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Non-Hermitian Z4 skin effect protected by glide symmetry
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Although nonsymmorphic symmetry protects Z4 topology for Hermitian systems, non-Hermitian topological
phenomena induced by such a unique topological structure remain elusive. In this paper, we elucidate that sys-
tems with glide symmetry exhibit non-Hermitian skin effects (NHSE) characterized by Z4 topology. Specifically,
numerically analyzing a two-dimensional toy model, we demonstrate that the Z4 topology induces the NHSE
when the topological invariant takes ν = 1 and 2. Furthermore, our numerical analysis demonstrates that the
NHSE is destroyed by perturbations preserving the relevant symmetry when the Z4 invariant takes ν = 4.
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I. INTRODUCTION

Topology of wave functions in insulators and superconduc-
tors is one of the central issues in condensed-matter physics
because of gapless boundary states induced by topology in
the bulk [1–6]. The integer quantum Hall system [7–13] is
an example of topological insulators without symmetry where
the chiral edge mode results in quantized Hall conductance
with high accuracy. Topological structures are enriched by
time-reversal symmetry, particle-hole symmetry, and chiral
symmetry [14–17] as systematically clarified by the tenfold
way classification [18–21]; three (two) symmetry classes al-
low Z (Z2) topology in each case of spatial dimensions.
Topological structures are further enriched by crystalline sym-
metry [22–28]. In particular, unique topological structures
may exist under nonsymmorphic symmetry [29–41]. For in-
stance, Z4 topology is allowed under glide symmetry which is
described by a product of reflection and the half-translation.
This unique Z4 topology results in distinctive surface states
analogous to a Möbius strip [32].

The notion of topology is further extended to non-
Hermitian systems, which elucidated that non-Hermiticity
induces novel topological phenomena without Hermitian
counterparts [42–58]. A representative example is the non-
Hermitian skin effect (NHSE), which is the extreme sensitiv-
ity of eigenvalues and eigenstates to the boundary conditions
due to point-gap topology [59–65]. Because of nontrivial
point-gap topology, most of all eigenmodes are localized
around only one of the edges which are known as skin modes
[62]. While the above NHSE is reported for systems with no
symmetry, symmetry-protected NHSEs are also reported for
systems with time-reversal symmetry [62] or reflection sym-
metry [66]. The NHSEs are reported for a variety of classical
systems [67–81] as well as quantum systems [82–86].

The above two progresses imply the potential presence
of exotic non-Hermitian phenomena under nonsymmor-
phic symmetry. Although several works have explored the
non-Hermitian topology under nonsymmorphic symmetry
[87–89], non-Hermitian topological phenomena induced by
Z4 topology remain elusive.

In this paper, we numerically demonstrate the emergence
of the NHSE induced by Z4 topology in systems with glide
symmetry. Specifically, we elucidate that the NHSE emerges
in a two-dimensional toy model when the Z4 topological in-
variant takes ν = 1 and 2. The NHSE characterized by ν = 2
appears only for boundaries where glide symmetry is closed.
In addition, one-dimensional topology is trivial for the toy
model of ν = 2. Furthermore, we observe that the NHSE is
destroyed by perturbations preserving the relevant symmetry
for ν = 4, which indicates that the NHSE is induced by Z4

topology. The above results elucidate the emergence of the
non-Hermitian Z4 skin effect protected by glide symmetry.

The rest of this paper is organized as follows. In Sec. II, we
discuss the Z4 invariant in non-Hermitian systems with glide
symmetry. In Sec. III, we observe the emergence of NHSE
characterized by the Z4 invariant. Section IV provides a brief
summary of our work. Appendices are devoted to symmetry of
doubled Hermitian Hamiltonians, their edge modes, and one-
dimensional topology.

