. As discussed before, we obtain four
corner states when 3γ 2

2 < m0 < 4 + 5γ 2
2 . The corresponding

eigenvalue spectrum and LDOS, when the system exhibits
four corner states, remain qualitatively the same, as depicted
in Fig. 2 for the first-NN case. Thus, we do not repeat that
analysis here. Rather, we choose the value of m0 in such a way
that we obtain 16 corner states. For this case, we show the real
part of the eigenvalue spectrum, Re[Em], close to Re[E ] = 0
as a function of the state index m in Fig. 4(a), for a system
obeying OBC. One can note the existence of 16 states at
Re[E ] = 0, which corresponds to localized corner modes. The
finite separation from the exact Re[E ] = 0 can be attributed to
the finite-size effect. Nevertheless, in Fig. 4(b), we illustrate
the eigenvalue spectrum in the Re[E ]-Im[E ] plane where the
CS manifests itself in the symmetric profile of real energy.
The corner modes are marked by the red dot. The line gap
feature behaves in a similar way to the previous case. The
corner modes have both real and imaginary parts of the eigen-
value equal to zero. We also illustrate the site-resolved LDOS
distribution in Fig. 4(c). We find that the corner modes are
mostly localized at only one corner of the 2D system, similar
to the first-NN hopping case. Furthermore, we also observe
the signature of the higher-order skin effect of the bulk states.
To highlight this, we depict the LDOS associated with a bulk
state in the inset of Fig. 4(c). It is evident that the bulk state is
localized at the corners of the system.

C. Quadrupole winding number

We now investigate the topological invariant, namely,
quadrupole winding number (QWN), by exploiting the CS.
In the following discussion, we first illustrate the Hermi-
tian version of QWN. Given the fact that CS constraints
CH0(k)C−1 = −H0(k), we can antidiagonalize the Hamil-
tonian in the basis of the CS operator spanned by UC as
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follows [49,92]:

H̃0 = U †
C H0UC =

(
0 h
h̃ 0

)
. (2)

Here, h̃ = h† if H̃0 is Hermitian. We find UCCU †
C = ±1,

suggesting that CS can be classified into two kinds of sub-
lattices, namely, A and B for + and − expectation values,
respectively. This further entails that UC = U A

C − U B
C , where

U A
C = ∑

α∈A |α〉〈α| and U B
C = ∑

β∈B |β〉〈β|.
Employing singular-value decomposition of h, we obtain

h = UA	U †
B , where UA,B are unitary matrices and 	 denotes

a diagonal matrix. Note that the diagonal elements of 	 are
referred to as singular values. One can compute the flattened
Hamiltonian Q, having eigenvalue ±1, as follows [53]:

Q =
(

0 q
q† 0

)
, (3)

with q = UAU †
B being a unitary matrix. It has been shown that

the winding number, derived using q and q†, is related to the
relative polarization of the A and B sublattices. In a similar
spirit, the winding number in the real space is given by [93]

ν = 1

2π i
Tr[ln(XAX †

B )], (4)

where Xσ = U †
σ U σ

C XU σ
C Uσ (σ = A, B) are unitary matrices.

The operator Xσ denotes the sublattice dipole operator, which
is the projection of the position operator onto the σ sector
of the chiral basis. The position operator, i.e., the dipole
operator X = exp(2iπx/L), is defined on a periodic array of
one-dimensional length L.

Now we turn to the two-dimensional system where the
dipole operator X can be replaced by the quadrupole op-
erator Q = exp(2iπxy/LxLy). This results in the sublattice
quadrupole operator Qσ = U †

σ U σ
C QU σ

C Uσ . Therefore, the
QWN can be defined as [53]

Nxy = 1

2π i
Tr[ln(QAQ†

B)]. (5)

This invariant is quantized to an integer number and predicts
the number of topologically protected corner states at each
corner of the 2D lattice.

We now examine the present situation with γ �= 0, where
the NH analog of QWN is discussed. Importantly, CS is also
preserved for the NH Hamiltonian CHγ (k)C−1 = −Hγ (k)
allowing for the antidiagonal form of H̃γ . At the same time,
the definition of U A,B

C remains unaltered for the NH case. We
adopt the bi-orthogonalized definitions of UA and U †

B , obtained
from the singular-value decomposition of h, to define U †

A
and UB, respectively. One has to ensure

∑
n |U R

σ,n〉〈U L
σ,n| = 1

and 〈U L
σ,n|U R

σ,m〉 = δmn, where σ = A, B and L(R) denotes the
left (right) singular vectors. This results in left (right) singu-
lar vectors corresponding to right singular vectors (U †

B )† ≡
U R

B (left singular vectors U †
A ≡ U L

A ) as U †
B ≡ U L

B (UA ≡ U R
A ).

