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We study the condensation of Abelian bosons in string-net models by constructing a family of Hamiltonians
that can be tuned through any such transition. We show that these Hamiltonians admit two exactly solvable,
string-net limits: one deep in the uncondensed phase, described by an initial, uncondensed string-net Hamil-
tonian, and one deep in the condensed phase, described by a final, condensed string-net model. We give a
systematic description of the condensed string-net model in terms of the uncondensed string-net and the data
associated with the condensing Abelian bosons. Specifically, if the uncondensed string-net is described by
a fusion category C, we show how the string labels and fusion data of the fusion category C̃ describing the
condensed string-net can be obtained from that of C and the data describing the string operators that create the
condensing boson. This construction generalizes previous approaches to anyon condensation in string-nets by
allowing the condensation of arbitrary Abelian bosons, including chiral bosons in string-nets constructed from,
for example, Chern-Simons theories, which describe time-reversal invariant bilayer states. This gives a method
for obtaining the full data for string-nets without explicit time-reversal symmetry from such bilayer models. We
illustrate our approach with several examples.
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I. INTRODUCTION

The universal, low-energy properties of gapped phases of
quantum matter are described using two principles: symme-
try and topological order. Considerable effort in recent years
has gone into expanding our understanding of the resulting
genealogy of quantum phases that cannot be described by
the Landau paradigm of spontaneously broken symmetries,
unveiling many new intriguing possibilities for strongly in-
teracting systems. Among the earliest notable exceptions to
Landau’s framework are topologically ordered phases in 2 + 1
dimensions [1–4], which harbor emergent point-like particles
(known as anyons) with fractional statistics.

The long-ranged properties of topologically ordered phases
are captured by a mathematical structure known as a unitary
modular tensor category (UMTC) [4–9], which describes the
rules governing fusion and braiding of point-like excitations.
Thus our knowledge of the possible topologically ordered
phases—much like our knowledge of the possible symmetry
groups—is quite complete. Given this, it is natural to ask
which phases can, in principle, be related by second-order
phase transitions?

In the case of topological order, this question is closely
related to the question of which topological orders are related
by so-called anyon condensation transitions (see Ref. [10]
for a brief review). Such transitions were first studied in
the context of conformal field theory [11–19], and they
have been discussed for general UMTC’s in the mathemat-
ical literature [20–27]. References [28–32] describe how,
in the context of (2 + 1)-dimensional topologically ordered
phases, these transitions physically correspond to processes
in which emergent bosons condense; the topological order
obtained is then a direct consequence of the new, condensed,
vacuum.

Anyon condensation has proven useful in understanding
not only the structure of topological phases [33–38] but also
when they admit gappable boundaries [26,39–51], and how to
create non-Abelian topological orders [52–61] or topological
defects [62–72] from Abelian ones. Moreover, the possibility
of condensing anyons to change a topological order also opens
up the door for novel second-order critical points which may
not have analogs in conventional symmetry-breaking tran-
sitions [73–83]. Recently, it has been observed that anyon
condensation can also be used to study certain dynamical pro-
cesses in open quantum systems and quantum codes [84,85].

In studying anyon condensation, it is useful to have a lattice
Hamiltonian that can be tuned between the two phases in
question. This establishes beyond doubt that a direct transition
between the two topological orders can occur and enables a
variety of analytical and numerical approaches to be used to
study both the corresponding phase transitions and verify the
above description of the condensed phase [36,37,73,74,77,86–
88]. Lattice models of anyon condensation are also useful
for constructing Hamiltonians realizing symmetry-enriched
topological orders [54,58,59].

The present work focuses on a family of two-dimensional
(2D) topological orders known as Drinfeld centers, which are
believed to be the most general class of (bosonic) topologi-
cal orders compatible with gapped boundaries [26,40,89,90].
These can be realized by commuting projector lattice models
known as string-nets [40,89,91–96]. The string-net construc-
tion begins not from the UMTC describing the anyon model
but from a pivotal fusion category C which describes the
Hamiltonian and ground states. The full topological or-
der (i.e., UMTC) is exhibited by studying so-called string
operators, which realize point-like anyonic excitations at
their endpoints. A number of works have previously studied
anyon condensation in these models [73,74,76,77,86–88,97].
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However, the literature so far has focused either on conden-
sation in string-nets that realize (possibly twisted) discrete
gauge theories, or on transitions which condense excitations
of only the plaquette term in the string-net Hamiltonian.

Here, we describe a formalism that describes condensation
of arbitrary Abelian bosons in string-net models,1 without the
need for restricting either the topological order or the type of
excitation considered. Our approach is as follows: First, we
describe an extended version of the string-net construction
obtained by extending the Hilbert space using an approach
similar to that of Ref. [98], albeit tailored to simplify the de-
scription of the condensed phase. Within this extended Hilbert
space, we construct a family of model Hamiltonians that can
be tuned through a transition involving the condensation of
any Abelian boson. Our modified model has the advantage
that, deep in the condensed phase, a general prescription can
be given to identify both the low-energy effective Hilbert
space and the ground state. We show how the Hilbert space of
the condensed phase can be described by a new, effective, set
of string labels (i.e., a new effective fusion category C̃), whose
relationship to the original label set can be calculated explic-
itly. We further show that the ground state of the condensed
phase is also a string-net ground state, described by the data
of the new fusion category C̃, which we describe explicitly
in terms of C and the condensing bosons. In this regime, our
Hamiltonian acts like the regular string-net Hamiltonian on
the new label set.

For condensation processes involving only plaquette de-
fects, C̃ is a subcategory of the original fusion category C,
and the data for the string-net model describing the condensed
phase follows straightforwardly from that of the uncondensed
phase, as described by Ref. [73]. (The relation between the
string operators of the condensed and uncondensed phases,
however, is not so straightforward). For more general conden-
sation processes, however, the relationship between C and C̃
is subtle and requires the more general framework that we
describe here.

The main insights that our construction has to offer are
as follows: First, we give an explicit description of how
to construct an effective low-energy string-net Hamiltonian
deep in the condensed phase by explicitly projecting both
states and operators onto the condensed vacuum; this gives
a computationally tractable method for constructing the full
data of the fusion category C̃.2 Second, our lattice Hamilto-
nians can realize transitions in which chiral Abelian bosons
condense; previous Hamiltonian treatments of anyon conden-
sation in string-nets have been restricted to condensation of
achiral excitations. These transitions are particularly interest-
ing because, when the uncondensed phases is time-reversal
invariant, the resulting condensed phase is not (though it
remains achiral, and in particular has a vanishing central
charge). Notably, using this approach one can obtain the full

1An Abelian boson is simply a boson that has a unique fusion
outcome with any other anyon in the theory.

2Expert readers should note that here we discuss only the case
where the category C is multiplicity free, although in principle our
approach could be extended to include categories with fusion multi-
plicity.

data of certain generalized string-nets [40,93,96] (i.e., string-
nets for which the input fusion category data have a reduced
symmetry) from the more familiar and more highly symmetric
input data used in the original construction of Levin and
Wen [91]; we illustrate this with an example in Sec. II. The
resulting string-nets can be used, for example, to construct
minimal three-dimensional (3D) models with a given chiral
topological order at their boundary, as described in detail
by Ref. [99]. Finally, our models could in principle be used
for numerical study of anyon condensation throughout the
phase diagram, including at and near the critical point. (In
Appendix , we outline how some of our Hamiltonians can be
simplified to render such a numerical implementation more
feasible).

The paper is organized as follows: We begin by highlight-
ing the key applications of our approach, as well as their
relation to previous literature, in Sec. II. In Sec. III, we review
some basics of general string-net ground states and introduce
the extended string-net Hilbert space that we use to study
anyon condensation. In Sec. IV, we introduce a family of
modified string-net Hamiltonians, which can be tuned across a
transition condensing an arbitrary Abelian boson. We describe
the effective Hilbert space deep in the condensed phase in
Sec. V, where we discuss how the string types in C̃ are related
to those in C. In Sec. VI, we study the condensed ground
state, and show that it is indeed a string-net. In particular,
we show how the new ground state allows one to describe
the fusion data of C̃, verify that these fusion data are indeed
consistent, and argue that the full Hamiltonian projected into
the condensed Hilbert space is indeed the associated string-
net Hamiltonian. We illustrate our construction with concrete
examples in Secs. VII and VIII. A number of technical details
are elaborated on in the Appendixes.

II. APPLICATIONS AND RELATION
TO PREVIOUS LITERATURE

Before giving a complete description of our construction,
we discuss in more detail one interesting application of our
approach and summarize the relationship of our work to pre-
vious constructions, particularly those in the mathematical
literature.

A. Background on anyon condensation
and relation to previous work

Physically, anyon condensation can be characterized by
describing the fate of anyons of the original topological order
in the new, condensed, vacuum [28–32]. First, anyons that
braid nontrivially with any of the condensing anyons become
confined and are absent from the topological order of the
condensed theory. Second, two anyons that are related by
fusion with one of the condensing anyons must be identified
in the condensed phase, meaning that, topologically speaking,
they correspond to the same excitation. Finally, certain non-
Abelian anyons can split into multiple distinct anyon types
after condensation.

The relationship between the topological order of the
uncondensed and condensed anyon models is well under-
stood mathematically [20–27]. Mathematically, the set of
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condensing anyons is described by an algebra object A, and
the anyons of the condensed phase are associated with A mod-
ules (which essentially describe the result of identification and
splitting) that are local (which physically means that they are
not confined by the new, condensed, vacuum).

The present work focuses on condensing Abelian bosons,
for which in addition to these general approaches, powerful
techniques for computing the topological data of the con-
densed phase exist in conformal field theory, where they go by
the name of central extensions [11]. The S and T matrices of
the final topological orders can be computed explicitly. These
methods allow the topological order of a large selection of
anyon models after condensing a set of Abelian bosons to be
deduced with relative ease, though, as noted by Ref. [32],
the task of computing the full topological data, namely,
F and R matrices, in these instances is significantly more
challenging.

1. Technical contributions of this work

While the bulk of the approaches described above aim to
describe the topological order of the condensed phase, our
approach focuses instead on obtaining the data for a string-net
model of the condensed phase. Specifically, we begin with
a string-net described by a pivotal fusion category C; the
point-like excitations of this model are the anyons described
by the Drinfeld center Z (C). We then show how to construct a
projector onto the effective low-energy Hilbert space deep in
the condensed phase. Using this projector, we can identify the
topological data for a new pivotal fusion category C̃: specifi-
cally, we construct the new string -net labels {ã} (the simple
objects of C̃) and derive from this projection their branching
rules. We also show that the condensed phase is described by a
string-net Hamiltonian constructed from C̃ and show explicitly
how to derive the relevant Hamiltonian coefficients (i.e., the F
symbols of C̃). Although the confinement, identification, and
splitting of anyons in the final topological order is apparent
from the form of our Hamiltonian, in our approach the asso-
ciated topological data for the condensed anyon model can
be inferred only by deriving the string operators that create
anyons in the condensed phase.

Anyon condensation in Drinfeld centers was discussed in
detail by Ref. [24]. Mathematically, the situation can be sum-
marized as follows: Given a set of anyons to condense [i.e.,
given the algebra object A of the Drinfeld center Z (C)], one
can construct a corresponding algebra object AC of C. It is
shown there that the category of AC modules of C is exactly the
category that we identify as C̃—i.e., it is the fusion category
for which Z (C̃) is the anyon model for the condensed phase.

However, while this framework gives a general descrip-
tion of C̃, the existing mathematical literature does not, to
the best of our knowledge, contain any explicit methods for
extracting the full data (specifically, the F symbols) needed
to use this category to construct a string-net Hamiltonian. In
this context, the main technical contribution of our work is to
provide a framework that allows these data to be computed
systematically from the data of C, in the specific case that the
condensing anyons are Abelian, and the fusion category C is
multiplicity-free—i.e., the resulting string-net does not have
any vector spaces of dimension greater than one associated

FIG. 1. An example of a condensation process that requires our
generalized anyon condensation procedure. (top) The Levin-Wen
string-net constructed from the fusion category SU(2)4 (left) and
the resulting topological order (right), which can be visualized as a
bilayer system with a chiral SU(2)4 Chern-Simons theory in the top
layer and an antichiral SU(2)4 Chern-Simons theory in the bottom
layer. (bottom) The generalized string-net constructed from the fu-
sion category TY3,− (left) obtained by condensing a Z2 boson in the
SU(2)4 layer yields a topological order with SU(2)4 in the top layer
and SU(3)1 in the bottom layer.

with its vertices.3 We demonstrate how this can be done ex-
plicitly in a number of examples in Secs. VII and VIII.

B. Application: Constructing string-nets with
no time-reversal symmetry

Readers might wonder which types of anyon condensation
transitions that have not been discussed elsewhere in the liter-
ature can be described with the formalism we introduce here.
One class of these, illustrated in Fig, 1, are transitions in which
a chiral Abelian boson condenses. The top panel of Fig. 1
depicts a Levin-Wen type string-net model constructed from
the fusion category SU(2)4 (left), and the resulting topologi-
cal order (right), which is that of the doubled Chern-Simons
theory SU(2)4 × SU(2)4. In Fig. 1, we have portrayed this as
a bilayer system in which the top layer hosts the topological
order SU(2)4 (with right-chiral boundary modes), and the
bottom layer hosts SU(2)4 (with left-chiral boundary modes).
Both layers have a condensable Abelian boson, associated
with the spin-2 representation of SU(2). In the bottom panel,
we show the string-net and topological order obtained after
condensing a spin-2 Abelian boson in the SU(2)4 layer. On

3While most string-net constructions in the physics literature focus
almost exclusively on this multiplicity-free case, these constructions
should be viewed as special cases of a more general class of mod-
els in which the vertices carry multidimensional vector spaces, as
described, e.g., in Ref. [40]. In principle, our model could also be ex-
tended to this more general setting. However, we have not attempted
to compute the data of C̃ in any such examples and will not discuss
them further in this work.
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the right-hand side we depict the resulting topological order,
which is now SU(2)4 × SU(3)1 [31]. The lower-left panel
shows the corresponding string-net, which we construct using
our Hamiltonian-based approach in Sec. VIII B below. This
string-net is constructed from a Tambara-Yamagami fusion
category TY3,−.

An interesting feature of this transition that has not been ac-
cessible in previous studies of lattice Hamiltonians for anyon
condensation is the fact that the condensation breaks time-
reversal symmetry. Specifically, the uncondensed topological
order has a time-reversal symmetry that acts by exchanging
the two layers. Condensing a boson in only one layer, how-
ever, spontaneously breaks this symmetry. The topological
order after condensation is achiral in the sense that it has a
gappable boundary (and, in particular, a vanishing chiral cen-
tral charge). However, it is not time-reversal invariant, since
the anyons no longer appear in pairs with opposite conformal
spins and hence cannot admit a time-reversal symmetry [57].

At the level of the string-net Hamiltonians, time-reversal
symmetry is associated with a reflection symmetry of cer-
tain data (known as F symbols) of the underlying fusion
category [96]. Prior to condensation, the string-net is of the
original Levin-Wen type, with this reflection symmetry. The
TY3,− category describing the string-net after condensation,
on the other hand, does not have reflection symmetry; the
condensed Hamiltonian realizes a generalized string-net of the
type described by Refs. [40,89,93]. Thus anyon condensation
allows us to obtain the string-net data for certain generalized
string-net models of reduced symmetry from the more famil-
iar and more highly symmetric input data used in the original
construction of Levin and Wen [91].

The above picture applies more generally to string-net
models constructed from any Chern-Simons theory contain-
ing an Abelian boson. In particular, it applies to string-nets
constructed from SU(2)4k Chern Simons theories for any k,
for which there is always a chiral Z2 Abelian boson that can
be condensed.4 The relevant fusion data for the SU(2)4k fusion
categories can be found, e.g., in Ref. [7]; our approach allows
in principle for a systematic construction of the string-net
models for these condensed phases as well. (We caution the
reader, however, that extracting the data for the anyon string
operators themselves from that of the string-net is not in
general a straightforward task.)

III. EXTENDED STRING-NET MODELS

In this section, we introduce the extended string-net models
that we use for our models of anyon condensation.

A. Review: Generalized string-net models

We begin by reviewing the string-net construction. Here
we use the generalized string-net construction of Ref. [96]
(see also Refs. [40,89,93]), since the symmetries assumed in
the original construction [91] are not always present in the
condensed phase.

4As noted above, however, here we consider only those theories
that are multiplicity-free.

We defer a discussion of string-net Hamiltonians to
Sec. IV A and here focus on the string-net Hilbert space to-
gether with its ground states and certain excited states.

1. The string-net ground state

The string-net model consists of a Hamiltonian whose
ground state(s) obey certain special properties, which we now
describe. These string-net ground states live in a Hilbert space
of string-net configurations, each of which is defined on an
oriented, trivalent graph. (Although the string-net Hamiltoni-
ans are defined on the honeycomb lattice, this lattice structure
is not necessary to describe the string-net ground states.)
Throughout this work, we use the convention that all strings
are oriented upward, i.e., the orientation vector has positive
projection onto the ŷ direction. We therefore require this
projection to be nonzero, such that our strings cannot have
horizontal tangent vectors.

The string-net configuration is obtained by assigning to
each edge i a label (or string type) ai. The combinations of
string types {(a, b; c)} that are allowed to meet at a vertex is
dictated by a set of branching rules—i.e., if (a, b; c) is among
the branching rules, then the vertices

, (1)

are allowed. The set of all string-net configurations which
satisfy the above branching rules form an orthonormal basis
for the string-net Hilbert space H. We call those states in this
string-net Hilbert space string-net states.

To be able to define a string-net ground state, our label
set and branching rules must satisfy certain conditions. First,
defining

δab
c =

{
1, if {a, b; c} is allowed
0, otherwise, (2)

the branching rules must satisfy∑
e

δab
e δec

d =
∑

f

δbc
f δ

a f
d . (3)

It follows that if (a, b; c) is allowed, then so are (c̄, a; b̄),
(b, c̄; ā), and (b̄, ā, c̄).

Second, our label set must contain a null label, which we
denote 0 and depict diagrammatically with a dashed line. This
label is trivial in the sense that edges carrying this null label
can be added to or deleted without changing the physical state
(i.e., a null labeled edge is physically equivalent to having no
edge at all). Note that we use 0 to denote the trivial string
label, and 1 to denote a trivial anyon. Finally, for each string
type a, we require that our label set contains a dual string
type ā, such that the branching rules must contain (a, ā; 0)
and (ā, a; 0) [but not (a, b; 0) for any b �= ā]. The null string 0
is self-dual, 0 = 0̄.

The string-net ground state |�〉 is described by two sets
of parameters: a set of complex numbers F abc

de f , known as the
F symbols, depending on six string types a, b, . . . , f , and
a positive number da for each string type a, often called its
quantum dimension. These determine the relative coefficients
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of different string-net configurations in the ground state, via
the relations:

, (4a)

, (4b)

, (4c)

.

(4d)

Here a, b, c, . . . are arbitrary string types (including the
null string) and the shaded regions represent arbitrary string-
net configurations which are not changed from on side of
the equation to the other. The symbol δc,d = 1 if c = d and
δc,d = 0 otherwise.

The relative amplitudes in Eqs. (4) are unchanged by hor-
izontal bendings of the strings, but are not invariant under
vertical bending. Indeed, we do not allow smooth vertical
bends in our string-net graphs at all; only kinks, which are
equivalent to vertices (a, ā; 0) or (ā, a; 0). These can be added
or removed using the appropriate F symbols.

The F symbols and quantum dimensions are not free pa-
rameters. Rather, to have a well-defined wave function �, the
parameters {F abc

cde , F̃ abc
cde , da} need to satisfy

F f cd
egl F abl

e f k =
∑

h

F abc
gf h F ahd

egk F bcd
khl , (5a)

F abc
de f = 1 if a or b or c = 0, (5b)

da = dā = 1 if a = 0. (5c)

These constraints are in fact quite limiting; solutions are
described mathematically by a pivotal fusion category.

