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Large exciton-polariton optical nonlinearities present a key mechanism for photonics-based communication,
ultimately in the quantum regime. Enhanced nonlinear response from various materials hosting excitons and
allowing for their strong coupling with light is therefore the topic of intense studies, both in theoretical and
experimental domains. Reports on the scattering rates arising due to various system’s nonlinearities, such as
the exciton-exciton Coulomb interaction and the Pauli blocking that leads to the saturation of the exciton
oscillator strength, however, are contradictory. In this work, we develop a formalism allowing to track the
exciton nonlinearities appearing in the regime of strong coupling with photons, that includes finite temperatures,
mixing of the exciton excited states, and the dark exciton contributions to saturation self-consistently. The
equilibrium path integration approach employed here to address the polariton composite nature leads to a
transparent hierarchy of various contributions to nonlinearity. At the same time, by taking the simplest limit
of zero temperature and so-called “rigid” excitons, through our framework we retrieve the expressions derived
in conventional approaches for exciton interaction constants. In particular, our theory allows to clearly show that
such interaction constants cannot be used as fitting parameters tunable in a wide range of values, as they are
strictly defined by the material properties, and that other explanations are due for large optical nonlinearities
recently reported.
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I. INTRODUCTION

Exciton-polaritons, hybrid semiconductor quasiparticles
that result from strong coupling of electronic excitations with
light, are attractive candidates to endow photons with strong
nonlinearity, both in the macroscopically coherent regimes
and at the single-particle level [1,2]. This promising perspec-
tive, together with quickly developing state of the art, led in
the last years to intensification of experimental and theoreti-
cal studies aimed at the analysis of polariton interactions in
various material systems, including both conventional semi-
conductor quantum wells (QWs) [3,4] and two-dimensional
(2D) transition-metal dichalcogenides (TMDs) [5–9], the lat-
ter allowing to operate at elevated temperatures.

When considering macroscopic phenomena on the polari-
ton level, such as the polariton Bose-Einstein condensation
[10] and superfluidity [11], excitons are most often treated as
proper bosons, due to the underlying exciton-photon strong
coupling. In the microscopic descriptions on the exciton level,
however, it has been argued that their composite electron-hole
structure needs to be taken into account. In this context, for
electron-hole-photon systems with strong coupling, such as
polaritons in a microcavity, several formalisms considering
the effective exciton Bose field have been developed, e.g.,
directly introducing the exciton operators [12–15], performing
the Usui transformation [16], or basing on the semicon-
ductor Bloch equation [17–19]. All these methods represent
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generally the same approach describing the bosonization of
interacting fermionic constituents of the exciton in presence
of the photon field in the case of low densities (nexa2 � 1,
where nex and a are the 2D exciton density and Bohr radius,
respectively). On the other hand, the opposite limit where
the coupling to photons is considered dominant and Coulomb
electron-hole interaction absent, was studied within the gen-
eralized Dicke model in a series of works by Littlewood and
co-authors [20–25] and, later, in Ref. [26] for excitons bound
by light. In both of these limits, however, the considerations
were mostly limited to zero temperature and spinless electrons
and holes (except for Ref. [13]).

It is perhaps instructive to recall that for bulk semicon-
ductors, the electron-hole systems without strong coupling
to photons were originally studied by Keldysh and Kozlov
[27] in 1960s using the Green’s functions technique with
additional corrections from multiple electron-hole scattering
processes. Later, Kiselev and Babichenko [28] proposed the
description of such electron-hole fermionic system based on
the path integral approach. This theory allows for perturba-
tive derivation of the effective exciton action for a weakly
interacting exciton Bose gas starting from the electron-hole
formalism. The exciton interaction constant calculated in
Refs. [27,28] is equal to g3D

ex = (13π/3) h̄2a3D/m, which
corresponds to 1s-exciton scattering (here m is the exciton re-
duced mass). In an analogous approach for quasi-2D excitons
in semiconductor QWs, the exciton interaction constant g2D

ex =
(1 − 315π2/4096)4π h̄2/m was derived in 1995 [29]. Further
works treating QW exciton interaction already in the polariton
regime [12,16,17] reproduced this result and, furthermore,
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underlined another possible source of the polariton optical
nonlinearity: the saturation of exciton oscillator strength.

With the emergence of TMD monolayers as a versatile
platform hosting excitons and exciton-polaritons, the search
for correct estimates of the interaction constants gex and
gsat, characterising the exciton pair interaction and satura-
tion, respectively, was renewed (here and below we drop the
superscript “2D” for clarity). On the one hand, the small
exciton Bohr radii and large binding energies hold promise
for robust highly nonlinear TMD polaritons up to room tem-
peratures. On the other hand, the lowest-lying s states of
such excitons exhibit significant deviations from conventional
Coulomb-bound hydrogenic model [30,31], since the interac-
tion between charges in atomically thin layers is described by
the Rytova-Keldysh potential [32]. Among theoretical works,
Ref. [33], revisiting the logarithmic factor in the interaction
strength—a well-known result for 2D boson scattering prob-
lem [34,35]—underlined that for polaritons the interaction
constants should be larger than those for excitons, due to
the difference between the exciton and lower polariton (LP)
energies. Reference [36] in their Supplemental Information
provides the detailed derivation of the Rabi splitting renor-
malization (saturation) in the operator formalism, similar to
Refs. [12–14], but up to the second order in nexa2. Thus, the
analytical expressions for the constants gex and gsat describing
both polariton nonlinearities, valid for the case of robust 1s ex-
citons at T = 0, exist. Nevertheless, recent experiments reveal
not only a substantial disagreement with those predictions,
but also contradictory results in comparison to each other.
In particular, while some giant exciton saturation constants
were recently reported for 1s excitons in WS2 [5], Ref. [6]
reports on the numbers two orders of magnitude smaller for
the same material. Still, the saturation-related nonlinearity
gsat in both works exceeds gex. Similar studies performed in
Ref. [7] for MoSe2 revealed gex and gsat to be of the same
order, whereas in Ref. [8], these constants are smaller by
one and two orders of magnitude, respectively. Notably, a
very recent experiment performed with GaAs QW polaritons,
which was able to resolve the upper-polariton (UP) branch,
also revealed gsat � gex [4]. Noting such vast disagreements
in the reported values of polariton-polariton nonlinearities, it
needs to be noted that from the experimental point of view, the
definition of polariton interaction constants is very nontriv-
ial. First complication comes from the intrinsic difficulty of
independent measurements of the particle densities. Second,
one needs independent observables to distinguish between
the interaction and saturation mechanisms of the nonlinearity,
which requires a clear observation of both the upper and lower
polariton branches. In all the above experimental works, the

two constants gex and gsat are used as free parameters to fit
the observed dispersions shifts with excitation power and, as
a result, the obtained values are completely disconnected from
the microscopic theoretical descriptions. All these results call
for interpretation and detailed analysis.

In this work, we develop the path integral approach [28]
for an electron-hole-photon mixture, examining the influence
of the photon field on the shape of the exciton field, and derive
the effective exciton-photon action. While the considerations
presented here in their simplest limit (T = 0 and the rigid 1s
exciton) do not lead to results other than those obtained in
previous works [12,13,16,17], they differ in regard to their
derivation. In its full shape, however, our theory provides
means to follow the influence of finite temperatures, electron-
electron scattering, and the reshaping of the exciton structure
due to the presence of photons (such as forming the “flexi-
ble” exciton where many s states are mixed) on the exciton
nonlinearities. To provide possible explanation of experimen-
tally observed saturation constants, the dark exciton states are
self-consistently introduced in the exciton-photon action via
consideration of the electron and hole spins.

The paper is organized as follows. Section II is devoted
to the full derivation of the exciton-photon action at finite
temperature in the spinless case. Section III addresses the
limit T = 0 and rigid 1s-exciton state, which allows to com-
pare results with the existing works. In Sec. IV, we present
the corrections appearing in the renormalization of the Rabi
splitting due to contributions of dark excitons to the UP and
LP dispersions shifts when the spins of underlying electron
and holes are self-consistently taken into account. Section V
concludes our studies. The main text is supplemented with
Appendices A–E containing some cumbersome calculation
details, including the extension of the main theory accounting
for spins.

II. THE EXCITON-PHOTON ACTION

In the presented derivation, we consider the most relevant
case nexa2 � 1. The opposite limit can be attributed to the
formation of the exciton insulator proposed by Keldysh and
Kopaev [37], which for polariton systems was studied in
Ref. [38]. We start with the action for the electron-hole-photon
system so far neglecting the spins of particles, in terms of
the field operators of electrons �c(v) in the conduction (va-
lence) bands with effective masses mc(v) and the dispersions
εc(v)(k) = ±(Eg/2 + h̄2k2/2mc(v) ), and the field operator �ph

of photons in a microcavity, with the effective mass mph and
the dispersion Eph(k) = E0

ph + h̄2k2/2mph. The origin of the
energy is taken in the middle of the band gap of width Eg, and
E0

ph represents the cavity cutoff. The action reads

S[�c, �v, �ph] =
∫

dr
∫ β

0
dτ

[
(�c(x) �v (x))

(
∂τ + εc(k̂) − μc 0

0 ∂τ + εv (k̂) − μv

)(
�c(x)
�v (x)

)

+ �ph(x)(∂τ + Eph(k̂) − μph)�ph(x) + gR(�ph(x)�c(x)�v (x) + �c(x)�v (x)�ph(x))

]

+ 1

2

∑
i, j

∫
drdr′

∫ β

0
dτdτ ′V (x − x′)� i(x)�i(x)� j (x

′)� j (x
′), (1)
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with i, j running over {c, v}, x = (r, τ ), τ is the imaginary
time, β = h̄/kBT , k̂ is the momentum operator, and V (x −
x′) ≡ V (r − r′)δ(τ − τ ′), where V (r − r′) represents the po-
tential of interaction between charged particles. μc(v) is the
chemical potential of the electrons in conduction (valence)
band (which approximately equals zero for the ground state
in undoped semiconductors), and μph is the chemical poten-
tial of photons. We consider separate chemical potentials of
species since the total number of particles (electrons, holes,
and photons) is not conserved. Finally, gR is the amplitude of
light-matter coupling (electron-hole annihilation with photon
creation and vice versa). The inclusion of the particles spins
and valleys into Eq. (1) is discussed below. In the functional
integration (path integration) approach the grand canonical
partition function is defined as

Z =
∫

D[�c,v, �c,v]D[�ph, �ph]e−S[�c,�v ,�ph]. (2)

The exciton field 	(r1, r2; τ ) = �v (r2, τ )�c(r1, τ ) can be
introduced in the following way:

Z =
∫

D[�]e−S[�]

=
∫

D[�]D[	̄	]e−S[�]δ(	 − �v�c)δ(	̄ − �c�v )

=
∫

D[�]D[	̄	]D[φ̄, φ]e−S[�]eiφ̄(	−�v�c )+iφ(	̄−�c�v ),

(3)

where φ(r1, r2; τ ) is an auxiliary field. Looking ahead,
this field is unphysical and below will be integrated over.
Strictly speaking, other fields can be taken into account us-
ing the standard Hubbard-Stratonovich transformation: one
can consider different channels of dual-field decoupling in
the interacting part of the initial action. In particular, intro-
ducing the dual field � i(x)�i(y) (i = c, v), one can derive
the renormalization of the exciton-exciton interaction ma-
trix element due to electron scattering, which is done in
Appendix A.