Therefore, sublattice quadrupole operator Qσ takes the form
Qσ = U L

σ U σ
C QU σ

C U R
σ . In addition, the non-Bloch form of mo-

mentum has to be incorporated while computing Qσ .
To be precise, the complex momentum ki → k′

i − iγ2, with
i = x, y, leads to the exponentially enhanced and suppressed
hopping elements by the multiplicative factors exp(γ1) and

FIG. 5. The phase diagram in the m0-γ plane for NH (a) first-
NN and (b) second-NN hopping models. The color bar represents
QWN Nxy. The phase boundary m0 = 2 + γ 2

1 (m0 = 2 ± γ̃ ), ob-
tained from OBC (PBC), between exceptional topological and trivial
phases in (a) is identified by the yellow solid (dashed) line. The
phase boundaries, associated with OBC (PBC), between topological
phases hosting 16 and four corner modes and trivial phase, are given
by m0 = 4 + 5γ 2

2 (m0 = 4 ± γ̃ ), m0 = 3γ 2
2 (m0 = ±γ̃ ), and m0 =

−2 − γ 2
2 (m0 = −2 ± γ̃ ), respectively, represented by the yellow

solid (dashed) lines in (b).

exp(−γ1) [exp(γ2) and exp(−γ2)] for first- [second-] NN
models. We use the real-space form of the tight-binding
model with the renormalized hopping amplitudes as follows:
λ

s,h, f
1,2 → λ

s,h, f
1,2 exp(γ1,2) and λ

s,h, f
1,2 → λ

s,h, f
1,2 exp(−γ1,2), for

forward and backward hopping amplitudes, respectively.
We consider the real-space version of NH Hamiltonian Hγ

with the above-mentioned renormalized hoppings in order
to compute QWN. Altogether, this enables us to define
the NH analog of QWN Nxy with dressed hopping and
bi-orthogonalized definition. Note that the real part of Nxy

exhibits a quantized value for the present case with γ �= 0,
as demonstrated below.

We now discuss the phase diagram of the first- and second-
NN NH model in the γ -m0 plane in Figs. 5(a) and 5(b),
respectively. Note that there exists four corner modes with
Re[E ] = 0 for m0 < 2 + γ 2

1 , yielding Nxy = 1. This refers
to the fact that there exists only one topological zero mode
per corner [see Fig. 5(a)]. On the other hand, when m0 >

2 + γ 2
1 , the NH model does not host any topological phase

and hence Nxy = 0. Hence, the topological phase boundary
is m0 = 2 + γ 2

1 , which is indicated by the yellow solid line.
This is also predicted from the complex energy spectrum
with OBC. The yellow dashed lines in Fig. 5(a) represent
m0 = 2 ± γ̃ lines, as predicted from the complex energy un-
der PBC. Interestingly, the real-space invariant QWN fails to
identify these phase boundaries. Unlike the Hermitian sys-
tem, the phase boundaries between topological and trivial
phases cannot be captured by the energy spectrum under OBC
and PBC in the present NH case. This clearly suggests that
the topological phase, predicted from the complex energy
spectrum in OBC, is apprehended by the non-Bloch and bi-
orthogonalized version of QWN. We note that the analytically
derived phase boundaries are valid for γ1,2 
 1. Interestingly,
the non-Hermiticity induces additional regions −2 − γ 2

1 <

m0 < −2 and 2 < m0 < 2 + γ 2
1 around m0 = ±2 beyond the

Hermitian phase boundaries. In Fig. 5(a), we only illustrate
the positive m0 window, where the NH SOTI phase is present
for m0 < 2 + γ 2

1 .
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We find qualitatively similar results in the case of the
second-NN model, as shown in Fig. 5(b). In addition to the
Nxy = 1 phase, we obtain the Nxy = 4 phase, where four zero-
energy modes with Re[E ] = 0 are present at each corner.
While investigating the phase boundaries, it is expected to
find Nxy = 1 (4) for 3γ 2

2 < m0 < 4 + 5γ 2
2 (−2 − γ 2

2 < m0 <

3γ 2
2 ). For smaller strength of non-Hermiticity, i.e., γ → 0,

we find quantitative agreement between the analytical and nu-
merical findings. The phase boundaries m0 = 4 + 5γ 2