In addition, to ensure that the string-net Hamiltonian is
Hermitian, we require(

F abc
d

)−1

e f = (
F abc

df e

)∗
, (6a)

∣∣F abb̄
ac0

∣∣ =
√

dc

dadb
δab

c , (6b)

da = dā, (6c)

where (F abc
d )−1 is the matrix inverse of (F abc

d ), whose matrix
elements are (F abc

d )e f ≡ F abc
def .

The conditions (6) also imply that the quantum dimensions
obey

dadb =
∑

c

dc, (7)

where the sum runs over all values of c that satisfy the branch-
ing rules.

Local unitary transformations of the string-net wave func-
tion result in new coefficients {F̂ , d̂}, which are related to the
original coefficients {F, d} via the gauge transformation

F̂ abc
de f = F abc

de f

f ab
e f ec

d

f bc
f f a f

d

,

d̂a = da.

(8)

Here f ab
c parametrize the local unitary transformation; they

are complex functions defined on upward vertices, with the
downward vertices transformed by 1/ f ab

c . To preserve the
constraints listed above, we require∣∣ f ab

c

∣∣ = 1, f ab
c = 1 if a or b = 0. (9)

It is convenient to note that the local rules (4) imply the
following identities:

, (10a)

, (10b)

with [
F ab

cd

]
e f = (

F ceb
f

)−1

da

ded f

dd da
, (11a)

[
F̃ ab

cd

]
e f = F ceb

f ad

ded f

dadd
. (11b)

2. Abelian string operators

Next, we review the string operators that create point-like
anyon excitations when acting on the ground state. Here we
focus on the case where these anyons are Abelian bosons,
since these are the excitations we wish to condense. (For a
discussion of more general string operators, see Ref. [96].)
Recall that an Abelian anyon is defined by the fact that it has
a unique fusion product with any other anyon in the theory; it
is a boson if it has trivial statistics with itself.

To create a particle-antiparticle pair (a, ā) at two points in
our lattice, we act on the string-net ground state with a string
operator Wa(P) along an oriented path P. This creates a at
the final endpoint of P, and its antiparticle ā at the initial
endpoint. On a given string-net state 〈X |, we depict this action
by drawing an a-labeled string along the path P under the
string-net graph. The string label a specifies both a choice
of one or more string types and some extra data required to
resolve crossings between the path P and the string-net graph.

If a ≡ φ is an Abelian anyon, the label φ corresponds to
a single string type s, meaning that in regions where P does
not cross any edges of the string-net, we replace the label φ

with s on upward-oriented segments of P, and s̄ on downward-
oriented segments of P. Furthermore, s (and s̄) must have a
unique fusion product with all other string types, meaning
that, for each a, the branching rules contain (a, s; a′) [and
also (s, a; a′)] for only one a′, which we sometimes denote
as a′ ≡ a × s. It follows that

ds = ds̄ = 1, (12)
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and thus da = da′ by Eq. (7). In this case the coefficients
associated with the moves (4b) and (4c) are unity.

For Abelian anyons, the crossings are resolved using the
rules

,

.

(13)

Here wφ (a), w̄φ (a) are complex-valued functions of the string
type a, with wφ (0) = w̄φ (0) = 1. These rules, together with
the local string-net rules (4), dictate how to fuse the φ string
into the string-net graph, giving a new string-net states 〈X ′|
multiplied by a product of wφ, w̄φ . This defines the action of
Wφ (P) in terms of the parameters (s,w, w̄). For every Abelian
anyon φ, there is an inverse anyon φ̄, obeying φ × φ̄ = 1,
where 1 denotes the identity anyon.

To ensure that Wφ (P) creates point-like excitations in the
string-net ground state, we choose the parameters (s,w, w̄)
such that, when acting on the string-net ground state |�〉, the
path independence condition

Wφ (P)|�〉 = Wφ (P′)|�〉 (14)

is satisfied for any two upward paths P, P′ with the same
endpoints. Equation (14) will be satisfied if the corresponding
parameters (s,w, w̄) obey

wφ (a)wφ (b) = Cs(a, b, c)wφ (c), (15a)

w̄φ (a) = wφ (a)−1, (15b)

wφ (a)wφ̄ (a) = Ca(s, s̄, 0)−1, (15c)

with

Cs(a, b, c) = F sab
c′a′cF abs

c′cb′

F asb
c′a′b′

, (16)

where x′ = x × s for x = a, b, c, and (a, b; c) is allowed by the
branching rules. Given a set of F symbols satisfying (5) and
(6) and a choice of the string s, in general we find multiple
solutions to Eqs. (15) for wφ . We label these by m, and the
corresponding anyon by φ = (s, m), where s is the string type
created by the corresponding string operator Wφ and m labels
distinct solutions for a given s.

For example, the ZN string-net model has N string types
a ∈ {0, 1, . . . , N − 1} with ZN branching rules (a, b; c = a +
b( mod N )). There are N distinct solution to (5) [100,101],

F (a, b, c) = e2π i pa
N2 (b+c−[b+c]N )

, (17)

labeled by p = 0, . . . , N − 1. The arguments a, b, c take val-
ues in 0, . . . , N − 1, and [b + c]N denotes b + c (mod N) with
values also taken in 0, . . . , N − 1. Each ZN string-net model
has N2 topologically distinct quasiparticle excitations labeled
by φ = (s, m) where s, m = 0, 1, . . . , N − 1. The correspond-
ing string operators Wφ are defined by the string parameters

wφ (a) = e2π i( psa
N2 + ma

N )
. (18)

The braiding statistics of quasiparticles can be extracted
from the commutation algebra of the corresponding string

operators (see Refs. [89,91,96] for details). Specifically, the
exchange statistics of φ = (s, m) is

eiθφ = wφ (s). (19)

Thus self-bosons satisfy

wφ (s) = 1. (20)

If φ = (s, m) and χ = (r, n) are two Abelian bosons that we
wish to condense simultaneously, then they must have trivial
braiding. This requires that [96]

wφ (r)wχ (s) = 1. (21)

B. Extended string-net model

In the usual string-net construction, if s �= 0, Wφ (P) creates
states outside of the string-net Hilbert space, since near the
endpoints of P there is no way to fuse an s-labeled string
into the string-net graph without creating vertices that vio-
late the branching rules. When we are only interested in the
topological nature of the excitations, the resulting ambiguity
in the action of Wφ (P) near the endpoints is unimportant, since
it affects only the immediate vicinity of the excitation and
hence cannot impact its topological properties. To condense
φ, however, we require a more careful treatment of these
endpoints. We achieve this by extending the string-net Hilbert
space.

1. Extended string-net Hilbert space

The extended string-net Hilbert space H{φ} is defined with
respect to a set {φ} of Abelian bosons that we wish to con-
dense. Since every finite Abelian group is isomorphic to a
direct product of cyclic groups, we can assume without loss of
generality that the group is G = ZN1 × · · · × ZNk . To under-
stand how to condense all bosons in G, it is therefore sufficient
to understand how to condense bosons in a single ZNj factor;
thus in what follows, for simplicity, we often restrict ourselves
to the case that the set of bosons to be condensed comprise a
cyclic group.

The string-nets in H{φ} are oriented trivalent graphs with
two types of edges, as shown in Fig. 2. The first type, which
we simply call edges, are edges connecting two trivalent
vertices. Each such edge carries a string label as defined
in H. The second type of edge, which we call sticks, has
one endpoint at a trivalent vertex, and one open endpoint. A
stick carries a |G|-spin label, which takes values in the set of
Abelian bosons {φ}. This spin label φ = (s, m) also dictates a
string label s associated with the stick; we require the labels
at each trivalent vertex to satisfy the branching rules, and the
total G-spin label (i.e., the sum of spin labels of all sticks)
must be trivial. An orthonormal basis for the extended Hilbert
space Hφ is thus given by the set of all oriented trivalent
graphs with sticks which (1) satisfy the branching rules at each
trivalent vertex, and (2) have a net trivial G spin.

To describe these extended string-nets on the lattice, we
work on a decorated honeycomb lattice: at the center of each
edge of the honeycomb lattice, we add an upward-pointing
stick [see Fig. 2(b)]. We introduce two types of spins on the
decorated lattice: link spins, which live on its edges, and end
spins, which live at the endpoints of each stick. The link spins
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FIG. 2. A typical string-net configuration in Hφ (a) in contin-
uum and (b) on the decorated honeycomb lattice. Regular edges
connecting two trivalent vertices can host any string label a ∈ C.
Edges connecting to only one trivalent vertex, which we call sticks,
may only host edge labels {s} associated with the string operators
that generate the set of condensing bosons {φ}. These edge labels
necessarily have Abelian fusion rules, a × s = s × a = a′ for any
a ∈ C. Sticks also carry a label from the set {φ} at their endpoints.

take values in the string types {0, a, b, c, . . .} of the standard
string-net model, and end spins take values in excitation labels
{φ}. We require a stick carrying a label φ = (s, m) to have
the string label s, and that all trivalent vertices satisfy the
branching rules.

2. Wφ(P) in the extended string-net Hilbert space

In the following, we use the extended string-net Hilbert
space in two ways. First, we may use it to describe a system
whose ground state is the original string-net ground state but
which can also describe certain excited states that are not
allowed in the original string-net Hilbert space. In this case,
sticks with nontrivial labels appear only in excited states,
and the string-net ground state is exactly as described in
Sec. III A 1. Second, in order to describe the condensed phase,
we can view all sticks as part of the ground-state Hilbert
space. This allows us to describe a modified set of local rules
capturing the condensed phase, as we discuss in Sec. VI.

Here, we take the first perspective and describe the action
of the string operator Wφ (P) in the extended Hilbert space.

The action of Wφ (P) on the string-net ground state |�〉 is
exactly as specified in Sec. III A 2 away from the endpoints
of P. However, we now require P to begin and end on two
sticks. In addition to its action on the edge labels, Wφ (P) acts
by raising the end spin at the final and initial endpoint of the
path P by φ and φ, respectively.

When {φ} is a set of Abelian bosons with trivial mutual
statistics, we can describe any string operator Wφ (P) as a
product of “basic string operators” W i

φ , each of which con-
nects a pair of sticks on adjacent edges. The four basic string
operators on the decorated honeycomb lattice act along the
four paths p1, p2, p3, p4 shown in Fig. 3(a). The operators W 1

φ ,
W 2

φ act on paths p1 and p2 centered at upward vertices, while
W 3

φ , W 4
φ act on paths p3 and p4 centered at the downward

vertices. Their action is defined as follows: Let a, b, c, d and
e, f , g denote the initial link spin states along pi and on the
external legs of pi, respectively, and let φa, φb be the initial
end spin states at stick a, b, respectively (see Fig. 3). The
matrix elements of W i

φ between an initial state a, b, c, d , e,
f , g, φa, φb and a final state a′, b′, c′, d ′, e, f , g, φa′ , φb′ are
then given by

W 1,abcd;φaφb

φ,a′b′c′d ′;φa′φb′ (e f g) = w̄φ ( f )δφa×φ,φa′ δφb×φ̄,φb′

× F eas
c′ca′F

c f s
d ′df ′

(
F cs f

d ′c′ f ′
)∗

F ss̄b
b0b′

(
F dsb′

gd ′b
)∗

,

W 2,abcd;φaφb

φ,a′b′c′d ′;φa′φb′ (e f g) = δφa×φ,φa′ δφb×φ̄,φb′

× F eas
c′ca′F

f cs
d ′dc′F ss̄b

b0b′
(
F dsb′

gd ′b
)∗

,

W 3,abcd;φaφb

φ,a′b′c′d ′;φa′φb′ (e f g) = wφ ( f )δφa×φ,φa′ δφb×φ̄,φb′

× F eas
c′ca′

(
F df s

c′c f ′
)∗

F ds f
c′d ′ f ′F ss̄b

b0b′
(
F dsb′

gd ′b
)∗

,

W 4,abcd;φaφb

φ,a′b′c′d ′;φa′φb′ (e f g) = δφa×φ,φa′ δφb×φ̄,φb′

× F eas
c′ca′

(
F f ds

c′cd ′
)∗

F ss̄b
b0b′

(
F dsb′

gd ′b
)∗

. (22)

Here x′ = x × s (or x × s̄, if x = b), where we use multiplica-
tive notation for the Abelian group operation on both edge and
end spins.

Notice that the matrix elements of open string operators are
not invariant under local unitary transformations of the form

FIG. 3. (a) Four building blocks of any string operator defined on the decorated honeycomb lattice. W 1
φ , W 2

φ , W 3
φ , W 4

φ act along four different
paths (the red line) connecting two nearest neighboring sticks. Here a, b, c, d and e, f , g denote the initial link spin states along the path and
on the external legs of the path, respectively, and φa, φb are end spin states at two ends of the path. Their matrix elements are given in (22).
(b) A typical open string operator W (P) along the path P can be decomposed into product of basic string blocks acting on each vertex along P.
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(a) (b)

(c)

FIG. 4. (a) An example of a product of the basic string operators
creating a (φ, φ̄) pair on two neighboring plaquettes. (b) The action
of these products is equivalent to the action of a string Wφ (P) starting
on a stick in one plaquette and ending on a stick in the other plaque-
tte, which visits no other sticks in between. (c) By path independence
[see Eq. (14)], such a string can be deformed to cross only the edge
separating the plaquette pair.

(9), and thus are gauge dependent. When φ are cyclic Abelian
bosons with trivial mutual statistics, there exists a convenient
gauge

F (si, s j, sk ) ≡ F sis j sk

s(i+ j+k)s(i+ j)s( j+k) = 1, (23)

where si, s j , sk are any string types associated with condensing
bosons (see Appendix A). We work in the gauge (23) in the
rest of the paper.

In the gauge (23), the basic string operators have the fol-
lowing important properties, which we derive in Appendix A.
First, all basic string operators commute with each other:[

W i
φ,W j

φ′
] = 0. (24)

Second, one can show that

W i†
φ = W i

φ̄ (25)

for i = 1, 2, 3, 4.
Finally, a general string operator can be expressed as a

product of simple string operators. First, W i
φ1

,W i
φ2

along the
same path pi can be combined as

W i
φ1

· W i
φ2

= W i
φ1×φ2

, (26)

where the · operation is defined by

W i,abcd;φaφb

φ3=φ1×φ2,a3b3̄c3d3;φa×φ3,φb×φ̄3
(e f g)

= W i,abcd;φaφb

φ1,a1b1̄c1d1;φa×φ1,φb×φ̄1
(e f g)W i,a1b1̄c1d1,φa×φ1,φb×φ̄1

φ2,a3b3̄c3d3;φa×φ3,φb×φ̄3
(e f g)

(27)

for i = 1, . . . , 4. Thus if the set of condensing bosons is cyclic
and generated by φ, we can express all basic string operators
as products of the basic string operator W i

φ . Second, let P be a
path obtained from a union of two basic paths pi(r1, r2), which
begins on a stick at positions r1 and ends on a stick at position
r2, and p j (r2, r3), which begins on the stick at r2 and ends on
a stick at r3 (see Fig. 4). [Note that it is because wφ (s) = 1
that we can combine string endpoints into a single string that

crosses the sticks.] Then we have

Wφ (P) = W i,(12)
φ W j,(23)

φ , (28)

and similarly for paths composed of more than two concate-
nated segments, as shown in Fig. 4. Here we define W i,(12)

φ =
W i

φ if pi(r1, r2) is oriented upwards, and (W i
φ )† otherwise. By

joining string operators along multiple basic paths in this way,
we can thus express Wφ (P) as a product of basic string opera-
tors for any path P. (Note that since the basic string operators
commute, the order in which we apply them is unimportant.)
It follows that any product of φ-string operators for φ in our
chosen set of Abelian bosons can be expressed as a product of
basic string operators.

IV. LATTICE HAMILTONIANS
FOR CONDENSING ABELIAN BOSONS

Next, we identify a lattice Hamiltonian H (J ) within the
extended string-net Hilbert space that, by tuning a parameter
J , can bring a system through a transition in which a set of
Abelian bosons is condensed. Our lattice Hamiltonian has the
general form

H (J ) = HC − JH1. (29)

Here HC is a Hamiltonian in the extended string-net Hilbert
space whose ground state is exactly the original string-net
ground state; it can be viewed as a modification of the original
string-net Hamiltonian (see Refs. [91,96]) appropriate to the
extended string-net Hilbert space. H1 is a term which creates
particle-antiparticle pairs of anyons in the set {φ} of condens-
ing bosons. Here, for simplicity, we take this set to be a cyclic
group of order p, which we denote 〈φ〉 = {φi, i = 1, . . . , p}.
with φp = 1. The Hamiltonian HC that we use is very similar
to that introduced by Ref. [98], and Ref. [97] employed a sim-
ilar Hamiltonian to study a particular condensation transition
(which, however, does not require the full formalism that we
introduce here [86]).

We show that H (J ) has the following properties: First,
H (J = 0) is identical to the original string-net Hamiltonian
when acting on states where all stick labels are trivial, and
states with sticks carrying nontrivial labels φi have a finite-
energy cost. Thus in this limit string-net eigenstates with
sticks carrying nontrivial labels φi correspond to gapped ex-
cited states, and the ground state is the original string-net
ground state |�〉. Second, H (J = ∞) is a commuting projec-
tor model with a frustration-free ground state |�〉, in which
excitations in the set 〈φ〉 have condensed in the sense that they
are present in arbitrary number in the ground state. Third, |�〉
can be obtained by applying a certain projector to the J = 0
ground state |�〉. Thus we can describe the J = ∞ ground
state explicitly in terms of the string types and local rules
associated with |�〉, and use this description to investigate the
topological data of the condensed phase.

It is worth noting that, as we show below, the ground state
of H (J ) for any J contains only excitations on the sticks,
and no plaquette defects. Thus for φp = 1, the critical point
separating condensed and uncondensed phases is always of
the Potts or clock variety, depending on the specific choice
of H1. Here we have chosen a Potts- like version, resulting in
first-order transitions for p � 3.
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A. The Hamiltonian HC

We first define the Hamiltonian HC in the extended string-
net Hilbert space Hφ of the honeycomb lattice (see Fig. 2). HC
is of the form

HC = −
∑

e

Qe −
∑

p

Bφ
p . (30)

The two sums run over end spins e and plaquettes p of the
decorated honeycomb lattice. The operator Qe acts on the end
spins

Qe = δe,1, (31)
where δe,1 = 1 if e = 1 (no excitation) and δe,1 = 0 other-
wise (φ excitations). The operator Qe penalizes the states
with φ excitations at ends of sticks. Note that, unlike in the
usual string-net Hamiltonian, we have not included a term
imposing the branching rules at each vertex; instead, we work
exclusively in the string-net Hilbert space, where these are
necessarily satisfied.

The operator Bφ
p on the decorated honeycomb lattice is

more complicated, but the main idea is as follows: First,
[Bφ

p, Bφ

p′ ] = [Bφ
p, Qe] = 0, ensuring that HC is a sum of com-

muting projectors. Second, analogous to the plaquette term
in the usual string-net models [91,96], Bφ

p maps between
different string-net configurations in the extended string-net
Hilbert space, ensuring that the ground states (for which all
stick labels are trivial) obey the local rules (4). Indeed, when
acting on states where all stick labels are trivial, our plaquette
term is identical to that of the generalized string-net models
[96]. Third, unlike the plaquette term of the usual string-net
models, Bφ

p commutes with the string operators Wφk (P) even
for paths P ending or beginning on the plaquette p.

We note that here we use a prescription that ensures that
Bφ

p commutes with Wφ (P) for any choice φ = (s, m); this
allows us to discuss all Abelian anyon condensation tran-
sitions on the same footing. For some classes of models,
however (those for which the fusion category describing the
string types is braided), an alternative and potentially com-
putationally simpler formulation of the Hamiltonian resulting
in the same condensed phase exists; this is discussed in
Appendix B.

