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Unified model for probing solar cell dynamics via cyclic voltammetry and impedance spectroscopy
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Despite the remarkable progress in emerging solar cell technologies such as hybrid organic-inorganic per-
ovskites, there are still significant limitations related to the stability of the devices and their nonideal electrical
behavior under certain external stimuli. We present a conceptual framework for characterizing photovoltaic
devices by integrating cyclic voltammetry (CV) and impedance spectroscopy (IS). This framework is constructed
from a microscopic, multimode perspective that explicitly accounts for drift, diffusion, displacement, and mem-
ory contributions. We derive comprehensive analytical expressions for current-voltage relationships and complex
admittance. Our model reveals the inseparable connection between hysteresis behaviors in current-voltage
characteristics observed in CV and the apparent capacitive and inductive behaviors seen in IS spectral analysis.
We demonstrate how CV and IS naturally complement each other, providing a deeper microscopic understanding
of device performance and limitations. Additionally, we establish the relationship between intrinsic material
parameters and experimentally accessible extrinsic parameters such as light intensity, temperature, DC bias,
voltage amplitude, and frequency. This framework enables unprecedented optimization of solar cell performance,
marking a significant advancement toward sustainability.
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I. INTRODUCTION

Solar cells based on materials such as perovskites [1],
organics [2], inorganic-organic hybrids [3], and quantum dots
[4] have attracted attention in recent years and opened avenues
toward a sustainable, energy-aware society. While solar cells
based on silicon lead the market due to their state-of-the-art
low-cost fabrication and reliability, they are ultimately lim-
ited in terms of device performance. In contrast, solar cells
based on emergent materials offer unprecedented advantages
compared with silicon solar cells, such as the realization of
solar cells on flexible substrates, higher power conversion
efficiencies, and the potential for lower manufacturing costs.
For instance, perovskite solar cells allow for the fabrica-
tion of lightweight and versatile photovoltaic devices [5,6].
While these devices show excellent in-lab efficiencies, they
suffer from poor reliability, reproducibility, and instabilities
[7–12]. To address these challenges, strategies are actively
being developed to improve material stability, optimize fab-
rication processes, and enhance the overall performance of
these emerging solar cell technologies [13].

In this context, understanding the interplay between elec-
trochemical and electronic processes within solar cells is
crucial for optimizing their performance. Cyclic voltammetry
(CV) [14–17] and impedance spectroscopy (IS) [18–21] offer
a powerful combined approach for achieving this goal. CV
unveils the secrets of charge transfer, revealing recombination
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processes, intrinsic symmetry constraints, and energy levels of
active materials [7]. IS dissects the electrical landscape of the
device, providing a detailed map of charge transport dynamics
[22,23], apparent resistance, apparent capacitance, and ap-
parent inductance operating at different time scales [24–26].
These combined techniques are instrumental in the quest to
improve device efficiency, stability, and overall performance.
However, interpreting the data is not always straightforward.
The complexity of overlapping processes and the need for
accurate models to disentangle these phenomena pose signifi-
cant challenges.

Within the realm of dynamics effects in solar cells, two
key areas of debate emerge: hysteresis with diverse shapes
in current-voltage (I-V) characteristics [15,27] (ascribed to
memory related processes) and the interplay between capaci-
tive and inductivelike transport responses [20,28]. Numerous
approaches have been proposed to address these complexities
[29–31]. However, limitations remain, including simplifying
assumptions, the need for robust hypothesis validation, and
the potential for alternative explanations. These are currently
hot topics in the field, and researchers are actively seeking
to develop more comprehensive models that can fully capture
these complex phenomena [32–34].

Our model is designed to encompass fundamental princi-
ples of photovoltaic systems, incorporating both diffusion and
drift contributions under nonequilibrium conditions. It offers
a broad applicability without being confined to specific archi-
tectures or materials. The model can be directly applied to
basic p-n junctions, p-i-n structures with thin absorbers, and
p-i-n architectures under strong absorption conditions where
recombination in the absorption layer is negligible [35].
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FIG. 1. (a) Equivalent circuit configuration used for the simu-
lation of the solar cell response. (b) Three-dimensional (3D) band
profile of the junction highlighting the presence of memory channels
with memristive nature. Band profile representations of a trapping
and a generation site in (c) and (d), respectively. (e) Voltage input
used for the solar cell characterization during both cyclic voltamme-
try and impedance analysis.

To gain a deeper understanding of how solar cells respond
to cyclic voltage inputs, common in CV and IS techniques,
we propose a comprehensive approach that builds upon
well-established physical principles. We have undertaken the
challenge of developing a minimalistic, unified theoretical
framework capable of simulating both the CV response and
the IS analysis. This dynamic characterization enables the
assessment of the character of fill factor losses due to carrier
leakage through the qualitative analysis of defect levels and
their activation time scales as well as evaluation of carrier
diffusivity efficiency and the impact of unavoidable geometric
capacitances. Thus, our model aspires to capture the essential
physical processes governing the behavior of the device under
both static and dynamic operating conditions, also offering a
framework for the analysis of the apparent controversial issues
highlighted above. This approach should serve as a spring-
board for subsequent discussions and as reference ground for
adding complexity layers. To maintain a qualitative perspec-
tive in our discussion, we have omitted units in the figures;
however, all units can be readily extracted from the expres-
sions provided in the text.

II. RESULTS

For an arbitrary bias voltage V , the photodiode response
(as the general category of devices that includes solar cells)
can be decomposed into three independent contributions, as
represented in Fig. 1(a):

jT = jD + Cg

A

dV

dt
+

∑
i

jMi , (1)

where

jD = eDn
∂n

∂z

∣∣∣∣
z=−(�/2)

− eDp
∂ p

∂z

∣∣∣∣
z=�/2

(2)

is the diode current density obtained by adding the minority-
carrier diffusive components at the boundaries of the depletion
(or intrinsic) region of width � (with axis origin at the mid-
point), where the approximation of uniform electron and hole
current components is assumed [36]. The second term in
Eq. (1) accounts for the displacement contribution, given the
geometric capacitance Cg of the device and its area A. The
third term combines all the ionic channels, fluctuations of drift
components of generated carriers at the junction (or intrinsic
region), and even potential leakage pathways, as

jMi = γi
(
N0

i + δNi
)
V, (3)

for N0
i + δNi carriers that contribute to the conductance, with

γi = eμi

A�2 , and mobility μi along the length �. We assume
each contribution to be an independent fluctuation of nonequi-
librium carriers around N0

i described by certain relaxation
time τi [37,38]:

dδNi

dt
= −δNi

τi
+ gi(V ). (4)

The combination of the ingredients in Eqs. (3) and (4)
has been demonstrated to be sufficient to consistently in-
duce memory responses [37–39]. Therefore, we will refer
to the contributions of the terms in Eq. (3) as the memory
components.