For convenience we perform the Fourier transform assum-
ing the system homogeneous and finite, and account for finite
temperatures:

�i(x, τ ) =
√

T

S

∑
k

∑
ωn

�i(k, ωn)eik·x−iωnτ ,

	(x, y) =
√

T

S

∑
k,k′

∑
�n

	(k, k′,�n)eik·x−ik′ ·y−i�nτ ,

φ(x, y) =
√

T

S

∑
k,k′

∑
�n

φ(k, k′,�n)eik·x−ik′ ·y−i�nτ ,

where ωn = (2πn + π )/β and �n = 2πn/β are the fermionic
and bosonic Matsubara frequencies, respectively, n ∈ Z, k, k′
are the quantized wave vectors, and S is the system area. The
action takes the following form:

S[�c, �v, �ph, φ,	] =
∑
k,ω

[
(�c(k) �v (k))

(−iω + εc(k) − μc 0
0 −iω + εv (k) − μv

)(
�c(k)
�v (k)

)]

+ i
√

T
∑
k1,ω1

∑
k2,ω2

[
(�c(k1) �v (k1))

(
0 φ(k1, k2, ω1 − ω2)

φ̄(k2, k1, ω2 − ω1) 0

)(
�c(k2)
�v (k2)

)]

− i
∑

k1,k2,�

[φ̄(k1, k2,�)	(k1, k2,�) + 	̄(k1, k2,�)φ(k1, k2,�)]

−
∑

k1...k4,�

V (k1 − k2)	̄(k1, k4,�)	(k2, k3,�)δ(k1 + k3, k2 + k4)

+
∑
k,�

�ph(k)[−i� + Eph(k) − μph]�ph(k)

+ gR√
S

∑
k1,k2,�

[�ph(k1 − k2,�)	(k1, k2,�) + 	̄(k1, k2,�)�ph(k1 − k2,�)], (4)

where all sums over ω,� involve summation over integer indices n (subscripts n are omitted for clarity), and the four-vector
notation k ≡ (k, ωn) or (k,�n) was introduced for both fermionic and bosonic fields. It is then straightforward to perform the
integration over the fermionic fields �c,v , which results in the (−TrlnG−1) contribution to the action, where G−1 = G−1

0 + δG−1

with

G−1
0 =

(−iω1 + εc(k1) − μc 0
0 −iω1 + εv (k1) − μv

)
δk1k2

denoting the bare electron Green’s function, δk1,k2 being the
Kronecker symbol in four-vector notation, and

δG−1 = i
√

T

(
0 φ(k1, k2,�)

φ̄(k2, k1,−�) 0

)
containing the introduced auxiliary field φ (here the bosonic
Matsubara frequency � ≡ �n originates from the difference
of two fermionic frequencies ω1n − ω2n). It can be easily
calculated under the assumption δG−1 � G−1

0 (considering
δG−1 as a perturbation, which corresponds to our applicability
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condition nexa2 � 1):

TrlnG−1 = TrlnG−1
0 + Trln(1 + G0δG−1)

= TrlnG−1
0 + Tr

∑
n

(−1)n−1

n
(G0δG−1)n. (5)

In the expansion series, one should keep the terms up to the
4th power to derive the exciton-exciton interaction.

Since G0 is diagonal while δG−1 is antidiagonal, the first
and third terms in the logarithm expansion are absent, hence
in the lowest order in the auxiliary field φ, one gets

1

2
Tr(G0δG−1)2 = − T

∑
k1,k2,�

φ̄(k1, k2,�)φ(k1, k2,�)

×
∑
ω′

G0(k1, ω
′ + �)11G0(k2, ω

′)22. (6)

The last summation is performed over the fermionic Matsub-
ara frequency ω′ of the loop diagram [see Fig. 1(a)], and for

finite temperatures it leads to the exciton propagator

T
∑
ω′

G0(k1, ω
′ + �)11G0(k2, ω

′)22

= nv (k2) − nc(k1)

εc(k1) − εv (k2) − μc + μv − i�
≡ A �

k1k2
, (7)

where ni(k) = 1/(eβ(εi (k)−μi ) + 1) is the Fermi distribu-
tion function in the i-band (the details are provided in
Appendix B). Here we note that for an undoped semicon-
ductor nc = nv and thus one can approximate μc ∼ −μv +
T ln(mv/mc). From the point of view of equilibrium chem-
ical reactions, the exciton chemical potential is defined as
μex = μe + μh = μc − μv (where μe,h denote the chemical
potentials of the electrons and holes), and in thermody-
namic equilibrium between the excitons and photons it should
equal μex = μph ≡ μ. Then the above expression reduces
to

A �
k1k2

= nv (k2) − nc(k1)

εc(k1) − εv (k2) − μ − i�
. (8)

In the same manner, we calculate the |φ|4 term:

1

4
Tr(G0δG−1)4 = 2

4
(i
√

T )4
∑

k1...k4

∑
�1...�3

φ(k1, k2,�1)φ̄(k3, k2,�2)φ(k3, k4,�3)φ̄(k1, k4,�1 + �3 − �2)

×
∑
ω′

G0(k1, ω
′)11G0(k2, ω

′ − �1)22G0(k3, ω
′ − �1 + �2)11G0(k4, ω

′ − �1 + �2 − �3)22, (9)

where the factor of 2 arises from the number of loops in the corresponding diagram series [see Appendix B and Fig. 1(b)]. The
result of summation over the frequency of the fourth-order loop diagram in Eq. (9) is given in Appendix B, while here we only
introduce the loop notation:

L�1�2�3
k1k2k3k4

= T
∑
ω′

G0(k1, ω
′)11G0(k2, ω

′ − �1)22G0(k3, ω
′ − �1 + �2)11G0(k4, ω

′ − �1 + �2 − �3)22. (10)

The effective action takes the form:

S[�ph, φ,	] = −
∑

k1,k2,�

A �
k1k2

φ̄(k1, k2,�)φ(k1, k2,�) +
∑
k,�

�ph(k)(−i� + Eph(k) − μ)�ph(k)

− i
∑

k1,k2,�

[φ̄(k1, k2,�)	(k1, k2,�) + 	̄(k1, k2,�)φ(k1, k2,�)]

−
∑

k1...k4,�

V (k1 − k2)	̄(k1, k4,�)	(k2, k3,�)δ(k1 + k3, k2 + k4)

FIG. 1. Loop diagrams corresponding to the second-order (a), fourth-order (b), and third-order (c) terms of the TrlnG−1 expansion. The
solid lines represent the Green’s functions as marked on the panels, the ingoing (outgoing) dashed lines correspond to the fields φ (φ̄), the dotted
lines in (c) represent the additional fields 
c,v + iξ (see Appendix A). Summation over the fermionic Matsubara frequency ω′ is assumed. For
the similar loops denoted with tilde (see text), the fields φ are expressed in terms of the excitonic field 	.
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+ gR√
S

∑
k1,k2,�

[�ph(k1 − k2,�)	(k1, k2,�) + 	̄(k1, k2,�)�ph(k1 − k2,�)]

+ T

2

∑
{ki,�i}

L�1�2�3
k1k2k3k4

φ(k1, k2,�1)φ̄(k3, k2,�2)φ(k3, k4,�3)φ̄(k1, k4,�1 + �3 − �2). (11)

Now, the auxiliary field φ needs to be excluded. Within the saddle-point approximation in the lowest order of the TrlnG−1

expansion, we have

δS
δφ̄

= −A �
k1k2

φ(k1, k2,�) − i	(k1, k2,�) = 0, (12)

and the relation between the exciton and the auxiliary fields can be found:

φ(k1, k2,�) = 	(k1, k2,�)

iA �
k1k2

, (13a)

φ̄(k1, k2,�) = 	̄(k1, k2,�)

iA �
k1k2

, (13b)

which allows one to rewrite the effective action in terms of the exciton and photon fields, and obtain the effective exciton-photon
action. Despite the result being quite similar with the previously reported [39], in our case the exciton field depends on two
momenta. We can interpret it as the exciton field 	(k1, k2,�) corresponding to the relative motion of electrons belonging to
different bands, with the momentum p = (mck1 + mvk2)/(mc + mv ), and motion of the exciton as a whole, with the momentum
k = k1 − k2.

A. Bethe-Salpeter equation for excitons coupled to photons at finite temperature

It is useful to rewrite the obtained expressions in terms of the relative and total momenta:

S[�ph,	] =
∑

p,k,�

	̄(p, k,�)	(p, k,�)

A�
pk

+
∑
k,�

�ph(k,�)(−i� + Eph(k)−μ)�ph(k,�)

−
∑

k,p,q,�

V (p − q)	̄(p, k,�)	(q, k,�) + gR√
S

∑
p,k,�

[�ph(k,�)	(p, k,�)

+ 	̄(p, k,�)�ph(k,�)] + T

2

∑
p,{li,�i}

L̃�1�2�3
p l1l2l3

	(p, l1,�1)	̄(p + l2−l1
2 , l2,�2)

× 	(p + l2 − l1−l3
2 , l3,�3)	̄(p + l2−l3

2 , l1 − l2 + l3,�1 + �3 − �2).

Here and below, tildes denote the loops connecting exciton
fields 	 (see Appendix B). When performing the saddle-
point approximation to define the shape of the exciton field
in presence of photons, the last term can be considered as
perturbation since it was derived in the higher order in the
expansion series, so that it can be temporarily neglected:

δS
δ	̄

= 	(p, k,�)

A�
pk

+ gR√
S
�ph(k,�)

−
∑

q

V (p − q)	(q, k,�) = 0, (14a)

δS
δ�ph

= (−i� + Eph(k) − μ)�ph(k,�)

+
∑

p

gR√
S
	(p, k,�) = 0. (14b)

Determining the photon field via the exciton field in (14b)
and substituting it into (14a), we obtain the generalized Bethe-

Salpeter equation modified by the presence of the photon field
(similar to the semiconductor Bloch equation [18] albeit with
the explicit dependence on k in the photon dispersion):

	(p, k,�)

A�
pk

−
∑

q

[
V (p − q) +

(
gR√

S

)2 1

Eph(k) − μ − i�

]

× 	(q, k,�) = 0. (15)

This equation is one of the main results of this study. Finite
temperatures are contained in the summations and Fermi dis-
tributions appearing in A�

pk. As anticipated, the photon field
alters the exciton interaction, since the electrons and holes
in such a system can be bound not only by Coulomb-like
interactions, but also by light. This phenomenon is known
in the literature as the flexible exciton limit [40] in which
the polariton Rabi splitting is not negligible compared to
the exciton binding energy: h̄�R ∼ Eb. It should be noted
that similar equations were recently derived in Refs. [15,26]
for the zero-temperature case using the operator formalism.

115304-5



ANNA M. GRUDININA AND NINA S. VORONOVA PHYSICAL REVIEW B 110, 115304 (2024)

Reference [19] proposes the solution of (15) for T = 0 in the
case of one-mode fields. To compare, we apply this method to
the equation (15) at zero temperature in Appendix C.