We now describe the operator Bφ
p in detail. Bφ

p has the form

Bφ
p =

N−1∑
s=0

ds

D
Bφ,s

p , (32)

where D = ∑N−1
s=0 d2

s and Bφ,s
p describes a 27-spin interaction

involving the 24 link spins around p and three end spins inside
p (see Fig. 5). Its action can be understood as a sequence of
three operations:

Bφ,s
p =

∑
φ10,φ11,φ12

W †
φ10,φ11,φ12

Bs
pWφ10,φ11,φ12 , (33)

where the sums run over the possible spin labels of the three
sticks inside p, with

Wφ10,φ11,φ12 = (
W 1

φ10

)†Pφ10 · W 1
φ11

Pφ11 · W 3
φ12

Pφ12 . (34)

Here Pφa = |φa〉〈φa| projects the end spin label of stick a
onto φa, and (W 1

φ10
)†,W 1

φ11
,W 3

φ12
are basic string operators [see

Eq. (22)] that lower the spin label on sticks 10, 11, and 12 by
φ10, φ11, and φ12, respectively. The operator Wφ10,φ11,φ12 there-
fore moves any excitations on the sticks inside the plaquette p

FIG. 5. Decorated honeycomb lattice with an upward stick on
each link of the honeycomb lattice. The Qe operator acts on the end
spin. The Bp operator acts on 27 spins adjacent to the plaquette p.

to sticks outside of p:

(35)
Where φ′

10 = φ10 × φ13, φ′
11 = φ11 × φ14, and φ′

12 = φ12 ×
φ15. This action is nontrivial only if {φ10, φ11, φ12} contains
nontrivial end spin labels. In particular, it is trivial when acting
on ground states of HC .

The second operation Bs
p is the same as the plaquette oper-

ator defined in the Ref. [91] which adds a loop of type-s string
around the boundary of p:

(36)
Finally, the operation W †

φ10,φ11,φ12
moves the excitations

{φ10, φ11, φ12} back to the appropriate sticks in p:

(37)
Here C1, C2, C3 are the corresponding matrix elements of
the three operations. The product C1 · C2 · C3 gives the matrix
elements of Bφ,s

p .
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More precisely, the matrix elements of Bφ,s
p are defined by

(38)

where

Bs,i1,...,i6 j1,..., j6
p,i′1,...,i

′
6 j′1,..., j′6

(e1, . . . , e12; φ10, φ11, φ12) = ds

√
di1 d j′2 di3 di4 d j′5 d j6

di′1 d j2 di′3 di′4 d j5 d j′6

(
F s̄i1e7

j′1i′1 j1

)∗(
F s̄ j1e2

i′2 j′1i2

)∗(
F s̄i2e8

j′2i′2 j2

)∗
F s̄i3e3

j′2i′3 j2

(
F s̄i3e9

j′3i′3 j3

)∗(
F e5i4s

j′5 j5i′4

)∗

× F
e′

6 j6s
j′5 j5 j′6

F j6ss̄
j6 j′60

(
F i4ss̄

i4i′40

)∗(
F

i′6 s̄i1
e′

1 j6i′1

)∗
F

i′4 s̄ j3
e′

4i4 j′3
W 1,e10e13 j4e4;φ10φ13

φ̄10,0e′
13i4e′

4;1φ′
13

(i4 j3 f4)W 1,0e′
13i′4e′

4;1φ′
13

φ10,e10e13 j′4e4;φ10φ13

× (i′4 j′3 f4)W 1,e14e11e6i5;φ14φ11

φ11,e′
140e′

6 j5;φ′
141 ( f6 j6 j5)W

1,e′
140e′

6 j′5;φ′
141

φ̄11,e14e11e6i′5;φ14φ11
( f6 j′6 j′5)W 3,e15e12e1i6;φ15φ12

φ12,e′
150e′

1 j6;φ′
151 ( f1i1 j6)

× W
3,e′

150e′
1 j′6;φ′

151
φ̄12,e15e12e1i′6;φ15φ12

( f1i′1 j′6). (39)

Here e7, e8, . . . , e12 take values in Abelian string types
and thus jp = ip × ep+6 for p = 1 . . . 6 while e′

1 = e1 × e12,
e′

4 = e4 × ē10, and e′
6 = e6 × e11. The matrix elements of

W 1
φ ,W 3

φ ,W 1†
φ ,W 3†

φ are defined in (22) and (25).
From this explicit form, one can check that the plaquette

operator Bφ,s
p commutes with any basic string operator W j

φi

[and hence any string operator Wφi (P)]:[
Bφ,s

p ,W j
φi

] = 0. (40)

We leave the derivation to Appendix D.
We can now show that HC (30) has the following prop-

erties: First, it is a sum of commuting projectors: clearly
[Qe, Qe′ ] = [Qe, Bφ

p] = 0, since Bφ
p does not alter the value of

the spin-label on any stick and hence preserves the eigenvalue
of Qe. Moreover, in Appendix C we show that [Bφ

p, Bφ

p′ ] = 0.
Essentially, this results from the fact that the two plaquette
operators commute in the absence of excitations on the sticks,
and also that the string operator used to move a stick exci-
tation off the shared edge between two adjacent plaquettes
commutes with Bφ

p , where p is the plaquette that the stick
points outward from.

It follows that, like the conventional string-net Hamilto-
nians, HC is exactly solvable. Second, there exists at least
one state that satisfies Qe = Bφ

p = 1 for all e, p; this state is
therefore a ground state. Clearly, states with only trivial stick
labels satisfy Qe = 1 at every vertex; when restricted to these
states, HC reduces to the original string-net model, whose
ground state |�〉 is an eigenstate of the plaquette term of the
corresponding Hamiltonian with eigenvalue 1 on every pla-
quette [96]. When Qe ≡ 1, |�〉 is therefore also an eigenstate
satisfying Bφ

p ≡ 1. In other words, HC is exactly solvable, and
its ground state(s) is (are) exactly the string-net ground states
defined by the local rules (4).

Although they have the same ground state(s), the excited
states of our extended string-net model differ from those of

conventional string-net Hamiltonians. In conventional string-
nets, where sticks are not included, excited eigenstates are
either string-net states with Bφ

p = 0 on some plaquettes, or
states that violate the branching rules and hence are outside
of the string-net Hilbert space (for which necessarily we also
have Bφ

p = 0 on some plaquettes). In our models, however,
there are φ j-type excitations of HC satisfying Bφ

p = 1 every-
where, with Qe = 0 on some sticks.5 As a consequence, the
ground state of H (J ) satisfies Bφ

p ≡ 1 for every positive J .

B. The Hamiltonian H1

To define H1, we begin by defining the projector along the
path pi, i = 1, 2, 3, 4:

Pi
φ (r) = 1

p

p∑
k=1

W i
φk (r), (41)

where the sum runs over basic open string operators W i
φk with

φk ∈ 〈φ〉, and r indexes a unit cell of the honeycomb lattice.
The set of operators {Pi

φ} form commuting projectors. The
operator H1 is defined as a sum of commuting projectors over
all neighboring sticks

H1 =
∑
i,r

Pi
φ (r). (42)

By (40), we have [H1, Bφ
P] = 0. Thus, H1 creates excitations

only of Qe in HC , while leaving the operator Bφ
P in its ground

state on every plaquette.

5We note that if we allow states outside of the string-net Hilbert
space, this leads to a redundancy, since in our extended Hilbert space
φ can also be realized by an eigenstate with Qe ≡ 1, with either some
Bφ

p = 0 or a violation of the branching rules

115127-10



ANYON CONDENSATION IN STRING-NET MODELS PHYSICAL REVIEW B 110, 115127 (2024)

C. Condensed phase and the J → ∞ limit

For J sufficiently large, the string-net describes a new
topological phase, in which the anyons {φ j, 1 � j < q} have
condensed. That this is so can be most easily understood by
considering the limit J → ∞.

Since H1 is a sum of commuting projectors, in the J → ∞
limit, the low-energy Hilbert space H̃ consists of states in the
image of the projector:

Pφ =
∏
i,r

Pi
φ (r). (43)

These states have eigenvalue 1 under all terms in H1.
To leading order in 1/J , the effective Hamiltonian, which

acts within the low-energy Hilbert space H̃, is

HC̃ = PφHCPφ = −
∑

p

PφBφ
p + const. (44)

In the second equality, we use (40) and the fact that Hφ ≡∑
e PφQePφ is simply the number of ways to combine oper-

ators in Pφ to obtain a trivial label on every vertex, which is
a system size independent constant. Note that, since Pφ and
Bφ

p are projectors, and [Pφ, Bφ
p] = [Bφ

p, Bφ

p′ ] = 0, PφBφ
p are also

commuting projectors. Moreover, if |�〉 is the ground state of
HC , we have PφBφ

p (Pφ|�〉) = Pφ|�〉 for every p. Hence the
ground state |�〉 of HD is given by6

|�〉 = Pφ|�〉. (45)

To show that |�〉 is indeed a state in which the bosons 〈φ〉
have condensed, we expand the projector Pφ according to

Pφ = 1

p2NV

∑
{φ j ,ri j }

W{φ j ,ri j}. (46)

Here NV is the number of vertices on our honeycomb lattice;
for each such vertex there are two simple string operators.
(Note that, throughout this paper, we assume boundary con-
ditions where this is the case.) W{φ j ,ri j } is the composite string
operator which creates excitations {φ j} using string operators
along the paths {ri j} on the lattice, and the sum runs over all
possible configurations {φ j, ri j} on the lattice, subject to the
constraint that

∏
j φ j = 1. We can use (46) to expand the new

ground state (45) as

|�〉 = 1

p2NV

∑
{φ j ,ri j}

W{φ j ,ri j }|�〉. (47)

In other words, the ground state |�〉 is a superposition of all
possible configurations of φ excitations—a φ condensed state.

We can also make some educated guesses about the topo-
logical order in the condensed phase by studying the effect
of Pφ on low-lying excited states of HC . These are created
by generalized versions of the string operators Wφ (P), which
we denote Wα (P), where P describes a path on the lattice,
and α is the anyon type. The data associated with Wα (P) are

6In fact, projecting any state |�ex〉 satisfying Bφ
p |�ex〉 = |�ex〉 in

this way gives the ground state |�〉 of HD. This is because such states
have the form |�ex〉 = Wφ (P)|�〉, and as PφWφ (P) = Pφ , we have
Pφ |�ex〉 = PφWφ (P)|�〉 = Pφ |�〉.

essentially the same as that for Wφ (P), except that resolving
string crossings requires a matrix 
α (a), rather than a scalar
wφ (a); a detailed description can be found in Ref. [96]. Unless
α = φ j , here we require that P starts and ends at vertices of
the lattice, rather than on sticks.

Consider how the operators Pi
φ (r) act on the string opera-

tors Wα (P). The latter can suffer one of three possible fates.
First, if

Wφ (P)Wα (P) = Wα′ (P), (48)

then the operators Wα (P), Wα′ (P) have identical actions on
states in the image of Pφ . This suggests that, in the limit J →
∞, the two anyons α and α′ have been identified, meaning
that they comprise a single anyon type in the condensed phase.
For example, all of the condensing bosons {φk} are identified
with the vacuum in the condensed phase. This conclusion
agrees with the expectations of other approaches to anyon
condensation [31,32].

Note that if

Wφr (P)Wα (P) = Wα (P) (49)

for r|p, then in the condensed phase Wα (P) becomes iden-
tified with r − 1 distinct anyon string operators, rather than
with q − 1. For example, if r = 1, Wα (P) does not become
identified with any other anyon string operators. Although this
statement seems rather innocuous here, in fact in such cases
α splits into multiple anyon types after condensation [31,32].
We will not discuss the splitting at the level of anyons in detail
here; however it is closely related to the splitting of string-net
labels which, as we show in Sec. V B, arises in the ground
states of our condensed string-net model.

Second, if α braids nontrivially with one of the condensing
bosons φ, then when the path P1 crosses P2, and φ is an
Abelian boson [96],

Wφ̄ (P1)Wα (P2)Wφ (P1) = Sαφ

Sα1
Wα (P2)Wφ (P1). (50)

In this case, the string operator Wα (P) maps states in the image
of Pφ [for which Wφ (P1)|�〉 = |�〉 for every choice of P1] to
states outside of this image. This suggests that α anyons are
no longer a point-like excitations in the condensed phase and
become confined, again agreeing with expectations based on
other approaches to anyon condensation.

In the following sections, rather than pursue the analysis
of anyon string operators, we instead focus on the fate of the
string-net ground state in the condensed phase. We show how
to describe the ground state of HC (J → ∞) as a conventional
string-net of the type described in Ref. [96]. Such string-net
ground states can always be associated with a commuting pro-
jector string-net Hamiltonian [96], whose topological order
can be inferred directly from the string-net data. (Specifically,
it is the Drinfeld center of the fusion category comprising
the string-net). Thus this approach allows us to identify the
topological order of the condensed phase without requiring an
explicit discussion of anyon string operators in the condensed
phase.
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V. THE CONDENSED HILBERT SPACE

To understand the condensed phase, we begin by studying
the effective Hilbert space,

H̃ = span{〈X̃ | : 〈X̃ |Pφ = 〈X̃ |}, (51)

which describes states of finite energy in the limit J → ∞,
and which we refer to as the condensed Hilbert space.

Our goal is to show that H̃ can be thought of as a new
(nonextended) string-net Hilbert space, whose basis states are
string-net states with new string labels and new branching
rules. To accomplish this, we proceed as follows: First, we
argue that the states 〈X̃ | can be viewed as string-net states
described by a new set of condensed labels {ã}, with the
allowed trivalent vertices determined by an appropriate set of
branching rules. In the present section, we discuss in detail
how the condensed labels are related to the labels of the
original string-net, as well as how the trivalent vertices of the ã
labels are related to linear combinations of trivalent vertices of
the original label set. In Sec. VI we show how this information
leads to a new string-net model for the condensed phase, and
in particular, the F symbols of the resulting fusion category
C̃.

To construct a basis state 〈X̃ | in the effective Hilbert space
defined by Eq. (51), we begin with a reference state 〈X | in the
uncondensed string-net Hilbert space H. The corresponding
basis state in H̃ is

〈X̃ | = 〈X |Pφ. (52)

Since W i
φk (r)Pi

φ (r) = Pi
φ (r) for every i and r, we have

W{φ j ,ri j }Pφ = PφW{φ j ,ri j} = Pφ. (53)

Consequently, if 〈X ′| = 〈X |W{φ j ,ri j }, then 〈X |Pφ = 〈X ′|Pφ .
Thus, to construct a basis of H̃, we must find a suitable basis
{〈X0|} of H such that 〈X i

0|W{φ j ,ri j }|X j
0 〉 = δi j . Since we are

interested in identifying a set of string-net labels appropriate
to the condensed phase, we take {〈X0|} to be states in the

string-label basis—i.e., 〈X �j
0 | has a fixed string label a je for

every edge e in the string-net diagram. In the following, we
show how in this case, we can describe the effect of the
projection 〈X �j

0 |Pφ in terms of a new set of edge labels, ã je .
To find this new string-label basis {ã}, we consider two

classes of condensing bosons. The first class is φ = (0, m)—
i.e., the string operator Wφ (P) does not change the string labels
of edges that it acts on. This type of condensation, which does
not require the extended Hilbert space, has been discussed in
detail in Ref. [73]. The second class, with φ = (s, m), con-
denses bosons whose string operators do change the string-net
labels. These condensation transitions do require the extended
Hilbert space that we introduce here.

We start with the first case, φ = (0, m). For any edge in
the lattice, Pφ contains an equal contribution from φ j-labeled
strings that cross that edge, for every j (see Fig. 4). Thus,

,

(54)

where p is the order of 〈φ〉. Thus, only string types a with

wφ (a) = 1 (55)

remain after condensation of φ = (0, m) bosons. Hence, the
new string-label basis {〈X̃ |} is simply the subset of states in
〈X0| containing only string types a satisfying Eq. (55). We say
that the remaining string labels, which do not appear in the
low-energy Hilbert space after condensation, are confined.

Now, we consider the second case, φ = (s, m). If 〈φ〉 con-
tains a subgroup 〈φm j 〉 ⊂ 〈φ〉 which is generated by φm j =
(0, m j ), then by the same reasoning as above, the string types
a that appear in the condensed Hilbert space must satisfy

wφm j (a) = 1, (56)

with other string types being confined. We find it useful to
reorganize the deconfined string types into new string labels
as follows: First, we define the new null string label via

0̃ = ⊕q−1
j=0s j, (57)

where we have assumed the condensing bosons form a cyclic
group generated by φ = (s, m), with sq = 1 and q|p. Here the
symbol ⊕ means that, in the original string-net basis, an edge
carrying the label 0̃ carries a superposition of labels in the
set {s j}. Similarly, other condensed string types are given by
superpositions of the form

ã = ⊕q−1
j=0(a × s j ). (58)

It is convenient to pick a particular representative for ã in the
original label set, which we denote a. We denote the remaining
terms on the right-hand side of Eq. (58) as

a j ≡ a × s j, a0 ≡ a. (59)

Then all a j project to the same condensed string type, while
if b �= a × s j , then a and b project to different string types.
As we discuss in detail below, if one or more of the labels
obey ar = a for some r|q, in the condensed phase the single
string type a splits into multiple string types ã1, . . . , ãq/r .
Finally, the branching rules for the new string labels can be
deduced from the branching rules of the original string labels.
In the absence of splitting, given the branching rules (a, b; c),
the new branching rules are (ã, b̃; c̃). We discuss the new
branching rules in the presence of splitting in Sec. V B 2.

The condensed string labels, together with the associated
branching rules, define the string-label basis in the condensed
Hilbert space. Specifically, a string-net state 〈X̃ | ∈ H̃ has
edges labeled with the condensed string types {0̃, ã, b̃, . . .}
and satisfies the new branching rules (ã, b̃; c̃) at each vertex.
Note that H̃ should be viewed as a conventional string-net
Hilbert space, since after condensation all sticks are effec-
tively in the trivial vacuum state.

A. Mapping between new and old string-net labels

Since 〈X̃ | = 〈X |Pφ , any state in H̃ can also be expressed
as a superposition of string-net states in our original Hilbert
space Hφ . This superposition contains states in which each
edge label is replaced by an appropriate superposition of orig-
inal string-net labels, with the branching rules obeyed at every
trivalent vertex and arbitrary allowed labels on the sticks.
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Notationally, we represent the resulting string-net configura-
tions in the original label set by X ∈ X̃ , where X represents
a labeling of edges in the original string-net basis, and X̃
represents the corresponding labels in the condensed basis.
Explicitly, we may write

〈X̃ | = 1

p2NV

∑
X∈X̃

C(X )〈X |, (60)

where C(X ) are numerical coefficients.
The coefficients C(X ) are highly constrained. For any

X1, X2 ∈ X̃ , 〈X1| is related to 〈X2| by the action of some
composite string operator W ({φ j, ri j}):

〈X1|W ({φ j, ri j}) = W ({φ j, ri j})X1
X2

〈X2| (61)

where W ({φ j, ri j})X1
X2

is the relevant matrix element of
W ({φ j, ri j}), and for a fixed configuration φ j, ri j the state
X2 is unique because the condensing anyons are Abelian.
Since the composite string operator is unitary, we equivalently
have W ({φ j, ri j})|X2〉 = W ({φ j, ri j})X1

X2
|X1〉. Therefore, the

coefficients satisfy

C(X2) = 〈X̃ |X2〉 = 〈X̃ |W ({φ j, ri j})|X2〉
= W ({φ j, ri j})X1

X2
〈X̃ |X1〉

= W ({φ j, ri j})X1
X2

C(X1), (62)

where in the first line we have used Eq. (53). Equa-
tion (62) allows us to determine the coefficients C(X ), up
to an overall coefficient C(X0) for each distinct reference
configurations {X0}.

B. Vertex coefficients

Solutions {C(X )} to Eq. (62) can be expressed C(X ) =∏
v Cv (X ), where the product runs over all trivalent vertices

in the extended string-net configuration X , and Cv (X ) is a
coefficient that depends only on the three string labels sur-
rounding the vertex v. This is because the action of any string
operator can be broken up into a product of actions of simple
string operators, with each simple string operator acting at
a single honeycomb vertex and the vertices associated with
nearby sticks. Thus, for each simple string operator, Eq. (62)
can be reduced to a set of equations relating products of at
most three of the vertex coefficients Cv (X ) to at most three
of the vertex coefficients Cv (X ′). We show that the resulting
equations are self-consistent and sufficient to fully determine
the coefficients of any configuration X ∈ X̃ from that of a
reference configuration X0.