II. Z4 TOPOLOGICAL INVARIANT
AND RELEVANT SYMMETRY

We consider a two-dimensional non-Hermitian Hamilto-
nian with the following symmetry (TRS†):

T HT (k)T −1 = H (−k), (1)

where T is a unitary matrix satisfying T T ∗ = −1. This
non-Hermitian Hamiltonian belongs to [48] class AII†. Fur-
thermore, we add glide symmetry for the non-Hermitian
system:

G(kx )H (k)G−1(kx ) = H†(k), (2)

where G(kx ) is a glide operator satisfying G2(kx ) = −e−ikx and
T G∗(kx )T −1 = G(−kx ).

In the presence of symmetry constraints [Eqs. (1) and (2)],
the non-Hermitian topology is characterized by a Z4 topolog-
ical invariant. In order to see this, we consider the following
doubled Hermitian Hamiltonian with a reference energy

2469-9950/2024/110(11)/115301(9) 115301-1 ©2024 American Physical Society

https://orcid.org/0000-0002-2276-1009
https://ror.org/02kpeqv85
https://ror.org/05a28rw58
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.115301&domain=pdf&date_stamp=2024-09-03
https://doi.org/10.1103/PhysRevB.110.115301


SHO ISHIKAWA AND TSUNEYA YOSHIDA PHYSICAL REVIEW B 110, 115301 (2024)

Eref ∈ C:

H̃ (Eref ) =
(

0 H − Eref 1l

H† − E∗
ref1l 0

)
, (3)

where 1l is the identity matrix. This Hermitian Hamiltonian
belongs to class DIII and has glide symmetry (for more details
see Appendix A 1). The above Hamiltonian H̃ (Eref ) is known
to be characterized by the following Z4 invariant [32], ν:

ν ≡ 2i

π

∫ π

−π

dky tr AI
+(kx = π, ky)

− i

π

∫ π

0
dkx

∫ π

−π

dky tr F+(kx, ky) (mod 4), (4)

where A+ and F+ are respectively the Berry connection and
the Berry curvature for occupied states of H̃ (Eref ) in the
plus-eigensector of the glide operator G(kx ) [for the explicit
definition of G(kx ), see Eq. (A5) in Appendix A 1] with eigen-
values g±(kx ) = ±ie−ikx/2. The superscript I denotes one of
the Kramers pair on the one-dimensional subspace specified
by kx = π where the time-reversal operation is closed for the
plus-eigensector.

III. NON-HERMITIAN SKIN EFFECT CHARACTERIZED
BY THE Z4 TOPOLOGICAL INVARIANT

We numerically elucidate the emergence of the NHSE in-
duced by Z4 topology under glide symmetry. Specifically, our
numerical analysis demonstrates the emergence of an NHSE
for ν = 1 and 2. Such an NHSE is destroyed by perturbations
preserving the relevant symmetry for ν = 4.

A. NHSE for ν = 1

To investigate the system for ν = 1, we consider the fol-
lowing Hamiltonian:

H1(kx, ky) ≡ [mη0 − t{(1 + cos kx )ηx − sin kxηy}]ρ0

+ itsp[sin kxηx − (1 − cos kx )ηy]ρz

− i2tsp sin kyη0ρy. (5)

Here, m, t , tsp, and α are real numbers. Pauli matrices are
denoted by ηi and ρi (i = x, y, and z). Identity matrices are de-
noted by η0 and ρ0. Time-reversal and glide operators are
written as T = −η0ρy and G(kx ) = i( 0 1

e−ikx 0)ηρx.
This model is obtained from a Bogoliubov–de Gennes

(BdG) Hamiltonian of class DIII of Hermitian systems (see
Appendix A 2). Employing a numerical method of the dis-
cretized Brillouin zone [90–92], we can see that the Z4

invariant takes ν = 1 for −4 < m < 4 and (t, tsp) = (1, 0.8)
[see Fig. 1(a)]. This fact is consistent with the presence of
helical edge modes of the doubled Hermitian Hamiltonian
(see Appendix B).

