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Coupling of quantum-dot states via elastic cotunneling and crossed Andreev reflection
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We consider a quantum-dot (QD) based minimal Kitaev chain model and study the effects of modulation of
QD states on the elastic cotunneling (ECT) and crossed Andreev reflection (CAR) processes. We demonstrate
that the ECT amplitudes are strongly dependent on the energies of the QD states and are generally asymmetric,
even in the absence of magnetic field, with respect to the chemical potential in the proximitized superconducting
nanowire. We calculate the phase diagram of the total electron-number parity of the two QDs in terms of the
spin-quantization axis direction in the QDs and the chemical potential in the superconducting nanowire, and also
evaluate the precondition to attain a balance between ECT and CAR towards realizing the poor man’s Majorana
bound states. When the QDs are tuned into the deep Coulomb blockade regime, we predict a controllable
anisotropic superexchange interaction between electrons in the two QDs under the combined effect of high-order
interdot ECT and CAR processes.
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I. INTRODUCTION

Semiconductor-superconductor hybrid nanostructures have
recently attracted intensive attention for the exploration of
nontrivial physical phenomena [1–4]. Attributed to strong
spin-orbit interactions (SOIs) and large Landé-g factors
of narrow-bandgap III-V semiconductors, superconducting
nanowires have shown to be excellent platforms for the studies
of the anomalous current-phase relations [5–9], superconduct-
ing diode effects [10–13], and Majorana bound states (MBSs)
[14–16]. When coupled with the gate-defined quantum dots
(QDs), superconducting nanowires can also enable the forma-
tion of superconducting spin qubits [17–23] and be exploited
to build singlet or triplet Cooper-pair splitters [24–30]. More
recently, it has been demonstrated that multiple QDs inter-
connected by a proximitized superconducting nanowire can
effectively mimic a short Kitaev chain [31–37], in which
MBSs can be presented in a poor man’s manner [38,39]. In
these burgeoning implementations with the QD-based Kitaev
chains, the interactions between electrons in two separate QDs
are found to be mediated by the Andreev bound states (ABSs)
residing in the proximitized nanowire segments [28,38–41].

Theoretically, in the minimal Kitaev chain, the ABSs can
facilitate interdot elastic-cotunneling (ECT) and crossed An-
dreev reflection (CAR) [40–42]. In addition, under the impact
of SOI in the proximitized nanowire, both ECT and CAR can
consist of spin-conserved and spin-flipped processes. In an
initial QD-based Kitaev chain model [32], the effect of SOI
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is not included and thus a fine tuning of local magnetic fields
applied on the QDs is required to reach the sweet spot, thereby
creating the poor man’s MBSs. Motivated by the experiments
reported in Refs. [28,41], the influence of SOI is explicitly in-
cluded in recent theoretical treatments of Refs. [33,42] and the
sweet spot can be reached by tuning the electric gates beneath
the proximitized semiconductor nanowire segments. The un-
derlying physics behind these theoretical treatments is tuning
the spin-conserved and spin-flipped ECTs and CARs via SOI
in the proximitized nanowire. However, these spin-dependent
processes can also strongly depend on the energy states in the
QDs. In fact, the constructions of poor man’s MBSs [38,39],
as well as Cooper-pair splitters [27–30], demand a strict con-
trol of the spin-dependent ECTs and CARs. This actually
involves ascertainments of the QD electron states in addition
to the direct couplings with the ABSs. Therefore, it remains a
top priority to clarify the effect of the QD states along with
their various modulations on the ABS-mediated CARs and
ECTs in order to facilitate revealing the rich physics in the
minimal Kitaev chain.

In this work, we analyze the ABS-mediated tunneling
processes, namely, CARs and ECTs, by constructing a tight-
binding (TB) model in close analogy to the experimental setup
in Ref. [41], as schematically shown in Fig. 1. Instead of
using phenomenal parameters, the coefficients of the direct
couplings between QD states and ABSs are obtained from
the localized states in each section. Utilizing the Schrieffer-
Wolff transformation, we derive the analytical expressions
for the amplitudes of spin-dependent ECTs and CARs be-
tween the two QDs. Remarkably, in contrast to the robustness
of the CAR amplitudes, we find that the ECT amplitudes
are strongly dependent on the energy of the QD states. Par-
ticularly, the average QD energy can be extracted from an
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FIG. 1. Schematic diagram of the two separate gate-defined
quantum dots (QDs) interconnected by a superconducting proxim-
itized nanowire, i.e., QD-based minimal Kitaev chain. Here, V is the
gate potential, where subindex b (g) indicates barrier (plunger) gate,
while l, c, r implies the left, center, and right sections, respectively.
The applied magnetic field is also depicted as B = B(cos θ, sin θ, 0).