To parametrize the vertex coefficients Cv (X ), we define a
set of root vertices, which contain one representative vertex
(a, b; c) in the original string label set for each condensed
vertex (ã, b̃; c̃). Then any condensed string-net state 〈X̃ | can
be obtained by projecting a reference string-net state 〈X0|
for which all vertices are root vertices. Conversely, any two
states that differ by at least one root vertex project to two
distinct states in H̃. We then define two types of vertex co-
efficients: {Aab

c } associated with the root vertices (a, b; c), and
{Ba j bk

c j+k }, associated with the remaining vertices (a j, bk; c j+k ),

where a j ≡ a × s j . The coefficients {Ba j bk

c j+k } can be expressed

in terms of {Aab
c } using Eq. (62). On the other hand, {Aab

c },
which are associated with the vertex coefficients of our ref-
erence configuration, are not fully determined, and in some
cases admit multiple, physically distinct solutions.

We begin by defining the root vertices. Again, we have two
cases to consider. The first case is the φ = (0, m) condensed
phases. In this case, we define the root vertices by

(63)

where a, b, c are the deconfined string types which satisfy
(55), and (a, b; c) satisfies the branching rules. In this case
all vertices are root vertices.

The second case is the φ = (s, m) condensed phase. In this
case, for each new string label ã, we choose a representative
label a ∈ ã. We define two classes of root vertices. First, we
have the root vertices

(64)

where si denotes the string type associated with the boson
φ jq+i, and 0 � i < q. [Here, as above, we take φ = (s, m),
with φp = 1 and sq = 0, where q|p.] In this case, for reasons
that will become apparent shortly, it is convenient to consider
all different powers i to be root vertices, in spite of the fact that
all of these correspond to the same projected label 0̃. Second,
we have root vertices with two non-null string types in the two
upper (lower) legs of upward (downward) vertices:

(65)

where (a, b; c) satisfies the original branching rules.
The vertex coefficients associated with root vertices for

general φ = (s, m) are defined by

(66)

and

(67)

for root vertices (64) and (65), respectively. Here ∼ means
equality up to factors associated with other vertices in the gray
area. The vertex coefficients Aab

c , Aasi
are complex numbers

which satisfy that

Aab
c = Aasi = 1 if a or b = 0. (68)

In the absence of splitting, these are not constrained and can
be any complex number of unit modulus; in particular, we may
choose them all to be one.
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The φ = (0, m) condensed phases can be thought of spe-
cial cases of the φ = (s, m) condensed phases where s = 0
and thus 0̃ = {0}. In this case, the vertex coefficients (67) as-
sociated with root vertices (63) correspond to a gauge choice
for our string-net model [96].

When s �= 0, to find the coefficients C(X ) in Eq. (60),
we define a set of vertex coefficients associated with nonroot
vertices via:

(69)

and

(70)

where Ba j bk

ci+ j are complex numbers, and at least one of (k, j) are
nonzero, such that at least one of a j, bk are not in our chosen
set of reference labels.

The division into A-type and B-type vertex coefficients is
useful since the latter are fully determined by the root vertex
coefficients Aab

c , Aasi
using Eq. (62). The coefficients Aab

c and
Aasi

, on the other hand, are not fixed by Eq. (62) provided that
a × sr �= a for any r < q. In this case, coefficients C(X ) in
(60) can be parametrized as

C(X ) = C(X0)
∏
v∈X

Bv, (71)

where the product runs over all vertices v in X and Bv is the
corresponding vertex coefficient.

The coefficient C(X0) associated with the given refer-
ence configuration X0 is determined by the root vertex
coefficients via

C(X0) =
∏
v∈X0

Av, (72)

where v runs over all root vertices in X0 and Av is the cor-
responding root vertex coefficient. When a × sr �= a for any
r < q we find that all choices of root vertex coefficients are
equivalent, and the freedom to choose C(X0) amounts to a
gauge choice.

If ar = a for some r|q, the parametrization of C(X ) is
similar. However, in this case Eq. (62) imposes additional
constraints on the root vertex coefficients Aask

. In this case
we find that only Aask

for k � r are free parameters, and that
there are q/r distinct solutions for each of these coefficients.
These distinct solutions correspond to the fact [31] that, after
condensation, the label a splits into q/r distinct labels; cor-
respondingly we also obtain multiple vertex coefficients Aab

c .
We now discuss each of these cases in turn.

1. Case 1: ak �= a

First, let us verify that a solution to Eq. (62) can be
expressed as a product of vertex coefficients—i.e., that any
mapping between two configurations with the same sets of

initial and final vertices has the same numerical coefficient. If
ak �= a for any a or k, then it suffices to consider sequences of
simple string operators connecting the same initial and final
vertex configurations. The properties of basic string operators
outlined in Eqs. (24)–(26), as well as the consistency condi-
tions (5) and (15), ensure that all combinations of basic string
operators relating a given initial and final set of vertices will
have the same numerical coefficient.

Second, we use Eq. (62) to solve for the B-type vertex
coefficients in terms of {Aasi

, Aab
c }. First, consider vertices

where both a and b legs are powers of the condensing label
s. In this case, in the gauge (23), and using wφ (s j ) = 1, all
nonvanishing string operator matrix elements are simply +1,
and we have

A0s j
A0s− j

Bs j s− j = A00 = 1,

Bsis j
A0si

A0s j
Bsi+ j s−i− j = A00 = 1. (73)

It follows that, given the condition (68),

Bsis j = 1 (74)

for any i, j.
Next suppose a /∈ 0̃, with b = si and a j �= a. In this case,

we have

Aask
Bak ,sl−k

Bsl ,s−k = Aasl (
F asksl−k

al aksl

)∗
, (75)

where the coefficient is obtained by acting on the vertex
(a, sl ; al ) with the product W 1

φkW 2
φ−k . Given Eq. (74), this fixes

Bak ,sl−k
in terms of Aasl

and Aask
.

If a, b �= sk , we have

Aas j
Absk

Ba j ,bk

c j+k Bc j+k s̄ j+k = Wjk (abc)Aab
c . (76)

The matrix element is given by acting with the product
W 2

φkW 1
φ j on the vertex (a, b; c) (see Fig. 3):

Wjk (abc) = w̄φ j (b)F abs j

c j cbj

(
F as j b

c j a j bj

)∗
F a j bsk

c j+kc j bk

(
F cs j s̄ j

cc j 0 F c j sk s̄ j+k

cc j+k s̄ j

)∗
.

(77)

Given Eq. (75), this fixes Ba j ,bk

c j+k in terms of Aab
c and {Aas j }.

Finally, using string paths of the form

, (78)

we have

Bs j ai
Wj̄ j (s

j, ai, ai+ j ) = Ba j si
, (79a)

Bs j aWj̄ j (s
j, a, a j ) = Aasi

, (79b)

which shows that both Bsia and Bska j
can be expressed in

terms of Aas j
-type vertex coefficients. These relations have a

particularly simple form: From Eq. (77), we can show that

Wj̄ j (s
j, a, a j ) = wφ j (a), (80)

115127-14



ANYON CONDENSATION IN STRING-NET MODELS PHYSICAL REVIEW B 110, 115127 (2024)

where we have used Eqs. (15b) and (15c), as well as the
identity

F as j s̄ j

aa j 0 F s j s̄ j s j

s j 00

(
F a j ,s̄ j ,s j

a j a0

)∗ = 1, (81)

which follows from Eq. (5).
This leaves us with the vertex coefficients Aab

c and Aas j

(where a, b �= sk). The former are clearly free parameters,
since by definition there is no φ string operator that takes such
a root vertex to another root vertex. Indeed, they represent a
choice of gauge for the F matrices describing the condensed
phase [see Eq. (9)] and can be set to one. To see that Aas j

are
also free parameters, we note that there is a residual gauge
freedom when solving (62). Specifically, given a set of vertex
coefficients that satisfy Eq. (62), we can construct an infinite
class of other solutions Ãab

c , B̃a j bk

c j+k via

Ãab
c = Aab

c

g(a)g(b)

g(c)
, B̃a j bk

c j+k = Ba j bk

c j+k

g(a j )g(bk )

g(c j+k )
. (82)

Here a, b, and c are any string labels (including s j), and g(a)
is any function with

g(si )g(s j ) = g(si+ j ), g(0) = 1.

It is straightforward to verify that the transformations (82) do
not alter the equalities dictated by the action of any of the
basic string operators at a vertex.

When ai �= a j for i �= j (mod q), the gauge transformation
(82) fully fixes the coefficients Aasi

: we can always choose the
ratio g(a)/g(a j ) to set

Aas j = 1. (83)

Accordingly, we have

Bs j a = wφ j (a), Ba j si− j = (
F as j si− j

aia j si

)∗
(84)

by Eqs. (75) and (79b).

2. Case 2: ar = a

If ar = a for some r|q, there are additional constraints
relating the coefficients Aa,snr

, and we cannot set these to one
using transformations of the form (82).

We begin by considering configurations involving only
vertices of the form (a, s jr ; a), j = 1, . . . , q/r and their cyclic
permutations. We first show that, for such configurations,
there exists a solution to Eq. (62) that can be expressed as a
product of vertex coefficients. To show this, we must establish
that the coefficients relating configurations with the same sets
of initial and final vertices do not depend on the relative
positions of these vertices—an issue that did not crop up in
case 1. For example, using a W 1-type simple string acting on
a vertex (a, s j, a) with sticks on the two a legs carrying labels
si and sk , we can derive

Aas(i+l )r
Aas(k−l )r = Aasir

Aaskr
F as jr slr

aas( j+l )r

(
F aslr s jr

aas( j+l )r

)∗

× F asir slr

aas(i+l )r F slr s̄lr skr

skr 0s(k−l )r

(
F aslr s(k−l )r

aaskr

)∗
, (85)

where we have removed a common factor of Aas jr
(which is

nonzero) from both sides and used wφ j (sk ) = 1 for all j, k.
This can be true only if the coefficient does not depend on j.
Similar consistency requirements arise from acting with W 2

φlr

on a vertex (s jr, a; a) and with W 2
φ̄lrW

1
φlr on a vertex (a, ā; s jr ).

In Appendix E, using the conditions (5a) and (15a), we show
that in all three cases, in the gauge (23), the coefficients are
indeed independent of j. [A similar result holds for vertices
of the form (a, si+ jr ; ai ) with i < r, for which the coefficient
is also independent of j]. Thus we see that, for configurations
with only vertices involving a j , āk ( j, k < r), and powers of
si, the simple string operators at each vertex yield a consistent
set of equations for the Aas j

.
Having established that a consistent solution exists, let us

solve for the coefficients Aasnr
. (As above, the coefficients Aasi

for i < r can be consistently set to one by a gauge transforma-
tion). Taking k = l = 1 in Eq. (85), we find

Aas(i+1)r = Aasir
Aasr

F asir sr

aas(i+1)r F sr s̄r sr

skr 00 F as jr sr

aas( j+1)r

(
F asr s jr

aas( j+1)r

)∗
. (86)

As shown in Eq. (E19), in fact,

F as jr slr

aas( j+l )r = F aslr s jr

aas( j+l )r . (87)

It follows that in our gauge of choice,

Aasnr = (
Aasr )n

n−1∏
k=1

(
F askr sr

aas(k+1)r

)
. (88)

Thus of the q/r vertex coefficients Aasnr
, we can freely choose

only one, which we take to be Aa,sr
.

Moreover, the coefficient Aasr
is not unconstrained: taking

n = q/r in Eq. (88), and noting that s(q/r)r = 0, we see that

(
Aasr )q/r =

q/r−1∏
k=1

(
F askr sr

aas(k+1)r

)∗
. (89)

Thus, we see that Aasr
must be a q/rth root of the product

on the right-hand side, and we have exactly q/r possi-
ble choices for this coefficient, which we label (Aasr

)i, i =
1, . . . , q/r. We note that the product on the right-hand side
[and hence also (Aasr

)i] has modulus one, since by unitarity
(F askr sr

aas(k+1)r )∗F askr sr

aas(k+1)r = 1.
Physically, the fact that we obtain multiple, physically

inequivalent choices of Aasnr
implies that, in the condensed

phase, the string label a “splits” into q/r distinct label types,
which we denote

ãμ = (a, μ), mu = 1, . . . , q/r. (90)

Here (a, μ) indicates that any vertex associated with the label
ãμ is assigned a vertex coefficient consistent with the choice
(Aasr

)μ = [
∏q/r−1

k=1 (F askr sr

aas(k+1)r )∗]μr/q.
Armed with this knowledge of splitting, we may return

to scrutinize other types of vertices. Vertex coefficients for
vertices (a, b; c) where none of the three string labels split
can be solved for as above; this includes all vertices of the
form (b, s j ; bj ) for 0 � j < q where b × s j �= b for any j < q.
Thus consider a vertex of the form (a, b; c) (or one of its
cyclic permutations), where ar = a, but b and c do not split.
Attaching a stick carrying the label srl to the a edge, the analog
of Eq. (76) is(

Aas( j+l )r )
μ

Absk
Ba,bk

c jr+k Bc jr+k s̄ jr+k

= (
Aaslr )

μ
F aslr s jr

aas(l+ j)rWjk (abc)Aab
c . (91)
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This set of equations allows for a consistent definition of Ba,bk

c jr+k

in terms of Aab
c only if the l dependence of the two sides

cancels. Indeed [see Eq. (E23)],(
Aas( j+l )r )

μ(
Aaslr

)
μ

(
F aslr s jr

aas(l+ j)r

)∗ = (
Aas jr )

μ
, (92)

so the l dependence is indeed trivial, and a consistent defini-
tion is possible. Note that the coefficient Ba,bk

c jr+k on the left-hand
side of Eq. (91) will depend on the choice of μ; correspond-
ingly, we define the q/r vertex coefficients (Babk

c jr+k )μ. Similar
considerations apply for the cyclic permutations (c̄, a; b̄),
(b, c̄; ā).

Finally, consider a vertex of the form (a, b; c) where at least
two of the labels split. For example, suppose that ar = a, cr =
c, and consider applying a W 1

φlr string operator to the vertex
(a, b; c), with sticks on the a and c edges initially labeled by
sir and skr , respectively. This gives the relation

Aas(i+l )r
Acs(k−l )r

Aab
c

= Aab
c Aasir

Acskr
w̄φlr (b)F abslr

ccblr

(
F aslr b

cablr

)∗

× F asir slr

aas(i+l )r

(
F cslr s(k−l )r

ccskr

)∗
F slr s̄lr skr

skr 0s(k−l )r . (93)

Note that, in this case, Aab
c appears on both sides of the equa-

tion. If the coefficient on the right-hand side does not depend
on b, then we can simply cancel these factors and we recover
an equation that is satisfied by solutions to (88) [see Eq. (92)].
However, in general the coefficient is invariant only under
replacing b → bjr for some integer j, and may be different
for distinct choices of b (see Appendix E). The resolution to
this is that we must replace Eq. (93) with the equation(

Aaslr )
μ(

Acslr
)
ν

(
Aab

c

)μ

ν
=(

Aab
c

)μ

ν
Ml (a, b, c), (94)

where we have used Eqs. (87) and (92) to simplify the factors
associated with vertices Aasir

, Acs jr
, and

Ml (a, b, c) = w̄φlr (b)F abslr

ccblr

(
F aslr b

cablr

)∗
(95)

encodes the dependence on the label b. Thus either (Aab
c )μν =

0, or (
Aaslr )

ν
= (

Acslr )
μ

Ml (a, b, c). (96)

In general, this gives us a condition that fixes the values of
(μ, ν) for which (Aab

c )μν �= 0, and hence specifies the fusion
rules of the new, split anyon labels. Note that the conditions
for (Aab

c )μν , (Ac̄a
b̄

)μν , and (Abc
a )μν to be nonvanishing involve

different coefficients in general.
In Appendix E, we show that, when (a, b; c) is allowed by

the branching rules, there is necessarily at least one choice of
(μ, ν) such that (Aab

c )μν �= 0, and hence at least one choice of
(μ, ν) for which (ãμ, b̃; c̃ν ) is allowed by the new branching
rules. [We also show that the same is true for the cyclic per-
mutations (Ac̄a

b̄
)μν , and (Abc

a )μν of this vertex]. Indeed, provided
that b̃ does not split, generically there are q/r such solutions.
This allows us to partially characterize the fusion rules of
the new theory. For example, suppose that only vertices of
the form (c̄, a; b̄) are allowed by the branching rules, where

b × sv �= b for any 0 < v < q. In the condensed Hilbert space,
we have ⎛

⎝ q/r∑
ν=1

˜̄cν

⎞
⎠ ×

⎛
⎝ q/r∑

μ=1

ãμ

⎞
⎠ = q

r

∑
˜̄b

˜̄b, (97)

where the sum on the right-hand side runs over all distinct
choices of ˜̄b that are compatible with the original branching
rules. Since a × sr = a, c × sr = c, we have sr × (c̄ × a) =
c̄ × a; hence if (c̄, a; b̄) is allowed by the fusion rules, then so
is (c̄, a; b̄ jr ) for any j. Consequently, provided that (c̄, a; b̄k )
is not allowed by the branching rules of the original theory for
any 0 < k < r, in the condensed phase there are q/r copies of
˜̄b in the fusion product ˜̄c × ã. This corresponds exactly to the
number of distinct choices of (μ, ν) that solve Eq. (96)—i.e.,
the number of choices of (μ, ν) for which ( ˜̄c, ãμ; ˜̄b) is allowed

by the new branching rules. In this case, each copy of ˜̄b
can be associated with a distinct solution, such that typically
the Hilbert space at the vertex ( ˜̄c, ãμ; ˜̄b) is one dimensional
(i.e., the new theory does not have fusion multiplicity). In
particular, there is no fusion multiplicity associated with the
vacuum 0̃, since the cyclic property of the fusion rules ensures
that only vertices of the form (a, a; s jr ) are allowed.

The possible fusion rules for other types of vertices, such as
vertices (ãμ, b̃λ; c̃ν ) where all three labels split, are discussed
in Appendix E.

In summary, the new Hilbert space H̃ consists of string-net
states with both unsplit string types of the form (57), (58),
whose branching rules are fixed by those of the original labels,
and split string types given by (90), whose branching rules are
fixed by a combination of those of the original theory and the
solutions to Eq. (96).

VI. STRING-NET MODEL OF THE CONDENSED PHASE

We now show that the ground state |�〉 of our extended
string-net model as J → ∞ can be expressed as an ordinary
string-net ground state using the new label set {ãi, b̃, c̃, . . .}.
In particular, we show how to use the vertex coefficients
{Aab

c , Ba j ,bk

c j+k } described in the previous section to obtain the
fusion data describing the string-net in the condensed phase.
If there is no splitting, we find that the vertex coefficients,
together with the fusion data of the original category, fully fix
the fusion data for the condensed string-net. With splitting,
these do not fully fix the fusion data, the remaining freedom
can be eliminated by imposing the consistency conditions (5).

A. The topological data for the condensed phases

Deep in the condensed phase, the basis states in H̃ allow us
to express the condensed ground state |�〉 = Pφ|�〉 as a new
string-net condensed state with amplitudes

�(X̃ ) ≡ 〈X̃ |�〉

= 1

p2NV

∑
X∈X̃

CX̃ (X )〈X |�〉

≡ 1

p2NV

∑
X∈X̃

CX̃ (X )�(X ). (98)
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Here the sum over X ∈ X̃ is over all configurations of un-
condensed string labels compatible with the configuration X̃ .
Note that, when one or more labels split, there are multiple
distinct solutions for the vertex coefficients associated with
the multiple distinct split string labels; in this case the co-
efficients C(X ) depend not only on X but on the choice of
which label in each set {ãμ} is in the configuration X̃ ; to
indicate this dependence, we have added a subscript, denoting
the coefficient C(X ) as CX̃ (X ).