We numerically analyze the energy spectrum and right
eigenstates by changing boundary conditions. By xOBC
(yOBC), we denote open boundary conditions in the x (y)
direction. By xPBC (yPBC), we denote periodic boundary
conditions in the x (y) direction. We set the parameter m to
3 where the Z4 invariant takes ν = 1 [see Fig. 1(a)]. Unless

FIG. 1. (a) The Z4 invariant of H1 [Eq. (5)] as a function of m.
The vertical dotted line denotes m = 3. (b) Energy spectra of H1

[Eq. (5)] under yOBC for kx = 2πn/103 (n = 1, . . . , 103 − 1). The
more detailed data obtained for kx = 2πn/104 (n = 1, . . . , 104 − 1)
are essentially the same as the data in panel (b). (c) [panel (d)] The
energy spectra for m = 3 and kx = 0 [kx = π/6]. Data denoted by
purple (blue) dots are obtained under yOBC (yPBC). These data
are obtained for (t, tsp ) = (1, 0.8). Panel (a) is obtained from the
Bloch Hamiltonian H1(kx, ky ). Panels (b), (c), and (d) are obtained
by supposing that L = 10 unit cells are aligned in the y direction.

otherwise noted, periodic boundary conditions are imposed in
the x direction (i.e., xPBC).

The energy spectra are plotted in Figs. 1(b)–1(d). For kx =
0, the spectrum under yOBC is real while the spectrum under
yPBC becomes complex. However, for kx �= 0, the spectrum
becomes complex for both cases of yOBC and yPBC.

The right eigenstates are plotted in Fig. 2. For kx = 0, skin
modes emerge around both edges. Namely, eigenstates under
yOBC are localized at both ends of the system [Fig. 2(a)]
while eigenstates under yPBC are delocalized [Fig. 2(b)].
However, for kx �= 0, eigenstates under yOBC are delocalized,
which is similar to the case of yPBC [see Figs. 2(c) and 2(d)].

To obtain these data, the perturbation [93]

H1,ptb = −iβη0ρx, (6)

with a small real number β, is added to lift degeneracy by
breaking TRS†. With the above results, we can conclude that
the NHSE is observed for the Hamiltonian defined in Eq. (5)
where the Z4 invariant takes ν = 1.

B. NHSE for ν = 2

To investigate the system for ν = 2, we consider the fol-
lowing Hamiltonian:

H2(kx, ky) ≡ (m − t cos ky)η0ρ0

+ i κ sin(kx/2)[cos(kx/2)ηx + sin(kx/2)ηy]ρy

+ i	 sin kyη0ρz − i2α sin kyηzρx. (7)

Here, κ and 	 are real numbers. Time-reversal and glide op-
erators are written as T = −η0ρy and G(kx ) = i(0 e−ikx

1 0 )ηρx.
This model is obtained from a BdG Hamiltonian of class DIII

115301-2



NON-HERMITIAN Z4 SKIN EFFECT … PHYSICAL REVIEW B 110, 115301 (2024)

FIG. 2. (a) [panel (b)] Amplitude of right eigenstates of H1 [see
Eq. (5)] under yOBC [yPBC] for kx = 0. (c) [panel (d)] Amplitude
of the right eigenstates under yOBC [yPBC] for kx = π/6. Unit
cells specified by iy = 0, 1, . . . , L − 1 are aligned in the y direction.
The amplitude is defined as |〈iy|
nR〉|2, where |
nR〉 are the right
eigenstates of the Hamiltonian (i.e., H1|
nR〉 = En|
nR〉). These data
are obtained for (L, m, t, tsp ) = (10, 3, 1, 0.8). We have introduced a
perturbation [93] [Eq. (6)] with β = 10−12.

of Hermitian systems (for more details, see Appendices A 2
and B). The Z4 invariant takes ν = 2 for −0.8 � m � 0.8 and
(t, κ,	, α) = (1, 0.2, 0.8, 0.1) [see Fig. 3(a)].