experimentally observed gate-tuning asymmetry of the ECTs
in the absence of an external magnetic field [41]. With the
change of the spin-quantization axis direction of the QDs in
different but uniform magnetic fields, we also reveal that the
balance of ECT and CAR in realizing poor man’s MBSs is
compatible with the emergence of fermion-parity degeneracy
in low-energy states. We predict that when the QD energy
levels are largely tuned below the Fermi level and deep in the
Coulomb blockade regime, an anisotropic superexchange in-
teraction between electrons in the two QDs can emerge under
the combined effect of high-order ECT and CAR processes.
Intriguingly, we also find this superexchange is highly tun-
able, which implies the capability of implementing two-qubit
logic gates based on the minimal Kitaev chain model.

II. MODEL

The two separated QDs we consider are defined around the
two ends of a semiconductor nanowire with strong Rashba
SOI, e.g., InAs or InSb nanowire, with the connection sec-
tion proximitized by a superconductor Al, as shown in Fig. 1.
In the presence of a magnetic field B = B(cos θ, sin θ, 0) ap-
plied in the x − y plane, the single-particle Hamiltonian of the
hybrid nanowire along the x-axial direction reads as

He(x) = − h̄2

2

∂

∂x

1

me(x)

∂

∂x
+ g(x)μB

2
B · σ + V (x)

− i
h̄

2

[
∂

∂x
α(x) + α(x)

∂

∂x

]
σy, (1)

where me(x), g(x), and α(x), respectively, correspond to the
site-dependent electron effective mass (EMS), the Landé-g
factor, and the Rashba SOI strength absorbing the partial
metallization effect caused by the coated superconductor.
σ = (σx, σy, σz ) denotes the Pauli matrix vector, μB is the
Born magneton, and V (x) depicts the confinement potential
induced by the gate voltages. In addition, a finite proximitized
superconductivity can be induced in the middle section as
�s(x) = �0�(w − |x|), with �0 representing the induced su-
perconducting gap, �(x) being a Heaviside function, and w

the half-width of the proximitized section.

III. LOCALIZED CONFINED STATES

Without loss of generality, the local confinement potential
of the left/right QD can be modeled as Vl/r (x) = me,0ω

2
0(x ±

d )2/2 + Vg,l/r , in which me,0/1 (α0/1 and g0/1) quantifies the

specific value of the EMS (the SOI strength and Landé fac-
tor) in the bare/proximitized nanowire, ω0 is the frequency
of the harmonic potential, d is the half interdot distance,
and Vg,l/r is the relevant plunger-gate potential. In the case
of �z,0 ≡ g0μBB � h̄ω0, the lowest Zeeman-splitting states
of the QDs, |	l/r⇑〉 and |	l/r⇓〉 can be analytically derived
by treating the Zeeman interaction as a perturbation [43,44].
Because the QDs are defined in the segments uncovered by
superconductor Al, the obtained states are the normal electron
states without superconducting correlation (SC). The intradot
normal reflection and interference effects are automatically
included in deriving the QD states, based on the continuous
model as described in Eq. (1). The corresponding energies are
given by Eν,⇑/⇓ = Eν ± f0(θ )�z,0/2 with ν = l, r, in which
Eν = Vg,ν + (h̄ω0 − me,0α

2
0 )/2 represents the effective orbital

on-site energy, and f0(θ ) = ( sin2 θ + e−2x2
0/x2

so cos2 θ )
1/2

is the
SOI-induced modified factor of the Zeeman splitting, with
x0 = [h̄/(me,0ω0)]1/2 and xso = h̄/(me,0α0). Here, because the
intriguing physics we focused on occurs within the supercon-
ducting gap, which is much smaller than the orbital splitting
energy of the QDs [42], the effect of high-energy QD states is
not included in our model.