A representation of this process is provided in Fig. 1(b)
as carrier leakage through the surface, though it is not neces-
sarily limited to superficial effects since crystal defects and
impurity-induced precipitates in the junction (or intrinsic)
region can also play a role [36]. The dynamics of nonequi-
librium charges described by Eq. (4) encompass contributions
from both extrinsic and photogenerated carriers as well as any
ionic motion [40,41] influenced by the built-in electric field.

For simplicity, we will restrict the discussion to a single
memory channel and drop the subindex i in what follows.
These carriers can be trapped or released by thermal ionization
at a temperature T , according to the localization profiles dis-
played in Figs. 1(c) and 1(d), which encompass a wide range
of possibilities. According to Ref. [39], the carrier generation
or trapping rate is described in these cases by

g(V ) = i0
η

[
exp

(
−ηL

eV

kBT

)
+ exp

(
ηR

eV

kBT

)
− 2

]
, (5)

where i0 = 4πm∗A
(2π h̄)3 (kBT )2 exp(− EB

kBT ), ηL = αη/(1 + α), and
ηR = η/(1 + α). Here, α ∈ [0,∞) characterizes the symme-
try of the carrier transfer in Eq. (5) with respect to the local
bias voltage drop, where α = 1 corresponds to the symmetric
case. Note that, in the limits as α → 0 or α → ∞, the function
g(V ) becomes almost insensitive to either negative or positive
large bias, respectively, as the first or second term in brackets
tends to 1. Additionally, η < 0 corresponds to the diagram in
Fig. 1(c), while η > 0 corresponds to the diagram in Fig. 1(d),
with 1/|η| being the number of localization sites along a single
line of the device length. Thus, it is reasonable to expect
that |η| � 1. A range of carrier generation and trapping pro-
cesses can be effectively captured by expressions like Eq. (5),
which represent activation fluxes over barriers with heights
modulated by voltage [40,41]. These barriers may arise at
interfaces and surfaces, local defects, and crystallite or grain
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boundaries in polycrystalline or amorphous materials. A de-
tailed discussion on how these microscopic parameters, such
as barrier architectures and symmetry constraints, modulate
carrier transfer is provided in Ref. [39].

While triangular voltage sweeps are the traditional choice
for CV characterization, we propose that sinusoidal sweeps
offer a more natural connection to IS. Since IS utilizes har-
monic biases, employing sinusoidal voltages in CV aligns
these techniques both conceptually and potentially from a
modeling and interpretation standpoint. This unification facil-
itates the development of the single framework for discussion,
as presented below, enabling a seamless correlation between
CV and IS data.

Thus, we will assume a general case of a combination of
a stationary DC voltage and an alternating AC voltage, ex-
pressed as V = VS + V0 cos(ωt ) and represented in Fig. 1(e).
This setup encompasses the conditions for CV when VS = 0
and IS characterization for arbitrary VS . Next, we propose to
extend the method presented in Ref. [42] for a simple p-n
junction to the case of a solar cell using a multimode ex-
pansion that incorporates the ineluctable generation of higher
harmonics. This approach enables us to solve Eq. (2) under il-
lumination and CV conditions with an arbitrary AC amplitude
V0.

We should start from the continuity equations and the Ficks
law, with diffusion coefficients Dp and Dn for holes and elec-
trons, respectively, assuming a uniform optical electron-hole
generation in the volume gL [36]:

dδp

dt
= −δp

τp
+ gL + Dp

d2δp

dz2
,

dδn

dt
= −δn

τn
+ gL + Dn

d2δn

dz2
. (6)

Here, the conventional boundary conditions for the minority
carrier fluctuation are given by δp( �

2 ) = peq[exp( eV
kBT ) − 1],

δp(∞) = 0, δn(−�
2 ) = neq[exp( eV

kBT ) − 1], δn(−∞) = 0, as
represented in Fig. 1(a), where, peq and neq are the minority
carriers equilibrium densities as provided by the mass action
law. Note that, as a general case, we may consider contrast-
ing recombination times τp and τn for electrons and holes,
respectively. Using the generalization of the voltage input
as complex function V = VS + V0eiωt , the stable solutions of
Eq. (6) can be sought in the most general form as (once any
transient processes have decayed)

δp(z) =
∞∑

m=−∞
Pm(z)eimωt ,

δn(z) =
∞∑

m=−∞
Nm(z)eimωt , (7)

which correspond to an unavoidable multimode perspective
of the dynamic response, as explored in what follows. By
substituting Eq. (7) into Eq. (6), we obtain, for holes,

∞∑
m=−∞

(
Dp

d2Pm

dz2
+ gLδm,0 − Pm

τp
+ imωPm

)
× eimωt = 0, (8)

with δm,n representing the Kronecker delta. Thus, the solu-
tions for Pm can be readily calculated as

Pm(z)=
[

Pm

(
�

2

)
−gLτpδm,0

]
exp

[
− z − �

2

L(m)
p

]
+gLτpδm,0, (9)

with

L(m)
p = Lp√

1 + imωτp
, (10)

where Lp = √
Dpτp is the diffusion length. The result-

ing equation for electrons is analogous, by replacing the
subindices p → n, z → −z, and � → −�.

We may now combine the results in Eqs. (9) and (7) into
Eq. (2), yielding

jD =
∞∑

m=−∞

[
eDn

Nm
(−�

2

)
L(m)

n

+ eDp
Pm

(
�
2

)
L(m)

p

]
eimωt . (11)

Then by using the boundary conditions δp( �
2 ) and δn(−�

2 ),
the coefficients Pm( �

2 ) and Nm(−�
2 ) can be easily obtained,

noting that, according to Eq. (7):

peq

[
exp

(
eV

kBT

)
− 1

]
=

∞∑
m=−∞

Pm

(
�

2

)
eimωt ,

neq

[
exp

(
eV

kBT

)
− 1

]
=

∞∑
m=−∞

Nm

(
−�

2

)
eimωt , (12)

and that exp( eV
kBT ) = exp( eVS

kBT ) exp[ eV0 exp(iωt )
kBT ] can be expanded

as an infinite Taylor series:

exp

(
eV

kBT

)
= exp

(
eVS

kBT

) ∞∑
m=0

1

m!