1. Topological data in theories without splitting

We first describe how to use Eq. (98) to obtain the topolog-
ical data associated with the condensed string-net in theories
where none of the original labels split. We begin by simplify-
ing Eq. (98), using the relation

CX̃ (X1)�(X1) = CX̃ (X2)�(X2) for any X1, X1 ∈ X̃ . (99)

To see that these are equal, observe that on the one hand, we
have

CX̃ (X2) = CX̃ (X1)W (P)X1
X2

(100)

for any X1, X2 ∈ X̃ by (61) and (62). On the other hand, the
new ground state |�〉 satisfies

�(X2) = 〈X2|�〉 = 〈X1|W (P)|�〉
W (P)X1

X2

= �(X1)

W (P)X1
X2

. (101)

Here we use (61) in the second equality and (45) in the third
equality. Putting (100) and (101) together, we establish (99).

By using (99), we can rewrite (98) as

�(X̃ ) = C(X0)�(X0), (102)

were X0 denotes a reference configuration of our choice from
the set X ∈ X̃ ; in the following it will be convenient to choose
X0 to have only trivial labels on all sticks. Observe that, in
the absence of splitting, each vertex in X̃ corresponds to q2

configurations X , obtained by acting with W 1
φ j

W 2
φk for 0 �

j, k < q at each vertex. Each such configuration appears p/q
times when we act with Pφ on X0. Thus summing over X ∈ X̃
and expressing all terms in terms of �(X0) gives a factor of
p2 for each vertex, which exactly cancels the normalization
prefactor.

We can use the amplitudes of this new ground state to
define the new F symbols F ãb̃c̃

d̃ ẽ f̃
and quantum dimensions

dã by

,

(103a)

(103b)

Here the gray regions denote the part of the configuration
that is identical on both sides of the equation.

To relate the new coefficients to the old ones, consider
a pair of reference configurations X0, X ′

0 related by one of
the local moves in Eq. (4). For convenience, we choose all

reference configurations to be closed configurations in which
all sticks carry the trivial label. These closed configurations
are generated by those terms in Pφ containing only closed
loops of simple string operators, all of which act as the identity
on the ground state |�〉 of the original string-net. (Recall that
|�〉 = Pφ|�〉.) Thus when X0, X ′

0 are closed configurations,
�(X0) ∝ �(X0), and similarly for X ′

0. Note that the constant
of proportionality here depends only on the number of closed-
loop string operators in Pφ and is the same for all reference
configurations.

Using the fact that �(X0), �(X ′
0) are related by the original

local rules, and applying (102) to both sides of (103), we
conclude that, when none of the labels ã, . . . , f̃ split, the old
data and the new data are related by

Bab
e Bec

d

Bbc
f Ba f

d

F abc
def = F ãb̃c̃

d̃ ẽ f̃ , (104a)

da = dã. (104b)

[The local moves (4b) and (4c) lead to the same definition
(104b) of dã]. Here Bab

c (which can also be root vertex coeffi-
cients Aab

c ) are the vertex coefficients defined in (66)–(70) and
{F abc

def , da} are the original F symbols and quantum dimensions
for the ground state �. The labels a, b, c, d in F abc

def are chosen
such that they are compatible with the branching rules of
the old theory, and such that a ∈ ã, b ∈ b̃, c ∈ c̃, d ∈ d̃ . This
expression thus fully fixes the new F symbols in terms of
the old F symbols and the vertex coefficients. Furthermore,
comparing this to the expression (8) for gauge transformations
of the F symbols, we can see that the root vertex coefficients
Aab

c with a, b �= si are simply gauge transformations of the
new Fs. (The remaining vertex coefficients, which are fully
fixed by the choice of Aab

c , ensure that the left-hand side of the
equation is independent of the specific choice a, b, c, d, e, f
used in the calculation.)

2. Topological data in theories with splitting

In theories with splitting, instead of expressing ampli-
tudes in terms of a single reference configuration, we replace
Eq. (102) with

�(X̃ ) = 1

N (X0)

∑
X0∈X̃

CX̃ (X0)�(X0), (105)

where X0 denotes the set of reference configurations that are
compatible with the choice of condensed labels X̃ and contain
only trivial labels on the sticks. The reason for this replace-
ment is that, in theories with splitting, a single reference
configuration X0 may not be sufficient to uniquely fix X̃ via
the choice of vertex coefficients entering CX̃ (X0). We therefore
instead keep the minimum number of configurations in our
sum necessary to ensure that the right-hand side describes
coefficients associated with a specific condensed label set,
which is a sum over all configurations compatible with X̃ for
which all sticks carry the trivial label.

Unlike in the unsplit case, the number of configurations
associated with each reference configuration X0 in the sum
does not, in general, fully cancel the prefactor of 1/p2NV in
Eq. (98). Here N (X0) counts the number of distinct products
of simple string operators that leave X0 unchanged—meaning
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that they change neither the labels on the sticks, nor any of the
edge labels. This number depends on the number of closed
loops in X0 along which all labels split. Relative to the unsplit
case, the number of distinct configurations X in the sum (98)
is reduced by N (X0).

To find F ãb̃c̃
d̃ ẽ f̃

, we note that

.

(106)

In the last equality, the labels μ, ν, ρ, σ identify the external
split legs as ãμ, b̃ν , c̃ρ , and d̃σ , respectively. However, it can
happen that there is more than one solution f̃κ compatible
with both the old label f and the new fusion rules. In other
words, there may be more than one choice of κ for which
(Bbc

f )νρ
κ (Ba f

d )μκ
σ �= 0. We conclude that the old data and the

new data are related by

∑
e:e∈ẽ

(
Bab

e

)μν

λ

(
Bec

d

)λρ

σ(
Bbc

f

)νρ

κ

(
Ba f

d

)μκ

σ

F abc
de f =

∑
f̃ : f ∈ f̃

F ãμb̃ν c̃ρ

d̃σ ẽλ f̃κ
. (107)

To find dã, we observe that we also have

�

⎛
⎝∑

X̃∈X0

X̃

⎞
⎠ = 1

N (X0)

∑
X̃∈X0

CX̃ (X0)�(X0), (108)

where in this case, we can choose a single reference config-
uration. Letting X̃ be a configuration with single closed loop
carrying the label ã, and X0 to have a single loop carrying
the label a, we find that the number of terms in the sum
is precisely N (X0), and that all terms in the sum contribute
equally. From this, we conclude that

da =
∑
ã:a∈ã

dã. (109)

Thus, we see that in theories with splitting, the original
fusion data and vertex coefficients do not fully fix all of the
new Fs. In this case, the remaining freedom must be used to
ensure that the new Fs satisfy the consistency conditions (5)
as well as the unitarity conditions (6).

B. Consistency conditions for Fãb̃c̃
d̃ẽ f̃

We now show that the new data {F ãb̃c̃
d̃ ẽ f̃

} satisfy the consis-
tency conditions (5). We begin with the condition (5b), which
requires F ãb̃c̃

d̃ ẽ f̃
= 1 if ã or b̃ or c̃ = 0̃. We wish to show that the

right-hand side is equal to one if a, b, or c are powers of s.
Indeed, using Eq. (62), one can show

Babi

ci Bbsi

Bcsi Bab
c

F absi

cicbi = Basi
Baib

ci

Babi

ci Bsib
F asib

ciaibi = Baib
ci Bsia

Bab
c Bsic

F siab
ciaic = 1. (110)

If a, b, or c are powers of s, then there are no sums in
Eq. (107); thus Eq. (110) ensures that the new Fs satisfy
Eq. (5b).

To see that the first term in Eq. (110) is equal to unity,
apply a W 2

φi -type string to the vertex (a, b; c), with the stick on

the c edge carrying the label si. From Eq. (22), in the gauge
(23), the matrix element associated with this string operator
is F absi

cicbi , and Eq. (62) implies that Bcsi
Bab

c = Babi

ci Bbsi
F absi

cicbi .
The second equality is obtained by applying a product of
the form W 2

φiW 1
φ−i to a configuration with the two vertices

(a, si; ai ) and (ai, b; ci ), and using Eqs. (5), (15), and (79).
The third equality can be obtained by acting with a W 1

φi

string on the vertex (a, b; c), with an si labeled stick on the
c edge. In our gauge of choice, the corresponding matrix
element is wφi (b)F absi

cicbi (F asib
cia−bi )∗, which by Eq. (15) is equal

to wφi (a)w̄i
φ (c)(F siab

ciaic)∗. This gives

Aab
c Acsi

ω̄φi (c) = F siab
ciaicω̄φi (a)Aasi

Baib
c . (111)

Using Eq. (79), we obtain the stated result.
Next, we turn to the pentagon identity (5a). Multiplying

both sides of (5a) by B f c
g Bgd

e Bab
f , and summing over f ∈ f̃ and

g ∈ g̃, gives

∑
f ∈ f̃ ,g∈g̃

F f cd
egl F abl

e f k B f c
g Bgd

e Bab
f =

∑
f ∈ f̃ ,g∈g̃,h

F abc
gf h F ahd

egk F bcd
khl B f c

g Bgd
e Bab

f .

(112)

We first consider the right-hand side of (112). Using Eq. (104),
we have

∑
h,g∈g̃

⎛
⎝∑

f ∈ f̃

F abc
gf h Bab

f B f c
g

⎞
⎠F ahd

egk F bcd
khl Bgd

e

=
∑
h,h̃�h

F ãb̃c̃
g̃ f̃ h̃

⎛
⎝∑

g∈g̃

F ahd
egk Bah

g Bgd
e

⎞
⎠F bcd

khl Bbc
h

=
∑
h̃,k̃�k

F ãb̃c̃
g̃ f̃ h̃ F ãh̃d̃

ẽg̃k̃

⎛
⎝∑

h∈h̃

F bcd
khl Bhd

k Bbc
h

⎞
⎠Bak

e

=
∑

h̃,k̃�k,l̃�l

F ãb̃c̃
g̃ f̃ h̃ F ãh̃d̃

ẽ f̃ h̃ F b̃c̃d̃
k̃h̃l̃ Bcd

l Bbl
k Bak

e . (113)

(In the third line, we exploit the fact that
∑

h,h̃�h = ∑
h̃,h∈h̃.)

A similar treatment of the right-hand side of (112) gives∑
l̃�l,k̃�k F f̃ c̃d̃

ẽg̃l̃
F ãb̃l̃

ẽ f̃ k̃
Bbl

k Bak
e Bcd

l . Thus the new F symbols satisfy

∑
l̃�l,k̃�k

F f̃ c̃d̃
ẽg̃l̃

F ãb̃l̃
ẽ f̃ k̃ =

∑
l̃�l,k̃�k

∑
h̃

F ãb̃c̃
g̃ f̃ h̃ F ãh̃d̃

ẽg̃k̃ F b̃c̃d̃
k̃h̃l̃ . (114)

If ar �= a for any r < q, then the sums over l̃ and k̃ can be
dropped, and the new F symbols automatically satisfy the
pentagon identity (5a). Otherwise, Eq. (104) only constrains
certain sums of the new Fs, and we must use the remaining
freedom to choose the new Fs to satisfy Eq. (5a).
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C. Effective Hamiltonian

We have seen that the ground state |�〉 of the condensed
phase is a string-net state, described in terms of the new labels
{ã}, with new F symbols and quantum dimensions given by
Eqs. (107) and (109), together with the consistency condi-
tions (5). Since |�〉 is also a ground state of the effective
Hamiltonian in the condensed phase, this suggests that our
effective Hamiltonian acts on the labels in the new basis as a
(conventional) string-net Hamiltonian.

In the absence of splitting, it is relatively straightforward
to see that this is indeed the case. Consider the action of PφBφ

p

on a state 〈X̃ | in our new string-net basis. As above, we can
use the fact that 〈X̃ |PφBφ

p = 〈X̃ |Bφ
p = C(X0)〈X0|Bφ

p , where X0

is a configuration compatible with X̃ , and for which all stick
labels are trivial. We thus have

〈X̃ |Bφ,t
p =

∑
X ′

0

C(X0)〈X ′
0|Bt,i1,...,i6 j1,..., j6

p,i′1,...,i
′
6 j′1,..., j′6

(e1, . . . , e12; I, I, I),

(115)

where jk = ik , j′k = i′k for k = 4, 5, 6, and e10 = e11 = e12 =
0. Here 〈X ′

0| is identical to 〈X0| except on the boundary of the
plaquette p, where edges labeled i1, . . . , i6, j1, . . . , j6 in 〈X0|
now carry labels i′1, . . . , i′6, j′1, . . . , j′6. Applying Eq. (104a)
repeatedly, we find that the matrix element can be expressed
as a product of new F symbols:∑

X ′
C(X0)〈X ′|Bt,i1,...,i6 j1,..., j6

p,i′1,...,i
′
6 j′1,..., j′6

(e1, . . . , e12; I, I, I)

=
∑

X ′
C(X ′)〈X ′|Bt̃,ĩ′1,...,ĩ

′
6 ĩ′1,...,ĩ

′
6

p,ĩ′1,...,ĩ
′
6 ĩ′1,...,ĩ

′
6
(ẽ1, . . . , ẽ60̃, . . . , 0̃; I, I, I)

= 〈X̃ ′|B̃t̃,ĩ1,...,ĩ6
p,ĩ′1,...,ĩ

′
6
(ẽ1, . . . , ẽ6), (116)

where the matrix elements of Bt
p are defined in (39), with

the old F symbols in the first line replaced by the new F
symbols in the second and third lines. Matrix elements of the
plaquette string operator Bt̃

p acting on states with all sticks
carrying the trivial label are exactly the matrix elements of
the conventional string-net plaquette operator (see Ref. [96])
which we denote B̃t̃,ĩ1,...,ĩ6

p,ĩ′1,...,ĩ
′
6
(ẽ1, . . . , ẽ6) in the third line. Thus

our effective Hamiltonian in the string-net phase is exactly the
new string-net Hamiltonian.

The situation in theories with splitting is similar although
more subtle due to the fact that a single label t in the original
theory can represent multiple labels t̃μ in the new theory.

VII. ABELIAN EXAMPLES

In this section, we work out some illustrative exam-
ples of condensation in the Abelian Z2, Z4, Z6, Z4 × Z4

string-net models. We note that these Abelian string-nets are,
topologically, twisted Djikgraaf-Witten theories, for which
condensation has been separately discussed by Ref. [38].
However, we include these examples because they give a
simple illustration of how our construction works. In these
Abelian models there is no splitting, and the new fusion data
follow directly from the coefficients Bai,bj

ck+k .
One interesting feature of these examples is that they

demonstrate how twisted Abelian gauge theories (for which

the gauge fluxes exhibit nontrivial mutual statistics [102]) can
be obtained by condensing appropriate bosonic charge-flux
bound states in untwisted theories. We see several specific
examples of this below.

Throughout our discussion of Abelian string-net models,
we use

F (a, b, c) = F abc
de f (117)

for brevity, since other indices can be deduced from the
Abelian branching rules. Moreover, for string-nets based on
the group G = ZN , there are N distinct solutions to (4), with
the explicit form [100,101]

F (a, b, c) = e2π i pa
N2 (b+c−[b+c])

. (118)

The integer parameter p = 0, . . . , N − 1 labels the N distinct
solutions. The arguments a, b, c take values in 0, . . . , N − 1
and [b + c] denotes b + c (mod N) with values also taken
in 0, . . . , N − 1. For each of the N distinct solutions, we
can construct a corresponding string-net model. Each such
string-net model has N2 topologically distinct quasiparticle
excitations labeled by φ = (s, m) where s, m = 0, 1, . . . , N −
1. The string operator Wφ (P) which creates φ = (s, m) is
defined by (13) with the string parameters

wφ (a) = e2π i( psa
N2 + ma

N )
. (119)

A. Z2 string-net model

To set the stage, we begin with the Z2 string-net model,
whose condensation transitions and phase diagram have been
studied extensively in the literature [73,87,88,103–107]. Here,
we briefly review how our construction replicates these re-
sults.

The Z2 string-net model has two types of strings {0, 1}
with dual strings 0̄ = 0, 1̄ = 1. The branching rules are
{(a, b; c) with a + b = c mod 2}. There are two distinct solu-
tions F (1, 1, 1) = ±1 to (5). The corresponding models are
the Toric code [3] and the double semion model, respectively.
The Toric code has two Z2 bosons φ = (1, 0) and φ = (0, 1),
while the double semion model has one Z2 boson φ = (0, 1).

We first consider the condensation of φ = (0, 1) in the two
models, as the two condensed phases are identical. After con-
densation, only string type a which satisfies wφ (a) = (−1)a =
1 remains, namely, the remaining string type is 0̃ = {0} and
thus the Hilbert space H̃ is the vacuum state which is the
same as the vacuum state in Hφ . Hence, there is no string-net
topological order after φ condensation.

Next, we consider the φ = (1, 0) condensation in the Toric
code. After condensation, the new string type is 0̃ = {0, 1} and
thus H̃ is the vacuum state which is the equal superposition of
all states in Hφ . Thus there is no string-net topological order
after φ condensation.

With the Hamiltonian described here, all of these phase
transitions are in the (2 + 1)-dimensional Ising universality
class.

B. Z4 string-net model

We next show how our construction allows us to construct
certain condensed phases of the Z4 string-net model. The
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full phase diagram of this model was studied in detail in
Ref. [108].

The Z4 string-net model has four types of strings
{0, 1, 2, 3} with dual strings 0̄ = 0, 1̄ = 3, 2̄ = 2, 3̄ = 1.
The branching rules are {(a, b; c) with a + b = c mod 4}. The
Hilbert space consists of all possible string-nets with the
above string types and branching rules.

There are four distinct solutions to the self-consistency
conditions (5),

F (a, b, c) = ei
2π pa(b+c−[b+c]4 )

42 , (120)

labeled by p = 0, 1, 2, 3. Here [x]n = x mod n. The corre-
sponding Z4 string-net models realize the topological order
described by the Chern-Simons theory with the K matrix [89]

K =
(

0 4
4 −2p

)
.

All four models have a Z4 boson φ = (0, 1) and a Z2 boson
φ = (0, 2). In addition, the p = 0 model has two other Z2

bosons φ = (2, 0) and φ = (2, 2). We consider the topolog-
ical order after condensation of each of these bosons.

As in the Z2 case, condensing φ = (0, 1) leads to a trivial
topological order. Thus, we begin with the condensation of
φ = (0, 2). In the condensed phase, the remaining string types
a are those which satisfy wφ (a) = ei2π 2a

4 = 1, namely, the
remaining string types are a ∈ {0, 2}. Thus the Hilbert space
H̃ after φ condensation contains string-nets with the new
string labels {0̃ = {0}, 1̃ = {2}} and the Z2 branching rules.
As discussed in Eq. (68), in this case all nonvanishing vertex
coefficients can be set to one. Solving Eq. (104), we then find
that the F symbols of the condensed phase are simply a subset
of those of the uncondensed phase. Specifically,

all A = 1, F (1̃, 1̃, 1̃) = 1, d1̃ = 1 (121)

for the p = 0, 2 models, and

all A = 1, F (1̃, 1̃, 1̃) = −1, d1̃ = 1 (122)

for the p = 1, 3 models. Thus, the φ = (0, 2) condensed
phase in the p = 0, 2 models is described by the Toric code
while the φ = (0, 2) condensed phase in the p = 1, 3 models
is described by the double semion model.

Condensing φ = (1, 0) also leads to a trivial topological
phase; thus we next turn to the condensation of the φ = (2, 0)
and φ = (2, 2) bosons in p = 0 model. The Hilbert space H̃
for both cases contains string-nets with the new string types
{0̃ = {0, 2}, 1̃ = {1, 3}} and the Z2 branching rules. To find
the topological order for after condensation, we solve for the
vertex coefficients and use Eq. (104) to deduce the topological
data of the condensed phase. When the condensing boson is
φ = (2, 0), we find that

all A = 1, F (1̃, 1̃, 1̃) = 1, d1̃ = 1. (123)

In this case, the condensed F symbols are simply a subset
of the uncondensed ones; this is always the case when con-
densing (q, 0)-type bosons in untwisted Abelian lattice gauge
theories. Thus, the φ = (2, 0) condensed phase is described
by the Toric code.