We numerically analyze the energy spectrum and right
eigenstates in a way similar to that used in the previous case.

FIG. 3. (a) The Z4 invariant of H2 [Eq. (7)] as a function of m.
The vertical dotted line denotes m = 0. (b) Energy spectra of H2

[Eq. (7)] under yOBC for kx = 2πn/103 (n = 1, . . . , 103 − 1). The
more detailed data obtained for kx = 2πn/104 (n = 1, . . . , 104 − 1)
are essentially the same data as in panel (b). (c) [panel (d)] The
energy spectra for m = 0 and kx = 0 [kx = π/6]. Data denoted by
purple (blue) dots are obtained under yOBC (yPBC). These data are
obtained for (t, κ, 	, α) = (1, 0.2, 0.8, 0.1). Panel (a) is obtained
from the Bloch Hamiltonian H2(kx, ky ). Panels (b), (c), and (d) are
obtained by supposing that L = 10 unit cells are aligned in the y
direction.

FIG. 4. (a) [panel (b)] Amplitude of right eigenstates of H2 [see
Eq. (7)] under yOBC [yPBC] for kx = 0. (c) [panel (d)] Amplitude
of the right eigenstates under yOBC [yPBC] for kx = π/6. Unit
cells specified by iy = 0, 1, . . . , L − 1 are aligned in the y direction.
The amplitude is defined as |〈iy|
nR〉|2, where |
nR〉 are the right
eigenstates (i.e., H2|
nR〉 = En|
nR〉). These data are obtained for
(L, m, t, κ,	, α) = (10, 0, 1, 0.2, 0.8, 0.1). We have introduced a
perturbation [93] [Eq. (8)] with β = 10−12.

We set the parameter m to 0 where the Z4 invariant takes
ν = 2 [see Fig. 3(a)].

The energy spectra are plotted in Figs. 3(b)–3(d). For kx =
0, the spectrum under yOBC is real while the spectrum under
yPBC becomes complex. However, for kx �= 0, the spectrum
becomes complex for both cases of yOBC and yPBC.

The right eigenstates are plotted in Fig. 4. For kx = 0, skin
modes emerge around both edges. Namely, eigenstates under
yOBC are localized at both ends of the system [Fig. 4(a)]
while eigenstates under yPBC are delocalized [Fig. 4(b)]. In
contrast, for kx �= 0, eigenstates under yOBC are delocalized,
which is similar to the case of yPBC [see Figs. 4(c) and 4(d)].
To obtain these data, the perturbation [93]

H2,ptb = −iβη0ρx, (8)

with a small real number β, is added to lift degeneracy by
breaking TRS†.

With the above results, we can conclude that the NHSE is
observed for the Hamiltonian defined in Eq. (7), where the Z4

invariant takes ν = 2.
Here, one may consider that the above NHSE is induced by

one-dimensional topology of class AII†. We note, however,
that the corresponding topological invariant takes 0 for this
model as discussed in Appendix C. We also note that the
NHSE disappears when we impose xOBC and yPBC where
the glide symmetry is not closed (see Appendix D).

C. NHSE destroyed by perturbations for ν = 4

Stacking two copies of H2 [Eq. (7)] yields a bilayer system
where the Z4 invariant takes ν = 4. Introducing a coupling
between the layers destroys the NHSE while preserving the
relevant symmetry, which demonstrates that the NHSE ob-
served in Sec. III B is induced by Z4 topology.
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FIG. 5. (a) The Z4 invariant of H4 [Eq. (9)] as a function of λ.
(b) [panel (c)] Energy spectra of H4 [Eq. (9)] for λ = 0.05 [0.2]
and kx = 0.50536050426 [π ]. Data denoted by purple (blue) dots
are obtained under yOBC (yPBC). (d) The energy spectra under
yOBC for kx = 2πn/103 (n = 0, . . . , 103 − 1). The more detailed
data obtained for kx = 2πn/104 (n = 0, . . . , 104 − 1) are essentially
the same as the data in panel (d). These data are obtained for
(m, t, κ, 	, α) = (0, 1, 0.2, 0.8, 0.1). Panel (a) is obtained from the
Bloch Hamiltonian H4(kx, ky ). Panels (b), (c), and (d) are obtained
by supposing that L = 10 unit cells are aligned in the y direction.