For the intermediate proximitized nanowire, the
combination of the middle three applied gate potentials
(cf. Vbl,2, Vg,c, and Vbr,1 in Fig. 1), in principle, can
also be endowed by a concave-shaped confinement,
Vin(x) = me,1ω

2
1x2/2 + Vg,c with ω1 specifying the parabolic

potential. As such, the low-energy ABSs of the intermediate
nanowire can be analytically derived based on the
effective Hamiltonian HBdG = [p2

x/(2me,1) + α1 pxσy +
Vin(x)]τz + �0τx + �z,1(cos θσx + sin θσy)/2 [44], with
px = −ih̄∂/(∂x), �z,1 = g1μBB, and τx,y,z the Pauli matrices
defining in the particle-hole (PH) space. The energies of the
lowest two ABSs above the Fermi (zero-energy) level are

E1/2 =
√

μ2 + �2
0 ± f1(θ )

2
�z,c, (2)

with μ = Vg,c + (h̄ω1 − me,1α
2
1 )/2 and f1(θ ) similar to f0(θ )

but with me,0, α0 and ω0 replaced by me,1, α1 and ω1, re-
spectively. Equivalently, μ represents the effective chemical
potential of the middle nanowire segment in the normal state,
i.e., before including the SC correlation, which can be reg-
ulated using the plunger gate potential Vg,c (see Fig. 1). The
energies of the two ABSs below the Fermi level obey E3/4 =
−E2/1, in accordance with the PH symmetry of the BdG
Hamiltonian PHBdGP−1 = −HBdG, with P = iτyσyK and K
being the PH and complex-conjugation operators. Indeed,
because of the superconducting proximity effect, the ABSs
emerge as quasi-particles and can be denoted by the Bogoli-
ubov operators γ j with j = 1 − 4, respectively.

The extension of the ABSs in the bare section will
lead to direct tunnel couplings with the QD states [44]. In
the language of second quantization, the corresponding TB
Hamiltonian for the hybrid nanostructure is

HTB =
∑
ν,s

Eν,sd
†
νsdνs +

∑
j

E jγ
†
j γ j

+
∑
ν,s, j

(tνs, jd
†
νsγ j + H.c.), (3)
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FIG. 2. Schematic diagram of ECT (a) and CAR (b). (a) de-
picts an electron quasi-spin-state transfer from the right QD to
the left QD while (b) shows two electron states are created in
them, which, respectively, mediated by the ABS γ j and the PH-
symmetric pair (γ j, γ5− j ) of the middle hybrid nanowire. Here,
tl (r), j = {tl (r)⇑, j, tl (r)⇓, j} are the amplitude vectors of the direct tunnel
couplings.

in which d†
νs (dνs) represents the creation (annihilation) opera-

tor for the QD state |	ν,s〉 with s =⇑,⇓, and tνs, j characterizes
the amplitude of the electron state tunnel coupling to the ABS
γ j . In addition to a structure-dependent (spinless) parameter
t0, specifically because of the SOI, the coupling amplitude also
depend on the accumulated spin rotation phase so = d̃/xso
in the tunneling [44]. Note that, the effective length d̃ is
different from the actual interdot distance d , due to the SOI
inhomogeneity along the axial direction.

IV. EFFECTIVE INTERDOT INTERACTIONS

For the case of Eν,s � |Ej |, it is interesting to find the
direct tunnel couplings with the intermediate ABSs can
enable the ECT and CAR between electron states of the
two separated QDs. In fact, this is accompanied by virtual
excitations or evacuations of the middle higher- or lower-
energy ABSs, as seen in Fig. 2. Explicitly, the effective
Hamiltonian for the two long-range interactions are pre-
sented as HECT = ∑

ss′=⇑,⇓(d†
lsTss′drs′ + H.c.) and HCAR =∑

ss′ (d†
lsRss′d†

rs′ + H.c.), with the spin-dependent amplitudes
given by

Tss′ =
∑

j=1−4

tls, jt
∗
rs′, j

2

(
1

El,s − Ej

+ 1

Er,s′ − Ej

)
,

Rss′ =
∑

j=1−4

tls, jtrs′,(5− j)

2

(
1

El,s − Ej

+ 1

E(5− j) − Er,s′

)
. (4)

Intuitively, ECT is achieved via the sequential single-electron
(γ j) transports, as seen in Fig. 2(a). In contrast, CAR involves
the creation or annihilation of two electrons in the QDs, me-
diated by the PH-symmetric ABSs γ j and γ5− j originating
from a Cooper pair [see Fig. 2(b)]. It is evident that the imple-
mentation of interdot ECT and CAR can also be mediated by
other high-energy ABSs living in the middle superconducting
nanowire segment. Quantitatively, by analogy with Eq. (4),
the contributions of the high-energy ABSs are inversely pro-
portional to their specific energy differences, with respect
to the energies of the QD states involved in the processes.
Thus, when the energy splitting of the ABSs h̄ω1 	 �0, the
influences of these high-energy ABSs can be safely neglected,
and our results are most appropriate to the case where only the
four ABSs γ j=1−4 are active in the superconducting gap.