2 , 3γ 2
2 ,

and −2 − γ 2
2 , designated by the yellow solid line, do not fully

comply with the Nxy profile for γ > 0.1. This can be due to
more intricacies than just the finite-size effect. Interestingly,
the following tendency is noticed: for γ̃ < m0 < 4 + 5γ 2

2 , one
obtains Nxy = 1, while within the regime −2 − γ̃ < m0 <

−γ̃ , Nxy acquires the value 4. Therefore, the non-Bloch and
bi-orthogonalized version of QWN can quantitatively and
qualitatively identify the phase boundaries of SOTI phases
hosting four and 16 corner modes, starting from the triv-
ial phases for m0 > 4 + 5γ 2

2 and m0 < −2 − γ̃ , respectively,
across which Nxy jumps between zero and finite values. The
real-space invariant QWN is thus a useful topological marker
to identify the exceptional phases for our NH system with
OBC.

As mentioned earlier for the first-NN case, the Hermitian
phase boundaries are modified due to the non-Hermiticity. For
the second-NN Hermitian counterpart with γ = 0, one obtains
SOTI phases 0 < m0 < 4 and −2 < m0 < 0 hosting four and
16 zero-energy corner modes, respectively. The NH factor γ

introduces four corner modes for positive values of m0 beyond
m0 = 4 until m0 < 4 + 5γ 2

2 , as demonstrated in Fig. 5(b). The
same applies to the negative values of m0 where the 16 NH
corner modes continue to exist for |m0| < 2 + γ̃ beyond m0 =
−2. Importantly, in the second-NN SOTI model, the number
of corner modes changes for positive and negative values of
m0, which is not the case for the first-NN SOTI model. There-
fore, we would like to emphasize that the NH factor γ �= 0 and
the second-NN hoppings λh

2, λ
s
2, λ

f
2 �= 0 together modify the

phase diagram in a complex manner such that the number of
corner modes and their corresponding parameter window vary
significantly as compared to the first-NN Hermitian model. It
would be interesting to study in the future why the changes in
QWN do not always follow the OBC energy gap closing lines.
For example, m0 = −2 − γ 2

2 and m0 = −2 − γ̃ (m0 = 3γ 2
2

and m0 = ±γ̃ ) phase boundaries around m0 = −2 (m0 = 0)
can be investigated further for a better understanding of the
interplay between the NH term and second-NN hoppings.

On the other hand, between the two SOTI phases with
different number of corner modes (for −γ̃ < m0 < γ̃ ), we
find Nxy �= 0 as depicted in Fig. 5(b). In the complex energy

analysis under OBC, we find macroscopic degeneracies with
Re[E ] = 0 for −2 − γ 2

2 < m0 < γ̃ . Likewise, the earlier first-
NN case, Nxy, does not exhibit any jumps between finite and
zero values around m0 = 4 ± γ̃ and m0 = −2 ± γ̃ , which are
predicted by the complex energy spectrum under PBC. On
the contrary, m0 = ±γ̃ boundaries, predicted by the complex
energy spectrum under PBC, are visible as Nxy changes be-
tween two finite values. The exceptional lines m0 = −2 ± γ̃ ,
±γ̃ , and 4 ± γ̃ obtained employing PBC are depicted by
yellow dashed lines in Fig. 5(b). This agreement is surprising
and yet to be explored in the future. However, there is an
apparent discrepancy between the solid yellow lines and the
numerically obtained Nxy. This mismatch is due to the fact
that the mathematical form of non-Bloch transformation that
we consider in the hopping terms while computing Nxy, em-
ploying PBC, is computed by employing a low-energy version
of Hγ (k). To obtain the low-energy spectrum of Hγ (k), we
expand the Hamiltonian around k = (0, 0). By doing that, we
can obtain the phase boundary associated with the right part
of Fig. 5(b). However, when we incorporate the second-NN
hopping elements, the low-energy model around k = (0, 0)
does not necessarily encapsulate all the phase transition lines.
In that scenario, one should also consider a low-energy Hamil-
tonian around other momenta such as k = (±2π/3,±2π/3),
depending upon the value of m0. Nevertheless, this scenario
adds substantial complexity to the problem as one should
consider a different non-Bloch form for different m0. Thus,
finding a universal transformation to obtain the exact phase
boundary in the NH second-NN hopping case still remains
an interesting question and is beyond the scope of the present
paper. Nevertheless, complex energy spectra under PBC might
be useful for understanding the phase boundaries between two
different topological phases.