The above destruction of the NHSE is observed in the
following Hamiltonian:

H4(kx, ky) = H2(kx, ky)ζ0 + λη0ρxζy. (9)

Here, λ is a real positive number. Pauli matrices and the
identity matrix are denoted by ζi (i = x, y, and z) and ζ0,
respectively. Time-reversal and glide operators are written as
T = −η0ρyζ0 and G(kx ) = i(0 e−ikx

1 0 )ηρxζ0. The second term

preserves glide symmetry, G(kx )λη0ρxζyG−1(kx ) = λη0ρxζy.
As shown in Fig. 5(a), the Z4 invariant takes ν = 0 for this
model.

The energy spectrum is plotted in Figs. 5(b)–5(d). For
λ = 0.05 and 0.2, the spectra under yOBC are real while the
spectra under yPBC become complex when kx takes a specific
value. However, for λ = 0.3, the sensitivity of eigenvalues
to boundary conditions is not observed; the spectrum under
yOBC becomes complex for arbitrary kx, which is similar to
the case of yPBC.

The right eigenstates are plotted in Fig. 6. For λ = 0.05
and 0.2, the eigenstates under yOBC are localized at both
ends of the system at a specific value of kx [see Figs. 6(a)
and 6(c)] while the eigenstates under yPBC are delocalized
[see Figs. 6(b) and 6(d)]. However, for λ = 0.3, the above
localized modes are not observed; the eigenstates under yOBC
are delocalized, which is similar to the case of PBC [see
Figs. 6(e) and 6(f)]. To obtain these data, the perturbation [93]

H4,ptb = −iβη0ρxζ0, (10)

with a small real number β, is added to lift degeneracy by
breaking TRS†.

FIG. 6. Amplitude of right eigenstates of H4 [see Eq. (9)]. Panels
(a), (c), and (e) [panels (b), (d), and (f)] are obtained under yOBC
[yPBC]. Panels (a) and (b) are obtained for λ = 0.05. Panels (c) and
(d) are obtained for λ = 0.2. Panels (e) and (f) are obtained for
λ = 0.3. Unit cells specified by iy = 0, 1, . . . , L − 1 are aligned
in the y direction. For λ = 0.3, the data obtained for other wave
numbers are essentially the same as the data in panel (e) [panel (f)].
Amplitude is defined as |〈iy|
nR〉|2, where |
nR〉 are right eigenstates
(i.e., H4|
nR〉 = En|
nR〉). These data are obtained under xPBC and
for (L, m, t, κ,	, α) = (10, 0, 1, 0.2, 0.8, 0.1). We have introduced
a perturbation [93] [Eq. (10)] with β = 10−12.

The above results demonstrate that when the Z4 invariant
takes ν = 4, the NHSE is destroyed by perturbations preserv-
ing the time-reversal symmetry and the glide symmetry. This
fact supports that Z4 topology induces the NHSEs observed
for Hamiltonians defined in Eqs. (5) and (7).

In this section, we have numerically demonstrated that
systems with ν = 1 and 2 exhibit NHSEs while the NHSE is
destroyed by perturbations preserving the relevant symmetry
for ν = 4. We consider that the NHSE emerges for a system
with ν = 3 because flipping the sign of the third term of
Eq. (5), [−i2tsp sin ky → i2tsp sin ky], yields the system with
ν = −1 [= 3 (mod4)] which exhibits the NHSE. Putting the
above results together, we end up with the emergence of non-
Hermitian Z4 skin effects protected by glide symmetry.