Equation (15) can be solved using the ansatz

	(p, k,�) =
∑

ν

χ
(ν)
k,�(p)C(ν)(k,�),

which is a decomposition of the exciton field over the
basis of (hydrogenlike) wave functions χ

(ν)
k,�

(p), with ν

being the number of excitonic νs state and C(ν)(k,�)
the corresponding exciton field depending only on the to-
tal momentum. Introducing the interaction matrix element
g(l1, l2, l3,�1,�2,�3, ν1, ν2, ν3, ν4) ≡ g(li,�i, νi ) as

g(li,�i, νi ) =
∑

p

L̃�1�2�3
p l1l2l3

χ
(ν1 )
l1,�1

(p)χ̄ (ν2 )
l2,�2

(
p + l2−l1

2

)
× χ

(ν3 )
l3,�3

(
p + l2 − l1−l3

2

)
χ̄

(ν4 )
l1−l2+l3,�1−�2+�3

(
p + l2−l3

2

)
,

(16)

we arrive at the final expression for effective exciton-photon
action:

S[�ph,C] =
∑
k,�

∑
ν

C
(ν)

(k,�)E (ν)
ex (k,�)C(ν)(k,�)

+
∑
k,�

�ph(k,�)(−i� + Eph(k)−μ)�ph(k,�)

+ gR

∑
k,�

∑
ν

[
χ̄

(ν)
k,�

(r = 0)C
(ν)

(k,�)�ph(k,�) + c.c.
]

+ T

2

∑
{li,�i,νi}

g(li,�i, νi )C
(ν1 )(l1,�1)C

(ν2 )
(l2,�2)

× C(ν3 )(l3,�3)C
(ν4 )

(l1 − l2 + l3,�1 + �3 − �2).
(17)

Here it is important to note that all the expressions are derived
in the most general form (for T 	= 0, arbitrary interactions
and for excitons and photons with k 	= 0). Summation over
ν allows to account for the flexible exciton case when the
coupling to light results in the mixing of states in the exciton
s series. Appendix C is devoted to simplifications of these
general formulas for the case of zero temperature.

B. Existing limits

Standard treatment of exciton-polariton systems often ne-
glects the second term in the square brackets in Eq. (15) or,
analogously, neglects the terms ∼gR compared to the exciton
binding energy Eb in Eqs. (14a) and (14b). Such considera-
tions correspond to the rigid exciton limit when Eb � h̄�R:

1

A�
pk

	(p, k,�) −
∑

q

V (p − q)	(q, k,�) = 0. (18)

From this point of view, considering only the 1s-state at T = 0
and separating variables 	(p, k,�) = χ (p)C(k,�) (where
χ (p) ≡ χ

(1)
k,�

(p) is independent of k and �) brings Eq. (18)
to the standard Wannier equation. In this limit, one would
obtain the exciton wave function and the renormalization of
the exciton-photon conversion term previously reported in

several works [15,16]:

gR√
S

∑
q

χ (q) = gRχ (r = 0) = h̄�R

2
, (19)

where h̄�R is the experimentally observed polariton Rabi-
splitting. In this case, the saddle-point equations (14a), (14b)
become the standard Hopfield equations while the exciton-
photon action takes the well-known form [39]. Here we
emphasize that this approach to treat the action is, in principle,
equivalent to the assumption that first an electron and a hole
are bound by electrostatic interaction forming an exciton, and
then excitons are coupled to photons, which is a common way
to describe strong coupling between excitons and photons.
Strictly speaking, in the case of finite temperatures variables
cannot be divided, as can be anticipated from the shape of A�

pk
in Eq. (8) with (k1, k2) → (p, k).

On the other hand, in the opposite limit of dominating
photon-electron-hole coupling, Eq. (15) for the exciton field
	 is similar to (18) but with the electron-hole interactions
induced only by light [23–26], which means one cannot
parametrize the field 	 as χ (p)C(k,�) with the hydrogenlike
wave function χ (p).

III. INTERACTION CONSTANTS

To describe the nonlinearities in terms of interaction con-
stants including the so-called saturation (exciton-assisted
photon-exciton coupling) that arises in our treatment from
the fourth-order expansion term, one needs not only to set
T = 0 but also to assume the rigid 1s-exciton limit. While
for the flexible exciton where all νs states of the hydrogenic
basis get mixed, the saturation contribution is also derived (see
Appendix C), it cannot be presented as a closed-form explicit
expression. The case of rigid excitons, in which we can an-
alyze the results of recent experiments [4–8] and compare to
existing theoretical results [12,13,15,16,36], is considered in
Appendix D.

For the ground-state exciton wave function which in
momentum space reads χ (p) = 2a

√
2π/(1 + p2a2)3/2, the

expression for the saturation interaction constant is defined as
gsat = (8π/7)a2h̄�R/2, where a in the hydrogenic description
is the 2D exciton Bohr radius, while for the Rytova-Keldysh
1s-state it should be considered a variational parameter
[41,42]. This is a well-established result obtained in many
different approaches [13,16,36]. Clearly, the exciton-assisted
exciton-photon coupling ∼gsatnex describes the conversion
between photons and excitons in the higher order of the small
parameter nexa2 compared to the terms ∼(�phC + c.c.). The
corresponding reduction of the polariton Rabi splitting can be
defined from the shifts of the UP and LP dispersions with the
increase of the exciton density. Performing the saddle-point
approximation for excitons and photons in the assumption of
uniform exciton density nex = const (see Appendix D), we
obtain the splitting between the dispersions minima renormal-
ized by interactions

h̄�R(nex) = h̄�R

√
1 − 4

gsatnex

h̄�R
+ 3(gsatnex)2

(h̄�R)2

≈ h̄�R − 2gsatnex. (20)
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Since gsatnex ∼ h̄�Rnexa2 and the exciton densities consid-
ered here are much smaller than the Mott density ∼a−2, the
correction to the splitting is supposed to be much smaller than
its value without the renormalization.

Futhermore, we show (see Appendices C and E) that in
the rigid 1s-exciton limit the pure exciton-exciton contri-
bution to interaction for Wannier-Mott excitons should be
larger than that from saturation, since the Rabi-coupling
term in the saddle-point Eqs. (14a) and (14b) in this limit
is treated as perturbation. As mentioned in the Introduc-
tion, the exciton interaction constant in this limit at T = 0
for excitons in QWs (i.e., with Coulomb interaction poten-
tial) is equal gex = (1 − 315π2/4096)4π h̄2/m = 6.06Eba2

[12–17,29]. For TMD-based materials (with Rytova-Keldysh
interaction potential) at T = 0 we derive from Eq. (D6)
gex = (16/π )e2a f (r0/a), where the overlap f (r0/a) of the
1s-exciton wave function and Fourier image of the interaction
potential depends only on the ratio between the screening
length r0 and the Bohr radius a. Importantly, due to the
reduced screening and hence small spread of the wave func-
tion, this overlap is small and decreasing with the growth
of r0. As a consequence, the exciton interaction constant gex

for 2D materials with the Rytova-Keldysh interaction be-
tween the charges is smaller than that for the 2D Coulomb
potential.

It is important to underline that, as can be seen from
Eqs. (D6) and (D7) even without the substitution of χ (p) in
the hydrogenic shape, the constants gex and gsat are defined
solely by the properties of the material and cannot be used as
tunable fitting parameters, unless one assumes that the rigid
exciton limit is violated and thus the theoretical expressions
obtained in this limit are not valid. In this light, the con-
clusions drawn in Ref. [5] from direct measurements of the
Rabi splitting at different exciton densities in monolayer WS2

that saturation in their system is huge, requires reconsidera-
tion. Furthermore, the recent experiment [7] performed for
monolayer MoSe2 revealed from fitting gsat � gex (in Ref. [5],
gex is totally disregarded). However, since the excitons in
TMD materials are robust (Eb � h̄�R), the saturation process
should be a correction rather than the leading term. We note
that for the case of GaAs QWs [4] where Eb � h̄�R, the
exciton rigidity can be undermined by the presence of photons
and gsat could be of the same order with gex, but the effect
of flexibility (mixing of the excitonic s-series) in TMDs is
highly unlikely. In Table I, we summarize the existing exper-
imental estimates for gex and gsat obtained from fitting of the
polariton branches in TMD monolayers, and compare them
to each other and to the theoretical values obtained here (for
interaction constants obtained from numerical wave functions
see Ref. [42]). One sees that only the experimental values
obtained at low temperature (5 K) in Ref [8] have the same
order as the theoretically predicted constants. Hence, noting
that straightforward introduction of the interaction constants
works only at T → 0 when one can factorize the exciton field
(since χk(p) stops being dependent on �), one needs to rely
on the full temperature-dependent treatment [see Eq. (D1)].
More strikingly, the nonlinearities experimentally reported for
the same materials in different works (even at the same T )
differ by orders of magnitude. We conclude that while the
rigid-exciton limit for TMD-materials is expected to be valid

with a great accuracy, there are other mechanisms at play
strongly altering the polariton nonlinearities.

IV. RENORMALIZATION OF THE RABI SPLITTING
DUE TO DARK EXCITONS

In this section, we show that one of such possible mecha-
nisms to explain this inconsistency can be addressed by taking
into account the spins of particles and considering the influ-
ence of dark states on the saturation process. For simplicity,
we restrict ourself only to the case of zero temperature. The
details of derivations, which in spirit are analogous to those
described in Sec. II, are presented in Appendix E. In this case,
four excitonic fields are introduced, two of which correspond
to bright 	±1 and the other two to dark excitons 	d,d̄ (here
d, d̄ generically denote the two spin projections of excitons
that are not coupling to light, i.e., ±2 for GaAs and 0 for
TMD excitons in two different valleys). Moreover, in Ap-
pendix E we take into account possible spin-bands splitting,
i.e., different dispersion curvatures for electrons with differ-
ent spin projections. The resulting saddle-point equations for
the four excitonic fields are differ from each other due to
the deviation in the exciton dispersions and, consequently,
in the 1s-exciton wave functions. As a result, the exciton in-
teraction and saturation constants for 	±1 and 	d,d̄ generally
differ as well.

Here, to show the simplest case, we assume that photons
of only one polarization (either +1 or −1) are present in
the system and that the effective electron masses mc(v) corre-
sponding to different spin bands are equal. Then one obtains
from the general expression the splitting between the UP and
LP branches at k = 0:

h̄�R(nex, nd ) = h̄�R

[
1 − gsat (4nex + 2nd )

h̄�R

+ g2
sat (nex + nd )(3nex + nd ) + g2

ex(nex + nd )2

(h̄�R)2

]1/2

,

(21)

where nd = Cd̄Cd̄ + CdCd is the dark exciton density, Cd(d̄)
is the dark-exciton field depending only on the total exciton
momentum. Strictly speaking, in Eq. (21) we took into ac-
count only the dominant terms, yet it is important to underline

TABLE I. Comparison of experimental and theoretical values for
gex and gsat in TMD monolayers, with the theoretical values obtained
in the current work.