(
eV0

kBT

)m

eimωt , (13)

with no restrictions to the value of eV0
kBT , yielding

jD =
(

eDp peq

Lp
+ eDnneq

Ln

)[
exp

(
eVS

kBT

)
− 1

]

−egL
(
Ln + Lp

) +
exp

(
eVS
kBT

)
√

2

×
∞∑

m=1

{
eDp peq

Lp

√
1 +

√
1 + (mωτp)2

+ eDnneq

Ln

√
1 +

√
1 + (mωτn)2

+ i

[
eDp peq

Lp

√√
1 + (mωτp)2 − 1

+ eDnneq

Ln

√√
1 + (mωτn)2 − 1

]}
1

m!

(
eV0

kBT

)m

eimωt .

(14)

Here, the identity
√

1 + ia = 1/
√

2(
√

1 + √
1 + a2 +

i
√√

1 + a2 − 1) for a > 0 has been used. Note that, in
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Eq. (14), the diffusive channels contribute to both resistive
(real part contributions) and reactive terms (imaginary part
contributions) that cannot be reduced to simple elementary
circuit components without attributing a complex frequency
dependence to them. It is important to point out, however,
that the contribution to the susceptance (imaginary part) is
positive for all modes, indicating a capacitive character across
the board of the diffusive terms.

The case of the memristive contribution jM is simpler to
handle analytically. Although the condition eV0

kBT � 1 cannot
always be assumed for CV or large amplitude spectroscopy,
the condition |η| eV0

kBT � 1 is more achievable due to the typi-
cally small absolute value of η in Eq. (5). Thus, by expanding
the generation function up to second order in |η| eV0

kBT and solv-
ing Eq. (4), we can fully understand the topological nuances
of the dynamic effect of the memory contributions on the
current-voltage response of the solar cell. In this context, the
term topology refers to the shapes of the hysteresis loops in
the current-voltage response. This solution is an extension of
the methodology described in Refs. [39,43]. For the stable
case, once the transient contributions depending on the initial
conditions fade, it can be expressed up to third-order mode as

jM = γ (N0VS + g0τ ) + NVS

2
+ MV0

1 + (ωτ )2

+
{
γ (N0 + gLτ + g0τ ) + 2MVs/V0

1 + (ωτ )2
(1 − iωτ )

+N

2

[
1 +

1
2

1 + (2ωτ )2
(1 − i2ωτ )

]}
V0eiωt

+
{

NVs/V0

2

1

1 + (2ωτ )2
(1 − i2ωτ )

+ M

1 + (ωτ )2
(1 − iωτ )

}
V0ei2ωt

+
{

N

4

1

1 + (2ωτ )2
(1 − iωτ )

}
V0ei3ωt . (15)

Here,

M = γ
i0
2

eV0

kBT
τ

exp
(
ηR

eVS
kBT

)
− α exp

(
−ηL

eVS
kBT

)
1 + α

, (16)

N = γ
i0
2

(
eV0

kBT

)2

τη
exp

(
ηR

eVS
kBT

)
+ α2 exp

(
−ηL

eVS
kBT

)
(1 + α)2 , (17)

and

g0 = i0
η

[
exp

(
ηR

eVS

kBT

)
+ exp

(
−ηL

eVS

kBT

)
− 2

]
. (18)

The contribution of higher-order terms in |η| eV0
kBT can sub-

sequently be obtained using the same procedure or by
numerically solving Eq. (4). Within this notation, the dis-
placement contribution to Eq. (1) is given by iCg

A ωV0eiωt . With
this, we now have all the ingredients needed to analyze the
total solar cell current response jT to cyclic voltage inputs of
arbitrary amplitudes and frequencies in the framework of the
transport models used as starting hypotheses.

Let us start by describing the potential result of CV, for
which VS = 0 and the frequency is usually such that ω �
min[1/τn, 1/τp]. Under these conditions, the first term in
Eq. (14) vanishes. To handle the infinite series, we can take
advantage of the low-frequency condition and approximate
ωτn = ωτp → 0 that also cancels the reactive contribution
(imaginary component of the current) in the third line of
Eq. (14). This allows us to evaluate the infinite sum in Eq. (14)
directly, for arbitrary large voltage amplitude V0, resulting in
the following expression for the real part of the diode current:

Re jD = jS

[
exp

(
eV0 cos ωt

kBT

)
− 1

]
− egL

(
Ln + Lp

)
, (19)

with jS = ( eDp peq

Lp
+ eDnneq

Ln
). The expression in Eq. (19) cor-

responds to the dashed reference curve in Fig. 2 and can be
added to the real parts of the displacement contribution and to
Eq. (15), leading to the results displayed in Fig. 2 as solid lines
for a solar cell under illumination. The idea of the figure is
to illustrate a variety of hysteresis loops that can be obtained
by tuning two key parameters of the memory channel: the
symmetry factor α and the nature of the nonequilibrium car-
rier transfer, determined by the sign of η. Figures 2(a)–2(c)
depict symmetric trapping, while Figs. 2(d)–2(e) illustrate
symmetric generation processes. In the remaining panels, a
certain degree of asymmetry (α �= 1) has been introduced,
contributing to the polarity dependence of the CV shape.
This asymmetry highlights the nuanced relationship between
trapping and generation mechanisms under different voltage
conditions.

The shape of the hysteresis is influenced not only by in-
trinsic nonequilibrium mechanisms but also, critically, by the
characteristics of the external drive. Hysteresis patterns should
not be considered definitive signatures of the device response
without a precise description of the applied voltage pulses.
The distinction between normal and inverted hysteresis is in-
herently linked to the specifics of system excitation, including
pulse shapes, amplitudes, and periods. With this clarification,
the direction of the hysteresis loops can serve as a valuable
tool for characterizing underlying microscopic processes.