IV. SUMMARY

In this paper, we have elucidated that Z4 topology with
glide symmetry induces NHSEs. Specifically, we have nu-
merically analyzed two-dimensional toy models characterized
by the Z4 invariant ν under glide symmetry. Our numerical
analysis has clarified that systems with ν = 1 and 2 exhibit the
NHSE. The NHSE for ν = 2 is observed only on boundaries
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where the glide symmetry is closed. In addition, the one-
dimensional subsystem at kx = 0 is trivial for the toy model
of ν = 2 [Eq. (7)]. Furthermore, we have observed that the
NHSE characterized by ν = 4 is destroyed by perturbations
preserving the relevant symmetry. The above results indicate
the emergence of the non-Hermitian Z4 skin effect protected
by glide symmetry.

In Hermitian systems, it is known that glide symmetry
results in Möbius surface states. The effects of glide symmetry
on skin modes are left as a future work to be addressed.
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APPENDIX A: Z4 TOPOLOGY IN HERMITIAN SYSTEMS

1. Symmetry constraints on Hermitian Hamiltonians

The symmetry class of the Hermitian Hamiltonian defined
in Eq. (3) is the class DIII because it preserves the time-
reversal symmetry (TRS) with 
, the particle-hole symmetry
(PHS) with C, and the chiral symmetry (CS) with �:


H̃ (k)
−1 = H̃ (−k), (A1)

CH̃ (k)C−1 = −H̃ (−k), (A2)

�H̃ (k)�−1 = −H̃ (k). (A3)

Here, each of these symmetry operators is represented as

 = ( 0 T

T 0 )K, C = ( 0 T
−T 0 )K, and � = (1l 0

0 −1l). Operator
K takes complex conjugation. The glide symmetry is written
as

G(kx )H̃ (k)G−1(kx ) = H̃ (k), (A4)

with

G(kx ) =
(

0 G(kx )

G(kx ) 0

)
, (A5)

satisfying {G(kx ),
C} = 0, 
G(kx ) = G(−kx )
, and
CG(kx ) = −G(−kx )C. We note that the relation 
G(kx ) =
G(−kx )
 leads to T G∗(kx )T −1 = G(−kx ).

2. Hermitian Hamiltonians of ν = 1, 2, and 4 and
non-Hermitian toy models [Eqs. (5), (7), and (9)]

The doubled Hermitian Hamiltonian of ν = 1 for the toy
model defined in Eq. (5) is given by imposing glide symmetry

on the Bernevig-Hughes-Zhang (BHZ) model [3,32]:

HBHZ(kx, ky) = [m − 2t (cos kx + cos ky)]τzs0

+ 2tsp sin kxτys0

− 2tsp sin kyτxsz. (A6)

Here, m, t , and tsp are real numbers. Pauli matrices are denoted
by τi and si (i = x, y, and z); τ ’s act on the orbital space
and s’s act on the spin space. Corresponding identity matrices
are denoted by τ0 and s0. Adding a staggered modulation
of the lattice in the x direction and performing the unitary
transformation, we obtain

H̃1(kx, ky)

= [(m − 2t cos ky)η0 − t{(1 + cos kx )ηx − sin kxηy}]τzs0

+ tsp[sin kxηx − (1 − cos kx )ηy]τys0

− 2tsp sin kyη0τxsz, (A7)

where ηi (i = x, y, and z) and η0 are Pauli matrices and
the identity matrix acting on the two inequivalent sites, re-
spectively. The symmetry class of the Hermitian Hamiltonian
H̃1 is class DIII since it preserves TRS [Eq. (A1)] with

 = iη0τ0syK, PHS [Eq. (A2)] with C = η0τxs0K, and CS
[Eq. (A3)] with � = η0τxsy. H̃1 also satisfies the glide sym-
metry [Eq. (A4)] with G(kx ) = i(

0 1
e−ikx 0

)ητ0sz. If we choose
the basis such that CS is represented as � = ρ0χz where ρ’s
and χ ’s are Pauli matrices, H̃1 is written as

H̃1(kx, ky) =
(

0 H1(kx, ky)

H†
1 (kx, ky) 0

)
χ

. (A8)

This Hamiltonian is the doubled Hermitian Hamiltonian with
Eref = 0 for the toy model defined in Eq. (5).

