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We present a charge self-consistent density functional theory combined with the ghost rotationally invariant
slave-boson (DFT+gRISB) formalism for studying correlated materials. This method is applied to SrVO3 and
NiO, representing prototypical correlated metals and charge-transfer insulators. For SrVO3, we demonstrate
that DFT+gRISB yields an accurate equilibrium volume and effective mass close to experimentally observed
values. Regarding NiO, DFT+gRISB enables the simultaneous description of charge-transfer and Mott-Hubbard
bands, significantly enhancing the accuracy of the original DFT+RISB approach. Furthermore, the calculated
equilibrium volume and spectral function reasonably agree with experimental observations.
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I. INTRODUCTION

Simulating strongly correlated materials from first prin-
ciples remains one of the most formidable challenges in
condensed matter physics. The complexities arise from the
intricate interplay among electronic charge, spin, and orbital
degrees of freedom, as well as the electron’s dual localization
and itinerancy character in these materials, driven by strong
local Coulomb interactions. This necessitates the use of quan-
tum many-body techniques that go beyond standard ab initio
density functional theory (DFT) [1,2] for their description.

The combination of DFT with dynamical mean-field the-
ory (DFT+DMFT) has been extraordinarily successful in
addressing this challenge [3,4]. The DMFT, as the first exam-
ple of a quantum embedding approach, maps the interacting
lattice to an auxiliary quantum impurity model with self-
consistently determined bath orbitals [5], allowing an accurate
description of the local correlation physics. Moreover, the
DFT+DMFT has been extended to charge self-consistency
deriving from a functional formulation [6,7]. The method
requires a suitable selection of a correlated set of orbitals
[8–12], the value of the interaction parameters [13,14], a
suitable double-counting correction [14–16], and accurate im-
purity solvers [17,18]. This framework is now well developed,
and comparisons between experiments and theory have re-
vealed new physics in many correlated materials, shedding
light on phenomena such as Mott localization [19–22], Hund’s
physics [23–28], and the valence fluctuations in correlated
systems [29–31]. Nevertheless, the approach is computation-
ally demanding and sometimes suffers from the so-called sign

*Contact author: tsunghan@ccu.edu.tw

problem in the quantum Monte Carlo solver with sizable off-
diagonal hybridizations [17].

Another approach starts from the Gutzwiller approxima-
tion (GA) [32–40] and equivalently rotationally invariant
slave-boson (RISB) method [41,42], and their combination
with DFT [42–50]. These methods, realized as quantum em-
bedding approaches [50,51], similar to DMFT, map the lattice
problem onto an embedded impurity model and are connected
to other quantum embedding concepts [50–54]. The RISB
framework can capture local Mott, Hund’s, and valence fluctu-
ation physics [39,42,46,49,50], at a lower computational cost
compared to DMFT. However, it sometimes suffers from in-
sufficient accuracy, particularly failing to capture the interplay
between the Mott physics and charge fluctuations [55,56].

The ghost rotationally invariant slave-boson (gRISB)
method was recently introduced to overcome these limita-
tions, expanding the RISB variational space by employing
auxiliary ghost fermionic degrees of freedom [55,57,58].
Studies have shown that gRISB, even with a small num-
ber of ghost orbitals, consistently achieves ground-state and
spectral properties that closely align with DMFT, across both
single- and multiorbital Hubbard models [55,57,59–62]. Ad-
ditionally, numerical evidence indicates that the accuracy of
gRISB approaches that of DMFT solutions as the number of
ghost bath orbitals is increased [59,60,62,63]. This accuracy
was confirmed through direct comparisons with DMFT, using
exact diagonalization as an impurity solver and discretized
hybridization functions [64]. Moreover, the gRISB requires
the calculation of only the ground-state single-particle density
matrix of the embedding Hamiltonian, avoiding the need to
compute dynamic quantities of the impurity model, making it
computationally efficient. The gRISB also does not require a
bath fitting procedure and can be seamlessly combined with
the density matrix renormalization group (DMRG) solvers
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[62,65–67] and machine learning methods [68,69]. These
features position gRISB as a promising approach warranting
further investigation, particularly in combination with DFT.

In this work, we present a charge self-consistent DFT plus
gRISB (DFT+gRISB) formalism to simulate correlated mate-
rials. We apply DFT+gRISB to SrVO3 and NiO, representing
correlated metal and charge-transfer insulator systems, re-
spectively, and compare the results with DFT+DMFT. For
SrVO3, we demonstrate that DFT+gRISB yields reliable total
energy and mass renormalization, in good agreement with
experiments and DFT+DMFT studies, significantly improv-
ing upon the original RISB approach. For NiO, we show
that DFT+gRISB provides a consistent description of the
charge-transfer insulator, consistent with experimental and
DFT+DMFT studies, while DFT+RISB falsely predicts a
metallic solution for NiO. The DFT+gRISB total energy
is also in good agreement with DFT+DMFT. Finally, we
demonstrate the applicability of the DMRG solver within the
gRISB framework, allowing for accurate results, including
full five d orbitals.