Note that, despite the rich variety of responses at frequen-
cies close to the condition ω ∼ 1/τ , all the hysteresis loops
converge to clockwise open loops as the frequency increases
from the left to the right column of Fig. 2. This occurs because
all the reactive components in Eq. (15) vanish when ωτ 
 1,
causing the displacement contribution to the reactive part
of the total current density, proportional to ωCgV0, to dom-
inate. The interplay and frequency tuning of clockwise and
counterclockwise loops in CV (sometimes leading to multiple
crossings) result from combinations of nonequilibrium carrier
trapping and generation, respectively. These behaviors can be
described as capacitive or inductive based on the apparent
anticipation or delay of the current with respect to the voltage
sweep. However, the microscopic origins of these dynamic
responses are more effectively characterized using IS methods
that offer a more intuitive decomposition of each contributing
factor, providing clearer insights into the individual mecha-
nisms driving the observed phenomena.
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FIG. 2. Cyclic voltammetry hysteresis of an illuminated solar cell, each column corresponding to a different AC voltage frequency:
(a)–(c) α = 1 and η < 0, (d)–(f) α = 1 and η > 0, (g)–(i) α = 0.99 and η > 0, (j)–(l) α = 0.99 and η < 0, (m)–(o) α = 1.01 and η > 0,
and (p)–(q) α = 1.01 and η < 0. The unperturbed diode current-voltage characteristic has been added to (a) as a dashed line for reference.
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Equations (14) and (15) reveal the frequency dependence
of the current density, suggesting that a spectral analysis based
solely on a single mode will be incomplete. To address this,
a multimode perspective is necessary. In this framework, the
total current can be decomposed as

IT (t ) = A jT (t ) =
∞∑

m=0

[G(m)(ω) + iB(m)(ω)]V0eimωt . (20)

where G(m) and B(m) represent the conductance and suscep-
tance, respectively, for the mth mode. This decomposition
allows us to define the impedance per mode [43] as Z (m) =
[G(m)(ω) + iB(m)(ω)]−1. While, in this paper, we explore the
multimode behavior, acknowledging the prevailing focus on
fundamental mode analysis in traditional impedance studies,
we will highlight the results for the m = 1 mode.

Within this perspective, the m = 1 impedance contribution
of the diode component in Eq. (14) allows defining an appar-
ent diffusive resistance, as represented in the upper panel of
Fig. 3:

1

R(1)
dif (ω)

≡ Re
1

Z (1)
=

eA exp
(

eVS
kBT

)
kBT

√
2

×
[

eDp peq

Lp

√√
1 + (ωτp)2 + 1

+ eDnneq

Ln

√√
1 + (ωτn)2 + 1

]
, (21)

and an effective diffusive capacitance:

C(1)
dif (ω) ≡ Im

1

Z (1)
ω−1 =

eA exp
(

eVS
kBT

)
ωkBT

√
2

×
[

eDp peq

Lp

√√
1 + (mωτp)2 − 1

+eDnneq

Ln

√√
1 + (mωτn)2 − 1

]
.

(22)

Note that both are frequency dependent and have been rep-
resented in Figs. 3(a) and 3(b) by setting τp = τn = τ0 for
simplicity. Increasing the DC bias reduces the resistance and
increases the apparent capacitance due to the exp( eVS

kBT ) factor
in both Eqs. (21) and (22), while both collapse in the high-
frequency limit ωτ0 → ∞.

The corresponding Nyquist plots for the diode current
with m = 1 are shown in Fig. 3(c). The negative phase of
the impedance confirms the capacitive nature of the drift-
diffusion component across the entire frequency spectrum.
This characteristic extends to all higher-order modes beyond
the fundamental one. At the microscopic level, the apparent
capacitive response arises because any change in voltage re-
quires the transfer of a certain amount of charge (electrons and
holes) to reach a new equilibrium state, which depends on the
applied bias [44]. Additionally, as described by Eq. (14), the
asymptotic behavior for high frequencies attains the Warburg

limit for diffusive transport [45] given by

lim
ω→∞

Im Z (m)

Re Z (m)
= −1. (23)

This linear trend is illustrated with a dashed line in Fig. 3(c)
for the m = 1 mode. The results of IS, considering the contri-
bution of the memristive components introduced in Eq. (15),
are represented in Figs. 4(a) and 4(b), which correspond to the
Bode plots for the first-mode conductance and susceptance,
respectively. These plots are obtained by varying the DC
bias VS , and all curves exhibit a transition at ωτ ∼ 1 (on the
logarithmic scale). To emphasize the high-frequency behavior,
the first-mode susceptance is plotted as B(1)/ω. This approach
emphasizes the asymptotic trend toward the geometric capac-
itance, as given by

lim
ω→∞

B(1)

ω
= Cg. (24)

This behavior arises because the reactive contributions to the
susceptance in Eq. (14) grow as ω1/2 for high frequencies,
while the displacement contribution grows linearly with fre-
quency. The specific parameter choices of η < 0 and α =
0.9 were made to highlight a recurring controversy encoun-
tered during solar cell characterization: the interplay between
seemingly inductive and capacitive responses observed in IS.
Figure 4(b) reveals a noteworthy trend. At higher DC bias
values, the first-mode susceptance becomes negative for low
frequencies. This behavior can be interpreted as an apparent
inductive character in the system. The origin of this negative
susceptance lies in Eq. (15) that contains the reactive contri-
butions to the susceptance. The sign of these contributions
is determined by terms proportional to the functions M(VS )
and N (VS ), defined in Eqs. (16) and (17), respectively. In
our case, the slight asymmetry introduced by the parameter
α = 0.9 in Eq. (5) causes the sign of the generation function
(and thus its character) to be dependent on the polarity. This
dependence on polarity can lead to a negative susceptance
under specific operating conditions, as observed in Fig. 4(b).
To further illustrate the impact of increasing DC bias on
the impedance behavior, Fig. 4(c) presents the corresponding
Nyquist plots. The arrow indicates the direction of increasing
frequency. Many other combinations of intrinsic (τ , α, η, EB)
and extrinsic (ω, VS , V0, T ) parameters not explored here also
produce inductive responses.