The doubled Hermitian Hamiltonian of ν = 2 for the toy
model [Eq. (7)] is given by adding TRS to the following
Hamiltonian which is constructed from spinless chiral p-wave
superconductors on the square lattice [32]:

He+−e− (kx, ky) = (m − t cos ky)η0τz

+κ sin (kx/2)[cos (kx/2)ηx +sin (kx/2)ηy]τx

+ 	 sin kyη0τy. (A9)

Here, t , κ , and 	 are real numbers. Pauli matrices are denoted
by τi and ηi (i = x, y, and z); τ ’s act on the Nambu space and
η’s act on the sublattice space. Adding TRS to this Hamilto-
nian by using the freedom of the spin space, we obtain

H̃2(kx, ky) = (m − t cos ky)η0τzs0

+ κ sin (kx/2)[cos (kx/2)ηx + sin (kx/2)ηy]τxsz

+ 	 sin kyη0τys0 + 2α sin kyηzτxsx. (A10)

Here, si (i = x, y, and z) are Pauli matrices in the spin space.
When the real number α is 0, the non-Hermitian Hamilto-
nian is decomposed into Hatano-Nelson models; H2(kx, ky )
[Eq. (A12)] is written as

H2(kx, ky)=mη0ρ0+
(

H (HN)(ky)η0 0

0 H (HN)(−ky)η0

)
ρ

,

(A11)
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FIG. 7. (a) Energy spectra of the doubled Hamiltonian con-
structed from Eq. (5) under yOBC for (L, m, t, tsp ) = (10, 3, 1, 0.8)
and kx = −π + 2πn/103(n = 1, . . . , 103). (b) Energy spectra of the
doubled Hamiltonian constructed from Eq. (7) under yOBC for
(m, t, κ, 	, α) = (0, 1, 0.2, 0.8, 0.1) and kx = −π + 2πn/103(n =
1, . . . , 103). These data are obtained by supposing that L = 10 unit
cells are aligned in the y direction.

at kx = 0. Here, H (HN)(k) ≡ −t cos k + i	 sin k is the
Hatano-Nelson model [42,43], which belongs to class A and
can exhibit the NHSE characterized by a Z invariant. The
Hamiltonian H̃2 belongs to class DIII and satisfies the glide
symmetry. The representation of each symmetry operator is
the same as that in the case of H̃1. If we choose the basis such
that CS is represented as � = ρ0χz where ρ’s and χ ’s are Pauli
matrices, H̃2 is written as

H̃2(kx, ky) =
(

0 H2(kx, ky)

H†
2 (kx, ky) 0

)
χ

. (A12)

This Hamiltonian is the doubled Hermitian Hamiltonian with
Eref = 0 for the toy model defined in Eq. (7).

APPENDIX B: EDGE MODES OF THE DOUBLED
HERMITIAN HAMILTONIAN

In Sec. II, the NHSE is observed at a specific wave number
(i.e., kx = 0) for the Hamiltonian whose Z4 invariant takes
ν = 1 and 2. This behavior is explained in terms of exact zero
modes [62].

Figure 7(a) [Fig. 7(b)] shows the energy spectrum for
the doubled Hermitian Hamiltonian constructed from Eq. (5)
[Eq. (7)] under yOBC. These edge modes become zero
modes at kx = 0. The same result is obtained when the
Eref equals the eigenenergy of the skin mode. These re-
sults are consistent with the correspondence between the
right eigenstates of the non-Hermitian Hamiltonian H and
the edge modes of the doubled Hermitian Hamiltonian
H̃ . That is, the appearance of |Eref〉 satisfying H |Eref〉 =
Eref |Eref〉 under yOBC implies the existence of boundary
modes (0, |Eref〉)T

χ satisfying H̃ (0, |Eref〉)T
χ = 0. The NHSE

is not observed for kx �= 0 because of the absence of zero
modes in H̃ .