II. METHOD

In this section, we discuss the formalism of the charge self-
consistent DFT+gRISB approach and the implementation of
our DFT+gRISB framework.

A. Formalism

The DFT+gRISB functional is encoded in a Lagrange
function [6,50] represented as follows:

LDFT+gRISB
N

[
ρ(r),J (r), μ,V 0

i , N0
i

]
= LgRISB[J (r), μ]

−
∫

dr ρ(r)J (r) + EHxc[ρ(r)] + Eion-ion + Eion[ρ(r)]

+
∑

i

E i
dc

[
N0

i

] −
∑

i

V 0
i N0

i + μ

(
N +

∑
i

mi

)
, (1)

where N is the total number of electrons in the system,
determined by the charge-neutrality condition, μ is the
chemical potential, ρ(r) is the electron density, J (r) is
the corresponding constraining field, EHxc is the Hartree
exchange-correlation functional, Eion-ion is the ion-ion en-
ergy, Eion is the ionic potential, Ei

dc[N0
i ] = Ui

2 N0
i (N0

i − 1) −
Ji
2 N0

i ( N0
i

2 − 1) is the double-counting energy functional asso-
ciated with the ith impurity [14,15], N0

i is the corresponding
occupancy, V 0

i is the corresponding potential, and Ui and Ji is
the corresponding Coulomb interaction and Hund’s coupling
interaction, respectively.

The term LgRISB is the gRISB Lagrange function asso-
ciated with the following many-body Kohn-Sham-Hubbard
reference system, expressed in second quantization as follows:

ĤKSH =
∫

dx �̂†(x)P̂[−∇̂2 + J (x̂) − μ]P̂ �̂(x)

+
∑
R,i

(
Ĥ int

i [c†
Riα, cRiα] + V 0

i

∑
α

c†
RiαcRiα

)
, (2)

where x = (r, σ ), σ is the spin variable, r is the position
variable,

∫
dx indicates both the sum over σ and the integral

over r, ∇2 is the Laplacian, �̂(x) is the Fermionic field op-
erator, P̂ is the projector over a generic computational basis
span, e.g., the Kohn-Sham band basis or linearized augmented
plane-wave basis [70], and:

cRiα =
∫

dx φ∗
Riα (x)�̂(x) (3)

φRiα (r) = N−1
∑

k

e−ikRφkiα (x) (4)

are the annihilation operators associated with the correspond-
ing correlated degrees of freedom, where R is the unit cell
label, k is the momentum, and N is the total number of
unit cells in the system. The correlated orbital function is
denoted by φRiα (x), where α = 1, . . . , νi encodes both the
orbital degrees of freedom and the spin.

The Lagrangian LgRISB can be formally expressed as
follows:

LgRISB[J (r), μ]

= − T

N
∑

ω

Tr log[iω − Hqp]

+ N
∑

i

[〈	i|Ĥ emb|	i〉 + Ec
i (1 − 〈	i|	i〉)

]

− N
∑

i

[ ∑
ab

(
[λi]ab + [

λc
i

]
ab

)
[�i]ab

+ N
∑
acα

(
[Di]aα[Ri]cα[�i(1 − �i )]

1
2
ca + c.c.

)]
, (5)

where Hqp is the single-particle matrix representation of the
so-called quasiparticle Hamiltonian:

Ĥqp =
∫

dx �̂†
u (x)P̂[−∇̂2 + J (x̂) − μ]P̂ �̂u(x)

+
∫

dx �̂†
c (x)P̂[−∇̂2 + J (x̂) − μ]P̂ �̂c(x)

+
( ∫

dx �̂†
c (x)P̂[−∇̂2 + J (x̂)]P̂ �̂u(x)

+ H.c.