Thus, in the presence of charge activation, which intro-
duces nonequilibrium carriers into the drift conductance—
regardless of whether these carriers are electrons, holes, or
ions—an apparent inductive contribution can always be antic-
ipated. However, its effects are confined to the low-frequency
range, as indicated by Eq. (15), where all memory contribu-
tions vanish at high frequencies, leaving only the geometric
capacitance and diffusive channels, both of which exhibit
capacitive behavior. The prominence of apparent inductive
contributions is enhanced by both amplitude and DC bias.
For these contributions to be detectable, they must be at least
comparable with other transport mechanisms, a condition in-
fluenced by factors such as carrier mobility, effective barrier
heights, effective masses, and temperature. This explains the
observed transition from an inductive to a capacitive loop in
the IS map shown in Fig. 4(c).
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FIG. 3. Upper panel: Schematic representation of the first-order mode of the diodelike drift-diffusion component. (a) Apparent diffusive
resistance as a function of voltage frequency for various DC bias values. (b) Corresponding apparent diffusive capacitance. (c) Nyquist plot of
the impedance for the first-order mode of the diode current, with the arrow indicating the direction of increasing frequency. The dashed line
represents the asymptotic limit at high frequencies, where −Im Z (1) = ReZ (1). The assumption τp = τn = τ0 has been applied throughout all
panels.

Our model also predicts that illumination influences the
impedance of the m = 1 mode of the solar cell. This is not
related to the diode density current in Eq. (14), where the
illumination enters just through the term proportional to gL,
which does not affect the dynamic response (susceptance
components). However, Eq. (15) shows the gL contribution
entering the first-mode conductance without affecting the
susceptance.

Nevertheless, we can prove that illumination might also
affect the reactive response. The key lies in the nonequilibrium
carrier sources depicted in Figs. 1(c) and 1(d). Illumination
fills these states, reducing the values of the effective barriers,
and this directly impacts the term i0 in Eq. (5). The factor i0 is
proportional to exp(−EB/kbT ) and influences the weighting
of functions M and N within the memristive current term of
Eq. (15). Thus, illumination indirectly affects the dynamic
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FIG. 4. First-order mode impedance characterization considering the three contributions to Eq. (1). (a) Conductance spectrum, (b) sus-
ceptance, and (c) the corresponding Nyquist maps by varying the DC voltage under fixed illumination condition. (d) Conductance spectrum,
(e) susceptance, and (f) the corresponding Nyquist maps for increasing illumination power under fixed DC voltage. The arrows in (c) and (f)
indicate the frequency growth direction. (g) Calculated apparent capacitance for the m = 1 mode as a function of the DC bias for increasing
frequency.
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FIG. 5. Upper panel: Apparent circuit representation of the first-order mode of a memristive channel. Apparent inductance values for:
symmetric charge transfer, with α = 1, for (a) η > 0 and (b) η < 0; asymmetric charge transfer, with α �= 1, for (c) η > 0 and (d) η < 0.

response (susceptance) through its influence on the effective
barrier heights. Figures 4(d)–4(f) further illustrate this point.
These plots map the Bode/Nyquist impedance response as
i0 increases, demonstrating an enhanced apparent inductive
character with illumination. Similar enhancement of apparent
capacitive trends could also be expected by using the same
arguments.

The transition from a capacitivelike to an inductive re-
sponse in the device impedance is often described in the
literature as the emergence of negative capacitance [20,24,46–
48]. This correlation arises when defining the apparent ca-
pacitance per mode as C(m) = �[1/Z (m)]ω−1. As shown in
Fig. 4(g) from m = 1, this value transitions from posi-
tive to negative at lower frequencies. However, we argue
that the most accurate way to describe these trends in
terms of apparent circuits is by correlating this tuning

to a fixed (frequency-independent) apparent inductive
element.

Unlike the diode contribution in Eq. (14), that does not
allow for the segmentation of the dynamic response in terms
of apparent elementary circuit components independent on
frequency, the memristive components in Eq. (15) allow for
such segmentation. This is illustrated in Fig. 5 (top panel)
for the m = 1 mode. Here, the second line of Eq. (15) is
represented by an apparent circuit with elements correspond-
ing to specific terms in the equation: R(1)

0 = [Aγ (N0 + gLτ +
g0τ ) + AN/2]−1, L(1)

N = 8τ/(AN ), R(1)
N = L(1)

N /(2τ ), L(1)
M =

V0τ/(2MAVS ), and R(1)
M = L(1)

M /τ . Note that the lower branch
[L(1)

M ] is not conductive at zero DC bias (VS = 0). Addition-
ally, the apparent inductances and resistances can be positive
or negative depending on the values of N and M. This
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FIG. 6. (a) Cyclic voltammetry characterization of the solar cell
by increasing frequency, highlighting the widening of the short-
circuit current splitting. (b) First-four-order contributions to the
diffusive susceptance.

dependence is shown in Figs. 5(a) and 5(b) for a symmetric
generation function α = 1. These figures depict the behavior
for pure generation (η > 0) and pure trapping (η < 0) scenar-
ios. At low voltages, conduction primarily occurs through the
L(1)

N branch, while at higher biases, the L(1)
M branch dominates.

The asymmetric case (α �= 1), displayed in Figs. 5(c) and 5(d),
is more complex. Here, the model predicts the possibility of
tuning the character (positive or negative inductances) of the
prevailing conductive branch. Additionally, the model fore-
sees a singular point at VS = kBT

eη ln α, where the character
undergoes a second inversion. These points correspond to the
extrema of the generation function (dg/dV = 0), where the
dynamic conductance component of the first mode, propor-
tional to M, vanishes.

To fully capture the intricacies of these systems, we should
consider concurrent memory channels with diverse character-
istics, such as varying relaxation times and nonequilibrium
carrier transfer behavior (combining trapping or activating
nature). These complexities were symbolically represented
in Fig. 1(a) as jMi (i =1,2,...) and are beyond the scope of
the present discussion. Furthermore, other mechanisms can
contribute to apparent inductive effects in the transport re-
sponse of diodes under cyclic biasing. A notable example
is the generation of additional carriers via impact ionization
within avalanche diodes at high electric fields, as explored in
Ref. [42].

Figure 6 illustrates the evolution of hysteresis as the cy-
cling frequency increases for VS = 0. At lower frequencies,
an apparent inductive hysteresis at positive bias, driven by
nonequilibrium charge activation under these conditions, co-
exists with a capacitive transport component that reflects
both geometric and diffusive contributions. However, as the
frequency increases, the influence of charge activation dimin-
ishes, allowing the capacitive behavior to dominate.