The argument of the doubled Hermitian Hamiltonian ex-
plains the destruction of the NHSE. Figure 8 shows the energy
spectra of the doubled Hermitian Hamiltonian constructed
from Eq. (9) under yOBC. For λ � 0.2, there are zero modes
at specific wave numbers [see Figs. 8(a) and 8(b)] in which the
NHSE for Eq. (9) are observed. On the other hand, for λ > 0.2
such that λ = 0.3, the zero modes disappear [see Fig. 8(c)].
This result is consistent with the disappearance of the NHSE
for Eq. (9) when λ > 0.2.

FIG. 8. (a)–(c) Energy spectra of the doubled Hamiltonian
constructed from H4 [see Eq. (9)] under yOBC for λ = 0.05,
0.2, and 0.3. These data are obtained for (m, t, κ, 	, α, Eref ) =
(0, 1, 0.2, 0.8, 0.1, 0) and kx = −π + 2πn/102(n = 1, . . . , 102).
These data are obtained by supposing that L = 10 unit cells are
aligned in the y direction.

APPENDIX C: TOPOLOGICAL INVARIANT
FOR CLASS AII†

In Sec. III B, we consider the Hamiltonian defined in
Eq. (7) which belongs to the symmetry class AII† and
has glide symmetry added. The subsystem at kx = 0 [i.e.,
H ′

2(ky) ≡ H2(0, ky)] belongs to the one-dimensional class
AII† which is characterized by the following Z2 invariant
[48,94–96], θ (Eref ) ∈ {0, 1}:

(−1)θ (Eref ) ≡ sgn

{
Pf[(H ′

2(π ) − Eref )T ]

Pf[(H ′
2(0) − Eref )T ]

×exp

[
−1

2

∫ k=π

k=0
d log det [H ′

2(k) − Eref ]T
]}

(C1)

We can compute numerically θ (Eref ) for H ′
2(ky) and confirm

that θ takes 0 [θ (Eref ) = 0] for the parameter values used in
Sec. III B if we set Eref to the eigenenergy of the skin mode.

FIG. 9. (a) Energy spectra of H2 [Eq. (7)] under xOBC for ky =
2πn/103(n = 0, . . . , 103 − 1). (b) Energy spectra of the doubled
Hamiltonian constructed from Eq. (7) under xOBC for ky = −π +
2πn/102(n = 1, . . . , 102) and Eref = 0. These data are obtained by
supposing that L = 10 unit cells are aligned in the x direction and for
(m, t, κ, 	, α) = (0, 1.0, 0.2, 0.8, 10−1).
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This result is understood as follows: the subsystem at
kx = 0 can be regarded as two copies of a one-dimensional
system with θ (Eref ) = 1 [see Eq. (A11)]. Thus, in total we
have θ (Eref ) = 2 = 0 (mod 2) for H ′

2(ky).

APPENDIX D: SPECTRUM AND EIGENSTATES
UNDER xOBC and yPBC

If we impose the xOBC, the glide symmetry is not closed
because the glide operation involves the translation by half a

lattice constant in the x direction. In this case, the NHSE is
not observed for Hamiltonian Eq. (7).

We compute the energy spectrum under xOBC and yPBC
[see Fig. 9(a)]. Figure 9(a) shows that the energy spectrum
exists away from the real axis, which is similar to the case of
xPBC and yPBC. Thus, the NHSE disappears when the glide
symmetry is not closed. This result implies that the NHSE
for ν = 2 is protected by the glide symmetry. Besides, we
confirm that the edge modes do not appear for the doubled
Hamiltonian constructed from Eq. (7) under xOBC and yPBC
[see Fig. 9(b)].
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