)
+

∑
ki

∑
ab

[
λi − Eqp

i

]
ab f †

kia fkib (6)

for a given computational basis projector P̂ and correlated
orbital wave function φRiα (x), and the local correlated part of
the Hqp has the form:[

Eqp
i

]
ab =

∑
αβ

[Ri]aα

[
E loc

i

]
αβ

[R†
i ]βb (7)

with [
E loc

i

]
αβ

= 1

N
∑

k

〈φkiα| − ∇̂2 + J (x̂)|φkiβ〉. (8)

The matrix elements of Ri and λi are the so-called renormal-
ization coefficients of the quasiparticle Hamiltonian, �i is the
quasiparticle single-particle density matrix. The �̂u(x) and �̂c
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is the uncorrelated and correlated part of the field operator,
respectively, defined as follows:

�̂u(x) =
[

Î −
∑
kiα

|φkiα〉〈φkiα|
]
�̂(x) (9)

�̂c(x) =
∑
kia

fkia

∑
α

[R†
i ]αaφkiα (x), (10)

where Î is the identity operator, a = 1, . . . , Bνi, with B con-
trolling the accuracy of the gRISB method, and fkia are the
so-called quasiparticle annihilation operators. We have also
introduced the so-called embedding Hamiltonian of the ith
impurity:

Ĥ emb
i = Ĥ int

i [c†
iα, ciα] + V 0

i

∑
α

c†
iαciα

+
∑
αβ

[
E loc

i

]
αβ

c†
iαciβ +

∑
aα

([Di]aα c†
iαbia + c.c.)

+
∑

ab

[
λc

i

]
ab bibb†

ia. (11)

The matrix elements of Di and λc
i is the hybridization and bath

coupling constants, respectively, |	i〉 is the ground state of
Ĥ emb

i , Ec
i is a Lagrange multiplier enforcing the normalization

of |	i〉, and ciα , bia are the impurity and bath Fermionic an-
nihilation operators, respectively. The number of spin orbitals
in the bath is Nb,i = Bνi.

The charge neutrality is enforced by the chemical potential
μ at quasiparticle occupancy N + ∑

i mi, where mi = (Bνi −
νi )/2. The reason for this additional term mi is to enforce the
physical occupancy to be at the total physical valence num-
ber N , where the quasiparticle occupancy and the physical
occupancy differs by a number

∑
i mi [55,58]. The λi and λc

i
can also be viewed as the Lagrange multiplier enforcing the
gRISB constraints, and Di is a Lagrange multiplier enforcing

the structure of the [Ri],aα = 〈	i|c†
iαbib|	i〉[�i(1 − �i )]

− 1
2

ba
matrix [41].

The stationary condition of the DFT+gRISB functional
leads to the following saddle-point equations:

J (r) = δHLDA
Hxc [ρ(r)]

δρ(r)
+ δEion[ρ(r)]

δρ(r)
, (12)

1

N
∑

k

〈 f †
kia fkib〉0 = [�i]ab, (13)

ρ(r) = 〈�̂†
u (r)�̂u(r)〉0 + 〈�̂†

c (r)�̂c(r)〉0

+ (〈�̂†
c (r)�̂u(r)〉0 + H.c.〉) + 1

N
∑

i

∑
k

∑
αβ

φ∗
kiα (r)

×
(

〈	i|c†
iαciβ |	i〉 −

∑
ab

[R†
i ]αa[�i]ab[Ri]bβ

)
φkiβ (r),

(14)∫
dx

1

N
∑

k

∑
bβ

∑
i′

φ∗
kiα (x)P̂

× [−∇2 + J (x̂) − μ]P̂φki′β (x)[R†
i ]βb〈 f †

kia fki′b〉0

+
∫

dx
1

N
∑

k

φ∗
kiα (x)P̂[−∇2 + J (x̂)]P̂〈 f †

kia�̂u(x)〉T

=
∑

c

[Di]cα[�i(1 − �i )]
1
2
ac, (15)∫

dx[〈�̂†
u (x)�̂u(x)〉0 + 〈�̂†

c (x)�̂c(x)〉0] = N +
∑

i

mi,

(16)∑
cdα

∂

∂di,s

(
[�i(1 − �i )]

1
2
cd [Di]dα[Ri]cα + c.c.

) + li,s + lc
i,s = 0,

(17)

Ĥ emb
i |	i〉 = Ec

i |	i〉, (18)

〈	i|c†
iαbia|	i〉 −

∑
c

[�i(1 − �i )]
1
2
ac[Ri]cα = 0, (19)

〈	i|bibb†
ia|	i〉 − [�i]ab = 0, (20)

where 〈. . .〉0 denotes the average over the ground state of
Hqp, and we introduced the following parametrization of the
matrices:

[�i]ab =
∑

s

di,s[hi,s]ab (21)

[λi]ab =
∑

s

li,s[hi,s]ab (22)

[λc
i ]ab =

∑
s

lc
i,s[hi,s]ab, (23)

where hi,s is an orthonormal basis of the Hermitian matrices
[42]. Equation (12) gives rise to the Kohn-Sham potential,
and Eq. (14) is the DFT+gRISB charge density, where the
local quasiparticle contribution to the density is subtracted
and replaced with the contribution from the local physical
density matrix [45]. The chemical potential is determined
from Eq. (16). The other equations are the standard gRISB
equations for model Hamiltonian [55,57,58,61,62]. The de-
tailed algorithm for solving these equations will be discussed
in the next section.