FIG. 3. The numerically calculated |R⇑⇓|2 (a) and |R⇑⇓|2 (b) in
μ − El plane, with a zero (B = 0, left) and nonzero (B = B0, right)
magnetic field at θ = 0.25π . (e) shows the variations of |R⇑⇓|2 (left)
and |R⇑⇑|2 (right) versus θ and El , with B = B0 and μ = 0.6�0.
The line cuts in (a), (c), and (e) are plotted in (b), (d) and (f),
respectively, whose labels indicate the selected parameters from the
colormaps. Range [(|R̃|2max, |R̃|2min )] in (f) implies the corresponding
scales [0.08, 0.16] for |R⇑⇓|2 and [0.00, 0.06] for |R⇑⇑|2. Here,
the values are presented in the unit of 4t4

0 /�2
0, the nonzero mag-

netic field is �z,0 = 0.16�0, the other system parameters are fixed
as Er = 1.2El , �z,c = 0.5�z,0, d̃ = 200 nm, xso = 160 nm, x′

so ≡
h̄/(meα1) = 240 nm, x0 = 30 nm, and x1 ≡ [h̄/(meω1)]1/2 = 70 nm.

By noting the energy conservation warranted by the paired
ABSs in Rss′ , i.e., Ej + E5− j ≡ 0, the Hamiltonian for the
CAR interaction can be effectively formulated as

HCAR = − t2
0 �0

μ2 + �2
0

(
dl⇓

−dl⇑

)†

Û(2so)

(
d†

r⇑
d†

r⇓

)
+ H.c., (5)

in which Û(2so) = exp[−2ison̂ · σ] represents the spin ro-
tation matrix induced by SOI, with the direction vector n̂ =
(sin ϑ, 0, cos ϑ ) and ϑ = arccos[sin θ/ f0(θ )] [44]. In this
form, the μ dependence of the amplitude Rss′ is thus directly
revealed by the coefficient of Eq. (5) now. Despite of the
values of El and B, as shown in Fig. 3(a), |Rss̄ |2 manifests a
rather robust dependency of μ, i.e., decreasing with increasing
|μ|, and always attain its maximum at μ = 0 [see Fig. 3(b)].
Similar results for |Rss |2 are obtained, as plotted in Figs. 3(c)
and 3(d), except at B = 0 where the spin-conserved CAR is
suppressed because of the spin conservation [also see θ =
π/2 in Fig. 3(e)]. Specifically, Fig. 3(e) shows the numerical
distributions of |Rss |2 and |Rss̄ |2 in the θ − El plane. Besides
the evident dependence on direction angle θ in n̂, it is seen
that they are almost insensitive to the change of the energies
of the QD states (El,r), as can be more clearly seen in Fig. 3(f).
It is because of such insensitiveness, that the experimental
observations of the main features for CARs in Ref. [41] can
still be revealed by the current theoretical model even without
specifying the QD energies in any detail (see Ref. [42]).
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FIG. 4. Similar plots as in Fig. 3, but for the quantities |T⇑⇓|2
and |T⇑⇑|2, as shown by the color maps in the left and right columns,
respectively; the corresponding line cut plots are also given in (b),
(d), and (f). Note that, the white dashed-dotted lines in (c) indicate
|T⇑⇑|2 = 0, and the scaling ranges [(|̃T|2min, |̃T|2max)] in (f) are now
[0.00, 0.04] and [0.04, 0.12] for |T⇑⇓|2 and |T⇑⇑|2, respectively.
Here, the used parameters are the same as those of Fig. 3.

Analytically, according to the specific forms of tνs, j , Eν,s,
and Ej , the ECT amplitude in Eq. (4) can be further evaluated
by

Tss′ = −
t2
0 (μ + Ess′ )

μ2 + �2
0

[Û(−2so)]ss′ + t2
0 �z,c f1(θ )

2
(
μ2 + �2

0

)
× {[�(θ ) · σ]ss′ + iδss′ sin(2so) cos ϕ}, (6)

with Ess′ = (El,s + Er,s′ )/2, δss′ being the Kronecker
delta function, ϕ = arccos[sin θ/ f1(θ )], and �(θ ) =
(�x, 0,�z ) denoting a three-dimensional vector, with
�x = cos2 so sin(ϑ − ϕ) − sin2 so sin(ϑ + ϕ) and
�z = cos2 so cos(ϑ − ϕ) − sin2 so cos(ϑ + ϕ) [44].