Our theoretical framework also allows for qualitative and
quantitative characterization of the apparent capacitive ef-
fects observed under short-circuit conditions (V = 0). This is
evident in the splitting of the total current for down- and up-
voltage sweeps, denoted as ReIT (π/2ω) and ReIT (3π/2ω) in
Fig. 6(a) (assuming t = 0 at the beginning of each voltage cy-
cle at V = V0). According to Eq. (20), the short-circuit current
splitting arises solely from the contribution of the susceptance
of odd modes:

�ISC(ω) = ReIT

(
3π

2ω

)
− ReIT

( π

2ω

)

= 2V0

∞∑
k=1

(−1)k+1B(2k−1)(ω), (25)

where B(m)(ω) = B(m)
dif (ω) + Cgωδm,1, with B(m)

dif representing
the diffusive contribution to the susceptance of the mth mode,
that by following Eq. (14) and assuming τp = τn = τ0, can be
expressed as

B(m)
dif (ω) = A√

2V0

jS
m!

(
eV0

kBT

)m√√
1 + (mωτ0)2 − 1. (26)

Note that, irrespective of the hysteresis complexity produced
by the memristive component as displayed in Fig. 6(a), jM
cannot contribute to the short-circuit current splitting (�ISC)
due to its definition in Eq. (3). This is correctly captured in
the third-order approximation presented in Eq. (15), where the
susceptance components of the first- and third-order modes
are identical. Consequently, these terms cancel each other out
when applying the definition of �ISC in Eq. (25).

Figure 6(b) displays the diffusive susceptance normalized
by frequency [B(m)

dif /ω]. If the contribution of modes m > 1
can be neglected (e.g., at low enough amplitudes), the short-
circuit current splitting can be easily used to assess the relative
impact of geometric and apparent diffusive capacitances. This
is achieved through the following relationship obtained by
considering just the first term in the sum of Eq. (25):

�ISC

2V0ω

 Cg + B(1)

dif (ω)

ω
, (27)

where a correlation with the spectroscopic results from
Eq. (24) becomes evident.

A deviation from a linear increase of �ISC with frequency
signifies a nonnegligible contribution from the diffusive chan-
nels to the apparent capacitance. This can be understood by
examining Eq. (27) [or Eq. (14) for the definition of B(1)

dif ].
Here, the diffusive contribution to the susceptance B(3)

dif scales
as the square root of frequency [i.e., B(m)

dif = O(ω1/2)] and
can be singled out by subtracting the constant finite limit
Cg obtained from Eq. (27) at high frequencies. Note that,
according to Fig. 6(b), the inflection point of B(m)

dif (ω)/ω can
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be used as a reference of the recombination time τ0. Specifi-
cally, the condition d2/dω2[B(m)

dif (ω)/ω] = 0 occurs at ωτ0 =
1/(6m)

√
6 + 6

√
33, which corresponds to ωτ0 
 1.0602 for

m = 1.

III. CONCLUSIONS

In summary, in this paper, we present a unified theoretical
framework for analyzing both CV and IS of solar cells. This
approach incorporates diffusive transport and nonequilibrium
carrier behavior to explain seemingly anomalous inductive
or capacitive responses. We have derived comprehensive
analytical expressions for current-voltage relationships and
developed a multimode spectral analysis of the complex ad-
mittance. Furthermore, the model organically integrates the
influence of DC biasing and illumination, predicting how
these external factors significantly modulate the impedance of

the device. This approach, with its focus on nonequilibrium
effects, extends beyond the specific cases of perovskites and
memristors, offering a versatile framework containing ele-
ments which are applicable to a wide range of photovoltaic
technologies and device architectures. We hope this unified
framework can pave the way for a deeper understanding and
optimization of solar cell performance.

ACKNOWLEDGMENTS

This paper was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior—Brazil
and the Conselho Nacional de Desenvolvimento Científico e
Tecnológico—Brazil Project No. 311536/2022-0. G.L.N. and
C.F.O.G. acknowledge the support of Fundação de Amparo
à Pesquia do Estado de Sao Paulo - Brazil, Projects No.
2020/12356-8 and No. 2022/10998-8.

[1] M. A. Green, A. Ho-Baillie, and H. J. Snaith, The emergence of
perovskite solar cells, Nat. Photon. 8, 506 (2014).

[2] L. Sun, K. Fukuda, and T. Someya, Recent progress in solution-
processed flexible organic photovoltaics, npj Flex. Electron. 6,
89 (2022).

[3] H. Aqoma, S.-H. Lee, I. F. Imran, J.-H. Hwang, S.-H. Lee,
and S.-Y. Jang, Alkyl ammonium iodide-based ligand exchange
strategy for high-efficiency organic-cation perovskite quantum
dot solar cells, Nat. Energy 9, 324 (2024).

[4] Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan, O. Voznyy, E.
Yassitepe, A. Buin, S. Hoogland, and E. H. Sargent, Quantum-
dot-in-perovskite solids, Nature (London) 523, 324 (2015).

[5] S. Kang, J. Jeong, S. Cho, Y. J. Yoon, S. Park, S. Lim, J. Y. Kim,
and H. Ko, Ultrathin, lightweight and flexible perovskite solar
cells with an excellent power-per-weight performance, J. Mater.
Chem. A 7, 1107 (2019).

[6] Y. Wang, M. Li, X. Zhou, P. Li, X. Hu, and Y. Song, High
efficient perovskite whispering-gallery solar cells, Nano Energy
51, 556 (2018).

[7] J. Thiesbrummel, S. Shah, E. Gutierrez-Partida, F. Zu, F. Peña-
Camargo, S. Zeiske, J. Diekmann, F. Ye, K. P. Peters, K. O.
Brinkmann et al., Ion-induced field screening as a dominant
factor in perovskite solar cell operational stability, Nat. Energy
9, 664 (2024).

[8] T. A. Chowdhury, M. A. B. Zafar, M. S.-U. Islam, M.
Shahinuzzaman, M. A. Islam, and M. U. Khandaker, Stability
of perovskite solar cells: Issues and prospects, RSC Adv. 13,
1787 (2023).