With the converged Ri and λi, one can compute the Green’s
function as follows:

[Gi(k, ω)]αβ

=
∑

ab

[R†
i ]αa〈0| fkia

1

ω + iη − Ĥqp + μ
f †
kib|0〉[Ri]bβ, (24)

where |0〉 is the vacuum. Equation (24) holds because the
Ĥqp is a single-particle Hamiltonian. The spectral function
is calculated from Ai(k, ω) = −ImGi(k, ω)/π , and we use a
broadening factor of η = 0.05 eV.

The self-energy can be determined from the Dyson
equation:

[�i(ω)]αβ = 〈φkiα|ω + i0+ − (∇̂2 − J (x̂) − μ)|φkiβ〉
− [

G−1
i (k, ω)

]
αβ

. (25)
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Note that the self-energy is momentum independent in gRISB,
i.e., �i(k, ω) = �i(ω). The quasiparticle renormalization
weight is determined from:

Z =
[

1 − ∂Re�(ω)

∂ω

∣∣∣
ω→0

]−1

. (26)

The expectation value of a generic local operator Ô is com-
puted from the embedding wave function:

〈Ô〉 = 〈	i|Ô[c†
iα, ciα]|	i〉. (27)

B. Implementation

Our implementation closely follows the previous works
[42,50]. We utilize WIEN2K for the DFT part of the calculation
[71]. The projector to the correlated orbitals is constructed
from the atomic orbital modified from the density func-
tional theory plus embedded dynamical mean-field theory
(DFT+eDMFT) code [12,72]. The temperature broadening
method is utilized for the Brillouin zone integration with a
broadening factor of 0.02 eV. We utilized the local density
approximation (LDA) functional in our calculations; however,
our formalism is applicable to any exchange-correlation func-
tional. We use 5000 k points and 2000 k points for the NiO
and SrVO3, respectively, and the RKmax is set to 7. The energy
window for constructing the low-energy Hubbard model is
[−10 eV to 10 eV]. The fully localized limit (FFL) is used
as our double-counting scheme [14–16], where the nominal
valence occupancy is set to 8 and 2 for NiO and SrVO3,
respectively. We use the DMRG approach implemented in
theBLOCK2 software, based on matrix product state formalism
[73], to solve the ground-state wave function of the embed-
ding Hamiltonian H emb in Eq. (11). The bond dimension is
set to 2000 in our DMRG calculations. For constructing our
bath orbitals bia in Eq. (11), we utilize the gauge invariant
nature of gRISB to fix the λc as a diagonal matrix to reduce the
entanglement between the bath orbitals, see Appendix D. For
the DFT+DMFT calculations, we utilize the DFT+eDMFT
code with the same parameter setting as in the DFT+gRISB
calculations, which provides a consistent benchmark between
the DFT+DMFT and DFT+gRISB methods. The continuous-
time quantum Monte Carlo solver is utilized with 109 Monte
Carlo steps distributed over 200 CPUs, and the temperature is
set to 100 K. For both methods, we treat all five d orbitals as
correlated shells, and the interaction is of full Slater-Condon
type [13,14].

The DFT+gRISB self-consistent equations are imple-
mented as follows: (i) converge the DFT calculations to
obtain the Kohn-Sham eigenvalue and eigenvectors, (ii) con-
struct the projector from the Kohn-Sham eigenvector and the
local atomic orbitals, (iii) solve the gRISB saddle-point equa-
tions Eqs. (13)–(20) with the Kohn-Sham eigenvalues and the
projector, (iv) use the gRISB saddle-point solution to compute
the new charge density from Eq. (14), (v) feedback the new
charge density to DFT to update the new exchange-correlated
potential [Eq. (12)] and go to step (i) until the charge density
and total energy is converged. In our calculations, we set the
total energy convergence criteria to 10−5 eV and the charge
convergence criteria to 10−3.

FIG. 1. Calculated energy volume curve with LDA,
LDA+RISB, LDA+gRISB, and LDA+DMFT for SrVO3 with
U = 10 eV and J = 1 eV. The experimental equilibrium volume is

56.61 Å
3

[74]. The temperature in DMFT is T = 100 K.