When the condensing boson is φ = (2, 2), in contrast, not
all vertex coefficients can be chosen to be unity. In this case,

we can choose

At2 = (−1)t , other A = 1, F (1̃, 1̃, 1̃) = −1, d1̃ = 1,

(124)

with t = 0, 1, 2, 3. Thus, the φ = (2, 2) condensed phase is
also described by the double semion model.

C. Z6 string-net models

The Z6 string-net model has six types of strings
{0, 1, 2, . . . , 5}. The dual string type is defined by ā = 6 −
a mod 6 while the branching rules are the triplets (a, b; c) that
satisfy a + b = c (mod 6). By using the general solution

F (a, b, c) = ei
2π pa(b+c−[b+c]6 )

62 , (125)

we can construct six distinct string-net models labeled by
p = 0, 1, . . . , 5. The corresponding topological order can be
described by the Chern-Simons theory with the K matrix

K =
(

0 6
6 −2p

)
.

Analogously to the previous examples, condensing a Z6

boson results in a trivial topological phase. Thus we focus on
condensing the Z2 and Z3 Abelian bosons, which are summa-
rized for the six distinct Z6 string-net models in Table I.

We first consider condensing Z3 bosons. Condensing φ =
(0, 2), which is a boson for any p, leaves the string types
{0̃ = {0}, 1̃ = {3}} with Z2 branching rules. In this case, the
condensed phase is described by

all A = 1, F (1̃, 1̃, 1̃) = 1, d1̃ = 1 (126)

for the p = 0, 2, 4 models and

all A = 1, F (1̃, 1̃, 1̃) = −1, d1̃ = 1 (127)

for the p = 1, 3, 5 models. Thus, the φ = (0, 2) condensed
phase in the p = 0, 2, 4 models is described by the Toric
code while the φ = (0, 2) condensed phase in the p = 1, 3, 5
models is described by the doubled semion model.

Second, we condense the Z3 boson φ = (2, 0) in the p = 0
model and the Z3 boson φ = (2, 2) in the p = 3 model. The
new string labels are {0̃ = {0, 2, 4}, 1̃ = {1, 3, 5}} with Z2

branching rules after condensation. Analogous to the Z4 case,
we find

all A = 1, F (1̃, 1̃, 1̃) = d1̃ = 1 (128)

for condensation of φ = (2, 0) in the p = 0 model and

A12 = A32 = A52 = −1, other A = 1,

F (1̃, 1̃, 1̃) = −1, d1̃ = 1 (129)

for condensation of φ = (2, 2) in the p = 3 model. Thus the
two condensed phases are described by the Toric code and the
doubled semion model, respectively.

Next, we consider condensing Z2 bosons. When the con-
densing boson is φ = (0, 3), the remaining string types are
{0̃ = {0}, 1̃ = {2}, 2̃ = {4}} with Z3 branching rules. After
solving (104), we find

all A = 1, F (ã, b̃, c̃) = ei2π
qã(b̃+c̃−[b̃+c̃]3̃ )

9 , dã = 1, (130)
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TABLE I. Six Z6 string-net models labeled by p = 0, 1, . . . , 5. Columns 2 and 4 show the Z2 and Z3 bosons labeled by (s, m) in the
models. Column 3 and 5 show the K matrix for the condensed phases after condensing φ bosons in Column 2 and 4, respectively. Here

Ka,b = (
cc0 a
a −2b

).

Z6 models p Z2 φ Condensed phase Z3 φ Condensed phase

0, . . . , 5 (0,3) K3,0, p = 0, 3, (0,2) K2,0, p = 0, 2, 4
K3,1, p = 1, 4 (0,2) K2,1, p = 1, 3, 5
K3,2, p = 2, 5 (0,2)

0 (3,0) K3,0 (2,0) K2,0

2 (3,1) K3,2

3 (2,2) K2,1

4 (3,2) K3,1

with q = 0 for the p = 0, 3 models and q = 1 for the p = 1, 4
models and q = 2 for the p = 2, 5 models. Thus, the φ =
(0, 3) condensed phase in the p = 0, 3 models is described by
the Z3 string-net model with q = 0 while the φ = (0, 3) con-
densed phase in the p = 1, 4 and p = 2, 5 models is described
by the Z3 string-net model with q = 1 and q = 2, respectively.

Finally, we condense the φ = (3, 0), (3, 1), (3, 2) bosons
in the Z6 string-net models with p = 0, 2, 4, respectively.
The new string types after condensation are {0̃ = {0, 3}, 1̃ =
{1, 4}, 2̃ = {2, 5}} with Z3 branching rules. Condensing φ =
(3, 0) in the p = 0 model, all vertex coefficients can be taken
to be one, and we obtain

all A = 1, F (ã, b̃, c̃) = 1, dã = 1. (131)

To condense φ = (3, 1) in the p = 2 model, we may take

A13 = A43 = ei 2π
3 , A23 = A53 = e−i 2π

3 , other A = 1,

F (1̃, 1̃, 2̃) = F (1̃, 2̃, 1̃) = F (1̃, 2̃, 2̃) = e−i 2π
3 ,

F (2̃, 2̃, 1̃) = F (2̃, 1̃, 2̃) = F (2̃, 2̃, 2̃) = ei 2π
3 ,

other F = 1, dã = 1. (132)

Finally, to condense φ = (3, 2) in the p = 4 model, we obtain

A13 = A43 = e−i 2π
3 , A23 = A53 = ei 2π

3 , other A = 1,

F (1̃, 1̃, 2̃) = F (1̃, 2̃, 1̃) = F (1̃, 2̃, 2̃) = ei 2π
3 ,

F (2̃, 2̃, 1̃) = F (2̃, 1̃, 2̃) = F (2̃, 2̃, 2̃) = e−i 2π
3 ,

other F = 1, dã = 1. (133)

Thus the three condensed phases are described by the Z3

string-net models labeled by p = 0, 2, 1, respectively.
We summarize the condensed phases after condensing

Abelian bosons in the Z6 models in Table I.

D. Z4 × Z4 string-net model

The Z4 × Z4 string-net model has 16 types of strings
labeled by a ∈ {(a1, a2), a1, a2 ∈ {0, 1, 2, 3}} with dual
strings ā = (ā1, ā2) = (4 − a1, 4 − a2). The branching rules
are {(ai, bi; ci ) with ai + bi = ci mod 4} with i = 1, 2. The
Hilbert space consists of all possible string-nets with the
above string types and branching rules.

The general form of solutions to the self-consistency condi-
tions (5) for ZN × ZN string-net models is known [100,101].

Here, we consider one such solution, for which

F (a, b, c) = ei2πaT N−1PN−1(b+c−[b+c]), (134)

with

N =
(

4 0
0 4

)
, P =

(
0 2
0 0

)
. (135)

Here the square bracket [b + c] denotes a two-component vec-
tor whose ith component is bi + ci (mod 4). From the solution
(134), we can construct the Z4 × Z4 string-net Hamiltonian.

We focus on the four Z2 bosons in the model and we denote
them by

φ1 = (2, 0, 0, 3), φ2 = (2, 0, 0, 1),

φ3 = (2, 0, 2, 1), φ4 = (2, 0, 2, 3).

Here the bosons are labeled by (s1, s2, m1, m2) with s1, s2

being the flux and m1, m2 being the charge carried by the par-
ticle. Now, we consider the condensation of the four bosons
φi in the Z4 × Z4 model in order. In the φi condensed phase,
we define the two-component new string labels by

ã = (ã1, ã2) = {(a1, a2), (2 + a1, a2)},
with a1 ∈ {0, 1}, a2 ∈ {0, 1, 2, 3}.

To find the topological order for the φi condensed phase, we
have to solve for the vertex coefficients. First, we find that

all A = 1 for φ1 condensed phase,

Aa,(2,0) = (−1)a2 , other A = 1 for φ2 condensed phase.
(136)

For the φ1 condense phase, we then solve Eq. (104) to find

F (ã, b̃, c̃) = ei2π ãT Ñ−1P̃Ñ−1(b̃+c̃−[b̃+c̃]), (137)

with

Ñ =
(

2 0
0 4

)
, P̃ =

(
0 1
0 0

)
. (138)

For the φ2 condensed phase, the new F symbol is gauge
equivalent to (138). Thus the topological order in φ1 or φ2

condense phase is described by the Chern-Simons theory with
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K matrix [89],

K =

⎛
⎜⎜⎝

0 0 2 0
0 0 0 4
2 0 0 −1
0 4 −1 0

⎞
⎟⎟⎠. (139)

Second, we find that

Aa,(2,0) = (−1)a1+a2 , other A = 1 for φ3 condensed phase,

Aa,(2,0) = (−1)a1 , other A = 1 for φ4 condensed phase.
(140)

For the φ4 condensed phase, we find that F (ã, b̃, c̃) is given
by (137) with

Ñ =
(

2 0
0 4

)
, P̃ =

(
1 1
0 0

)
. (141)

The new F symbol for the φ3 condensed phase is gauge
equivalent to (141). Thus the topological order in the φ3 or
φ4 condensed phase is described by the K matrix

K =

⎛
⎜⎜⎝

0 0 2 0
0 0 0 4
2 0 −2 −1
0 4 −1 0

⎞
⎟⎟⎠. (142)

VIII. NON-ABELIAN EXAMPLES

We now turn to condensation of Abelian bosons in two
non-Abelian string-net models, based on the fusion categories
Rep(S3) and SU(2)4. In both cases, the condensation tran-
sition involves splitting. The new element present in these
examples is that both concern condensation transitions in-
volving splitting. In these models, we also fully construct the
new Hilbert space H̃ after condensation and compute new F
symbols and quantum dimensions for the condensed phases.

A. S3 string-net model

The simplest example of a transition involving splitting
occurs in the S3 string-net model [constructed from the fusion
category Rep(S3)], which has three types of strings {0, 1, 2}
with dual strings 0̄ = 0, 1̄ = 1, 2̄ = 2. The branching rules
are

{(0, 0; 0), (1, 0; 1), (2, 0; 2),

(1, 1; 0)(1, 1; 1), (1, 1; 2), (1, 2; 1), (2, 2; 0)}. (143)

Here the triplets (a, b; c) are understood as the fusion a × b =
c and are symmetric in the first two labels a, b. The nontrivial
F symbols and d to self-consistency conditions (5) are

F 111
1e f =

⎛
⎜⎜⎝

1
2 − 1√

2
1
2

− 1√
2

0 1√
2

1
2

1√
2

1
2

⎞
⎟⎟⎠,

F 111
211 = F 112

111 = F 121
111 = F 211

111 = −1, (144)

d0 = d2 = 1, d1 = 2,

where the matrix indices e, f can be 0,1,2.

The model has eight quasiparticles. Among them, there is
a Z2 Abelian boson, which we denote φ = (2, 0). The cor-
responding string operator is defined by the string parameter

wφ (a) = (−1)a. (145)

Since 2 × 1 = 1 × 2 = 1, condensing φ will cause the orig-
inal string label 1 to split into two distinct labels, which we
denote 1̃1, 1̃2.

To describe the Hilbert space H̃ after condensation, we first
solve (89) for Asia. The two distinct solutions are

(A21)1 = (A12)2 = 1, (A12)1 = (A21)2 = −1. (146)

Thus, the new string labels for H̃ are

0̃ = {0, 2}, 1̃1 = {1}, 1̃2 = {1}. (147)

The branching rules can be deduced from the branching rules
for the old string labels and are given by7

{(0̃, 1̃1; 1̃1), (0̃, 1̃2; 1̃2), (1̃1, 1̃2; 0̃), (1̃1, 1̃1; 1̃2), (1̃2, 1̃2; 1̃1)}.
(148)

Thus the condensed phase has Z3 (Abelian) branching rules.
Next, we want to find the topological order in the φ con-

densed phase. A solution for the full vertex coefficients is
given by Eq. (146), together with(

A11
0

)1,2 = (
A11

0

)2,1 = (
A11

2

)1,2 = −(
A11

2

)2,1 = 1,(
A11

1

)1,1

2

(
A11

1

)2,2

1 =
√

2,

where (A11
0 )1,2 is the coefficient that is relevant to the

(1̃1, 1̃2; 0) vertex in the condensed phase, (A11
1 )1,1

2 is relevant
to the (1̃1, 1̃‘; 1̃2) vertex, and so on. Using these data, it is
possible to solve (104) for the fusion data in the condensed
phase:

F 1̃a 1̃a 1̃a

01̃b1̃b
= F 1̃a 1̃a 1̃b

1̃a 1̃b0
= F 1̃a 1̃b1̃a

1̃a00
= F 1̃b1̃a 1̃a

1̃b01̃b
= 1 (149)

for a, b ∈ {1, 2}. With the data, we can construct ground states
and lattice Hamiltonian for the condensed phase. It turns out
the topological order in the condensed phase is described by
the Z3 string-net model characterized by the K matrix

K =
(

0 3
3 0

)
.

In other words, this is an untwisted (p = 0) Z3 string-net
model.

B. SU(2)4 string-net model

Finally, we turn to condensation in the SU(2)4 string-net
model—which, as discussed in Sec. II, is one of a family

7Before condensation, we have 1 × 1 = 0 + 1 + 2. After conden-
sation, the fusion becomes (1̃1 + 1̃2 ) × (1̃1 + 1̃2 ) = 0̃ + 1̃1 + 1̃2 +
0̃. Thus, 1̃1, 1̃2 can be either self-dual or not self-dual. However, from
the associativity of the fusion 1̃1 × (1̃2 × 1̃1 ) = (1̃1 × 1̃2 ) × 1̃1, we
conclude 1̃1 × 1̃2 = 0̃, 1̃1 × 1̃1 = 1̃2, 1̃2 × 1̃2 = 1̃1. This can also be
deduced directly from Eq. (94).
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of examples that have not been described with previous ap-
proaches. SU(2)4 has five string types {0, 1, 2, 3, 4} with all
strings being self dual. The branching rules are

{(a, 0; a) for a = 0, 1, 2, 3, 4,

(a, a; 0), (a, a; 2), (a, 2; 1), (a, 2; 3) for a = 1, 3,

(1, 3; 2), (1, 3; 4), (1, 4; 3), (3, 4; 1)

(2, 2; 0), (2, 2; 2), (2, 2; 4), (2, 4; 2), (4, 4; 0)}. (150)

If we only keep the even labels, the above branching rules
(150) are the same as the branch rules for the S3 model (143).
The data {F, d} satisfying (5) are known and we refer the
readers to Ref. [7] for details.

The model has 25 particles. Among these, there is an
antichiral Z2 Abelian boson, which we denote φ = (4, 0).
The corresponding string operator is defined by the string
parameter

wφ (a) = (−i)a. (151)

We consider the string-net obtained by condensing φ = (4, 0).
Since the string labels obey 2 × 4 = 4 × 2 = 2, the label

2 will split into two distinct string types after condensation,
which we denote 2̃1 and 2̃2. We first define H̃ after condensa-
tion. Specifically, solving for the vertex coefficients A4,a, we
obtain

A41 = 1, A43 = −1, A14 = A34 = −i,

(A42)1 = (A24)2 = 1, (A24)1 = (A42)2 = −1. (152)

Thus, the new string labels for H̃ are

0̃ = {0, 4}, 1̃ = {1, 3}, 2̃1 = {2}, 2̃2 = {2}. (153)

The new branching rules can be deduced from the old branch-
ing rules, together with Eq. (94), and are given by

{(1̃, 1̃; 0̃), (1̃, 1̃; 2̃1), (1̃, 1̃; 2̃2),

(1̃, 2̃1; 1̃), (1̃, 2̃2; 1̃), (154)

(2̃1, 2̃1; 2̃2), (2̃1, 2̃2; 0̃), (2̃2, 2̃2; 2̃1)}.
Thus, H̃ is the string-net Hilbert space with new string labels
(153) and branching rules (154).

Next, we want to find {F, d} in the φ condensed phase. A
valid choice of the full vertex coefficients is given by (152),
together with(

A11
2

)
1 = −

√
2,

(
A12

1

)1 = − 1√
2
,

(
A22

2

)11

2 = 1√
2
,

(
A11

2

)
2 = 1,

(
A12

1

)2 = 1,
(
A22

2

)22

1 = −2, (155)

where (A12
1 )2 = 1 pertains to the vertex (1̃, 2̃2; 1̃) and so on.

Using these, and Eq. (107), we find the nontrivial new F
symbols are

F 1̃1̃1̃
1̃00 = F 1̃1̃1̃

1̃02̃a
= F 1̃1̃1̃

1̃2̃a0 = − 1√
3
, F 1̃1̃1̃

1̃2̃a 2̃b
= − 1√

3
e−i 2πab

3 ,

F 1̃2̃a 1̃
2̃b1̃1̃

= F 2̃a 1̃2̃b

1̃1̃1̃
= e−i 2πab

3 , F 1̃2̃a 2̃b

1̃1̃0
= F 2̃2̃b1̃

1̃01̃
= −1.

(156)

Here a �= b = 1, 2. Note that, although the F symbols of
SU(2)4 have the full tetrahedral symmetry required by Levin

and Wen [91], the new Fs do not have reflection symmetry
(see Ref. [96] for a careful discussion of this point). This
reflects the fact that, after condensation, the string-net is no
longer time-reversal symmetric.

Interestingly, the data (156) are exactly the Z3 Tambara-
Yamagami category [109] (TY3,−).8 The TY3,− category has
four labels [0] = 0̃, [1] = 2̃1, [2] = 2̃2, σ = 1̃. The first three
labels have Z3 fusion rules. The last label σ represents the
symmetry defect:

[a] × σ = σ,

σ × σ = [0] + [1] + [2]. (157)

With the data (156), we can construct the ground state and
effective string-net model for the φ condensed phase.

The braiding data (i.e., the S and T matrices) of the re-
sulting anyons can be calculated explicitly from the string-net
itself, as in Ref. [110]. However, in our construction, we can
also easily deduce the resulting topological order from the
fact that this transition simply condenses the antichiral Z2

boson in the SU(2)4 string-net, which realizes an SU(2)4 ×
SU(2)4 Chern-Simons theory. It is known that condensing the
Z2 boson in SU(2)4 Chern-Simons theory yields an SU(3)1
Chern-Simons theory. Thus the topological order of the TY3,−
string-net obtained here by condensation is SU(2)4 × SU(3)1.

IX. DISCUSSION

In this paper, we have systematically studied condensation
of arbitrary Abelian bosons in string-net models. We have
introduced a Hamiltonian that tunes the system through a
condensation transition and given a detailed description of the
string-net in the condensed phase. We have shown how, in the
low-energy Hilbert space of the condensed phase, the input
fusion category C of the uncondensed string-net becomes a
new fusion category C̃, with both the effective Hamiltonian
and the ground state in the condensed phase being C̃ string-
nets. Finally, we have shown how both the labels and the
fusion data for C̃ can be calculated directly from the data of
the string operators of the condensing bosons, together with
the fusion data of C.

Because the transitions discussed here involve condensa-
tion of Abelian bosons, the degrees of freedom that become
gapless at the critical point can all be mapped onto variables
in a Potts model, using a method similar to that described
in Ref. [73]. By modifying H1, one could also achieve phase
transitions in the clock universality class.

One useful result of our construction is the possibility of
systematically extracting not only the label set, but also the
fusion data of C̃, by solving for the vertex coefficients implied
by the string operators W a

φ j . We note that Ref. [32] similarly
introduced vertex coefficients when studying the effect of
anyon condensation on the fusion and braiding data of the
UMTC describing the topological order and used these to

8TY3,− is one of four TY3 -type fusion categories. For example, had
we condensed the right-chiral Z2 boson, we would have obtained
an analogous fusion category, with all Fs complex conjugated. This
would produce the topological order SU(2)4 × SU(3)1.
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determine the F and R symbols for the condensed theory. The
vertex coefficients that we introduce here can be viewed as
analogs of the vertex coefficients of Ref. [32], albeit for the
fusion category underpinning the string-net, rather than for the
UMTC associated with the anyon model itself.