[9] F. Baumann, S. R. Raga, and M. Lira-Cantú, Monitoring the
stability and degradation mechanisms of perovskite solar cells
by in situ and operando characterization, APL Energy 1, 011501
(2023).

[10] W. Zhang, X. Guo, Z. Cui, H. Yuan, Y. Li, W. Li, X. Li, and
J. Fang, Strategies for improving efficiency and stability of
inverted perovskite solar cells, Adv. Mater. 2311025 (2024).

[11] L. Zhang, Y. Wang, X. Meng, J. Zhang, P. Wu, M. Wang,
F. Cao, C. Chen, Z. Wang, F. Yang et al., The issues on the
commercialization of perovskite solar cells, Mater. Futures 3,
022101 (2024).

[12] X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie, H. Huang, B.
Yang, Y. Yan, Y. Gao, J. He et al., Mobile iodides capture for
highly photolysis- and reverse-bias-stable perovskite solar cells,
Nat. Mater. 23, 810 (2024).

[13] S. Sidhik, I. Metcalf, W. Li, T. Kodalle, C. J. Dolan, M.
Khalili, J. Hou, F. Mandani, A. Torma, H. Zhang et al.,
Two-dimensional perovskite templates for durable, efficient for-
mamidinium perovskite solar cells, Science 384, 1227 (2024).

[14] L. Kavan, Z. V. Zivcova, M. Zlamalova, S. M.
Zakeeruddin, and M. Grätzel, Electron-selective layers for
dye-sensitized solar cells based on TiO2 and SnO2, J. Phys.
Chem. C 124, 6512 (2020).

[15] A. O. Alvarez, R. Arcas, C. A. Aranda, L. Bethencourt, E.
Mas-Marzá, M. Saliba, and F. Fabregat-Santiago, Negative
capacitance and inverted hysteresis: Matching features in per-
ovskite solar cells, J. Phys. Chem. Lett. 11, 8417 (2020).

[16] W. Clarke, M. V. Cowley, M. J. Wolf, P. Cameron, A. Walker,
and G. Richardson, Inverted hysteresis as a diagnostic tool for
perovskite solar cells: Insights from the drift-diffusion model,
J. Appl. Phys. 133, 095001 (2023).

[17] J.-W. Lee, S.-G. Kim, S.-H. Bae, D.-K. Lee, O. Lin, Y. Yang,
and N.-G. Park, The interplay between trap density and hystere-
sis in planar heterojunction perovskite solar cells, Nano Lett. 17,
4270 (2017).

[18] S. Y. Chae, S. J. Park, O.-S. Joo, Y. Jun, B. K. Min, and
Y. J. Hwang, Highly stable tandem solar cell monolithically
integrating dye-sensitized and CIGS solar cells, Sci. Rep. 6,
30868 (2016).

[19] Z. Zolfaghari, E. Hassanabadi, D. Pitarch-Tena, S. J. Yoon, Z.
Shariatinia, J. van de Lagemaat, J. M. Luther, and I. Mora-Seró,
Operation mechanism of perovskite quantum dot solar cells
probed by impedance spectroscopy, ACS Energy Lett. 4, 251
(2019).

[20] F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, and
W. Tress, Origin of apparent light-enhanced and negative ca-
pacitance in perovskite solar cells, Nat. Commun. 10, 1574
(2019).

[21] A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao,
M. K. Nazeeruddin, and M. Grätzel, Impedance spectroscopic

115306-11

https://doi.org/10.1038/nphoton.2014.134
https://doi.org/10.1038/s41528-022-00222-3
https://doi.org/10.1038/s41560-024-01450-9
https://doi.org/10.1038/nature14563
https://doi.org/10.1039/C8TA10585E
https://doi.org/10.1016/j.nanoen.2018.06.085
https://doi.org/10.1038/s41560-024-01487-w
https://doi.org/10.1039/D2RA05903G
https://doi.org/10.1063/5.0145199
https://doi.org/10.1002/adma.202311025
https://doi.org/10.1088/2752-5724/ad37cf
https://doi.org/10.1038/s41563-024-01876-2
https://doi.org/10.1126/science.abq6993
https://doi.org/10.1021/acs.jpcc.9b11883
https://doi.org/10.1021/acs.jpclett.0c02331
https://doi.org/10.1063/5.0136683
https://doi.org/10.1021/acs.nanolett.7b01211
https://doi.org/10.1038/srep30868
https://doi.org/10.1021/acsenergylett.8b02157
https://doi.org/10.1038/s41467-019-09079-z


VICTOR LOPEZ-RICHARD et al. PHYSICAL REVIEW B 110, 115306 (2024)

analysis of lead iodide perovskite-sensitized solid-state solar
cells, ACS Nano 8, 362 (2014).

[22] S. Ito, S. M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, and
M. Grätzel, Bifacial dye-sensitized solar cells based on an ionic
liquid electrolyte, Nat. Photon. 2, 693 (2008).

[23] A. R. C. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum,
Electrochemical impedance spectroscopy of metal oxide elec-
trodes for energy applications, ACS Appl. Energy Mater. 3, 66
(2020).

[24] I. Mora-Seró, J. Bisquert, F. Fabregat-Santiago, G. Garcia-
Belmonte, G. Zoppi, K. Durose, Y. Proskuryakov, I. Oja,
A. Belaidi, T. Dittrich et al., Implications of the negative
capacitance observed at forward bias in nanocomposite and
polycrystalline solar cells, Nano Lett. 6, 640 (2006).

[25] Y. Y. Proskuryakov, K. Durose, B. M. Taele, and S. Oelting,
Impedance spectroscopy of unetched CdTe/CdS solar cells—
Equivalent circuit analysis, J. Appl. Phys. 102, 024504 (2007).

[26] A. Guerrero, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert,
Y. S. Kang, T. J. Jacobsson, J.-P. Correa-Baena, and A.
Hagfeldt, Properties of contact and bulk impedances in hy-
brid lead halide perovskite solar cells including inductive loop
elements, J. Phys. Chem. C 120, 8023 (2016).

[27] F. Wu, R. Pathak, K. Chen, G. Wang, B. Bahrami, W.-H. Zhang,
and Q. Qiao, Inverted current-voltage hysteresis in perovskite
solar cells, ACS Energy Lett. 3, 2457 (2018).