III. RESULTS

A. Applications to SrVO3

In this section, we apply LDA+gRISB to SrVO3 and inves-
tigate its total energy and electronic structures. This material
has been studied extensively in the past decades and serves
as an ideal material for benchmarking new approaches [9,16,
75–90]. It has a cubic perovskite structure, and the main active
orbitals around the Fermi level are in the V-dt2g shell. The
correlation effect is essential in SrVO3, leading to significant
renormalization of the bandwidth near the Fermi level.

We first discuss the total energy of the LDA+gRISB.
Figure 1 summarized the total energy of LDA, LDA+RISB,
LDA+gRISB, and LDA+DMFT as a function of the unit cell
volume. First, we reproduce the known fact that LDA underes-

timates the equilibrium volume at 54 Å
3
, while the experiment

observed value is 56.61 Å
3
. The LDA+RISB improves the

equilibrium volume to 56 Å
3

towards the experimental value,
but the total energy is not consistent with LDA+DMFT at
the quantitative level. On the other hand, LDA+gRISB with
15 bath orbitals significantly improves the total energy, in
quantitative agreement with the LDA+DMFT results. The
equilibrium volume of LDA+gRISB and LDA+DMFT is

56 Å
3

and 55.8 Å
3
, respectively.

We now discuss the electronic structure of SrVO3.
Figure 2 shows the momentum-resolved spectral function
along the high-symmetry points and the orbital resolved
density of states calculated from the LDA, LDA+RISB,
LDA+gRISB, and LDA+DMFT approaches at the exper-
imental equilibrium volume. The main characters around
the Fermi level are the vanadium’s t2g orbitals. For the
LDA calculation, the bandwidth of the t2g bands is around
2 eV. When including the electronic correlation effects at
the LDA+RISB level, we observe slight renormalization of
the bandwidth by a factor around 0.8, which is inconsistent
with the LDA+DMFT, where the renormalization factor is
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FIG. 2. The momentum-resolved spectral function A(k, ω) and the orbital-resolved density of states for SrVO3 with the (a) LDA,
(b) LDA+RISB, (c) LDA+gRISB, and (d) LDA+DMFT approaches at the experimental equilibrium volume. The Coulomb parameters are
U = 10 eV and J = 1 eV, and the temperature in DMFT is T = 100 K.

around 0.5. Moreover, the LDA+RISB electronic structure
is almost identical to LDA, implying a weakly correlated
metal that is inconsistent with LDA+DMFT. This inconsis-
tency can be remedied by utilizing LDA+gRISB with 15 bath
orbitals shown in Fig. 2(c). In the LDA+gRISB results, the t2g

bands are renormalized by a factor of 0.5 in agreement with
LDA+DMFT. The improvement of the quasiparticle weight
is originated from the enlarged variational space where the
ghost orbitals introduced additional variational degrees of
freedom, leading to more accurate descriptions to the ground
state and spectral properties [57]. Moreover, the electronic
structure closely resembles LDA+DMFT, except for the up-
per Hubbard band (around 4 eV) and the lower Hubbard band
(around −3 eV) of the t2g orbitals, which are approximated
by coherent and less dispersive bands in LDA+gRISB. These
less dispersive flat bands in LDA+gRISB mimic the inco-
herent Hubbard spectral weight in LDA+DMFT. However,
since LDA+gRISB, with a small number of ghost orbitals,
can only introduce a finite number of poles to the self-energy
on the real axis [57,59], it cannot capture a finite scattering
rate, which requires a branch cut on the real axis. As a result,
these flat bands lack incoherent features and appear sharp in
the spectra [57,59,62].

The total density of states calculated from LDA+RISB,
LDA+gRISB, and LDA+DMFT at the equilibrium volume is

shown in Fig. 3, which are compared with the photoemission
experiment [91]. The LDA+gRISB and LDA+DMFT density

FIG. 3. Comparison of the LDA+RISB, LDA+gRISB, and
LDA+DMFT SrVO3 total density of states with the photoemission
spectroscopy (the filled circles) [77]. The Coulomb interaction pa-
rameters are U = 10 eV and J = 1 eV. The temperature in DMFT is
T = 100 K.
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TABLE I. Quasiparticle weight Z and occupancy n for
SrVO3 calculated from LDA, LDA+RISB, and LDA+DMFT with
Coulomb interaction parameters U = 10 eV and J = 1 eV at the
experimental equilibrium volume.