One potential application of our construction, illustrated
in the last example, is to obtain the fusion data for string-
nets of lower symmetry by condensing anyons in string-nets
with higher symmetry. For example, we can begin with a
string-net that has explicit time-reversal symmetry, such as
SU(2)4 × SU(2)4, and condense a chiral Abelian boson in one
of the two copies to obtain a string-net that does not have
time-reversal symmetry. This is useful because the data for
many high-symmetry string-nets, such as those constructed
from rational conformal field theories, is known.

A second potential application is to string-nets realizing
symmetry enriched topological phases, where the enriching
symmetry is Abelian. Specifically, condensing Zp Abelian
anyons can be viewed as “un-gauging” a Zp symmetry, and
a modification of the construction here can lead to condensed
phases in which the models exhibit a global Zp symmetry,
similar to the constructions of Refs. [58,59]. Such a construc-
tion may enable a simpler string-net realization of many of
these symmetries than in the existing literature. It also gives
a framework that could be used to construct similar models
with anyon-permuting symmetry at the boundary of a three-
dimensional Walker-Wang string-net.

Note added. Recently, we became aware of Ref. [111],
which also discusses anyon condensation in string-net models,
including some non-Abelian examples.
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APPENDIX A: PROPERTIES OF ABELIAN
STRING OPERATORS

In this Appendix, we prove the basic properties of our
Abelian string operators that we use in the main text.

1. Finding a gauge where F symbols are trivial

Many of the properties of Abelian string operators that
we use are valid only in the gauge where F (si, s j, sk ) = 1,
where we use the notation F (a, b, c) = F abc

abc,ab,bc appropriate
to F symbols involving only Abelian string labels. To see that
such a gauge exists, we use the fact that, if φ = (s, m) is a
boson, then wφ (s) = 1. [While wφ (a) is not gauge invariant
for general a, wφ (s), which represents the self-twist of the
particle, is a gauge-invariant quantity.] From Eq. (15), we see
that

wφ (s)wφ (s j ) = F (s, s j, s)wφ (s j+1). (A1)

If s2 = 0 and j = 1, F (s, s j, s) is gauge invariant, and this
tells us that only if F (s, s j, s) = 1 can (s, m) be a boson.

Otherwise, under gauge transformations, we have

F̂ (s, s j, s) = F (s, s j, s)
f ss j

s j+1

f s j s
s j+1

f s j+1s
s j+2

f ss j+1

s j+2

, (A2)

where our string-net construction requires f s0
s = f 0s

s = 1.
For 1 � j < p − 1, we can use the ratio f s j+1s

s j+2 /( f ss j+1

s j+2 )
to fix F (s, s j, s) = 1, where sp = 0. Furthermore, we
have wφ (s)wφ (sp−1) = F (s, sp−1, s)wφ (0), and hence also
F (s, s̄, s) = 1, where s̄ = sp−1. It follows that, in this gauge,
for all i, j, we have

F (s, si, s) = 1, F (s, si, s j )F (si, s j, s) = F (si, s, s j ). (A3)

In this gauge, we see that wφ (s j ) = 1 for all j.
Next, consider F (s, s j, sk ) with k > 1. Under gauge trans-

formations, we have

F̂ (s, s j, sk ) = F (s, s j, sk )
f ss j

s j+1

f ss j+k

s j+k+1

f s j+1sk

s j+k+1

f s j sk

s j+k

. (A4)

For k > 1, and a fixed choice of f ssi

si+1 for each i, we can set all

of these to one by fixing the ratio f s j+1sk

s j+k+1 / f s j sk

s j+k . (In this case,
this also works for j = p − 1.)

Thus, if wφ (s) = 1, we have enough gauge freedom to
simultaneously set F (s, s j, sk ) = 1 for all j, k. Using the pen-
tagon relation, we also have

F (s, si, s j )F (s, si+ j, sk )F (si, s j, sk )

= F (si+1, s j, sk )F (s, si, s j+k ). (A5)

In the gauge where F (s, s j, sk ) = 1 for all j, k, we find that

F (si, s j, sk ) = F (si+1, s j, sk ), (A6)

from which it follows that F (si, s j, sk ) = 1 for all i, j, k.

2. Basic string operators in a general gauge

The gauge choice F (si, s j, sk ) = 1 is convenient, because
the action of the operator Wφ (P) is identical to acting with
a string operator with a fixed endpoint that is located away
from the stick, and fusing it into the lattice appropriately. With
a different gauge choice, the difference between the operator
Wφ (P) and such open string operators can be described by a
gluing operator Ol , whose action is defined by

,

,

,

.

(A7)
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Here a denotes the string label of the stick, and the gray region
denotes the configuration which does not change.

In addition, in this gauge, when taking the product W i
φ1 ·

W i
φ2 , we may ignore the vertical bendings of the jointed path

pi ∪ pj . For example, consider two basic string operators
W i

φ1 ,W i
φ2 along the same path pi. When acting the composite

operator W i
φ1 · W i

φ2 on the vacuum state, we have

,
(A8)

with

θs1,s2 = F (s2, s̄2, s̄1)

F (s1, s2, s̄1 × s̄2)
. (A9)

Here we use (4) to remove the loop in the second line at the
expense of the factor θs1,s2 .

Thus, in a general gauge, we do not have W i
φ1 · W i

φ2 =
W i

φ1×φ2 . Instead, we find

W i,abcd;φaφb

φ3=φ1×φ2,a3b3̄c3d3;φa×φ3,φb×φ
3 (e f g)

= W i,abcd;φaφb

φ1,a1b1̄c1d1;φa×φ1,φb×φ
1 (e f g)

× W i,a1b1̄c1d1,φ
a×φ1,φb×φ

1

φ2,a3b3̄c3d3;φa×φ3,φb×φ
3 (e f g) × θ−1

s1,s2,a,b, (A10)

with

θs1,s2,a,b = F (s2, s̄2, s̄1)F (s̄2, s̄1, b)

F (s1, s2, s̄1 × s̄2)F (a, s1, s2)
(A11)

for i = 1, . . . , 4.
In addition, one can show that

W i†,a′b′c′d ′;φa′
φb′

φ,abcd;φaφb (e f g) = W i,a′b′c′d ′;φa′
φb′

φ̄,abcd;φaφb (e f g) · θ−1
s,s̄,a,b (A12)

for i = 1, 2, 3, 4.

3. Properties of basic string operators
in the gauge F(si, s j, sk ) = 1

Next, we establish the properties of basic string operators
in the gauge

F (si, s j, sk ) = 1. (A13)

First, from equations (A10) and (A12), we see that, in this
gauge,

W i
φ1 · W i

φ2 = W i
φ1+φ2 , (A14)

and

W i†
φ = W i

φ̄
. (A15)

Second, all basic string operators commute:

[
W i

φ,W j
φ′

] = 0. (A16)

This follows from Eq. (A10) if i = j (i.e., if the two paths
are the same). If the two paths intersect only on one stick (for
example, i = 1, j = 3), this follows from the fact that, using
Eq. (5), one can show that the two operator products differ by
a factor of F (si, b × s, s j ), which is unity if b labels a stick. If
i = 1, j = 2, we can use the identity

wφ ( f )wφ (s) = F s f s
f ′′, f ′, f ′wφ ( f × s) (A17)

to show that w̄φ ( f )F s f s
f ′′, f ′, f ′ = w̄φ ( f × s), which shows that

[W 1
φ ,W 2

φ ] = 0. We can use this, together with Eq. (A14),
to show that [W 1

φi ,W 2
φ j ] = 0. A similar argument shows

[W 3
φi ,W 4

φ j ] = 0.

Moreover, in this gauge we have F ss̄b
b′0b′ = wφ (b) = 1 when

b is a string label associated with the condensing boson. It
follows that W 1

φ W 3
φ = Wφ (p1 ∪ p3), where the path p1 ∪ p3

crosses straight under the b-labeled stick. Similar results hold
for other products of simple string operators with paths that
overlap only on a single stick. Using the identity [derived
from Eq. (5)] F f s̄s

f , f ×s̄,0F (s̄ss̄) = F f ×s̄,s,s̄
f ×s̄, f ,0, the product W 1

φ W 2
φ̄

can similarly be shown to be equal to an operator running
along the path (p1 ∪ p2), which directly connects the two
sticks. (The consistency relations ensure that any deformation
of this path which does not change the endpoints yields the
same operator).

Thus, in this gauge, we may express a general string opera-
tor by concatenating string operators along a series of adjacent
basic paths.

APPENDIX B: DIAGRAMMATICAL REPRESENTATION
OF THE Bφ,s

p OPERATOR

In this section, we present the graphical representation of
Bφ,s

p in HC (30) which leads to the matrix elements in Eq. (39),
as well as an alternative (simpler) formulation.

The action of Bφ,s
p in HC is defined by

Bφ,s
p =

∑
φ10,φ11,φ12

Wφ10,φ11,φ12 Bs
pW

†
φ10,φ11,φ12

. (B1)

with

Wφ10,φ11,φ12 = Pφ10W
1
φ10

· Pφ11W
1
φ11

· Pφ12W
3
φ12

. (B2)

Here the sums run over three end spins states φ10, φ11, φ12 in
p. The Pφi = |φi〉〈φi| is the projector to the end spin state |φi〉
and W 1

φ10
, W 1

φ11
, W 3

φ12
are three basic string operators defined

in (22). The Bs
p is defined to add a loop s to the boundary of

p after Wφ10,φ11,φ12 moves the excitations {φ10, φ11, φ12} to the
exterior of p. Finally, after fusing the loop s to the boundary
of p, W †

φ10,φ11,φ12
moves back the excitations to p.
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Diagrammatically, the matrix elements of Bφ,s
p can be obtained by

(B3)

where

Bs,i1,...,i6 j1,..., j6
p,i′1,...,i

′
6 j′1,..., j′6

(e1, . . . , e12; φ10, φ11, φ12) = C1C2aC2bC2cC3, (B4)

with

C1 = W 1,e10e13 j4e4;φ10φ13

φ̄10,0e′
13i4e′

4;1φ′
13

(i4 j3 f4)W 1,e14e11e6i5;φ14φ11

φ11,e′
140e′

6 j5;φ′
141 ( f6 j6 j5)W 3,e15e12e1i6;φ15φ12

φ12,e′
150e′

1 j6;φ′
151 ( f1i1 j6),

C2aC2bC2c = 1

ds

√
di′1 d j2 di′3 d j3 di′4 d j5 d j′6

de′
1
d j′2 di3 de′

4
d j′5

[
F

i′1e7

s̄ j1

]
i1 j′1

[
F

j′1e2

s̄i2

]
j1i′2

[
F

i′2e8

s̄ j2

]
i2 j′2

[
F̃

i′3e3

s̄ j2

]
i3 j′2

[
F

i′3e9

s̄ j3

]
i3 j′3

× [
F j5s

e5i′4

]
i4 j′5

[
F̃ j5s

e′
6 j′6

]
j6 j′5

[
F̃

j′6 s̄
j60

]
s j6

[
F

i′4 s̄
i40

]
si4

[
F j6i1

j′6i′1

]
s̄e′

1

[
F̃ i4 j3

i′4 j′3

]
s̄e′

4
,

C3 = W
1,0e′

13i′4e′
4;1φ′

13
φ10,e10e13 j′4e4;φ10φ13

(i′4 j′3 f4)W
1,e′

140e′
6 j′5;φ′

141
φ̄11,e14e11e6i′5;φ14φ11

( f6 j′6 j′5)W
3,e′

150e′
1 j′6;φ′

151
φ̄12,e15e12e1i′6;φ15φ12

( f1i′1 j′6), (B5)

where φ′
13 = φ13 × φ10, and similarly for φ′

14 and φ′
15. Each

product is unique because all stick labels have Abelian fusion
rules. Here e7, e8, . . . , e12 take values in Abelian string types
and thus jp = ip × ep+6 for p = 1, . . . , 6 while e′

1 = e1 ×
e12, f ′

1 = f1 × e12, e′
4 = e4 × ē10, f ′

4 = f4 × ē10, e′
6 = e6 ×

e11, and f ′
6 = f6 × e11. The functions W 1,abcd;φaφb

φ,a′b′c′d ′;φa′
φb′ (e f g)

and W 3,abcd;φaφb

φ,a′b′c′d ′;φa′
φb′ (e f g) are defined in (22), and we have

used the fact that (W j
φ )† = W j

φ̄
. By using (5) to simplify

(B4), we obtain Bs,i1,...,i6 j1,..., j6
p,i′1,...,i

′
6 j′1,..., j′6

(e1, . . . , e12; φ10, φ11, φ12) in
Eq. (39).

1. Simplified condensation Hamiltonian for string-nets
constructed from braided fusion categories

When the fusion category used to construct the string-net is
itself an anyon model, a somewhat simpler formulation can be
used to describe certain condensation transitions. We include
it here as it may be of interest, e.g., for numerical studies

[77,87,88]. The existence of a braiding means that, in addition
to the rules (5), the string labels also obey rules to determine
what happens when an a-labeled string crosses over or under
a b-labeled one:

,
(B6)

In these models, if the string-net labels correspond to anyons
described by a unitary modular tensor category C, then the
particle-like excitations of the string-net are anyons in the
category C × C—i.e., the string-net realizes two copies of
the anyon model, with opposite chiralities. The bosons a × a
are plaquette defects [112] and can be condensed as de-
scribed in Ref. [73]. Using the original string-net construction,
however, a boson a (a), corresponding to an anyon in the
category C (C), violates both vertex and plaquette terms. How-
ever, using a modification of the Walker-Wang construction
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of 3D string-nets [113], it is relatively straightforward to
construct a modified plaquette term for which open string
operators creating these anyons commute with all plaquette
terms.

When the condensing anyons are all from C, we can do
this in the generalized string-net Hilbert space depicted in
Fig. 2 and impose the constraint that at each trivalent vertex
in the new lattice, the combination of edge labels is allowed
by fusion. As in the construction outlined in the main text, we
energetically penalize any sticks carrying a label other than
the identity. Finally, we modify the plaquette operator’s action
on configurations where the sticks carry nontrivial labels, to
ensure that Bp commutes with open string operators ending
on the sticks. This can be done by threading the loop carrying
the plaquette label under all sticks, and using the fusion and
braiding rules (4) and (B6) to resolve the diagram and obtain
the matrix elements, using exactly the same procedure as in
the 3D Walker-Wang string-net models (see Refs. [113,114]).
Intuitively, this construction can be viewed as starting from a
single layer of the Walker-Wang Hamiltonian, with a smooth
lower boundary (see Ref. [114]) and open vertical edges ex-
tending upwards out of the plane. In the full 3D construction,
our sticks thus correspond to edges of vertical plaquettes, and
anyon condensation is achieved by adding “half-plaquette”
operators along these vertical plaquettes. Commutativity of
adjacent plaquette operators, as well as of plaquette operators
with the anyon string operators corresponding to adding such
vertical plaquettes, follows from commutativity of the full
Walker-Wang Hamiltonian.

Similarly, to condense a set of bosons that are all from
C, we reverse the procedure above, drawing a Walker-Wang
model with a smooth upper boundary and keeping half-
plaquettes extending downwards from this plane. In this case,
plaquette operator matrix elements are obtained by drawing
the plaquette loop over the sticks and then using appropri-
ate fusion and braiding rules. Condensing some anyons in
C, and some in C, can similarly be achieved by adding two
sticks on each edge, one extending above the plane, and one
below it.

The procedure for identifying string-net data in the con-
densed phase using this construction is exactly analogous to
that of the more general construction outlined in the main
text.

APPENDIX C: SHOWING THAT Bφ,t1
p1

, Bφ,t2
p2

COMMUTE

In this section, we show that the operators Bφ,t1
p1

and
Bφ,t2

p2
commute with one another. We only need to consider

two cases. One case is when two plaquettes are the same
p1 = p2. The other case is when p1 and p2 are adjacent
since two operators will commute if p1 and p2 are further
apart.

The first case is when two Bφ,t
p operators act on the same

plaquette p1 = p2 = p. We show Bφ,t1
p and Bφ,t2

p commute
if the branching rules δt1,t2

u are symmetric in t1, t2. We note
that Bφ,t1

p Bφ,t2
p = ∑

φ10,φ11,φ12
Wφ10,φ11,φ12 Bt1

p Bt2
pW †

φ10,φ11,φ12
. Thus,

to show that Bφ,t1
p , Bφ,t2

p commute, it is sufficient to show that
Bt1

p , Bt2
p commute.

FIG. 6. Two plaquette operators Bφ,t1
p1

and Bφ,t2
p2

act on two adja-
cent plaquettes and add two loops.

To this end, we compute

, (C1)

Here we use |[Ft1 t̄1
uū ]t̄20|2 = dt2

dt1 du
and |[F ut̄2

t10 ]t2t1 |2 =
|Ft1t2 t̄2

t1u0 |2 dt1 dt2
du

= δt1t2
u from (5). Thus, we have

Bt1
p Bt2

p =
∑

u

δt1t2
u Bu

p. (C2)

If δt1t2
u is symmetric in t1, t2, then Bt1

p Bt2
p = Bt2

p Bt1
p and thus Bφ,t1

p ,
Bφ,t2

p commute. In general, δt1t2
u is not symmetric in t1, t2 and

thus Bφ,t1
p , Bφ,t2

p do not commute.
The second case is when the two Bφ,t

p operators act on two
adjacent plaquettes p1, p2. We want to show that Bφ,t1

p1
Bφ,t2

p2
=

Bφ,t2
p2

Bφ,t1
p1

. To show this, we write down the matrix elements
of the operators on each side by (39) and then show they are
equal. In fact, it is sufficient to compare the factors for the
two operations which are different. These factors depend on
the spin states on the shared boundary between p1, p2 (see
Fig. 6).

Specifically, we write down the factors which are different.
First, the action of Bφ,t1

p1
Bφ,t2

p2
on the shared boundary con-

tributes the factors

∑
a′′b′′a′′′b′′′

wφ (a′′)
wφ (a)

[
F̃ sa′′

bt2

]
ab′′

[
F a′′′s

t1b′′
]

a′′b′′ . (C3)
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Second, the action of Bφ,t2
p2

Bφ,t1
p1

on the shared boundary con-
tributes the factors∑

a′b′a′′b′′a′′′b′′′

wφ (a′′′)
wφ (a′)

[
F̃ sa′′′

b′t2

]
a′b′′′

[
F a′s

t1b

]
ab′F

t1at2
a′′′a′a′′ F̃

t1bt2
b′′′b′b′′ . (C4)

Here x′ = x × t1, x′′ = x × t2, x′′′ = x × t1 × t2 for x = a, b
and a + s = b. All we need is to show that (C3) = (C4).

To this end, we use (15a) and (5) to simplify (C3) and
(C4) as

∑
a′′b′′a′′′b′′′

wφ (t2)
F ast2

b′′bt ′
2

(
Ft1a′′s

b′′′a′′′b′′
)∗

F at2s
b′′a′′t ′

2

, (C5)

and

∑
a′b′a′′b′′a′′′b′′′

wφ (t2)
F a′st2

b′′′b′t ′
2
Ft1at2

a′′′a′a′′
(
Ft1as

b′a′bFt1bt2
b′′′b′b′′

)∗

F a′t2s
b′′′a′′′t ′

2

, (C6)

respectively. Here t2 = t2 × s.
The next step is to simplify (C6) further. By using the two

pentagon identities

F a′st2
b′′′b′t ′

2
F

t1at ′
2

b′′′a′b′′ = Ft1as
b′a′bFt1bt2

b′′′b′b′′F
ast2

b′′b′t ′
2
,

F
t1at ′

2
b′′′a′b′′F

a′t2s
b′′′a′′′t ′

2
=

∑
h

Ft1at2
a′′′a′hFt1hs

b′′′a′′′b′′F
at2s

b′′ht ′
2
, (C7)

and the unitary conditions∑
b′

Ft1bt2
b′′′b′b′′

(
Ft1bt2

b′′′b′b′′
)∗ = 1,

∑
a′

Ft1at2
a′′′a′a′′

(
Ft1at2

a′′′a′h

)∗ = δa′′h, (C8)

we can show (C6) = (C5). This completes the proof that the
Bφ,t1

p1
, Bφ,t2

p2
terms commute with one another.