Material gex (µeVµm2) gsat (µeVµm2) T

exp. [5] – 10.0 ± 0.4 room
theor. 1.87 0.17 –WS2

exp. [6] 0.055 ± 0.015 0.11 ± 0.035 room
theor. 1.87 0.2 –

exp. [7] 4.3 ± 4 3.2 ± 0.8 room
theor. 0.96 0.06 –MoSe2

exp. [8] 0.12 ± 0.01 0.015 ± 0.003 5 K
theor. 0.76 0.04 –
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that the obtained splitting accounts for both the interactions
that blueshift the LP and UP branches and the saturation
which results in the blueshift of LP and the redshift of UP
(for details see Appendix E). Surprisingly, nex and nd enter
this expression additively with the coefficients of the same
order, which underlines that the dark exciton population can-
not be disregarded when addressing the exciton saturation.
The presence of dark exciton states, as clearly seen, leads
to further quench of the Rabi splitting with the growth of
both densities, which could be the possible explanation of
the abovementioned experimental observations. It is worth
noting that a similar model including the reservoir contribu-
tion was phenomenologically proposed in Ref. [43], while the
reservoir was assumed to result from biexciton states. Our
model, however, does not take the bound states of multiple
excitons into account, thus overlooking the interactions of
excitons with antiparallel spins g↑↓

ex |C+1|2|C−1|2 which can
contribute to polariton interactions [7,13]. In the existing liter-
ature [33,44–46], the corresponding interaction constant g↑↓

ex
is demonstrated to be negative and, in general, comparable
with gex. Nevertheless, on the qualitative level, these attractive
interactions are expected to cause the decrease of blue- and
redshifts of the polariton dispersions.

V. CONCLUSIONS

To summarize, we developed the approach to perturba-
tively describe the electron-hole-photon system in presence
of strong coupling, based on the equilibrium path integral
technique. This approach, in general, is a description of
exciton-polariton nonlinearities that allows to track different
channels of dual-field pairing and self-consistently account
for finite temperatures and the full exciton νs series. It can
be applied to any material system (such as conventional
quantum-well microcavities or those based on TMD mono-
layers and bilayers). The difference in the charges interaction
potentials will enter via the shape of the exciton wave func-
tions that define the final quantitative results. As a logical
extension we also provided (see Appendix E) the treatment
of particle spins, which revealed the contributions to exciton
nonlinearities due to bright-bright, bright-dark, dark-dark ex-
citon interactions and spin-flip processes.

In the simplified case of rigid excitons, our analysis
provides several important results relevant to understanding
the giant nonlinearities observed in TMD-based microcav-
ities. First, we show that finite temperatures result in a
sizable change of the interaction constants and the usual
zero-T expressions cannot be used for the estimates in

room-temperature studies. Second, we reveal that the exciton-
photon conversion is affected by the presence of the reservoir
particles (such as dark excitons). We rigorously derive the
terms involving the dark exciton fields in effective ac-
tion, and the dark-exciton density contributions to the Rabi
splitting renormalization. Though the debate over whether
dark excitons must be invoked to explain both current and
past experimental reports remains complex, our results call
for a detailed comparative experimental studies of the exciton
saturation in TMD structures, to be performed at different
temperatures, which would allow to elucidate the relative
influence of the two factors on the observed nonlinearity. It
needs to be noted that to conclusively address these questions,
further refinement in the experimental determination of po-
lariton density will likely be necessary.

In a more sophisticated case of flexible excitons, which
is more relevant to quantum-well polaritons or for systems
with very strong coupling, an important conclusion is that the
concept of interaction constants describing the two sources
of nonlinearity in the system starts to fail. As several exciton
s-states start to contribute to the exciton field, the relative
motion of the electron and hole within the exciton cannot
be separated from the motion of the exciton as a whole. The
nonlinearities arising in this case from the fourth-order term
with respect to the exciton field are not factorized to the
integral over the exciton fields and wave functions overlap
integrals (which yield the above mentioned interaction and
saturation constants). Furthermore, the Bethe-Salpeter equa-
tion in this case, while having formally the same shape as
known from the semiconductor literature, contains not only
the temperature dependence but also the contribution of the
momentum-dependent photon energy dispersion to the forma-
tion of the exciton.

We note that our study did not consider additional con-
tributions to the photon-exciton action such as the formation
of multiexciton bound states. These scenarios were addressed
in recent works [46,47] where it was shown that biexciton-
polariton formation is possible, and that biexciton transition
therefore can also alter nonlinear optical response of TMDs.
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APPENDIX A: ADDITIONAL FIELDS (OTHER CHANNELS OF PAIRING)

In the beginning of the main text, we introduce the exciton field only. Strictly speaking, such consideration overlooks the
exciton interaction mediated by electron scattering processes. In this Appendix, we address this problem and show how taking
into account the off-diagonal density field � i(r, τ )�i(r′, τ ) (i = c, v) changes the exciton interaction term. For clarity, in
the derivations of this section we will omit the “photon” part of Eq. (1) which does not play a role here, being not coupled
with the density fields. Turning to the initial form of the action (1), we introduce not only the previously discussed fields
	 and φ, but also other densitylike fields which arise when considering other pairing channels, such as the off-diagonal

i(r, r′, τ ) = � i(r, τ )�i(r′, τ ) and diagonal ξi(r, τ ) = � i(r, τ )�i(r, τ ) density fields, using the Hubbard-Stratonovich
transformation [48].
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First, we define the momentum-frequency representation for the considered fields:


i(x, y) =
√

T

S

∑
k,k′

∑
�n


i(k, k′,�n)eik·x−ik′ ·y−i�nτ , (A1)

ξi(x) =
√

T

S

∑
k,k′

∑
�n

ξi(k, k′,�n)eik·x−ik′ ·x−i�nτ , (A2)

where k are discrete momenta and �n = 2πnT ≡ � are bosonic Matsubara frequencies. As one can see, the Fourier image of
the diagonal density field depends on one momentum (k − k′) only, which leads, as we will see further, to qualitatively differing
contributions to the exciton interaction. In the frequency-momentum representation, the action takes the form:

S[�c, �v, φ,	,
c,
v, ξc, ξv]

=
∑
k,ω

[
(�c(k) �v (k))

(−iω + εc(k) − μc 0
0 −iω + εv (k) − μv

)(
�c(k)
�v (k)

)]

− i
∑
k1,k2

�

[φ̄(k1, k2,�)	(k1, k2,�) + 	̄(k1, k2,�)φ(k1, k2,�)]

−
∑

k1...k4
�

V (k1 − k2)	̄(k1, k4,�)	(k2, k3,�)δ(k1 + k3, k2 + k4)

+ 1

2

∑
k,�

V −1(k)ξ (k,�)ξ (−k,−�) + 1

2

∑
k1...k4

�

∑
i=c,v

V −1(k1 − k2)
i(k1, k4,�)
i(k3, k2,�)δ(k1 + k3, k2 + k4)

+
√

T
∑
k1,ω1

∑
k2,ω2

[(
�c(k1) �v (k1)

)(
c(k2, k1) + iξ (k2 − k1) iφ(k1, k2, ω1 − ω2)
iφ̄(k2, k1, ω2 − ω1) 
v (k2, k1) + iξ (k2 − k1)

)(
�c(k2)
�v (k2)

)]
+ . . . , (A3)

where compared to Eq. (4) the terms containing �ph are omitted (. . . ) and the notation ξ = ξc + ξv is introduced. Although the
expression is quite cumbersome, all the contributions containing 
 and ξ will be integrated out, and the final expression remains
elegant. After performing the path integration over the fermionic fields, the second order of the TrlnG−1 expansion series yields
the relation between φ and 	, as in the main text,

φ(k1, k2,�) = −i

A �
k1k2

	(k1, k2,�),

and renormalizes the Coulomb interaction for the off-diagonal and diagonal densities

V −1(k1 − k2) → V −1(k1 − k2) + T
∑
ω′

G0(k1, ω
′ + �)11G0(k2, ω

′)11 for 
c,

V −1(k1 − k2) → V −1(k1 − k2) + T
∑
ω′

G0(k1, ω
′ + �)22G0(k2, ω

′)22 for 
v,

V −1(k1 − k2) → V −1(k1 − k2) − T
∑
ω′

G0(k1, ω
′ + �)11G0(k2, ω

′)11 + T
∑
ω′

G0(k1, ω
′ + �)22G0(k2, ω

′)22 for ξ, (A4)

where ω′ = (2n + 1)π/β is the fermionic Matsubara frequency.
The renormalization (A4) is assumed to be small, since we assume the small-parameter expansion. We note that since the

variation of the Green’s function δG−1 contains both diagonal and off-diagonal elements, the first- and third-order terms appear
in the expansion series. The first-order term is zero under the assumption that the system is electrically neutral. The third-order
term has the form:

1

3
Tr(G0δG−1)3 = 1

3

∑
k1,k2,k3

G0(k1)ααδG−1(k1, k2)αβG0(k2)ββδG−1(k2, k3)βγG0(k3)γ γ δG−1(k3, k1)γα

=
√

T
∑

k1,k2,k3

∑
�1,�2

[�̃121]�1�2
k1k2k3

	(k1, k2,�1)	̄(k3, k2,�2)[
c(k1, k3,�1 − �2) + iξ (k1 − k3,�1 − �2)]

+
√

T
∑

k1,k2,k3

∑
�1,�2

[�̃122]�1�2
k1k2k3

	(k1, k2,�1)	̄(k1, k3,�2)[
v (k3, k2,�1 − �2) + iξ (k3 − k2,�1 − �2)],

(A5)
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where α, β, γ run over the values 1, 2, but we choose only those that contain the fields φ (or 	), hence the notation for the
third-order loops �121 and �122 is introduced [see Fig. 1(c) and Appendix B for definitions and details of calculation]. Tilde, as
before, denotes the correspondence of a loop to the exciton field 	 (i.e., after the exclusion of the auxiliary field φ).

Integrating over the fields 
c,v we obtain the correction to the exciton interaction due to the electron-electron scattering (i.e.,
screening):

S ′
scr = − T

2

∑
q,k1...k4

∑
�1,�2
�′

1,�
′
2

V (q)[�̃121]�1�2
k1k3k2

[�̃121] �′
1 �′

2
k2−q,k4,k1−q 	(k1, k3,�1)	̄(k2, k3,�2)	(k2 − q, k4,�

′
1)

× 	̄(k1 − q, k4,�
′
2)δ�1+�′

1,�2+�′
2
− T

2

∑
q,k1...k4

∑
�1,�2
�′

1,�
′
2

V (q)[�̃122]�1�2
k3k2k1

[
�̃122

] �′
1 �′

2

k4,k1−q,k2−q	(k3, k2,�1)

× 	̄(k3, k1,�2)	(k4, k1 − q,�′
1)	̄(k4, k2 − q,�′

2)δ�1+�′
1,�2+�′

2
. (A6)

Equation (A6) has the same structure as the fourth-order term in the TrlnG−1 expansion [see Eq. (9)] and therefore is a correction
to the |	|4 term. In a similar fashion, integrating out the diagonal density fields ξc,v leads to the |	|4 term describing the repulsive
exciton-exciton interaction

S ′
vdW = T

2

∑
q,k1...k4

∑
�1,�2
�′

1,�
′
2

V (q)[�̃121] �1 �2
k1,k2,k1−q[�̃121] �′

1 �′
2

k3,k4,k3+q 	(k1, k2,�1)	̄(k1 − q, k2,�2)	(k3, k4,�
′
1)

× 	̄(k3 + q, k4,�
′
2)δ�1+�′

1,�2+�′
2
+ T

2

∑
q,k1...k4

∑
�1,�2
�′

1,�
′
2

V (q)[�̃122] �1 �2
k1,k2,k2−q[�̃122] �′

1 �′
2

k3,k4,k4+q	(k1, k2,�1)

× 	̄(k1, k2 − q,�2)	(k3, k4,�
′
1)	̄(k3, k4 + q,�′

2)δ�1+�′
1,�2+�′

2
, (A7)

which can be interpreted as a correction to the Coulomb-like interaction (−V 	̄	), since it contains the direct Coulomb
interaction of excitons as a whole. Therefore Eq. (A7) may be treated as a correction to the generalized Bethe-Salpeter
equation due to the van der Waals interaction

δS

δ	̄
= 1

A�
pk

	(p, k,�) −
∑

q

[
V (p − q) +

(
gR√

S

)2 1

Eph(k) − μ − i�

]
	(q, k,�) + δ(S ′

vdW)

δ	̄
= 0

which changes Eq. (15) just slightly and can be neglected. We conclude that the consideration of additional pairing channels
in the initial action (1), which is performed here generally, leads to corrections due to the screening of the exciton-exciton
interaction only.