LDA LDA+RISB LDA+gRISB LDA+DMFT

Zt2g 1 0.78 0.53 0.51
Zeg 1 0.89 0.75 0.78
nt2g 1.68 1.56 1.53 1.51
neg 0.80 0.64 0.66 0.66

of states around the Fermi level are in good agreement with
each other, while the upper Hubbard band in LDA+gRISB
shows a coherent feature. All three methods capture the
gap between −2 eV and 0.5 eV and the low-energy peaks,
mainly attributed to the uncorrelated O and Sr atoms. Fi-
nally, we show the orbital-resolved quasiparticle weight Z and
occupancy in Table I. The LDA+gRISB and LDA+DMFT
values are in quantitative agreement. On the other hand, the
LDA+RISB captures reliable occupancy, but the quasiparticle
weight is overestimated.

B. Applications to NiO

We now apply LDA+gRISB to NiO, which is a pro-
totypical charge-transfer insulator where the Ni-deg orbitals
hybridize with O-p to form the so-called charge-transfer band
between the lower and the upper Hubbard band [93,94]. More-
over, the concept of the Zhang-Rice bound state forming by a
hole on the O-p orbitals and the holes on the Ni-d orbitals has
been introduced to explain the low-energy features of the pho-
toemission spectra in this material [95–99]. The DFT+DMFT
approach has been applied to NiO and reveals further insight
into the electronic structure of this charge-transfer insulator as
well as its properties with external pressure, doping, and the
surface effects [97,100–107]. In this work, we focus on the
paramagnetic phase of NiO and compare its total energy and
electronic structure with the LDA+DMFT results.

The total energy as a function of the unit cell volume
is shown in Fig. 4 for LDA, LDA+RISB, LDA+DMFT,
and LDA+DMFT. The LDA significantly underestimates the

unit cell volume around 16.6 Å
3

compared to experimental

volume 18.34 Å
3

and fails to capture the experimentally ob-
served insulating behavior, which is a well-known feature.
The LDA+RISB also fails to produce an insulating solution
with realistic Coulomb parameters, U = 10 eV and J = 1 eV
[97,108], utilized in this work. Therefore, its total energy
has a large 1 eV discrepancy compared to LDA+DMFT.
On the other hand, LDA+gRISB captures the charge-transfer
insulator behavior, significantly improving the total energy
to a quantitative agreement with the LDA+DMFT values,
with a difference of around 10 meV. This difference can be
attributed to the finite temperature effect T = 100 K utilized
in the LDA+DMFT calculations. The equilibrium volume of

LDA+gRISB and LDA+DMFT is 18.09 Å
3

and 18.03 Å
3
,

respectively
The DFT band structure and density of states are shown in

Fig. 5(a). Without breaking the spin symmetry, DFT predicts
a metallic solution, which is a known problem in DFT for

FIG. 4. Calculated energy volume curve with LDA,
LDA+RISB, LDA+gRISB, and LDA+DMFT for NiO with
Coulomb interaction parameters U = 10 eV and J = 1 eV. The

experimental equilibrium volume is 18.34 Å
3

[92]. The temperature
in DMFT is T = 100 K.

transition metal oxides [109]. The bands around the Fermi
level contain the O-p and Ni-deg orbitals. The Ni-dt2g orbitals
are located below the Fermi level and are almost completely
filled.

Next, we show the LDA+RISB momentum-resolved spec-
tral function and density of states in Fig. 5(b). We utilize
the constrained LDA Coulomb parameters U = 10 eV and
J = 1 eV in our simulations [97,108]. In DFT+RISB, the cor-
relation effects only slightly renormalized the bands around
the Fermi level with Zdeg = 0.6 and Zdt2g = 0.7 and the system
is far from the metal-insulator transition.

The LDA+gRISB momentum-resolved spectral function
and density of states are shown in Fig. 5(c). Here, we use 17
bath orbitals in our LDA+gRISB calculations. The density
of states shown in Fig. 5(c) demonstrate that LDA+gRISB
accurately captures the charge-transfer insulating behavior in
the density of states, where the Hubbard bands are opened
in the Ni-deg orbitals and charge-transfer band is observed
around −1 eV with strong O-p and Ni-d hybridization. We
also observe significant spectral weight around the valence
band edge, which can be ascribed to the Zhang-Rice bound
state [96–99]. These features are in good agreement with the
LDA+DMFT results shown in Fig. 5(d) and the previous
studies [97,100–102,105–107]. Moreover, the LDA+gRISB
momentum-resolved spectral functions A(k, ω) captures re-
liably the dispersive excitations compared to DFT+DMFT,
except the incoherent broadening features, which cannot be
described within the gRISB framework.