[28] C. Gonzales, A. Guerrero, and J. Bisquert, Transition from
capacitive to inductive hysteresis: A neuron-style model to cor-
relate I-V curves to impedances of metal halide perovskites,
J. Phys. Chem. C 126, 13560 (2022).

[29] J.-I. Takahashi, Negative impedance of organic light emitting
diodes in AC electrical response, J. Appl. Phys. 125, 245501
(2019).

[30] A. Bou, A. Pockett, D. Raptis, T. Watson, M. J. Carnie, and J.
Bisquert, Beyond impedance spectroscopy of perovskite solar
cells: Insights from the spectral correlation of the electrooptical
frequency techniques, J. Phys. Chem. Lett. 11, 8654 (2020).

[31] J. Bisquert, Hysteresis in organic electrochemical transistors:
Distinction of capacitive and inductive effects, J. Phys. Chem.
Lett. 14, 10951 (2023).

[32] N. Filipoiu, A. T. Preda, D.-V. Anghel, R. Patru, R. E. Brophy,
M. Kateb, C. Besleaga, A. G. Tomulescu, I. Pintilie, A.
Manolescu et al., Capacitive and inductive effects in perovskite
solar cells: The different roles of ionic current and ionic charge
accumulation, Phys. Rev. Appl. 18, 064087 (2022).

[33] D. A. van Nijen, M. Muttillo, R. van Dyck, J. Poortmans, M.
Zeman, O. Isabella, and P. Manganiello, Revealing capacitive
and inductive effects in modern industrial c-Si photovoltaic
cells through impedance spectroscopy, Sol. Energy Mater. Sol.
Cells 260, 112486 (2023).

[34] J. Bisquert, Inductive and capacitive hysteresis of current-
voltage curves: Unified structural dynamics in solar energy
devices, memristors, ionic transistors, and bioelectronics, PRX
Energy 3, 011001 (2024).

[35] R. S. Crandall, Modeling of thin film solar cells: Uniform field
approximation, J. Appl. Phys. 54, 7176 (1983).

[36] M. A. Green, Solar Cells: Operating Principles, Technology,
and System Applications, Prentice-Hall Series in Solid State
Physical Electronics (Prentice-Hall, Englewood Cliffs, 1982).

[37] R. S. W. Silva, F. Hartmann, and V. Lopez-Richard, The ubiq-
uitous memristive response in solids, IEEE Trans. Electron
Devices 69, 5351 (2022).

[38] A. B. de Paiva, R. S. W. Silva, M. P. F. de Godoy, L. M. B.
Vargas, M. L. Peres, D. A. W. Soares, and V. Lopez-Richard,
Temperature, detriment, or advantage for memory emergence:
The case of ZnO, J. Chem. Phys. 157, 014704 (2022).

[39] V. Lopez-Richard, R. S. W. Silva, O. Lipan, and F. Hartmann,
Tuning the conductance topology in solids, J. Appl. Phys. 133,
134901 (2023).

[40] S. Ravishankar, O. Almora, C. Echeverría-Arrondo, E.
Ghahremanirad, C. Aranda, A. Guerrero, F. Fabregat-Santiago,
A. Zaban, G. Garcia-Belmonte, and J. Bisquert, Surface po-
larization model for the dynamic hysteresis of perovskite solar
cells, J. Phys. Chem. Lett. 8, 915 (2017).

[41] E. Ghahremanirad, A. Bou, S. Olyaee, and J. Bisquert, Induc-
tive loop in the impedance response of perovskite solar cells
explained by surface polarization model, J. Phys. Chem. Lett.
8, 1402 (2017).

[42] G. E. Pikus, Physics of Semiconductors and Semiconductor
Devices (Nauka, Moscow, 1965).

[43] V. Lopez-Richard, S. Pradham, R. S. W. Silva, O. Lipan,
L. K. Catelano, S. Höfling, and F. Hartmann, Inadequacy of
equivalent circuits in nonlinear systems with inherent memory,
arXiv:2303.04135.

[44] V. L. Bonch-Bruevich and S. G. Kalashnikov, Rectification and
amplification of alternating currents using p-n junctions, in The
Physics of Semiconductors—Russian edition (Nauka, Moscow,
1977), Chap. VIII, p. 239.

[45] E. Warburg, Ueber die Polarisationscapacität des Platins,
Ann. Phys. 311, 125 (1901).

[46] A. K. Jonscher, The physical origin of negative capacitance,
J. Chem. Soc., Faraday Trans. 2 82, 75 (1986).

[47] S. M. Joshi, N. Xia, Y. Berta, Y. Ding, R. A. Gerhardt, E.
Woods, and M. Tian, Detection of plasmonic behavior in
colloidal indium tin oxide films by impedance spectroscopy,
MRS Commun. 10, 278 (2020).

[48] M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski,
and A. K. Jonscher, Negative capacitance effect in semiconduc-
tor devices, IEEE Trans. Electron Devices 45, 2196 (1998).

115306-12

https://doi.org/10.1021/nn404323g
https://doi.org/10.1038/nphoton.2008.224
https://doi.org/10.1021/acsaem.9b01965
https://doi.org/10.1021/nl052295q
https://doi.org/10.1063/1.2757011
https://doi.org/10.1021/acs.jpcc.6b01728
https://doi.org/10.1021/acsenergylett.8b01606
https://doi.org/10.1021/acs.jpcc.2c02729
https://doi.org/10.1063/1.5094562
https://doi.org/10.1021/acs.jpclett.0c02459
https://doi.org/10.1021/acs.jpclett.3c03062
https://doi.org/10.1103/PhysRevApplied.18.064087
https://doi.org/10.1016/j.solmat.2023.112486
https://doi.org/10.1103/PRXEnergy.3.011001
https://doi.org/10.1063/1.331955
https://doi.org/10.1109/TED.2022.3188958
https://doi.org/10.1063/5.0097470
https://doi.org/10.1063/5.0142721
https://doi.org/10.1021/acs.jpclett.7b00045
https://doi.org/10.1021/acs.jpclett.7b00415
https://arxiv.org/abs/2303.04135
https://doi.org/10.1002/andp.19013110910
https://doi.org/10.1039/f29868200075
https://doi.org/10.1557/mrc.2020.22
https://doi.org/10.1109/16.725254