APPENDIX B: CALCULATION OF THE LOOP DIAGRAMS

To derive the exciton propagator [the second-order loop shown in Fig. 1(a)], we use the standard resummation procedure, i.e.,
the Sommerfeld-Watson transformation:

A �
k1k2

= T
∑

ω′=(2n+1)πT

G0(k1, ω
′ + �)11G0(k2, ω

′)22 = T
∑
ω′

1

[−i(ω′ + �) + εc(k1) − μc][−iω′ + εv (k2) − μv]

= T
1

2π i

1

T

∮
dz

1

eβz + 1

1

[−z − i� + εc(k1) − μc][−z + εv (k2) − μv]

= 1

εc(k1) − εv (k2) − μc + μv − i�

(
1

eβ[εv (k2 )−μv ] + 1
− 1

eβ[εc (k1 )−μc] + 1

)
= nv (k2) − nc(k1)

εc(k1) − εv (k2) − μ − i�
, (B1)

as given in Eqs. (7)–(8) of the main text.
Analogously we perform the calculation of the loop for the fourth-order term, presented in Fig. 1(b):

L�1�2�3
k1k2k3k4

= T
∑
ω′

G0(k1, ω
′)11G0(k2, ω

′ − �1)22G0(k3, ω
′ − �1 + �2)11G0(k4, ω

′ − �1 + �2 − �3)22

= T
1

2π i

1

T

∮
dz

1

eβz + 1

1

[−z + εc(k1) − μc][−z + i�1 + εv (k2) − μv]

× 1

[−z + i�1 − i�2 + εc(k3) − μc][−z + i�1 − i�2 + i�3 + εv (k4) − μv]
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= −
{

nc(k1)

[i�1 + εv (k2) − εc(k1) + μ][i�1 − i�2 + εc(k3) − εc(k1)][i�1 − i�2 + i�3 + εv (k4) − εc(k1) + μ]

+ nv (k2)

[−i�1 + εc(k1) − εv (k2) − μ][−i�2 + εc(k3) − εv (k2) − μ][−i�2 + i�3 + εv (k4) − εv (k2)]

+ nc(k3)

[−i�1 + i�2 + εc(k1) − εc(k3)][i�2 + εv (k2) − εc(k3) + μ][i�3 + εv (k4) − εc(k3) + μ]

+ nv (k4)

[−i�1 + i�2 − i�3 + εc(k1) − εv (k4) − μ][i�2 − i�3 + εv (k2) − εv (k4)][−i�3 + εc(k3) − εv (k4) − μ]

}

= − 1

i�1 − i�2 + εc(k3) − εc(k1)

{
nc(k1)

[i�1 + εv (k2) − εc(k1) + μ][i�1 − i�2 + i�3 + εv (k4) − εc(k1) + μ]

− nc(k3)

[i�2 + εv (k2) − εc(k3) + μ][i�3 + εv (k4) − εc(k3) + μ]

}

− 1

−i�2 + i�3 + εv (k4) − εv (k2)

{
nv (k2)

[−i�1 + εc(k1) − εv (k2) − μ][−i�2 + εc(k3) − εv (k2) − μ]

− nv (k4)

[−i�1 + i�2 − i�3 + εc(k1) − εv (k4) − μ][−i�3 + εc(k3) − εv (k4) − μ]

}
. (B2)

Introducing for convenience the notation

Bk1k2 = −i�1 + εc(k1) − εv (k2) − μ, Bk3k2 = −i�2 + εc(k3) − εv (k2) − μ,

Bk3k4 = −i�3 + εc(k3) − εv (k4) − μ, Bk1k4 = −i�1 + −i�2 − i�3 + εc(k1) − εv (k4) − μ,

we express the fourth-order loop in the following form:

L�1�2�3
k1k2k3k4

= 1

Bk1k2 − Bk3k2

[
nc(k1)

Bk1k2 Bk1k4

− nc(k3)

Bk3k2 Bk3k4

]
− 1

Bk3k2 − Bk3k4

[
nv (k2)

Bk1k2 Bk3k2

− nv (k4)

Bk1k4 Bk3k4

]
. (B3)

The third-order loops that are of interest to our calculations presented in Appendix A are shown in Fig. 1(c) and are defined
as

[�121]�1 �2
k1k2k3

= T
∑
ω′

G0(k1, ω
′)11G0(k2, ω

′ − �1)22G0(k3, ω
′ − �1 + �2)11, (B4)

[�122]�1 �2
k1k2k3

= T
∑
ω′

G0(k1, ω
′)11G0(k2, ω

′ − �1)22G0(k3, ω
′ − �2)22. (B5)

The calculation is performed in the same way:

[�121]�1 �2
k1k2k3

= T
1

2π i

1

T

∮
dz

1

eβz + 1

1

−z + εc(k1) − μc

1

−z + i�1 + εv (k2) − μv

1

−z + i�1 − i�2 + εc(k3) − μc

= −
{

nc(k1)

[i�1 + εv (k2) − εc(k1) + μ][i�1 − i�2 + εc(k3) − εc(k1)]
+

× nv (k2)

[−i�1 + εc(k1) − εv (k2) − μ][−i�2 + εc(k3) − εv (k2) − μ]

+ nc(k3)

[−i�1 + i�2 + εc(k1) − εc(k3)][i�2 + εv (k2) − εc(k3) + μ]

}

= nc(k1)

Bk1k2 (Bk1k2 − Bk3k2 )
+ nv (k2)

Bk1k2 Bk3k2

+ nc(k3)

Bk3k2 (Bk3k2 − Bk1k2 )
, (B6)

[�122]�1 �2
k1k2k3

= −
{

nc(k1)

[i�1 + εv (k2) − εc(k1) + μ][i�1 − i�2 + εv (k3) − εc(k1) + μ]

+ nv (k2)

[−i�1 + εc(k1) − εv (k2) − μ][−i�2 + εv (k3) − εv (k2)]
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+ nv (k3)

[−i�1 + i�2 + εc(k1) − εv (k3) − μ][i�2 + εv (k2) − εv (k3)]

}

= nc(k1)

Bk1k2 Bk1k3

+ nv (k2)

Bk1k2 (Bk1k2 − Bk1k3 )
+ nv (k3)

Bk1k3 (Bk1k3 − Bk1k2 )
. (B7)

APPENDIX C: CALCULATIONS AT ZERO TEMPERATURE

This Appendix is devoted to simplification of the general expressions obtained in Sec. II for the case T = 0 which allows to
obtain some analytical results comparable with those exciting in literature (see discussion in the main text). Assuming the limit
of a large system size, the Fourier transforms can be rewritten as

�i(r, τ ) =
∫

dk
(2π )2

dω

2π
�i(k, ω)eik·x−iωτ , (C1a)

	(x, y) =
∫

dk
(2π )2

dk′

(2π )2

d�

2π
	(k, k′,�)eik·x−ik′ ·y−i�τ , (C1b)

φ(x, y) =
∫

dk
(2π )2

dk′

(2π )2

d�

2π
φ(k, k′,�)eik·x−ik′ ·y−i�τ . (C1c)

At zero temperature nv = 1, nc = 0, and one can derive from the expansion series the analytical expressions for all the loops
considered in Appendix B,

A �
k1k2

= 1

εc(k1) − εv (k2) − μ − i�
, (C2a)

[�121]�1 �2
k1k2k3

= 1

[−i�1 + εc(k1) − εv (k2) − μ][−i�2 + εc(k3) − εv (k2) − μ]
, (C2b)

[�122]�1 �2
k1k2k3

= 1

[−i�1 + εc(k1) − εv (k2) − μ][−i�1 + i�2 + εc(k1) − εv (k3) − μ]
. (C2c)

L�1�2�3
k1k2k3k4

= −i�1 + i�2 − i�3 + εc(k1) − εv (k4) − i�3 + εc(k3) − εv (k4) − 2μ

[−i�1 + εc(k1) − εv (k2) − μ][−i�2 + εc(k3) − εv (k2) − μ]

× 1

[−i�3 + εc(k3) − εv (k4) − μ][−i�1 + i�2 + i�3 + εc(k4) − εv (k4) − μ]
. (C2d)

While the fourth–order loop formula (C2d) is still quite sophisticated, within the saddle-point approximation all the
denominators vanish and we get:

φ(k1, k2,�) = −i

A �
k1k2

	(k1, k2,�).

Going back to Eq. (15), we turn to the position basis for the relative motion r and write down the generalized Wannier
equation in terms of the exciton field 	(r, k,�):[

−i� + Eg + h̄2k2

2M
− h̄2

2m
∇2 − V (r) − μ

]
	(r, k,�) − g2

R
	(r = 0, k,�)

Eph(k) − μ − i�
= 0, (C3)

where m is the reduced mass and M is the exciton mass. It is worth noting that the same approach has been applied in
Ref. [19], albeit for the one-mode fields within the semiconductor Bloch equations approach. The field 	(r, k,�) in such mixed
representation can be regarded as g2

R	(r = 0, k,�)/[Eph(k) − μ − i�]Gk,�(r, r′), where the Green’s function is defined from
the equation: [

−i� + Eg − μ + h̄2k2

2M
− h̄2

2m
∇2 − V (r)

]
Gk,�(r, r′) = δ(r − r′). (C4)

Here we suggest the solution in terms of the νs–state wave function of the hydrogenlike equation, although the potential of
interaction for χν (r) can be considered to be of an arbitrary shape: [−h̄2∇2/2m − V (r)]χν (r) = Eνχν (r). The Green’s function
then has the form:

Gk,�(r, r′) =
∑

ν

A(ν)
k,�

(r′)χν (r) =
∑

ν

χ∗
ν (r′)χν (r)

−i� + h̄2k2/2M + Eg − μ + Eν

, (C5)
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and the exciton field turns into

	(r, k,�) = g2
R

	(r = 0, k,�)

Eph(k) − μ − i�
Gk,�(r, 0). (C6)

As one sees, the sum in the derived expression (C5) diverges in the point r = 0 as ∼ − ln r, as becomes clear from the form of
Eq. (C5) when estimating the trivial limit of k = 0, � = 0 at r → 0, when one can neglect the potential compared to the delta-
function in the right-hand side. This divergence is known [15,19] and arises because the attractive potential of the delta-functional
form produced by the photon field leads to the reduction of the mean electron-hole separation (see e.g., Ref. [40]).