In Fig. 6, we compare the LDA+gRISB total den-
sity of states with LDA+DMFT and the photoemission
bremsstrahlung isochromat spectroscopy (XPS/BIS) [91].
Our LDA+gRISB density of states captures the main features
in the XPS/BIS spectrum, where the band gap is about 4 eV,
and the heights of the peaks on the band edges are reasonably
captured. On the other hand, LDA+DMFT has a band gap
around 2 eV, smaller than the experimental band gap.
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FIG. 5. The momentum-resolved spectral function A(k, ω) and the orbital-resolved density of states for NiO with the (a) LDA,
(b) LDA+RISB, (c) LDA+gRISB, and (d) LDA+DMFT approaches at the experimental equilibrium volume. The Coulomb parameters are
U = 10 eV and J = 1 eV, and the temperature in DMFT is T = 100 K.

Finally, the orbital-resolved occupancy of different ap-
proaches is shown in Table II. The LDA+gRISB’s occupancy
is in good agreement with LDA+DMFT and improves the

FIG. 6. Comparison of the LDA+gRISB and LDA+DMFT NiO
total density of states with the photoemission and bremsstrahlung
isochromat spectroscopy (the filled circles) [91]. The Coulomb inter-
action parameters are U = 10 eV and J = 1 eV. The temperature in
DMFT is T = 100 K.

LDA values. On the other hand, although LDA+RISB fails
to capture the charge-transfer insulating solution, its occu-
pancy is identical to the LDA+gRISB values and close to the
LDA+DMFT values.

IV. CONCLUSIONS

We present a charge self-consistent DFT+gRISB approach
to correlated materials and demonstrate its performance
on two prototypical materials, SrVO3 and NiO, represent-
ing the correlated metals and charge-transfer insulators.
For SrVO3, we show that DFT+gRISB reliably captures
the total energy and effective mass compared to the ex-
periment and DFT+DMFT values, significantly improving
the original DFT+RISB approach. Furthermore, we show

TABLE II. The occupancy n for NiO calculated from LDA,
LDA+RISB, and LDA+DMFT with Coulomb interaction param-
eters U = 10 eV and J = 1 eV at the experimental equilibrium
volume.

LDA LDA+RISB LDA+gRISB LDA+DMFT

neg 2.59 2.14 2.15 2.15
nt2g 5.89 5.99 5.99 5.94
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that DFT+gRISB provides a more accurate description of
the electronic band structure for strongly correlated mate-
rials with a narrow quasiparticle peak and Hubbard bands
compared to DFT+RISB. For NiO, DFT+gRISB captures
the charge-transfer insulating behavior, with the charge-
transfer band situated between the lower and upper Hubbard
bands, significantly improving the DFT+RISB results, which
falsely predicts a metallic state. The total density of states
is in reasonable agreement with the photoemission spec-
trum. Moreover, our work demonstrates the applicability
of DMRG as an impurity solver within the DFT+gRISB
framework to reliably simulate correlated full five d-orbital
systems.

Future work will extend the DFT+gRISB framework to
study the two-particle response functions and interaction ver-
tices [110,111], non-equilibrium dynamics [112–115], and to
incorporate gRISB with Wannier-orbital-based projectors and
other DFT frameworks and interfaces [116–129].
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APPENDIX A: NiO RESULTS WITH DIFFERENT
NUMBERS OF BATH ORBITALS

In the main text, we show the results of NiO with Nb =
17 bath orbitals in the LDA+gRISB calculations. Here, we
present a comparison of the LDA+gRISB results with a
smaller number of bath orbital Nb = 15, which is the min-
imum number of orbitals to capture the Mott insulator in
LDA+gRISB with Hubbard bands. Figure 7 shows the total
energy of NiO from the charge self-consistent LDA+gRISB
calculations with Nb = 15 and Nb = 17 and from the charge
self-consistent LDA+DMFT calculations. We observe that
the Nb = 15 total energy deviates from the LDA+DMFT
values, and increasing the number of orbitals to Nb = 17 im-
proves the agreement with LDA+DMFT.

FIG. 7. Calculated energy volume curve with LDA+gRISB us-
ing Nb = 15 and Nb = 17 and LDA+DMFT for NiO with U = 10 eV
and J = 1 eV. The temperature in DMFT is T = 100 K. The experi-

mental equilibrium volume is 18.34 Å
3

[92].

Figure 8 shows the momentum-resolved spectral function
and density of states of NiO from the LDA+gRISB calcula-
tions with Nb = 15 bath orbitals. The LDA+gRISB spectral
function with Nb = 15 is similar to the LDA+gRISB spec-
tral function with Nb = 17 shown in Fig. 5(c), except for an
additional band in the energy window between −6 eV and
−4 eV, which is not consistent with LDA+DMFT. As shown
in Fig. 5(c), increasing Nb to 17 improves the quality of the
spectral functions.