In the absence or presence of an applied magnetic field, the
intricate dependences of ECTs on the chemical potential of
the middle superconducting nanowire were explicitly revealed
in Ref. [41] at a fixed configuration of the QD energy levels.
Admitted by the spin conservation in the absence of magnetic
field, the spin-flipped ECTs are forbidden and hence we have
Tss̄ = 0, as shown in Fig. 4(a) for B = 0. Contrarily, Fig. 4(c)
shows that the spin-conserved quantity |Tss|2 exhibits evident
μ- and El dependences in this case. It is found |Tss|2 van-
ishes at μ 
 −Ess (see the dashed-dotted lines), accompanied
with two local peaks emerging around. Interestingly, based on
Eq. (6), the ratio of the two bilateral peak values at a fixed Ess
can be evaluated as

γ0 = (Ess + �es)2/(Ess − �es)2, (7)

with �es = (E2
ss + �2

0)1/2. Thus, it can be inferred that the
spin-conserved probability is generically μ asymmetric. The
predicted asymmetric trend, remarkably, can well capture the
experimental observations in Ref. [41] [see Fig. 2(f) therein],

according to which estimations of γ0 
 2.4 and the average
energy of the QD states Ess 
 0.22�0 can also be extracted.
This phenomenon can also be intuitively explained by an
unbalance between the individual contributions from the pos-
itive (γ1,2) and negative (γ3,4) ABS levels and specifically,
the utmost peak of the ECT rate is mainly contributed by the
particular ABS levels nearer to the average energy of the QD
states.

Note that, the asymmetric μ dependence of |Tss|2 can also
appear when a magnetic field is applied, even when El,r = 0,
see the (dark) solid line in Fig. 4(d) with B = B0. Concur-
rently, spin-flipped ECTs come to play as verified by the data
shown in the right panel of Fig. 4(a), and |Tss̄|2 presenting a
much similar μ and El dependences as that for |Tss|2 without
magnetic field. For the case of a nonzero El , it is interesting
to see that the variations of |Tss̄|2 versus μ, as illustrated by
the (dark) dashed curve in Fig. 4(b), can well explain the
asymmetric feature of the spin-flipped probability measured
in the experiments [refer to Fig. 3(d) of Ref. [41]]. Evidently,
based on Eq. (6), the spin-dependent ECT amplitudes will
also vary with the magnetic-field direction in different values
of the QD energies. As shown in Figs. 4(e) and 4(f), |Tss̄|2
and |Tss|2 attain their local maxima and minima at θ = 0, π ,
respectively. In contrast to that for CARs in Fig. 3(e) and 3(f),
apparently, they exhibit significant modulations by the QD
energies.

V. MORE PHYSICS RELATES TO QD ENERGIES

Being as a zero-energy and half-fermionic state, it is con-
firmed that the emergence of a pair of poor man’s MBSs can
be indicated by the fermion parity degeneracy in the low-
energy states [33,35], when the on-site energies of the two
QDs are symmetrically kept around the Fermi level. However,
it still remains an open question to clarify the impact of mod-
ulation of the spin-quantization axis direction of the QDs on
the precondition for realizing the MBSs in a minimal Kitaev
chain.

With the change of the spin quantization-axis direction
in different but uniform magnetic fields, Fig. 5(a) shows the
parity phase diagram of the total electron-number parity of
the two QDs in the θ − μ plane, where, for completeness,
the effect of intradot Coulomb repulsions is also included
in the calculation [44]. Clearly, for a fixed magnetic-field
direction θ , the fermion parity of the double QDs is even
when the chemical potential of the superconducting nanowire
μ is kept within a range around the zero-energy level, and it
will change to be odd as μ out of the range. The boundary
between the odd and even fermion parity areas indicates the
correlation of the two modulation parameters required to at-
tain the parity degeneracy. Intriguingly, this is consistent with
the conventional criteria for the poor man’s MBSs in Ref. [32],
where a balance between the interdot spin-conserved ECT and
CAR |T⇓⇓|2 = |R⇓⇓|2 is necessary. Note that, because of the
vanishing of spin-conserved CARs at θ = π/2 [see Fig. 3(f)],
the emergence of parity degeneracy does not really ensure the
creation of the MBSs, as indicated by the deviation emerging
there in Fig. 5(a).