The exciton-photon action in momentum basis for the c.m. motion takes the form:

S =
∑

ν

∫
dk

(2π )2

∫
d�

2π

{
	̄(r = 0, k,�)

∣∣∣∣ g2
R

Eph(k) − μ − i�

∣∣∣∣
2 |χν (r = 0)|2

i� + Eg − μ + h̄2k2/2M + Eν

	(r = 0, k,�)

+gR

[
�ph(k,�)

g2
R|χν (r = 0)|2

Eph(k) − μ − i�

	(r = 0, k,�)

−i� + Eg − μ + h̄2k2/2M + Eν

+ 	̄(r = 0, k,�)

i� + Eg − μ + h̄2k2/2M + Eν

g2
R|χν (r = 0)|2

Eph(k) − μ + i�
�ph(k,�)

]}

+
∫

dk
(2π )2

∫
d�

2π
�ph(k,�)[−i� + Eph(k) − μ]�ph(k,�)

+ 1

2

∫
dp

(2π )2

∫
dl1dl2dl3

(2π )6

∫
d�1d�2d�3

(2π )3

[
−i�1 + i�2 − i�3 + εc

(
p + l1

2

)− εv

(
p + l2 − l3 − l1

2

)
− i�3 + εc

(
p + l2 − l1

2

)− εv

(
p + l2 − l3 − l1

2

)]
	(p, l1,�1)	̄

(
p + l2−l1

2 , l2,�2
)

× 	
(
p + l2 − l3+l1

2 , l3,�3
)
	̄
(
p + l2−l3

2 , l1 − l2 + l3,�1 − �2 + �3
)
. (C7)

As one can see from three first terms in Eq. (C7), it is natural to introduce a field corresponding to the exciton as a whole (i.e.,
depending only on the total momentum):

C(ν)(k,�) = g2
Rχ∗

ν (r = 0)

Eph(k) − μ − i�

	(r = 0, k,�)

[−i� + Eg − μ + h̄2k2/2M + Eν]
,

hence the exciton field 	 can be rewritten as

	(p, k,�) =
∑

ν

C(ν)(k,�)χν (p).

Provided all these simplifications and with the exciton interaction term taken in the saddle point according to Eq. (14a), the
action (C7) takes the form

S =
∑

ν

∫
dk

(2π )2

∫
d�

2π

{
C

(ν)
(k,�)

(
−i� + Eg − μ + h̄2k2

2M
+ Eν

)
C(ν)(k,�) + gR

[
C

(ν)
(k,�)χ∗

ν (r = 0)�ph(k,�)

+ �ph(k,�)C(ν)(k,�)χν (r = 0)
]}+

∫
dk

(2π )2

∫
d�

2π
�ph(k,�)[−i� + Eph(k) − μ]�ph(k,�)

+ 1

2

∑
ν1...ν4

∫
dp

(2π )2

∫
dl1dl2dl3

(2π )6

∫
d�1d�2d�3

(2π )3
C(ν1 )(l1,�1)χν1 (p)C

(ν2 )
(l2,�2)χ∗

ν2

(
p + l2−l1

2

)

× C(ν3 )(l3,�3)χν3

(
p + l2 − l3+l1

2

)
2
∫

dq
(2π )2

V (q)C
(ν4 )

(l1 − l2 + l3,�1 − �2 + �3)χ∗
ν4

(
p + l2−l3

2 − q
)

− 1

2

∑
ν1...ν3

∫
dp

(2π )2

∫
dl1dl2dl3

(2π )6

∫
d�1d�2d�3

(2π )3

[
C(ν1 )(l1,�1)χν1 (p)C

(ν2 )
(l2,�2)χ∗

ν2

(
p + l2−l1

2

)

× C(ν3 )(l3,�3)χν3

(
p + l2 − l3+l1

2

)
gR�ph(l1 − l2 + l3,�1 − �2 + �3) + c.c.

]
, (C8)

where the last term describes the so-called “saturation” or, to be precise, the exciton-assisted exciton-photon coupling. We note
here that to the final expression for action one should add the contribution to the exciton-exciton interaction arising from the
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electron screening derived in Appendix A:

S ′
scr = − 1

2

∑
ν1...ν4

∫
dp

(2π )2

∫
dl1dl2dl3

(2π )6

∫
d�1d�2d�3

(2π )3
C(ν1 )(l1,�1)χν1 (p)C

(ν2 )
(l2,�2)χ∗

ν2

(
p + l2 − l1

2

)

× 2
∫

dq
(2π )2

V (q)C(ν3 )(l3,�3)χν3

(
p − q + l2 − l3 + l1

2

)
C

(ν4 )
(l1 − l2 + l3,�1 − �2 + �3)χ∗

ν4

(
p − q + l2 − l3

2

)
.

(C9)

The action obtained as a sum of Eqs. (C8) and (C9) has the form quite similar to the commonly used action, but containing the
sums over the exciton s states.

APPENDIX D: THE “RIGID” EXCITON LIMIT

In the following, we restrict ourselves with the standard case in which only the 1s-exciton state is assumed to appear in the
system, revealing how the expressions for interactions can be transformed into the widely known values of interaction constants.
To this end, it is convenient to restrict ourselves in Eq. (15) to χ

(1)
k,�(p) ≡ χk(p) and the strong-coupling regime h̄�R � Eb, and

thus neglect the term ∼(h̄�R)2/Eph. In this case, without the van-der-Waals term (see Appendix A) Eq. (15) turns into(
Eg + h̄2k2

2M
+ h̄2p2

2m
− μ − i�

)
	(p, k,�) −

[
nv

(
p − m

mv

k
)

− nc

(
p + m

mc
k
)]∫

dq
(2π )2

V (p − q)	(q, k,�) = 0 (D1)

and can be solved using the ansatz 	(p, k,�) = χk(p)C(k,�) where the 1s exciton wave function χk(p) is modified by
temperature.

At T = 0, the saddle-point equation for configuration of the field 	 turns into the standard Wannier equation:(
Eg + h̄2k2

2M
+ h̄2p2

2m
− μ − i�

)
	(p, k,�) −

∫
dq

(2π )2
V (p − q)	(q, k,�) = 0. (D2)

The solution is 	(p, k,�) = χ (p)C(k,�) where χ (p) is the 1s exciton wave function and the excited s-states are neglected:(
p2

2m
− E1s

)
χ (p) =

∫
dq

(2π )2
V (p − q)χ (q).

In this case, the saddle-point equations (14a) and (14b) reduce to the standard Hopfield equations, and the exciton-photon action
takes the well-known form [39]:

S =
∫

dk
(2π )2

∫
d�

2π

{
C(k,�)

(
−i� + Eg − μ + h̄2k2

2M
+ E1s

)
C(k,�) + �ph(k,�)(−i� + Eph(k) − μ)�ph(k,�)

+ h̄�R

2
[C(k,�)�ph(k,�) + �ph(k,�)C(k,�)]

}

+ 1

2

∫
dl1dl2dl3

(2π )6

∫
d�1d�2d�3

(2π )3

{
V tot

ex (l1, l2, l3)C(l1,�1)C(l2,�2)C(l3,�3)C(l1 − l2 + l3,�1 − �2 + �3)

− [Vsat (l1, l2, l3)C(l1,�1)C(l2,�2)C(l3,�3)�ph(l1 − l2 + l3,�1 − �2 + �3) + c.c.]
}

(D3)

with h̄�R/2 = gR
∑

q χ (q) = gRχ (r = 0) being the experimentally relevant Rabi-splitting (whereas gR is the bare electron-
hole-photon coupling rate), and the notations

V tot
ex (l1, l2, l3) ≡ 2

∫
dp

(2π )2

∫
dq

(2π )2
V (q)χ (p)χ∗

(
p + l2 − l1

2

)
χ∗
(

p + l2 − l3
2

− q
)

×
[
χ

(
p + l2 − l3 + l1

2

)
− χ

(
p + l2 − l3 + l1

2
− q
)]

(D4)

Vsat (l1, l2, l3) ≡ gR

∫
dp

(2π )2
χ (p)χ∗

(
p + l2 − l1

2

)
χ

(
p + l2 − l3 + l1

2

)
. (D5)

One sees that depending on the material and the interaction potential between the charges within the exciton, the shape of
χ (p) may vary thus altering both the exciton-exciton (interaction) and the saturation nonlinearities in the polariton system.
We note as well that the exciton-exciton interaction term including Eq. (D4) is usually calculated in the operator formalism
[12–15,36]. Here we stress that within our approach we derive excitonic rather than polaritonic interactions (if one instead solves
the Bethe-Salpeter equation modified by light (15), the obtained interactions of the renormalized field would be “polaritonic”).
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Finally, assuming that the c.m. momenta li (i = 1, 2, 3) are negligibly small compared to the momentum of internal exciton
motion, the exciton-exciton interaction constant obtained from Eq. (D4) coincides with the well-known result:

gex = 2
∫

dp
(2π )2

∫
dq

(2π )2
V (q)χ (p)χ∗(p)χ∗(p − q)[χ (p) − χ (p − q)]. (D6)

The saturation interaction constant is obtained similarly from Eq. (D5):

gsat = h̄�R

2χ (r = 0)

∫
dp

(2π )2
χ (p)χ∗(p)χ (p), (D7)

which coincides with the expressions derived using alternative approaches in Refs. [12,13,16,17].
Starting from the action (D3) and considering the limit of Eqs. (D6), (D7),

S =
∫

dk
(2π )2

∫
d�

2π

{
C(k,�)

(
−i� + Eg − μ + h̄2k2

2M
+ E1s

)
C(k,�) + �ph(k,�)[−i� + Eph(k) − μ]�ph(k,�)

+ h̄�R

2

[
C(k,�)�ph(k,�) + �ph(k,�)C(k,�)

]}+
∫

dl1dl2dl3
(2π )6

∫
d�1d�2d�3

(2π )3

{
gex

2
C(l1,�1)C(l2,�2)C(l3,�3)

× C(l1 − l2 + l3,�1 − �2 + �3) − gsat

2

[
C(l1,�1)C(l2,�2)C(l3,�3)�ph(l1 − l2 + l3,�1 − �2 + �3) + c.c.

]}
, (D8)

we perform the saddle-point approximation assuming the system to be in equilibrium i� = 0:

δSeff

δC

∣∣∣∣C=�ex
�ph

= (Eg + E1s − μ)�ex + h̄�R

2
�ph + gex|�ex|2�ex − gsat|�ex|2�ph − gsat

2
(�ex)2�ph = 0, (D9a)

δSeff

�
0
ph

∣∣∣∣∣∣C=�ex
�ph

= (E0
ph − μ)�ph + h̄�R

2
�ex − gsat

2
|�ex|2�ex = 0 (D9b)

where �ex(ph) are the equilibrium exciton (photon) fields. The relation between the two can be defined as

�ph = �ex

μ − E0
ph

(
h̄�R

2
− gsat|�ex|2

2

)
, (D10)

and the phase difference between them being 0 or π depending on μ. Solving these algebraic equations, one can calculate the
bottoms of dispersion laws of the two new normal modes, i.e., lower (LP) and upper (UP) polaritons, which depend on the
uniform exciton density n0

ex:

μLP(UP)
(
n0

ex

) = Eg + E1s + E0
ph + gexn0

ex

2
∓ 1

2

√(
gexn0

ex − 	
)2 + (h̄�R − gsatn0

ex

)(
h̄�R − 3gsatn0

ex

)
, (D11)

where E0
ph − (Eg + E1s) = 	 is usually regarded as the (constant) energy detuning between photons and excitons at k = 0.