APPENDIX B: ONE-SHOT AND CHARGE
SELF-CONSISTENCY

In this section, we compare the one-shot (OS)
LDA+gRISB results with the charge self-consistency (CSC)
results presented in the main text to demonstrate the effect

FIG. 8. The momentum-resolved spectral function A(k, ω) and
the orbital-resolved density of states for NiO with LDA+gRISB
and Nb = 15 at the experimental equilibrium volume. The Coulomb
parameters are U = 10 eV and J = 1 eV, and the temperature in
DMFT is T = 100 K.
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FIG. 9. Calculated energy volume curve with LDA+gRISB for
SrVO3 from the one-shot and charge self-consistent calculations with
U = 10 eV and J = 1 eV. The temperature in DMFT is T = 100 K.

The experimental equilibrium volume is 56.61 Å
3

[74,92].

of CSC. We start from the total energy of SrVO3 shown in
Fig. 9. The CSC shifts the total energy upward. However,

the OS equilibrium volume 56 Å
3

is the same as the CSC
value. The spectral function of the OS calculation is shown
in Fig. 10. The overall feature of the OS spectral function is
similar to the CSC spectral function in Fig. 2(c), except for
the slightly wider band gap between the correlated t2g band
and the uncorrelated band around the energy window between
0.5 eV and −2 eV.

The comparison of the total energy of NiO between the
OS and CSC calculations is shown in Fig. 11. The CSC
shifts the total energy upward. However, the OS equilibrium

volume 18.08 Å
3

is close to the CSC value 18.09 Å
3
. The OS

momentum-resolved spectral function and density of states
at the equilibrium volume is shown in Fig. 12. Compared to
the CSC results shown in Fig. 5(c), we observed significant

FIG. 10. The momentum-resolved spectral function A(k, ω) and
the orbital-resolved density of states for SrVO3 with the one-shot
LDA+gRISB calculation at the experimental equilibrium volume.
The Coulomb parameters are U = 10 eV and J = 1 eV, and the
temperature in DMFT is T = 100 K.

FIG. 11. Calculated energy volume curve with LDA+gRISB for
NiO from the one-shot and charge-self-consistent calculations with
U = 10 eV and J = 1 eV. The temperature in DMFT is T = 100 K.

The experimental equilibrium volume is 18.34 Å
3

[92].

modification of the band structure, especially the position of
the upper Hubbard band around 5 eV (4 eV with CSC) and
the lower Hubbard bands around −7 eV (−8 eV with CSC).

APPENDIX C: NiO RESULTS WITH DIFFERENT
COULOMB INTERACTIONS

In this section, we compare the photoemission and
bremsstrahlung isochromat spectroscopy with LDA+gRISB
and LDA+DMFT with different Coulomb interaction pa-
rameters in Fig. 13. In general, we found that the inco-
herent features of the Hubbard band are more prominent
in LDA+DMFT, leading to underestimations of the band
gap. On the other hand, the Hubbard band is coherent in
LDA+gRISB, resulting in larger band gaps for the considered
Coulomb interactions.

FIG. 12. The momentum-resolved spectral function A(k, ω) and
the orbital-resolved density of states for NiO with the one-shot
LDA+gRISB calculations at the experimental equilibrium volume.
The Coulomb parameters are U = 10 eV and J = 1 eV, and the
temperature in DMFT is T = 100 K.
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FIG. 13. Comparison of the DFT+gRISB and DFT+DMFT NiO
total density of states with the Photoemission and bremsstrahlung
isochromat spectroscopy (the filled circles) [91] with different
Coulomb interactions. The temperature in DMFT is T = 100 K.

APPENDIX D: CONSTRUCTION OF THE BATH ORBITALS

The DMRG algorithm involves enumerating orbitals along
an artificial one-dimensional chain to construct matrix prod-
uct states and perform sweeping optimizations. Achieving
high accuracy and efficiency depends on choosing a suitable
orbital set that minimizes the entanglement between neigh-
boring orbitals. To reduce the entanglement in the embedding
Hamiltonian [Eq. (11)], we utilize the gauge invariance nature
of gRISB to transform the λc

i matrix, describing the bath
energy levels and hybridizations, to a diagonal matrix as
follows [42,58]:

λc
i → u†

i λ
c
i ui (D1)

Di → ut
i Di, (D2)

where ui is a unitary gauge transformation matrix. This step
can reduce the entanglement between the bath orbitals, low-
ering the required bond dimension to achieve better accuracy
and efficiency.
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