IV. SUMMARY AND CONCLUSION

To summarize, in this article, we consider a second-NN
hopping model in the presence of non-Hermiticity to inves-
tigate the emergence of second-order topological phases. By
exploring the real part of the complex energy spectrum for
the first- and second-NN NH models under OBC, we find that
the former model only hosts four zero-energy corner modes,
while the latter model can host four as well as 16 zero-energy
corner modes as the hallmark of the NH SOTI phases. We
compute the real-space invariant, namely, bi-orthogonalized
QWN, by keeping in mind the non-Bloch form of the momen-
tum to uniquely characterize the different topological phases.
The phase boundaries captured by the above invariant can
successfully mimic the emergence of NH SOTI phases out

TABLE I. Spatial symmetries and their operations.

Symmetry Operation Remarks

Mirror x Mx = σ0sy: MxHγ (kx, ky )M−1
x = Hγ (−kx, ky ) Broken, when λ

f
1,2, γx �= 0

Mirror y My = σzsx: MyHγ (kx, ky )M−1
y = Hγ (kx, −ky ) Broken, when λ

f
1,2, γy �= 0

Fourfold rotation C4 = e− iπ
4 σzsz : C4Hγ (kx, ky )C−1

4 = Hγ (−ky, kx ) Broken, when λ
f
1,2, γx,y �= 0

Mirror rotation I Mxy = C4My: MxyHγ (kx, ky )M−1
xy = Hγ (ky, kx ) Broken, when γx �= γy

Mirror rotation II Mxȳ = C4Mx: MxȳHγ (kx, ky )M−1
xȳ = Hγ (−ky, −kx ) Broken, when γx �= γy
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FIG. 6. In the 2D domain, we illustrate the LDOS spectrum as-
sociated with the E = 0 states choosing different values of γx and
γy: (a) γx = γy = 0.6, (b) γx = −γy = 0.6, (c) γx = −γy = −0.6,
(d) γx = γy = −0.6, (e) γx = 0.6, γy = 0.3, and (f) γx = 0.3, γy =
0.6. We choose m0 = 1.0, while the other model parameters remain
the same as mentioned in Fig. 1.

of the trivial phases, as demonstrated by the complex energy
dispersion under OBC for both the first- and second-NN mod-
els. The topological phase boundary between two different
topological phases, observed in the second-NN model, can be
anticipated from the complex energy spectrum under PBC for
the above model. In the future, one can include disorder to
study the exceptional topological Anderson insulators hosting
corner modes where a generalized version of the presently
adopted real-space topological index will have to be exam-
ined.
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APPENDIX A: SPATIAL SYMMETRIES AND
LOCALIZATION OF CORNER STATES FOR

ASYMMETRIC γ

In Table I, we list all the symmetries that the model Hamil-
tonian Hγ (k) breaks or preserves. As discussed in the main

FIG. 7. In (a) and (b), we demonstrate Re[E ] and Abs[E ] close
to the rightmost phase transition line in Figs. 3(d) and 3(f), choosing
different system sizes, respectively.

text, the mirror rotation symmetry Mxy plays a crucial role
in the localization of the corner states. In Fig. 6, we demon-
strate the LDOS associated with the E = 0 states choosing
different values of γx and γy. Note that in the main text, we
always consider γx = γy = γ . In Figs. 6(a)–6(d), we illustrate
the case when γx and γy carry the same amplitude, but can
have different signs for a NH first-NN Hamiltonian model.
We observe that depending upon the signs of γx and γy,
the corner modes occupy different corners of the system. In
contrast, when γx �= γy, i.e., the mirror rotation symmetries
are broken, the corner states can occupy more than one corner
[see Figs. 6(e) and 6(f)]. However, it is to be noted that the
localization at different corners carries different weights.

APPENDIX B: FINITE-SIZE SCALING WITH SECOND-NN
NH HOPPING MODEL

As discussed in the main text, the rightmost part of the
phase boundary [in Figs. 3(d) and 3(f)] corresponding to
the second-NN NH Hamiltonian encounters finite-size scal-
ing. Here, we explicitly exhibit variation of the eigenvalue
spectra considering different system sizes. In particular, we
demonstrate the real (Re[E ]) and absolute (Abs[E ]) parts of
the eigenvalue spectra close to the rightmost phase transition
line of Figs. 3(d) and 3(f), choosing different system sizes
(N = 12, 16, 20, 24) in Fig. 7. One can evidently observe
from Figs. 7(a) and 7(b) that as we increase the system
size, the zero-energy states in the eigenvalue spectra move
towards the analytically obtained phase transition line (red).
However, the translation towards the phase transition line as a
function of the system size appears to be slower in nature.
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