APPENDIX D: SHOWING THAT [Bφ,s
p ,Wφi ] = 0

In this Appendix, we show that Bφ,s
p and Wφi commute with

one another. For our purpose, it is sufficient to show they
commute in the gauge (23). In fact, we check that Bφ,s

p and
Wφi commute in any gauge.

It suffices to show that the basic string operators W k
φi com-

mute with Bφ,s
p since any Wφi can be constructed by gluing

the basic string operators along the path. Thus, we only have
to consider the case when the basic string operators W k

φi are
around the vertices surrounding the plaquette p since it is clear
that two operators commute if they are further apart.

There are two independent basic string operators which act
around each vertex surrounding the plaquette p [see Fig. 7(a)].
We need to show all 12 basic string operators commute with
Bφ,s

p . Among 12 string operators, there are six string opera-
tors like W 4

φi , whose ends lie outside p, four string operators

like W 1
φi which intersect p and two string operators like W 2

φi

whose ends lie inside p. We show that W 4
φi , W 1

φi , W 2
φi commute

with Bφ,s
p . In a similar way, one can show other basic string

operators also commute with Bφ,s
p .

First, we want to show that W 4
φi Bφ,s

p = Bφ,s
p W 4

φi [see
Fig. 7(b)]. To show this, we write out their matrix elements

FIG. 7. (a) Four basic string operators which act around the two
upper left vertices of the plaquette p. (b) Labeling of edges and sticks
on which BP and at least one of the operators W1,W2, and W4 act.

and compare the factors which are different. Specifically, we
need to show that the product from the left of the equation

W 4,mlor
φi,milīoiri

(qpt )W 3,minoi p
φl ,mi+l 0oi+l pl

(qri f )×
× W 3†,mi+l 0oi+l f ′

φl ,minoi p′ (qr′
i f ′)(F s̄ri pī

t ′r′
i t

F f ′ s̄ri

o′
i+l f r′

i
)∗ (D1)

and the product from the right

W 4,mlor′
φi,milīoir′

i
(qp′t ′)W 3,mnop

φl ,ml 0ol pl
(qr f )

× W 3†,ml 0ol f ′

φl ,mnop′ (qr′ f ′)(F s̄rl
t ′r′t F

f ′ s̄r
o′

l f r′ )
∗ (D2)

are equal. Here xy = x × ay, where a is the string type associ-
ated with φ, and the matrix elements of W k

φ are defined in (22).
We denote by x′ ∈ x × s (or x × s) the edge labels after fusion
with the s-labeled plaquette loop. By using (25) to write W k†

φ

in terms of W k
φ̄

and (15) and (16) to write w in terms of F
symbols, we can then show they are equal by (4).

Second, we want to show that W 1
φi Bφ,s

p = Bφ,s
p W 1

φi [see
Fig. 7(b)]. Again, we write down the matrix elements of both
sides of the equation and compare the difference between the
two. Specifically, from the left is the product

W 1,abcd
φi,aibīcidi

(e f g)W 1,aibīcidi

φb+φ̄i,ab0cbdb
(e f g)W

1†,ab0cbd ′
b

φb+φ̄i,aibīcid ′
i
(e f ′g′) (D3)

while from the right is the product

W 1,abcd
φb,ab0cbdb

(e f g)W
1†,ab0cbd ′

b
φb,abcd ′ (e f ′g′)W 1,abcd ′

φi,aibīcid ′
i
(e f ′g′). (D4)

Writing everything in terms of F symbols by (25), (16), (15),
one can show they are equal by (4).

Third, we want to show that W 2
φi Bφ,s

p = Bφ,s
p W 2

φi [see
Fig. 7(b)]. We write down the their matrix elements and com-
pare the difference. Specifically, from the left we have

W 2,nb f d
φi,nibī fidi

(pcg)W 1,abīcdi

φb+φ̄i,ab+ī0cb+īdb
(e fig)

× W 3,mniop
φn+φi,mn+i0on+i pn+i

(qr fi )W
1†,ab+ī0cb+īg

′

φb+φi,abīcd ′
i

(e f ′
i g′)

× W 3†,mn+i0on+i f ′
i

φn+φi,mni0p′ (qr′ f ′
i )F cb+ī fis

g′gf ′
i

F fiss̄
fi f ′

i 0(F f ′
i s̄r

on+i fir′ )∗ (D5)

and from the right we have

W 1,abcd
φb,ab0cbdb

(e f g)W 3,mnop
φn,mn0on pn

(qr f )

× W
1†,ab0cbd ′

b

φb,abcd ′ (e f ′g′)W 3†,mn0on p′
n

φn,mnop′ (qr′ f ′)

× W 2,nb f ′d ′

φi,nibī f ′
i d ′

i
(p′cg′)F cb f s

gsgf ′F
f ss̄

f f ′0(F f ′ s̄r
on f r′ )∗. (D6)
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Similarly, by a straightforward but tedious computation, one
can show they are equal by (4).

APPENDIX E: CONSISTENCY OF SOLUTIONS
FOR VERTEX COEFFICIENTS

IN THE PRESENCE OF SPLITTING

If ar = a and cr = c, then a W 1
φ jr operator at a vertex

(a, b; c) does not change the labels about this vertex; its only
effect is to change the labels of the two adjacent sticks. Thus,
we obtain

Aas(i+ j)r
Acs(k− j)r

Aab
c = Aasir

Acskr
Aab

c w̄φ jr (b)F abs jr

ccbjr

(
F as jr b

cabjr

)∗

× F asir s jr

aas(i+ j)r

(
F cs jr s(k− j)r

ccskr

)∗
, (E1)

where we have used the gauge (23). If Aab
c is nonzero, this can

be true only if the coefficient does not depend on b.
Similarly, applying a W 2

φ jr operator at a vertex (b, a; c), we
obtain

Aas(i+ j)r
Acs(k− j)r

Aba
c = Aasir

Acskr
Aba

c F bas jr

ccbjr

× F asir s jr

aas(i+ j)r

(
F cs jr s(k− j)r

ccskr

)∗
. (E2)

Finally, applying W 2
φ− jrW 1

φ jr to a vertex (a, c; b) with asr =
a and csr = c gives

Aas(i+ j)r
Acs(k− j)r

Aac
b = Aasir

Acskr
Aac

b w̄φ jr (c)
(
F cs jr s− jr

cc0

)∗

× (
F as jr c

bac

)∗
F asir s jr

aas(i+ j)r F cskr s− jr

ccs(k− j)r . (E3)

Similar equations appear about downward-oriented ver-
tices, involving the string operators W 3

φlr ,W 4
φlr ; however these

do not impose any new conditions required for consistency.
We now show that the coefficients identified above are

independent of b for different choices of b that are related by fu-
sion with sr j . Iterating this, we see that the coefficients are the
same for any b in the fusion orbit of s jr . In particular, for j = 1
we see that the coefficient is the same for any b in the fusion
orbit of sr . Moreover, the string operator W i

φ jr = (W i
φr ) j ; hence

we conclude that, or any j, the coefficients in Eqs. (E1)–(E3)
are the same for all b in the fusion orbit of sr , and for any j.

We begin with Eq. (E1). Using Eq. (5a), we find

F as jr b
cabjr F abjr s jr

ccb2 jr F s jr bs jr

b2 jr bjr bjr = F abs jr

ccbjr F as jr bjr

cab2 jr . (E4)

Next, we multiply both sides of the equation by wφ jr (b( jr) ),
and use Eq. (15) to see that

wφ jr (b)wφ jr (s jr ) = wφ jr (b( jr) )F s jr bs jr

b2 jr bjr bjr . (E5)

Since wφ jr (s jr ) = 1, we thus find

wφ jr (b)F as jr b
cabjr

(
F abs jr

ccbjr

)∗ = wφ jr

(
b( jr))F as jr bjr

cab2 jr

(
F abjr s jr

ccb2 jr

)∗
. (E6)

Iterating this result, we see that the coefficient is the same for
all choices of b in the same fusion orbit of sr .

Next, consider Eq. (E2). Equation (5a) stipulates

F s jr ba
cbjr c F s jr cskr

ccc F baskr

cca = F bjr askr

cca F s jr ba
cbjr c . (E7)

Furthermore, since s jrc = c, we have

wφ jr (c)wφ jr (skr ) = F s jr cskr

ccc F cskr s jr

ccs(k+ j)r

F cs jr skr

ccs(k+ j)r

wφ jr (c) (E8)

and hence F s jr cs jr

ccc = 1. It follows that F bas jr

cca = F bjr as jr

cca , and the
coefficient is the same for any b in the fusion orbit of s jr .

Finally, consider Eq. (E3). We have simplified the coeffi-
cient on the right-hand side as follows: Similar to Eq. (77),
the product of W 2

φ− jrW 1
φ jr on the vertex (a, c; b) can be

expressed as

w̄φ jr (c)F acs jr

bjr bc

(
F as jr c

bjr ac

)∗(
F bs jr st− jr

bt bjr st

)∗(
F bjr s− jr st

bt bst− jr

)∗
F acs− jr

bbjr c

× F asir s jr

aas(i+ j)r F cskr s− jr

ccs(k− j)r , (E9)

where the stick on the a edge initially carries the label sir ,
that on the c edge carries a label skr , and that on the b edge
carries st .

However, we can use Eq. (5) to show that, when asr = a
and csr = c,

F bjr s− jr st

b−t bst− jr F bs jr st− jr

b−t b jr st = F bs jr s− jr

bbjr 0 F s jr s− jr st

st 0st− jr (E10)

and

F acs jr

bjr bc F acs− jr

bbjr c F cs jr s− jr

cc0 = F bs jr s− jr

bbjr 0 . (E11)

Thus, in the gauge (23), Eq. (E9) can be simplified to give

w̄φ jr (c)
(
F as jr c

bjr ac

)∗(
F cs jr s− jr

cc0

)∗
. (E12)

We can show that the coefficient is the same for any b in the
fusion orbit of s jr :

F as jr c
bac F acs jr

bjr bc F s jr cs jr

ccc = F acs jr

bjr bc F as jr c
bjr ac . (E13)

Cancelling the redundant factors on both sides, and noting that
by Eq. (E8), F s jr cs jr

ccc = 1, we see that F as jr c
bac = F as jr c

bjr ac , and again
by iterating we find our result.

Now, if b is an Abelian particle, and a × sr = a, c × sr =
c, then a × c = ∑

j b jr + · · · , where · · · cannot contain bl

for l �= jr. This follows from the cyclic property of the
branching rules. Suppose (a, c; b) and (a, c; bj ) are allowed
by the branching rules. Then so are (c, b̄− j ; a) and (b̄− j, a; c̄).
However, if bj = b × s j = s j × b, then we must also have
(b̄, a; c̄ j ). If j = lr then c̄ j = c̄, and the outcome of fusing
b̄ with a is unique. Otherwise, however, we see that fusing
b̄ with a can have at least two different outcomes; hence
b is not an Abelian string label. In particular, if b = s j , it
follows that all equations associated with acting with string
operators s jr on the vertices (a, s j ; a), (s j, a; a), and (a, ā; s j )
are consistent. This allows us to solve for the coefficients Aas j

.
In general, however, vertices of the form (for example)

(b, a; c) and (g, a; c), where g �= bs j , can lead to multiple
equations of the form (E2), which relate the same pairs of co-

efficients Aas(i+l )r
, Acs(k−l )r

to Aasir
Acskr

. If F baslr

ccblr �= F gaslr

ccglr , these
equations are mutually inconsistent unless we choose either
Aba

c = 0 or Aga
c = 0. The resolution to this is to recognize that,

since both a and c split, there are multiple nonzero choices
for the coefficient: Aba

c = (Aba
c )i j , denoting a choice of ãi and

c̃ j . For a given b, we find that the coefficient F baslr

ccblr takes on
at most p/r distinct values (and similarly for other vertices);
hence we expect to find at least one nonzero (Aba

c )i j for each i.
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1. Relations between coefficients Aas jr
when ar = a

Suppose ar = a. Equation (5a) gives

F aslr s jr

aas(l+ j)r F as(l+ j)r skr

aas(l+ j+k)r F slr s jr skr

s(l+ j+k)r s(l+ j)r s( j+k)r = F as jr skr

aas( j+k)r F aslr s( j+k)r

aas(l+ j+k)r .

(E14)

In our gauge of choice, taking j → j − 1 and k = 1 in the
above expression gives

F aslr s jr

aas(l+ j)r = F aslr s( j−1)r

aas(l+ j−1)r F as(l+ j−1)r sr

aas(l+ j)r

F as( j−1)r sr

aas jr

. (E15)

Using this expression repeatedly, we can show that

F aslr s jr

aas(l+ j)r =
(∏ j−1

k=0 F as(l+k)r sr

aas(l+k+1)r∏ j−1
k=1 F askr sr

aas(k+1)r

)

=
(∏l+ j−1

k=l F askr sr

aas(k+1)r∏ j−1
k=1 F askr sr

aas(k+1)r

)
. (E16)

From this, we see that

F aslr s jr

aas(l+ j)r

F as jr slr

aas(l+ j)r

=
(∏l+ j−1

k=l F askr sr

aas(k+1)r∏l+ j−1
k= j F askr sr

aas(k+1)r

)(∏l−1
k=1 F askr sr

aas(k+1)r∏ j−1
k=1 F askr sr

aas(k+1)r

)
. (E17)

Without loss of generality, assume that l > j. Then,(∏l+ j−1
k=l F askr sr

aas(k+1)r∏l+ j−1
k= j F askr sr

aas(k+1)r

)
= 1∏l−1

k= j F askr sr

aas(k+1)r

,

(∏l−1
k=1 F askr sr

aas(k+1)r∏ j−1
k=1 F askr sr

aas(k+1)r

)
=

l−1∏
j

F askr sr

aas(k+1)r , (E18)

so that

F aslr s jr

aas(l+ j)r = F as jr slr

aas(l+ j)r . (E19)

Furthermore, from the expression (88),

(Aasnr
)μ = (Aasr

)n
μ

n−1∏
k=1

(
F askr sr

aas(k+1)r

)
, (E20)

we see that(
Aas( j+l )r )

μ(
Aaslr

)
ν

=
(
Aasr ) j+l

μ(
Aasr

)l

ν

∏ j+l−1
k=1

(
F askr sr

aas(k+1)r

)
∏l−1

k=1

(
F askr sr

aas(k+1)r

) (E21)

=
(
Aasr ) j+l

μ(
Aasr

)l

ν

j+l−1∏
k=l

(
F askr sr

aas(k+1)r

)
. (E22)

Hence, (
Aas( j+l )r )

μ(
Aaslr

)
ν

(
Aas jr

)
ρ

=
(
Aasr ) j+l

μ(
Aasr

)l

ν

(
Aasr

) j

ρ

∏ j+l−1
k=l

(
F askr sr

aas(k+1)r

)
∏ j−1

k=1

(
F askr sr

aas(k+1)r

)

=
(
Aasr ) j+l

μ(
Aasr

)l

ν

(
Aasr

) j

ρ

F aslr s jr

aas(l+ j)r , (E23)

where in the last line we have used Eq. (E19). Evidently, if all
factors come from the same solution (i.e., μ = ν = ρ), then
the right-hand side is simply F aslr s jr

aas(l+ j)r .

2. Vertices where multiple labels split

For vertices where multiple labels split (and none of the
labels are a power of s), we must address two questions. First,
is it the case that for every choice of b, there exists at least
one pair (μ, ν) for which Eq. (96) can be satisfied? If not, we
must conclude that at least one of the particles a, b, or c must
be confined.

Recall that if sq = 1, then if wφq (b) �= 1, then b does not
correspond to any label in our effective Hilbert space; hence in
this case we must set (Aab

c )μν = 0 for all μ, ν. When wφq (b) =
1, W 1

φq acts as the identity operator at the vertex (a, b; c), since
it is an excitation of the form (0, m) which does not involve
any fusion. Applying the operator W 1

φr q/r times, in the gauge
(23) we obtain the matrix element

(M1(a, b, c))q/r

⎛
⎝q/r−1∏

k=1

F askr s
aas(k+1)r )

⎞
⎠

⎛
⎝q/r−1∏

k=1

(
F csr s̄kr

ccs̄(k−1)r

)∗
⎞
⎠.

(E24)

Since W 1
φq = (W 1

φr )q/r , it follows that

(M1(a, b, c))q/r =
⎛
⎝q/r−1∏

k=1

(
F askr s

aas(k+1)r

)∗
⎞
⎠

⎛
⎝q/r−1∏

k=1

(
F csr s̄kr

ccs̄(k−1)r

)⎞⎠,

(E25)

so M1(a, b, c) is a q/rth root of the product on the right-hand
side. Now, Aasr

is a q/rth root of
∏q/r−1

k=1 (F askr sr

aas(k+1)r )∗, while Acsr

is a q/rth root of
∏q/r−1

k=1 (F cskr sr

ccs̄(k+1)r )∗ = (
∏q/r−1

k=1 F csr s̄kr

ccs(k+1)r )−1,
where we have used Eq. (E19). Thus Aasr

/Acsr
is also a q/rth

root of the product on the right-hand side. It follows that, for
every b, there exists at least one choice of μ, ν for which
Eq. (94) is satisfied—in which case it is also satisfied for
bkr , 0 � k < q/r. This suggests that, for a fixed M1(a, b, c)
of modulus 1, we expect q/r distinct solutions Aasr

μ /Acsr

ν =
M1(a, b, c)e2π inr/q, 0 � n < q/r.

At this point, it is worth commenting on the fusion rules of
the new theory. In the most general case, we have⎛
⎝ q/r∑

μ=1

ãμ

⎞
⎠

⎛
⎝ q/r∑

ν=1

c̃ν

⎞
⎠ = q

r

∑
b̃|b×sr �=b

cbb̃ +
∑

d̃|d×sv=d

∑
λ

cd,λd̃λ.

(E26)

The first sum contains any terms that do not split, and the
second contains terms that do. As discussed in the main
text, if (a, c; bk ) is not an allowed vertex for any 0 < k < r,
then cb = 1; otherwise, cb counts the number of distinct k,
0 � k < r, for which (a, c; bk ) is allowed. The second sum
runs over labels d for which d × sv = d , with 0 < v < q. In
this case, in the condensed theory a fusion channel d̃λ appears
with a coefficient cd,λ, whose value depends on v, r, and the
number of values of λ for which the new fusion rules admit
solutions.

As discussed in the main text, when cb = 1, the number
of distinct values of (μ, ν) for which (ãμ, c̃ν ; b̃) is allowed
by the branching rules is equal to the number of copies of
b̃ on the right, and the new theory need not have fusion
multiplicity. If cb > 1, the label b̃ = ∑q−1

j=1 bj at the vertex
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(ãμ, c̃ν ; b̃) may be associated with multiple different values
of the coefficient Ml (a, bj, c). Each distinct coefficient then
corresponds to a distinct set of solutions (μ, ν) to Eq. (94).
Thus, if {Ml (a, bj, c), 0 � j < r} are all distinct, then we can
find up to cbq/r distinct solutions to Eq. (94), and again
the new theory need not have fusion multiplicities. On the
other hand, if these coefficients are not all distinct, then in

general fusion multiplicities are expected, meaning that the
coefficients (Aab

c )μν are matrices.
The situation for vertices (ãμ, c̃ν ; d̃λ) is similar, except that

in this case if v and r are not mutually prime, additional con-
straints are imposed which fix which coefficients (Aab

c )μ,λ
ν are

nonzero. Again, we cannot rule out the possibility of fusion
multiplicities and the need to make these coefficients matrices.
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