When the QD energies are considerably tuned below
the Fermi level and with �z,0 � |El,r |, the QDs are deep
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FIG. 5. (a) The phase diagram of the total electron-number parity
of the two QDs in the θ − μ plane, with El,r = 0.1, �z,0 = 0.2,
U = 5.0. Here, these energy scales are in units of �0, and the
other parameters take the same values as that in Fig. 3. The dotted-
dashed curves (purple) indicate the required θ − μ correlation for
|T⇓⇓|2 = |R⇓⇓|2. (b) The numerically calculated superexchange (see
the inset) interaction strength J based on Eq. (8), in a unit of 8t4

0 /�3
0,

as a function of μ, for the double QDs. Here we have El = −0.3,
Er = −0.4, and �z,0 = 0.05, and a sweet spot is also presented.

in the even-parity phase regime and characterized by the
(1,1) occupancy distribution, i.e., each QD occupied by a
single electron. Nevertheless, within the strong Coulomb
blockade regime, i.e., |Eν,s|, |Ej | � U with U sizing the
strength of the Coulomb repulsion, the electrons of the
two QDs will establish an effective exchange interaction
under the combined effect of high-order interdot ECT
and CAR processes. Using the explicit forms of the
spin-dependent amplitudes given in Eqs. (5) and (6), the

exchange Hamiltonian is found as, Hext = J[ cos2(2so)Sl ·
Sr + sin(4so)n̂ · (Sl × Sr ) + sin2(2so)Sl

←→
� Sr] [44]. Here,

we have
←→
� = 2n̂n̂ − 1, Sν=l,r = (1/2)

∑
s,s′ d†

νs′σs′sdνs

representing the electron quasi-spin operators and

J = t4
0U

(μ2 + �2
0)2

[
(2μ + E+)2

U 2 − E2−
− 4�2

0

E+(2U + E+)

]
, (8)

indicating the strength of the exchange interaction, with
E± = El ± Er .

In contrast to the formation of MBSs around the Fermi
level [31,32], the exchange interaction is established only
when the on-site energies of the QDs are significantly reduced
below the zero-energy level. As described by the effective
Hamiltonian Hext, it not only comprises a generic Heisen-
berg exchange interaction but also contains an anisotropic
Dzyaloshinskii-Moriya (DM) interaction and a symmetric
ferromagnetic term, namely as a superexchange interaction
[46,47]. Interestingly, the direction of the DM vector in Heff ,
viz., n̂, vary with the direction of the magnetic field and

the exchange strength J can be regulated by the chemical
potential μ, as shown in Fig. 5(b). Specifically, when μ is
tuned approaching to (away from) the zero point, J is ef-
fectively switched on (off) with the modulation reaching a
sweet point of ∂J/∂μ = 0. The emergence of a controllable
superexchange interaction will facilitate the spin-based quan-
tum computation in the minimal Kitaev chain, because the
implementation of intrinsic two-qubit logic gates demands for
a tunable superexchange interaction [48–50].

VI. CONCLUSION

Focusing on the interaction between two separated QDs
mediated by the ABSs of a superconducting proximitized
nanowire, we clarify different interesting effects on the ECTs
and CARs from tuning the energies of the QD states, as
explicitly considered in our model. Regarding the CARs, we
demonstrate that the modulation of energy levels of the QDs
does not affect the respective spin-dependent amplitudes. This
validates the physical rationality of the simplified treatment
in Ref. [42] in analyzing CARs, in which the details of the
QD states are not explicitly accounted for. Contrastingly, the
ECT amplitudes exhibit an evident dependence on the QD
energies, and thus illustrate the insufficiency of the existing
theory in interpreting the experimentally observed gate-tuning
asymmetry of ECTs in the case without magnetic field [41].

Armed with the variation laws of the spin-dependent
ECTs and CARs, we derive the phase diagram of the to-
tal electron-number parity of the two QDs in terms of the
spin-quantization axis direction in the QDs and the chemical
potential in the superconducting nanowire, and demonstrate
that the emergence of a fermion-parity degeneracy is com-
patible with a balance between ECT and CAR in realizing
the poor man’s MBSs. When the QDs are tuned into the
deep Coulomb blockade regime and kept at half-filling, we
also predict an anisotropic superexchange interaction between
electrons of the two QDs under the impact of high-order ECT
and CAR processes. In addition, the high controllability of the
superexchange interaction will facilitate implementing two-
qubit logic gates based on the electron spin states. Overall,
we believe our work elucidates a more complete picture of
the modulation of spin-dependent ECTs and CARs in the
QD-based minimal Kitaev chain, and will invoke more in-
teresting physics studies in the superconducting hybrid QD
nanostructures.
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