Rewriting the formulas in terms of the renormalized (density-dependent) detuning 	 → 	(n0
ex) = 	 − gexn0

ex and Rabi-
splitting h̄�R → h̄�R(n0

ex) = √(h̄�R − gsatn0
ex)(h̄�R − 3gsatn0

ex), we get

μLP(UP)
(
n0

ex

) = Eg + E1s + gexn0
ex + 	

(
n0

ex

)
2

∓ 1

2

√
	2
(
n0

ex

)+ [h̄�R
(
n0

ex

)]2
. (D12)

One sees that the separation of the bottoms of dispersions (at k = 0) shifts with the exciton density as

μUP
(
n0

ex

)− μLP
(
n0

ex

) =
√

	2
(
n0

ex

)+ [h̄�R
(
n0

ex

)]2
. (D13)

At the same time, from the experimental point of view a more relevant quantity characterizing the exciton-photon conversion
rate is the distance between the polariton branches at the anticrossing point (which is shifting itself with the change of the exciton
density, since the detuning is also changing). It can be defined as follows:

min[EUP(k) − ELP(k)] =
√

	2
k

(
n0

ex

)+ [h̄�R
(
n0

ex

)]2
with 	k

(
n0

ex

) = 	 − gexn0
ex + h̄2k2

2mph
− h̄2k2

2mex
. (D14)

APPENDIX E: CONSIDERATION OF SPINS

For purely excitonic systems, the treatment of spins within functional integration approach was briefly mentioned in Ref. [29]
without any detailed discussion. The aim of this Appendix is to study the influence of spins on the effective exciton-photon
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action in polariton systems. We restrict ourselves to the simplest case, considering T = 0 and rigid 1s excitons. Moreover, we
will focus on the corrections to the expressions derived above that arise due to dark exciton states, so the density channels of
pairing addressed in Appendix A at this stage are neglected for convenience. Below we shortly discuss the screening of exciton
interaction for excitons with different spins. Even such a simple case upon examination turns out to be intricate.

Our starting point is the action without spin-orbit coupling:

S[�c, �v, �ph] =
∫

dr
∫ β

0
dτ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝

�c↑(x)
�c↓(x)
�v↑(x)
�v↓(x)

⎞
⎟⎟⎠

T
⎛
⎜⎜⎜⎝

∂τ + εc↑(k̂) 0 0 0
0 ∂τ + εc↓(k̂) 0 0
0 0 ∂τ + εv↑(k̂) 0
0 0 0 ∂τ + εv↓(k̂)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

�c↑(x)
�c↓(x)
�v↑(x)
�v↓(x)

⎞
⎟⎟⎠

+gR[�ph↑(x)�c↓(x)�v↑(x) + �c↓(x)�v↑(x)�ph↑(x) + � ph↓(x)�c↑(x)�v↓(x) + �c↑(x)�v↓(x)�ph↓(x)]

}

+
∑

σ

∫
dr
∫ β

0
dτ �ph,σ (x)[∂τ + Ephσ (k̂)]�ph,σ (x)

+ 1

2

∑
i, j

∑
σ,σ ′

∫
drdr′

∫ β

0
dτdτ ′V (x − x′)� iσ (x)�iσ (x)� jσ ′ (x′)� jσ ′ (x′), (E1)

where σ =↑,↓ is a spin index, x = (r, t ) and i, j = c, v as before, εc(v)↑(↓)(k) = ±Eg/2 ± h̄2k2/2mc(v)↑(↓) − μc(v)↑(↓),
Eph↑(↓)(k) = E0

ph + h̄2k2/2mph − μph↑(↓). Here, in the general case, we assume the chemical potentials and effective masses of
electrons with different spins in conduction and valence bands being different. We introduce four exciton fields corresponding to
the bright and dark excitons. For TMD materials, where the electrons in both valence and conduction bands have spin projections
±1/2, one has:

	+1(x, y) = �v↑(y)�c↑(x), 	−1(x, y) = �v↓(y)�c↓(x), 	0(x, y) = �v↑(y)�c↓(x), 	0̄ (x, y) = �v↓(y)�c↑(x), (E2)

while for GaAs, where we consider only heavy holes, i.e., electrons in the valence band with spin projections ±3/2 which
correspond to �v↑ and �v↓, respectively,

	+1(x, y) = �v↑(y)�c↓(x), 	−1(x, y) = �v↓(y)�c↑(x), 	+2(x, y) = �v↑(y)�c↑(x), 	−2(x, y) = �v↓(y)�c↓(x). (E3)

In the following, we will not make a distinction between the materials and will generically denote the two dark fields as 	d,d̄ .
Along with the four exciton fields and their conjugates, in the same way as in the spinless case (using eight δ functions, see the
main text), we have four auxiliary fields φ±1, φd,d̄ and their conjugates. The action (E1) takes the form:

S[�c,v, �ph, φ±1,d,d̄,	±1,d,d̄] =
∑
k,ω

⎛
⎜⎜⎝

�c↑(k)
�c↓(k)
�v↑(k)
�v↓(k)

⎞
⎟⎟⎠

T⎛
⎜⎜⎝

−iω+εc↑(k) 0 0 0
0 −iω+εc↓(k) 0 0
0 0 −iω+εv↑(k) 0
0 0 0 −iω+εv↓(k)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

�c↑(k)
�c↓(k)
�v↑(k)
�v↓(k)

⎞
⎟⎟⎠

+ i
√

T
∑
k1,k2
ω1,ω2

⎛
⎜⎜⎝

�c↑(k1)
�c↓(k1)
�v↑(k1)
�v↓(k1)

⎞
⎟⎟⎠

T

δG−1(k1, k2)

⎛
⎜⎜⎝

�c↑(k2)
�c↓(k2)
�v↑(k2)
�v↓(k2)

⎞
⎟⎟⎠

− i
∑

σ=±1,
d,d̄

∑
k1,k2

�

[φ̄σ (k1, k2,�)	σ (k1, k2,�) + 	̄σ (k1, k2,�)φσ (k1, k2,�)]

−
∑

σ=±1,
d,d̄

∑
k1...k4

�

V (k1 − k2)	̄σ (k1, k4,�)	σ (k2, k3,�)δ(k1 + k3, k2 + k4)

+
∑

σ=±1

∑
k,�

�ph,σ (k)[−i� + Eph(k) − μ]�ph,σ (k)

+ gR√
S

∑
σ=±1

∑
k1,k2

�

[�ph,σ (k1 − k2,�)	σ (k1, k2,�) + 	̄σ (k1, k2,�)�ph,σ (k1 − k2,�)],

(E4)
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where

δG−1(k1, k2) =

⎛
⎜⎜⎝

0 0 φd(k1, k2, ω1 − ω2) φ−1(k1, k2, ω1 − ω2)
0 0 φ+1(k1, k2, ω1 − ω2) φd̄ (k1, k2, ω1 − ω2)

φ̄d(k2, k1, ω2 − ω1) φ̄+1(k2, k1, ω2 − ω1) 0 0
φ̄−1(k2, k1, ω2 − ω1) φ̄d̄ (k2, k1, ω2 − ω1) 0 0

⎞
⎟⎟⎠. (E5)

In the above expressions, we used the spin composition for GaAs, but the result is similarly applicable to TMD materials and can
be obtained by replacing φd,d̄ → φ±1 and φ±1 → φ0,0̄ in (E5). After integrating over the fermionic fields, expanding TrlnG−1 up
to the second order in δG−1 and performing the saddle-point approximation, we obtain the relation between φσ and 	σ which is
the same as for the previously considered case, but containing spin indices:

φσ (k1, k2,�) = 	σ (k1, k2,�)

i[Aσ ] �
k1k2

, φ̄σ (k1, k2,�) = 	̄σ (k1, k2,�)

i[Aσ ] �
k1k2

, (E6)

where at T = 0

1

[Aσ ] �
k1k2

=

⎧⎪⎪⎨
⎪⎪⎩

−i� + εc↑(k1) − εv↑(k2) if σ = d
−i� + εc↓(k1) − εv↑(k2) if σ = +1
−i� + εc↑(k1) − εv↓(k2) if σ = −1
−i� + εc↓(k1) − εv↓(k2) if σ = d̄

. (E7)

In principle, the expressions in the right-hand side of Eq. (E7) are the exciton dispersions. The chemical potentials of the exciton
fields with different spin projections read: μc↑ − μv↑ = μd, μc↓ − μv↑ = μ+1, μc↑ − μv↓ = μ−1, μc↓ − μv↓ = μd̄ . Moreover,
under the assumption of the thermodynamic equilibrium between photons and excitons, one gets μ+1 = μph↑, μ−1 = μph↓. Then
the saddle-point approximation for exciton fields yields

	±1(p, k,�)

[A±1] �
k1k2

+ gR√
S
�ph,±1(k,�) −

∑
q

V (p − q)	±1(q, k,�) = 0, (E8a)

	d(d̄)(p, k,�)

[Ad(d̄)]
�

k1k2

−
∑

q

V (p − q)	d(d̄)(q, k,�) = 0, (E8b)

where p and k are the relative motion of electrons and the exciton c.m. momenta, respectively. In the c.m. frame the second-order
loop A−1 takes the form

1

[Aσ ] �
k1k2

= Eg − μσ + h̄2p2

2mσ

+ h̄2k2

2Mσ

,

with mσ being the reduced mass of the σ -exciton field and Mσ the σ -exciton mass.
In the rigid exciton limit the variables can be divided 	σ (p, k,�) = χσ (p)Cσ (k,�), similarly to the spinless case. The

1s-state wave functions χσ (p) for different fields are determined by the band splitting:

p2

2mσ

χσ (p) −
∑

q

V (p − q)χσ (q) = Eσ
1sχσ (p). (E9)

If the bands for different spins coincide, the expressions are trivial since A becomes independent of spin.
In principle, the second-order expansion does not deviate significantly from the spinless case and all the loop calculations are

straightforward and similar to those presented in Appendix B, albeit cumbersome. Here we present only the final result. For the
fourth-order term in the expansion series (1/4)Tr(G0δG−1)4, one has 32 loops. Four of them describe bright-exciton interactions
(two for |φ+1|4 and two for |φ−1|4):

1

4
Tr(G0δG−1)4 = 2

4
(i
√

T )4
∑

k1...k4

∑
�1...�3

φ±1(k1, k2,�1)φ̄±1(k3, k2,�2)φ±1(k3, k4,�3)φ̄±1(k1, k4,�1 + �3 − �2)

×
∑
ω′

G0(k1, ω
′)22(11)G0(k2, ω

′ − �1)33(44)G0(k3, ω
′ − �1 + �2)22(11)G0(k4, ω

′ − �1 + �2 − �3)33(44)

= 1

4
T
∑

k1...k4

∑
�1...�3

	±1(k1, k2,�1)	̄±1(k3, k2,�2)	±1(k3, k4,�3)	̄±1(k1, k4,�1 + �3 − �2)

× [− i�1 + εc↓(↑)(k1) − εv↑(↓)(k2) − i�3 + εc↓(↑)(k3) − εv↑(↓)(k4) − i�2 + εc↓(↑)(k3) − εv↑(↓)(k2)

− i�1 + i�2 − i�3 + εc↓(↑)(k1) − εv↑(↓)(k4)
]
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which should be treated according to the saddle-point equation leading to the exciton-exciton interaction and saturation
terms, similarly with the formulas from Appendix C (it is worth noting that the obtained expression has symmetric form, for
convenience). Dark-exciton interactions |φd,d̄|4 contribution has generally the same symmetrized shape (4 diagrams):

2

4
T
∑

k1...k4

∑
�1...�3

	d,d̄ (k1, k2,�1)	̄d,d̄ (k3, k2,�2)	d,d̄ (k3, k4,�3)	̄d,d̄ (k1, k4,�1 + �3 − �2)

× [−i�1 + εc↑(↓)(k1) − εv↑(↓)(k2) − i�2 + εc↑(↓)(k3) − εv↑(↓)(k2)].

Due to the form of the saddle-point equation, this contribution is not leading to saturation, which is anticipated since the dark
excitons are not coupled to photons.

Interestingly, bright-bright and dark-dark interactions do not involve excitons with opposite spins, as long as the Hamiltonian
does not contain the spin-orbit coupling term [i.e., the Green’s function G−1

0 needs to contain nonzero (G−1
0 )13 or(and) (G−1

0 )24

elements]. In existing literature [13,33,44] such interactions are also attributed to the biexciton resonance (excitons with opposite
spins forming a biexciton), which cannot be treated within our approach since it does not consider multiple-exciton bound states.

The goal of this Appendix is however to take into account the dark states when considering bright-dark exciton interactions
and especially saturation, hence the main subject of our consideration are the terms |φ+1|2|φd,d̄|2 and |φ−1|2|φd,d̄|2 (16 diagrams:
8 for +1 state and 8 for −1 state). All these contributions have generally the same form so we write down only one of them, e.g.,
|φ+1|2|φd|2 (there are 4 loops corresponding to this process):

2

4
T
∑

k1...k4

∑
�1...�3

	̄+1(k2, k1,�1)	+1(k2, k3,�2)	̄d(k4, k3,�3)	d(k4, k1,�1 + �3 − �2)

× [−i�1 + εc↓(k2) − εv↑(k1) − i�3 + εc↑(k4) − εv↑(k3) − i�2 + εc↓(k2) − εv↑(k3) − i�1

+ i�2 − i�3 + εc↑(k4) − εv↑(k1)].

In principle, one should also consider the three other expressions which have the same shape.
Furthermore, the spin-flip processes arise, i.e., φ+1φ−1φ̄dφ̄d̄ and φdφd̄φ̄+1φ̄−1 (there are 4 + 4 corresponding loops). For

example the contribution from φdφd̄φ̄+1φ̄−1 in the form symmetrized regarding to the dispersion laws, is as follows:

2

4
T
∑

k1...k4

∑
�1...�3

	̄+1(k2, k1,�1)	d̄ (k2, k3,�2)	̄−1(k4, k3,�3)	d(k4, k1,�1 + �3 − �2)

× [−i�1 + εc↓(k2) − εv↑(k1) − i�3 + εc↑(k4) − εv↓(k3) − i�2 + εc↓(k2) − εv↓(k3) − i�1

+ i�2 − i�3 + εc↑(k4) − εv↑(k1)].

Now we can rewrite the fourth-order contributions in the c.m. variables, taking into account the saddle-point equations, and
obtain the exciton-exciton interaction term and the saturation term with corrections due to dark excitons. Even though in the
general case the 1s-exciton wave functions are different for 	±1,d (d̄ ), for simplicity we will assume the band splitting negligible,
so the hydrogenlike 1s wave functions and the effective masses Mσ will be the same. The effective exciton-photon action becomes
Seff = S0 + Sb

int + Sd
int + Sb−d

int + SSF
int , where

S0 =
∫

dk
(2π )2

∫
d�

2π

⎧⎪⎪⎨
⎪⎪⎩
∑

σ=±1,
d,d̄

Cσ (k,�)

(
−i� + Eg + h̄2k2

2Mσ

+ Eσ
1s − μ

)
Cσ (k,�)

+
∑

σ=±1

(
�ph,σ (k,�)[−i� + Eph(k) − μ]�ph,σ (k,�) + h̄�R

2
[Cσ (k,�)�ph,σ (k,�) + �ph,σ (k,�)Cσ (k,�)]

)⎫⎬
⎭
(E10)

is the “bare” exciton-photon action without interactions,

Sd
int + Sb

int =
∫

dl1dl2dl3
(2π )6

∫
d�1d�2d�3

(2π )3

⎧⎪⎪⎨
⎪⎪⎩
∑

σ=±1,
d,d̄

gex

2
Cσ (l1,�1)Cσ (l2,�2)Cσ (l3,�3)Cσ (l1 − l2 + l3,�1 − �2 + �3)

−gsat

2

∑
σ=±1

[Cσ (l1,�1)Cσ (l2,�2)Cσ (l3,�3)�ph,σ (l1 − l2 + l3,�1 − �2 + �3) + c.c.]

⎫⎬
⎭ (E11)
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describe interactions between dark excitons and between bright excitons (within the same species), including bright-exciton-
assisted exciton-photon coupling,

Sb−d
int =

∫
dl1dl2dl3

(2π )6

∫
d�1d�2d�3

(2π )3

∑
σ=±1

{
gex[Cd(l1,�1)Cd(l2,�2) + Cd̄ (l1,�1)Cd̄ (l2,�2)]

× Cσ (l3,�3)Cσ (l1 − l2 + l3,�1 − �2 + �3)

− gsat

2
[Cd(l1,�1)Cd(l2,�2) + Cd̄ (l1,�1)Cd̄ (l2,�2)][Cσ (l3,�3)�ph,σ (l1 − l2 + l3,�1 − �2 + �3) + c.c.]

}
(E12)

describes interactions between the dark and bright excitons of the same spin, including dark-exciton-assisted exciton-photon
coupling and, finally,

SSF
int =

∫
dl1dl2dl3

(2π )6

∫
d�1d�2d�3

(2π )3

{
gSF

ex C+1(l1,�1)Cd̄ (l2,�2)C−1(l3,�3)Cd(l1 − l2 + l3,�1 − �2 + �3)

− gsat

2
Cd̄ (l2,�2)Cd(l1 − l2 + l3,�1 − �2 + �3)[C+1(l1,�1)�ph,−1(l3,�3) + �ph,+1(l1,�1)C−1(l3,�3)]

+ gSF
ex Cd(l1,�1)C−1(l2,�2)Cd̄ (l3,�3)C+1(l1 − l2 + l3,�1 − �2 + �3)

− gsat

2
Cd(l1,�1)Cd̄ (l3,�3)[�ph,−1(l2,�2)C+1(l1 − l2 + l3,�1 − �2 + �3)

+ C−1(l2,�2)�ph,+1(l1 − l2 + l3,�1 − �2 + �3)]

}
(E13)

corresponds to the spin-flip processes including also the dark-exciton-assisted decay.
It is important to note that other channels of pairing can also be taken into account in the same manner as done in Appendix A

where it was shown that only the off-diagonal densitylike fields of the form 
c(v),σ,σ ′ (k1, k2) = �c(v),σ (k1)�c(v),σ ′ (k2) contribute
to the resulting exciton-exciton interaction (with the inclusion of spins there will be 8 off-diagonal density fields, 4 for
conductance and 4 for the valence band). At the same time, the treatment of the 8 remaining diagonal densitylike fields
alters the Bethe-Salpeter equation (here, for different exciton fields, which is clearly seen from writing down the third-order
expansion terms). When taking into account the additional off-diagonal fields, one needs to calculate 48 vertices of the same
type: 24 of those lead to the interaction renormalization of the exciton fields within the same species, the other 24 diagrams
screen the interaction between the dark and bright states. Importantly, the spin-flip process is not influenced by the off-diagonal
densitylike fields. Thus, in all the expressions obtained above for the effective action in the considered simplest case of zero
temperature, rigid 1s excitons and negligible band splitting, all the bright-bright, dark-dark, and bright-dark interaction constants
are renormalized as derived in Eq. (D6). For spin-flip interactions, however, gex remains unrenormalized, i.e.,

gSF
ex = 2

∫
dp

(2π )2

∫
dq

(2π )2
V (q)χ (p)χ∗(p)χ∗(p − q)χ (p).

It is worth noting that in the general case, the 1s-exciton wave functions χσ (p) corresponding to the fields 	σ with different spin
indices σ = b, b̄, d, d̄ are different (here b, b̄ denote the exciton fields with spin projections 1, −1). Therefore the interaction
constants describing the interactions and saturation arising between different species change: one would have eight different
gex and eight different gsat constants corresponding to b − b, b̄ − b̄, d − d , d̄ − d̄ , b − d (d̄ ), b̄ − d (d̄ ) processes, respectively.
For the spin-flip processes, the exciton interaction constant gSF

ex remains to be of the only value, while the saturation would be
described by two different gSF

sat corresponding to the exciton-photon conversion with b, b̄ spin projections.
To address corrections to the Rabi-splitting due interactions, we assume for simplicity that photons have polarization +1, and

follow the procedure as described in Appendix D, focusing on the +1 excitons:

δSeff

δC+1

∣∣∣∣C+1=�ex
�ph,+1=�ph
C−1
Cd,d̄
�ph,−1=0

= (Eg + E (+1)
1s − μ

)
�ex + h̄�R

2
�ph + gex|�ex|2�ex − gsat|�ex|2�ph − gsat

2
�2

ex�ph + gex(Cd̄Cd̄ + CdCd )�ex

− gsat

2
(Cd̄Cd̄ + CdCd )�ph + gSF

ex C−1CdCd̄ − gsat

2
CdCd̄�ph,−1 = 0, (E14)

where the last term is equal zero since only the +1 polarization of photons is populated. Analogously,

δSeff

δ�ph,+1

∣∣∣∣∣C+1=�ex
�ph,+1=�ph
C−1
Cd,d̄
�ph,−1=0

= (E0
ph − μ

)
�ph + h̄�R

2
�ex − gsat

2
|�ex|2�ex − gsat

2
(Cd̄Cd̄ + CdCd )�ex − gsat

2
CdCd̄C−1 = 0.

(E15)
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The (−1) exciton branch is assumed to be weakly populated compared to �ex, so the terms containing C−1 are neglected for
clarity. We note that the last term describes the effective decay.

From the above equations, introducing the dark exciton density as nd = Cd̄Cd̄ + CdCd, we express the bottoms of the UP and
LP dispersion laws similarly as for the spinless case:

μLP(UP)
(
n0

ex, nd
) = Eg + E (+1)

1s + gex
(
n0

ex + nd
)+ 	

(
n0

ex, nd
)

2
± 1

2

√
	
(
n0

ex, nd
)2 + [h̄�R

(
n0

ex, nd
)]2

, (E16)

where 	(n0
ex, nd ) = 	 − gex(n0

ex + nd ) and h̄�R(n0
ex, nd ) = √[h̄�R − gsat (n0

ex + nd )][h̄�R − 3gsatn0
ex − gsatnd]. It is important

to note that Eq. (E16) contains both the shifts of the two polariton branches do to interaction with dark excitons (of the same
sign for LP and UP) and due to saturation (with opposite signs).

The splitting between the polariton branches at the anticrossing point is

min[EUP(k) − ELP(k)] = min
√

	2
k

(
n0

ex, nd
)+ [h̄�R

(
n0

ex, nd
)]2

, (E17)

with 	k(n0
ex, nd ) = 	 − gex(n0

ex + nd ) + h̄2k2/2mph − h̄2k2/2M. As one can see, the presence of dark exciton states effectively
reduces the detuning and the Rabi-splitting with the increase of the dark-exciton density.
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